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Abstract: Heart attack is one of the leading causes of human death worldwide. Every year, about
610,000 people die of heart attack in the United States alone—that is one in every four deaths—but
there are well understood early symptoms of heart attack that could be used to greatly help in saving
many lives and minimizing damages by detecting and reporting at an early stage. On the other hand,
every year, about 2.35 million people get injured or disabled from road accidents. Unexpectedly,
many of these fatal accidents happen due to the heart attack of drivers that leads to the loss of
control of the vehicle. The current work proposes the development of a wearable system for real-time
detection and warning of heart attacks in drivers, which could be enormously helpful in reducing
road accidents. The system consists of two subsystems that communicate wirelessly using Bluetooth
technology, namely, a wearable sensor subsystem and an intelligent heart attack detection and
warning subsystem. The sensor subsystem records the electrical activity of the heart from the chest
area to produce electrocardiogram (ECG) trace and send that to the other portable decision-making
subsystem where the symptoms of heart attack are detected. We evaluated the performance of dry
electrodes and different electrode configurations and measured overall power consumption of the
system. Linear classification and several machine algorithms were trained and tested for real-time
application. It was observed that the linear classification algorithm was not able to detect heart attack
in noisy data, whereas the support vector machine (SVM) algorithm with polynomial kernel with
extended time–frequency features using extended modified B-distribution (EMBD) showed highest
accuracy and was able to detect 97.4% and 96.3% of ST-elevation myocardial infarction (STEMI) and
non-ST-elevation MI (NSTEMI), respectively. The proposed system can therefore help in reducing the
loss of lives from the growing number of road accidents all over the world.

Keywords: heart attack; real time system; portable device; machine learning algorithm; support
vector machine

1. Introduction

Fatal road accidents have become an alarming issue all over the globe. A driver with a medical
condition is much more vulnerable to being hit and much more likely to cause a crash. This could
injure the driver or anyone involved and can possibly be fatal [1]. Any disorder or condition that
inhibits the driver’s strength, coordination, agility, mental capacities, judgment, attention, knowledge,
or skill is a disorder or condition that can cause auto accidents. Some of the medical conditions that
lead to accidents are seizures, strokes, heart attacks, impaired vision, or other conditions that include
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Alzheimer’s disease, Parkinson’s disease, and dementia [2]. Anything that inhibits any ability to drive
creates a risk not only to the driver but to those sharing a road with them as well.

Although acute medical illness is responsible for a small percentage of motor vehicle crashes, with
estimates ranging from less than 0.1% to 3% in several studies [3–5], they are responsible for significant
morbidity and mortality. In a study of 298 road crashes in the Adelaide metropolitan area [6], it was
found that a medical condition was the main causal factor in 13% of the casualty crashes investigated
and accounted for 23% of all hospital admission and fatal crash outcomes. A study among Japanese
taxi drivers showed that a total of 98 drivers (23%) out of 844 experienced a collision or near miss
incident due to their own acute health problems [7].

Heart attack is a sudden and sometimes fatal occurrence of coronary thrombosis, typically resulting
in the death of part of a heart muscle. Heart attack is among the highest causes of human death and
disability worldwide [8]. Even though heart attack is life threatening, it has early symptoms that could
greatly help in saving many lives and avoiding consequences if it is detected and reported in a timely
manner to the health care facilities. Therefore, to reduce road accidents that might result from the driver
being precipitated by heart attack, there is an urgent need for a portable wearable system that can
continuously monitor for any early symptoms of this medical situation, which could inform the patient
(driver) as well as medical caregivers with the vehicle location. Thus, a driver could pull over the
vehicle safely before losing his/her consciousness to avoid potentially fatal consequences, and medical
caregivers could arrive and provide lifesaving procedures to rescue the driver in a timely manner.

Myocardial infarction (MI), commonly known as heart attack, is a serious medical emergency in
which the supply of blood to the heart is suddenly blocked, usually by a blood clot in the coronary
artery [9,10]. A lack of blood to the heart may seriously damage the heart muscle and can be life
threatening. There are three types of heart attack—ST-elevation myocardial infarction (STEMI),
non-ST-elevation myocardial infarction (NSTEMI), and coronary spasm [11]. Electrical signals recorded
from the heart are referred to as electrocardiograms (ECG or EKG). A normal ECG trace (Figure 1A)
consists of components that indicate electrical events during one heartbeat. P wave is the first short
upward movement of the ECG tracing, which indicates that the atria are contracting and pumping
blood into the ventricles. The QRS complex normally begins with a downward deflection, Q, a larger
upwards deflection, a peak (R), and then a downwards S wave. The QRS complex represents atrial
repolarization and ventricular depolarization and contraction. The PR interval indicates the transit
time for the electrical signal to travel from the sinus node to the ventricles. T wave is normally a
modest upwards waveform representing ventricular repolarization.
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A STEMI (Figure 1B) occurs when a coronary artery becomes completely blocked and a large
portion of the muscle stops receiving blood, whereas NSTEMI (Figure 1C) is due to partial blockage
of the coronary artery [12]. MI symptoms vary among individuals; around 89.7% have chest pain,
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and 67.4% have pain in the upper part of the left arm [13]. One major symptom other than extreme
sweating is the irregularity of the ECG pattern. A STEMI will cause the ST complex to be elevated;
however, this is not the case in NSTEMI (https://myheart.net/articles/nstemi/). STEMI is detectable and
more lethal; therefore, it is the main concern [12].

The existing ambulatory ECG monitoring systems take a considerable amount of time and effort
to record ECG signals in patients through long-term hospitalization, and the ECG data have to be
sent to professionals for diagnostic analysis. However, a wearable ECG device can help in real-time
monitoring of heart attack because it can make decisions itself by observing irregular events of ECG
signals and identification of sudden heart attack and will be particularly useful for drivers in saving
their lives and avoiding accidents.

To observe the changes in ECG patterns, the ECG signal needs to be acquired, amplified, filtered,
and analyzed for MI detection through various algorithms. There are recent studies that suggest
either the development of a two-electrodes based amplifier alone [14,15] or a three-electrode wearable
portable ECG system [16,17]. In [18], two gel-less electrodes-based ECG systems were designed for
low power portable application to acquire ECG signals and heart rate while the subject was engaged in
different physical activities. In the two-electrode design, there was a reference electrode compensation
circuitry to avoid saturation and to increases common mode rejection. It also had baseline correction
and isolated ground, which helped in direct current (DC) drift and common mode noise illumination.
This system was useful for the two-electrode based signal acquisition. However, this system did not
include any machine learning algorithm to detect any abnormality of the heart. In [19], two Ag/AgCl
electrodes were used for ECG signal acquisition. The ECG signal was then transmitted at 2.4 GHz
band to a personal computer (PC). The system was capable of operating for 49 h continuously from
a rechargeable lithium-ion battery. This system was also designed to monitor ECG signal without
a smart algorithm. Yap et al. [20] presented a chest-belt type two-electrode wireless real-time ECG
recording system, which was based on an android monitoring application. This design included
motion artifacts compensation and R-peak detection for ECG arrhythmia detection. The experiment
results showed significant improvement of R-peak detection accuracy during fast movement activity
states. However, the MI detection was not implemented in this research. The algorithm implemented
in [21] detected any ST elevation and compared it to an isoelectric line. Each R peak was extracted
by comparing to a threshold of 0.6. The T peak was located between the R-peak with a margin of
400 ms and the J point (beginning of the ST-isoelectric line) with a margin of 80 ms. This approach was
implemented in this research as a reference work for linear classification to evaluate its robustness and
suitability for the driver application. Another linear classification and threshold-based algorithm was
developed in [22]. The algorithm used LabVIEW Mobile Module and Bluetooth for receiving data.
Both systems were capable of real time analysis of the ECG signal. However, they were not suitable for
MI detection. Using the Physiobank MI database, Sopic et al. [23] showed a support vector machine
(SVM) based real-time MI detection system with a classification accuracy of 90%. An enhanced and
optimized adaptive filter with optimal filter coefficients selection and a fuzzy rule-based algorithm
was shown to resolve the motion artifact issue in the two-electrode small size wearable chest belt ECG
system mounted with a three-axis accelerometer for ECG and ubiquitous activity recording in daily
life. However, the authors did not mention any abnormality classification algorithm in this work [24].

Cardiovascular disease is the leading cause of medical illness and sudden death in commercial
motor vehicle drivers (CMV) [25]. Cardiovascular disease has an increasingly powerful impact on
the health and safety of CMV drivers because of its prevalence in the population, its progressive
nature, the aging work force, and recent advances in diagnosis and therapy. Most studies have shown
that cardiovascular disease is the major cause of acute medical illness that results in motor vehicle
crashes [4,26–28]. However, a study [29] from the National Motor Vehicle Crash Causation Survey
(NMVCCS) in the USA reported that 95% of the drivers in crashes precipitated by medical emergencies
experienced seizures (35%), blackouts (29%), diabetic reactions (20%), or heart attack (11%) prior to the
crashes, where heart attack was shown to contribute to 11% of the crashes. A National Transportation
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Safety Board (NTSB) study [30] described fatal heavy trucks crashes where 19 out of 185 truck drivers
were fatally injured. Seventeen of those 19 crashes (89%) involved a form of cardiac incident at the
time of the accident, e.g., sudden incapacitation of the driver due to an acute heart problem [31].

In this work, the authors proposed the development of a prototype model for a wearable real-time
heart attack detection and warning system to be used by a vehicle driver. The authors worked on an
accurate detection of symptoms of a heart attack event using a machine-learning algorithm. The system
is continuously monitoring the ECG trace of the driver, and if any pre-symptom of heart attack is
found, the driver is informed to pull over his/her vehicle, and an alerting call and message with the
patient location is sent to a pre-defined number to inform emergency medical ambulance facilities.
In this manner, a driver can save himself/herself by avoiding fatal road accidents before losing his/her
consciousness, and emergency medical services can approach the driver in a timely manner to provide
required lifesaving medical procedures to avoid any life-threatening consequences. Accordingly,
the proposed system will help in controlling the growing number of road accidents all over the world.
Furthermore, as the proposed system is wearable and portable, any person with previous history (or
even without previous history) of heart attack can take advantage of this system in different settings
(e.g., work, home, driving, etc.). Last but not least, this system can help the vehicle driver in claiming
insurance facility if the accident is caused due to the driver’s ill health.

The rest of the paper is divided into five sections. Section 2 discusses the research methodology
and the details of the studies done in this work. Section 3 shows a detailed analysis of the studies
followed by the results discussed in Section 4 and finally concluded in Section 5.

2. Experiment Details and Methods

The prototype system consists of two subsystems that communicate wirelessly using Bluetooth
low energy (BLE) technology—a wearable sensor subsystem and an intelligent heart attack detection
and warning subsystem, as shown in Figure 2. The sensor subsystem uses dry ECG electrodes to sense
the electrical activity from the chest area to produce an ECG trace. The raw signals from the patient’s
body are sent continuously through the Bluetooth interface to the detection and warning subsystem.
The later continuously processes and analyzes the raw measurements to detect any symptoms related
to heart attack.
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Real-time ECG signal acquisition, amplification, filtering, digitization, and wireless transmission
are accomplished by the wearable sub-system. This subsystem is attached to a chest belt to be worn by
a driver. This includes three dry electrodes (reference and two electrodes for differential acquisition),
an analogue front end (AFE), and an RFduino microcontroller with an embedded BLE module. Dry
electrodes acquire the potential difference from the body, amplify and filter it through AFE, and
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then digitize and transmit the raw data to the decision-making subsystem. Reusable and smaller
dimension dry electrodes (Cognionics, Inc) are embedded in a chest belt to be worn by a vehicle driver.
The AFE is required to maintain high signal-to-noise ratio (SNR), high common mode rejection, and
fewer baseline drift and saturation problems. AD8232 (analog devices) AFE is an integrated signal
conditioning module to extract, amplify (60 dB gain), and filter (bandwidth 0.48–41 Hz) the ECG signal
in the presence of noisy conditions. The module includes lead-off detection, single supply operation,
adjustable gain control, rail-to-rail output, a three-pole adjustable low pass filter (LPF), a two-pole
adjustable high pass filter (HPF), and an integrated right-leg drive (RLD). A 50 Hz center frequency
Wien bridge notch filter is used to remove the 50 Hz line frequency from the ECG signal. The output of
the notch filter is digitized using RFduino and transmitted to the decision-making subsystem.

The ARM Cortex M0 is the core of RFduino microcontroller and has a built-in Bluetooth 4.0 low
energy module. RFduino uses Arduino integrated development environment (IDE) as user interface
program, which allows testing and running of pre-written sketches and takes advantage of the existing
libraries. RFduino has a 10-bit analog-to-digital (ADC) module, which is capable of acquiring the
ECG signal at a 500 Hz sampling rate with the resolution of 2.93 mV. Moreover, the dimension,
the low-power consuming feature, the 3.0 V operating voltage, and the built-in BLE module make
RFduino an excellent choice for this application. The wearable subsystem is powered through a lithium
(Li)-ion battery that is connected directly through a power cell board. The power management module
(PMM) is a boost converter (to 3.3 V and 5 V) and micro-universal serial bus (USB) charger in one.
The boost converter is based on the TPS61200 from Texas Instrumentation (TI) and has a solder jumper
selectable at 5 V and 3.3 V outputs and an under-voltage protection of 2.6 V. The module can be charged
by a mobile charger using an on-board micro-USB connector and is capable of delivering 3.3 V or 5 V.
The PMM is configured to provide 3.3 V output to the RFduino, the AFE module, and the notch filter.
The wearable module is a chest-belt with an ECG amplifier, the packaging of the ECG amplifier is
designed using a three-dimensional (3D) printer, and the assembly is shown in Figure 3.
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Figure 3. Exterior (A) and interior view (B) of the three-dimensional (3D) model of the
electrocardiograms (ECG) amplifier and (C) the ECG amplifier with the chest best and (D) dry electrodes.

The intelligent heart attack detection and warning subsystem is the brain of the whole system
and plays a major role in system operation. This module detects the event of heart attack in real-time
depending on the acquired ECG signal and the trained machine learning model using the Massachusetts
Institute of Technology-Beth Israel Hospital (MIT-BIH) ST Change Database [32]. This subsystem
is built around the single board computer, Raspberry Pi 3 (RPi3) (quad core 1.2 GHz, 1 GB RAM,
microSD, WiFi, BLE). The ECG signal is received in RPi3 over the BLE interface from RFduino. ECG
data are buffered for 10 s, and the baseline drift is corrected, segmented to ECG-beats (one ECG trace),
and smoothened using a digital filter. This subsystem incorporates SIM 908 global system for mobile
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communications (GSM)/General Packet Radio Service (GPRS) and the Global Positioning System (GPS)
module interfaced directly to RPi3 using the cooking-hack shield. The shield is popular for its low
power consumption feature during GSM communication and GPS data acquisition. The shield is
directly fitted on the Raspberry Pi 3 and powered by the RPi3 power. The standard DC connector to
supply electrical power for portable accessories used in cars is used to power the decision-making
module. The shield uses a serial communication interface for its data communication with RPi3.
However, the hardware serial port of the RPi3 is dedicated to its internal BLE module. Therefore,
the internal BLE of the RPi3 has to be disabled to establish a communication between the RPi3 and
the SIM908 module. The RPi3 runs in autonomous startup login mode and a python script is started
in startup, which is used to acquire and buffer the ECG data in the local RPi3 memory. Figures 3
and 4 show the various blocks of the prototype wearable and decision-making system. Details of the
detection algorithm are discussed in the analysis section.Sensors 2018, 18, x FOR PEER REVIEW 6 of 22 
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2.1. Study 1: Hardware Performance Evaluation

All the experimental studies were carried out on healthy male and female volunteers with the
ethical approval from the local ethical committee. In order to evaluate the performance of the designed
hardware, the following experiments were conducted for the wearable and decision-making systems:

2.1.1. Evaluation of the Wearable System

Three experiments were conducted using the wearable system: i) dry electrodes performance,
ii) lead configurations, and iii) ECG system performance.

The quality of the ECG signal acquired by the prototype model in the vehicle environment using
both dry and conventional Ag/AgCl wet electrodes while the user was driving the vehicle at different
speeds was evaluated to compare the performance of the electrodes.

The driver was constantly controlling steering, thus hands movement made it impossible to
extract ECG from the left arm (LA), the right arm (RA), and the right leg (RL). Electrodes had to be
placed in such a place that the driver’s natural driving would not be hampered while preserving the
normal ECG signal. To select the right electrode placement area that was convenient for the driver and
at the same time had high noise immunity, experiments were conducted using dry electrodes for testing
the performance of the different lead configurations in the vehicle environment at different speeds.

There were three lead configurations tested using three ECG electrodes, as shown in Figure 5:

(i) Lead I ECG Recording: ECG sensors were placed on the right arm (RA), the left arm (LA), and
the right leg (RL), as shown in Figure 5A.

(ii) Chest Lead II ECG Recording: Figure 5B shows a commonly used three-electrodes chest
ECG recording configuration where the electrodes were placed on the upper left torso in a
triangular shape.
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(iii) Chest Straight Lead: Figure 5C is a commonly used configuration in magnetic resonance imaging
(MRI) environments that are less susceptible to motion and vibration artifacts, which any user
might experience inside the vehicle.
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ECG signals were acquired from two healthy subjects by placing electrodes simultaneously in
the chest area for the prototype and a commercial wireless wearable ECG amplifier (BioRadio) [33] to
compare the quality of the ECG traces.

2.1.2. Decision-Making and Alerting System

The SIM 908 modules functionality of short message service (SMS), call origination and reception,
and GPS data acquisition were tested initially in the command-line interface of the RPi3 using attention
(AT) commands. Multi-threaded Python code was written for RPi3 using the arduPi library [34]
developed by a cooking hack to automatically initiate an SMS text if the abnormality in ECG trace was
detected. Experiments were carried out to evaluate the performance of the alerting system, which
included an audible (buzzer) local alert for the driver and the GSM/GPRS based call and SMS alerts to
the pre-defined number.

2.1.3. Reliability of the BLE Transmission between Two Sub-Systems

Experiments were conducted to check the performance of the wireless transmission system in
transmitting the ECG data over the wireless interface and to evaluate the fidelity of the signal at a
500 Hz sampling frequency. RFduino uses BLE protocol to transmit data through a Generic Attribute
Profile (GATT) to RPi3. GATT is the standard BLE devices communication services and characteristics
protocol. Before any BLE connection is established, the device should advertise itself. Advertising
and connection processes are controlled by the Generic Access Profile (GAP). Once a connection is
initiated, the peripheral device (wearable subsystem’s RFduino) can only be connected to one central
device (RPi3). In our system, RFduino was the GATT master, which held the GATT service and
characteristic. On the other hand, the GATT client (RPi3) was responsible for sending requests and
receiving responses. To ensure reliable data transmission to the RPi3 without missing any data packet,
notification of incoming data packet reception in the BLE buffer was used. Moreover, to increase the
sampling frequency of the RFduino to 500 Hz in data acquisition, ECG data were buffered before
transmission, and after every 20 ms, a buffered frame was sent to RPi3. This was to ensure low
power consumption of the wearable system while keeping high frequency sampling for reliable ECG
acquisition. The RFduino timer interrupt was used to ensure 2 ms interrupt-driven data acquisition to
guarantee the 500 Hz sampling frequency.
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2.1.4. Power Consumption of the Two Subsystems

A detailed study was accomplished on the power consumption of the two subsystems to compare
the efficiency of the system in terms of the power consumption. Overall power consumption of
the wearable system was tested in four test scenarios: low-power consumption mode of RFduino,
ECG signal acquisition with no BLE transmission, ECG acquisition and burst BLE transmission, and
continuous ECG acquisition and BLE transmission with a 500 Hz sampling of ECG data while the
frames of buffered ECG data were transmitted every 20 ms. Figure 6A shows the complete power
consumption testing arrangement for the power management section of the wearable subsystem.
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The decision-making subsystem was designed with multiple components—RPi3, GPS,
a GPRS/GSM shield, a cooling fan, and a BLE dongle. To characterize the current consumption
of the complete subsystem, individual system component consumption was evaluated by the test
set-up shown in Figure 6B. The power meter was drawing 3.2 mA without connecting it to the RPi3,
which represented the power consumption of the mobile charger and the power meter itself. This
mobile charger was connected to RPi3 using RPi’s micro-USB port. Different scenarios of current
consumption were tested to find out the current consumption by the decision-making module in
these cases. We tested how much current it consumed during the initialization process, the BLE
data transmission and processing, idle mode, fan off mode, GSM initialization mode, and active
transmission mode of GSM and GPS.

2.2. Study 2: Performance Evaluation of MI Detection Algorithms

In order to evaluate the performance of the MI detection algorithms, the authors experimented
with a linear classification algorithm in the preliminary study and then 22 different machine learning
(ML) algorithms [three decision tree, two discriminant analysis, six SVMs, six k-nearest neighbor
(KNN), and five ensembles classifiers] were trained for real-time ECG classification. Experiments
were done in two phases. In the first phase, we used a public labeled database “MIT-BIH ST Change
Database” for identifying suitable classification algorithms for detecting heart attack. In this database,
normal healthy subject data and abnormal MI patient data are available. The MIT-BIH ST change
database has 28 ECG recording datasets in total, where 14 subjects’ ECG recordings were normal ECG



Sensors 2019, 19, 2780 9 of 22

traces, seven patients had T-inversion, and the other patients experienced long-term recordings that
showed ST elevation and depression. The databases are developed and managed by the Physiobank
organization. Physiobank is a database of “well-characterized digital recordings of physiologic signals
and related data for the use by the biomedical research community”. Therefore, training and testing of
the machine learning algorithm were accomplished by real healthy patient and MI patient datasets.
In the second phase of real-time implementation in the RPi3, the wearable system was tested on normal
subjects and an ECG simulator to simulate abnormal ST-elevated MI situations to test the functionality
of the complete system in real-time.

The linear classification algorithm was implemented in the PC (Intel core i7, 8 GB RAM, Windows
7 x64) environment using Matlab 2015b. We used sliding windows of size 10 seconds to include
several consecutive interbeat intervals. The sliding window continuously moved to the next interbeat
interval, overlapping half of the interval. Therefore, the features for abnormality could be extracted
from the sliding window. Twenty-two machine learning algorithms were implemented initially in
the PC environment using Matlab 2015b to classify MI. The two best performing algorithms were
identified, and then the best performing algorithm was implemented in RPi3 using Python 2.7. Signal
pre-processing was accomplished using signal processing, wavelet transformation, and statistics
and machine learning toolboxes in the Matlab on the PC using Numpy (v1.13.3), Matplotlib (v3.0.2),
PyWavelets (v0.5.0), and LIBSVM Python libraries in Python on RPi3.

2.2.1. Linear Classification of MI

The linear classification detected three major deflections in the ECG signals: P and T waves
along with a QRS complex. The ECG signal underwent several signal processing steps—filtering,
baseline wonder removal, and wavelet transformation—before the deflections were detected, which is
explained in analysis (Section 3). The blocks for the linear classification MI detection algorithm are
shown in Figure 7A. Finding the R wave and detecting its peak was the most important part in this
method in order to diagnose heart rhythm abnormalities. All other ECG parameters were estimated
based on this value. The R-peak, where the heartbeat had the maximum amplitude, was extracted by
setting the threshold level approximated by 0.6. The basic idea of this algorithm was taken from the
Tompkins method [35]. Taking into consideration that the QRS complex duration was almost 60 ms
and knowing the exact time where the R peak occurred, the S and the Q points could be easily detected.
These points should have been within the interval of approximately 32 ms after and before the R-peak,
respectively, where the first minimum points took place. Following the same method and the same
timing interval, the J point was estimated to be the first point reaching zero, taking the negative S point
as a reference. The T peak was allocated by using information to indicate precisely the right interval in
which the T peak should have occurred. Hence, the T peak was the maximum point between 400 ms
from the R peak and 80 ms after the J point. It was detected by comparing neighboring points and
searching for the maximum value in this restricted interval. Consequently, the K point was estimated
to be in a duration of 35 ms from T peak. The ECG signal could be treated symmetrically, which eased
the detection of the work by dealing with the ECG trace in a similar manner after and before the R
peak, which was executed to get the Q, the K, and the P peak as well as the H point. This helped to
identify the changes occurring in the ST segment, and any change that occurred in the ST segment
was essential in identifying the heart attack, as it was continuously compared to the isoelectric line
(as shown in Figure 8) to spot any abnormality in the case of ST elevation, depression, or T-inversion,
which represented myocardial infarction.
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2.2.2. ML Algorithm-Based Classification of MI

The blocks for the ML algorithm based MI detection algorithm are shown in Figure 7B. Some
of the pre-processing steps of linear classification were common for ML based classification. It was
used in segmenting the ECG signal into ECG-beats. R peaks were used as the most visible features
of the complete ECG trace, while T peaks and P peaks demonstrated the boundaries of each ECG
trace. The length of each trace differed from patient to patient with the presence of the inter-subjective
and intra-subjective variability between the patients. Five hundred traces from each patient from
the MIT-BIH database with either normal or abnormal heart rhythms were generated. Several
time (t)-domain, frequency (f)-domain, and time–frequency (t,f) domain features were extracted
from the segmented ECG data, which are detailed in the analysis section. Three popular quadratic
time–frequency distributions (QTFDs)—Wigner–Ville distribution (WVD), Spectrogram (SPEC), and
extended modified B-distribution (EMBD)—were compared in this work. The (t,f) features could be
obtained by extending t-domain and f-domain features to the joint (t,f) domain. The performance of
each feature in detecting ST elevation or T-wave inversion in ECG was evaluated by performing an
area under the curve (AUC) analysis on the values of the features extracted from the ECG segments
belonging to different abnormal cases (e.g., ST elevation and T-inversion). Five-fold cross validation
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was used for training and validation of the 22 different machine learning models. The best performing
model was used to classify the two-class MI detection problem.

3. Analysis

Discussed below are the several pre-processing steps that were common to both classification
algorithms as well as some that were specific to the ML algorithm.

3.1. Pre-Processing Steps

The pre-processing steps of the ECG signal used in both classification algorithms are
discussed below:

Digital Filtering: It was essential to filter the signal and eliminate the inherent noises, which is
commonly called baseline wander and can be initiated by respiration, body movements, or even
perspiration, as well as by power line interference of 50 Hz. The ECG signal was prone to muscle
noise (EMG), bowel movements (EGG), and noise generated from electroencephalography (EEG) [36].
In addition, ECG was often contaminated by artifacts constituted through electrodes or the interference
of the signal processing hardware [37]. Thus, it was essential to use a filtering technique along with
baseline wander correction for further analysis of the signal for better feature extraction of the ECG
signal. Finite impulse response filter (FIR) was selected using the window method to smooth the noisy
signal by slicing the array of data into selected length windows, computing averages of the data within
that range, and maintaining the process throughout the data set using the moving-average filter [38].

Baseline Wander Correction: It was noticed that the baseline of the signals was not exactly at zero
level. This made the isoelectric line not well defined for extraction and computation, which resulted in
inaccurate MI detection. Thus, baseline wander correction was required. The signal was fed into a
200 ms width median filter to eliminate QRS complexes and P-waves. The obtained signal from the
filter was processed with a median filter of 600 ms to eliminate the T-waves. The attained signal was
then subtracted from the resultant signal of the FIR filter. The plots shown in Figure 9 represent the
signal before and after baseline correction.
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Biorthogonal Wavelet Transformation: Continuous wavelet transformation was used for synthesizing
the ECG signal, and this allowed us to inspect how the frequency component varied within certain
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ranges of time, i.e., how the ECG wavelets were generated. The frequency of the QRS complex was
mainly present in the 23 and the 24 scales. Since the scale 24 showed less noise compared to 23, in this
work, scale 24 was used for R-peak detection.

3.2. Linear Classification

All the ECG points and time intervals were calculated, and heart rate (HR) and isoelectric
(ISO) potential and ST segment potential were calculated and compared with each other to spot any
abnormality in the case of ST elevation, depression, or T-inversion, as mentioned in the preliminary
study section. Classification accuracy was calculated for normal and noisy data.

3.3. ML Based Classification

In the subsequent section, we discuss the remaining signal pre-processing steps, features extraction,
training and validation of the SVM model, classification, and the steps to implement the SVM to detect
MI in a real-time manner.

Segmentation: To compensate the variability of the ECG trace length, zeroes were padded at the
beginning and at the end of any trace that had less than the trace-length defined in the segmentation
process. Segmenting the ECG signals into traces allowed for data manipulation and permitted primary
observation of the unique features of each type. Figure 10 shows the difference in the ECG signal
in both time and frequency domains for normal and abnormal conditions in which the abnormality
was considered to be divided in two types, T-inversion and ST elevation. In order to have accurate
and general presentation of each category (normal, ST-elevated, and T-inverted), 3500 ECG traces
over 28 different subjects were considered. Therefore, the total number of ECG traces considered
in this study was 10,500. We averaged the ECG traces for each different case where each one was
a combination of different subjects to overcome the inter-patient variability problem due to typical
varying parameters across the patients [32].

Sensors 2018, 18, x FOR PEER REVIEW 12 of 22 

Baseline Wander Correction: It was noticed that the baseline of the signals was not exactly at zero 

level. This made the isoelectric line not well defined for extraction and computation, which resulted 

in inaccurate MI detection. Thus, baseline wander correction was required. The signal was fed into 

a 200 ms width median filter to eliminate QRS complexes and P-waves. The obtained signal from 

the filter was processed with a median filter of 600 ms to eliminate the T-waves. The attained signal 

was then subtracted from the resultant signal of the FIR filter. The plots shown in Figure 9 represent 

the signal before and after baseline correction.  

Biorthogonal Wavelet Transformation: Continuous wavelet transformation was used for 

synthesizing the ECG signal, and this allowed us to inspect how the frequency component varied 

within certain ranges of time, i.e., how the ECG wavelets were generated. The frequency of the QRS 

complex was mainly present in the 23 and the 24 scales. Since the scale 24 showed less noise 

compared to 23, in this work, scale 24 was used for R-peak detection. 

3.2. Linear Classification 

All the ECG points and time intervals were calculated, and heart rate (HR) and isoelectric (ISO) 

potential and ST segment potential were calculated and compared with each other to spot any 

abnormality in the case of ST elevation, depression, or T-inversion, as mentioned in the preliminary 

study section. Classification accuracy was calculated for normal and noisy data. 

3.3. ML Based Classification 

In the subsequent section, we discuss the remaining signal pre-processing steps, features 

extraction, training and validation of the SVM model, classification, and the steps to implement the 

SVM to detect MI in a real-time manner. 

Segmentation: To compensate the variability of the ECG trace length, zeroes were padded at the 

beginning and at the end of any trace that had less than the trace-length defined in the 

segmentation process. Segmenting the ECG signals into traces allowed for data manipulation and 

permitted primary observation of the unique features of each type. Figure 10 shows the difference 

in the ECG signal in both time and frequency domains for normal and abnormal conditions in 

which the abnormality was considered to be divided in two types, T-inversion and ST elevation. In 

order to have accurate and general presentation of each category (normal, ST-elevated, and T-

inverted), 3500 ECG traces over 28 different subjects were considered. Therefore, the total number 

of ECG traces considered in this study was 10,500. We averaged the ECG traces for each different 

case where each one was a combination of different subjects to overcome the inter-patient 

variability problem due to typical varying parameters across the patients [32]. 

 

Figure 10. ECG trace averaged over traces and its power spectral density for (A and D) 

normal, (B and E) ST-elevation, and (C and F) T-wave inversion, respectively. 

Features Extraction: The power spectral of the signal in Figure 10D,E,F shows that the power 

spectral density peaks appeared at different frequencies for normal and abnormal ECG signals. 

Moreover, the power spectral density rapidly vanished and crossed zero for both affected cases. 

This was not the case for non-affected ECG, as frequencies appeared up to 30 Hz. This reflected that 

A B C

D E F

A
m

p
li

tu
d

e 
(V

)

Time (s) Time (s) Time (s)

A
m

p
li

tu
d

e 
(V

)

A
m

p
li

tu
d

e 
(V

)

P
o

w
e

r S
p

e
ct

ra
l D

e
n

si
ty

 
(V

2
/H

z)

P
o

w
e

r S
p

e
ct

ra
l D

e
n

si
ty

 
(V

2
/H

z)

P
o

w
e

r S
p

e
ct

ra
l D

e
n

si
ty

 
(V

2 /
H

z)

Frequency (Hz) Frequency (Hz) Frequency (Hz)

Figure 10. ECG trace averaged over traces and its power spectral density for (A,D) normal, (B,E)
ST-elevation, and (C,F) T-wave inversion, respectively.

Features Extraction: The power spectral of the signal in Figure 10D,E,F shows that the power spectral
density peaks appeared at different frequencies for normal and abnormal ECG signals. Moreover,
the power spectral density rapidly vanished and crossed zero for both affected cases. This was not
the case for non-affected ECG, as frequencies appeared up to 30 Hz. This reflected that the simple
frequency domain feature could help in classifying the ECG signals. However, t-domain, f-domain,
and (t,f)-domain provided insight into the signal while compensating for the noise or motion artifacts.

Mean, variance, skewness, kurtosis, and coefficient of variation were used as t-domain features
to spot abnormalities in the ECG-beats. The mean described the average value for the readings,
the variance showed how much the recorded signal deviated from the mean, skewness showed
the T wave symmetry in shape, and kurtosis showed the degree of peakness of the T wave shape.
The coefficient of variation described the relationship between data points based on the dispersion
around the mean value. This permitted the comparison of data points for the data series that had
different mean values. Table 1 summarizes the t-domain features with discrete ECG beat and x[n] as
an N-point signal.
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Table 1. Time-domain features with their mathematical expression.

Features Mathematical Expression

Mean m(t) = 1
N
∑

n x[n]
Variance σ2(t) = 1

N
∑

n (x[n] −m(t))2

Skewness γ(t) = 1
Nσ3(t)

∑
n (x[n] −m(t))3

Kurtosis k(t) = 1
Nσ4(t)

∑
n (x[n] −m(t))4

Coefficient of Variation C(t) = σ(t)
m(t)

Frequency-domain features such as the spectral flux, the spectral entropy, and the spectral flatness
were employed for the detection of abnormalities in ECG signals. The spectral flux measured the
rate of change of the spectral content of the ECG signal with time, whereas the spectral flatness (SF)
measured the level of uniformity of the energy distribution in the frequency domain and was defined
as the geometric mean of the magnitude spectrum of the ECG signal normalized by its arithmetic mean.
However, spectral entropy (SE) measured the randomness in the distribution of the signal energy in
the frequency domain.

Time- and frequency-domain features extended to produce joint (t,f)-features. Wigner–Ville
distribution (WVD), Spectrogram (SPEC), and extended modified B-distribution (EMBD) were used
to extend the (t,f)-features. Table 2 shows the t-domain, the f-domain, and the (t,f)-domain features
extracted [39] from the ECG traces. These were used for training the ML models and testing the ECG
data using the trained best performing model.

Table 2. Features extracted from the ECG traces.

Time-Domain Features Frequency-Domain Features Time-Frequency Features

� Mean
� Variance
� Skewness
� Kurtosis
� Coefficient of variance

� Spectral flux
� Spectral entropy
� Spectral flatness

� Combines all the
pre-mentioned features

� Use Quadratic time-frequency
distribution (QTFD) to find joint (t,f)
representation:

i. Winger-Ville Distribution
(WVD)

ii. Spectrogram (SPEC)
iii. Extended Modified

B-Distribution (EMBD)

Performance Evaluation: The Receiver operating characteristic (ROC) analysis was used to evaluate
the performance of the ML algorithm for classification. It explained the capability of the trained model
in classifying different classes. The higher the value of area under the curve (AUC) was, the better the
model was in distinguishing the normal beat from the abnormal. The performance of each feature in
detecting ST elevation and T-wave inversion in ECG was evaluated by performing an ROC analysis on
the values of the feature extracted from ECG segments belonging to different abnormal cases (e.g., ST
elevation and T-wave inversion).

Apart from the AUC value, confusion matrix and several standard statistical evaluation parameters
were used to evaluate the performance of the algorithms:

True Positive Rate (TPR)/Recall/Sensitivity:

Recall =
TP

TP + FN
(1)

Specificity:

Speci f icity =
TN

TN + FP
(2)
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False Positive Rate (FPR):

FPR = 1− Speci f icity =
FP

TN + FP
(3)

Precision:
Precision =

TP
TP + FP

(4)

F-measure or score:
F score =

2 ∗Recall ∗ Precision
Recall + Precision

(5)

Accuracy:

Accuracy (ACC) =
TP + TN

Total positives and negatives
(6)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
The above-mentioned parameters were estimated using five-fold cross validation such that the

entire database was divided into five equal sets. Out of five sets, four sets were used for training, while
one set was used for testing. This process was repeated five times such that each set was tested once.
The final results were obtained by averaging the results of all the iterations. The averages of recall,
specificity, precision, f-score, and accuracy were calculated for the four iterations along with their
standard deviation. Performance evaluations of three different time-frequency distributions (TFDs)
were calculated to identify which TFD produced higher accuracy.

3.4. Real-Time Implementation

Two models were trained and validated using the labeled (training and testing) data; one was
for the STEMI (MI for ST segment elevation), and the other model was for the NSTEMI (MI for
T-wave inversion). A Python-based machine learning algorithm was implemented using the open
source LIBSVM library [40], and multi-threaded application was used for real-time pre-processing
and classification of ECG data. The decision of the real-time classifier was updated every 10 seconds,
and the alerting tone was generated locally to the driver. The in-house built C++ program was used
to initiate an emergency call and text short message using the GSM/GPRS module to a pre-defined
emergency number.

4. Results and Discussion

This section summarizes the results from the hardware experiments and algorithm performance
evaluation studies.

4.1. Hardware Performance Evaluation

The ECG signal acquired from dry electrodes was found comparable to the wet electrodes.
Moreover, dry electrodes are reusable and non-disposable, which reduces the running cost of the
system. In addition, the conductivity of the dry electrode increases over time, which guarantees signal
quality in a real-time system. However, in wet electrodes, after a couple of hours, the gel starts to
dry, impedance increases, and signal quality becomes poor. Figure 11A shows the ECG traces for
different driving scenarios for both type of electrodes. It was observed that the ECG signals were
continually getting better in the case of dry electrodes, which was not the case in wet electrodes. It is
worth mentioning that the wearable system was robust enough to acquire the ECG signal from the
driver during the different driving speed scenarios.
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Figure 12 shows the ECG traces recorded from two different subjects chosen randomly. The quality
of the ECG signal acquired wirelessly shows the evidence of the performance of the prototype system
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record.
Figure 12. ECG data collected wirelessly from (A) subject 1 and (B) from subject 2.

Initial trials revealed that the Lead I configuration (RA, LA, and RL) was not practical for the
driver and was significantly affected by noise due to hand movements during controlling the steering;
the comparison between the configurations (ii) and (iii) is shown in Figure 11B. Generally, both
configurations produced similar quality ECG signals and were comparable to clinical grade ECG traces,
even at higher vehicle speeds. However, the selection of the configuration then needed to be based on
how comfortable it would be for the driver. From the results, it was evident that the straight alignment
configuration of the electrode was the best option for ECG acquisition in the driving environment.
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The ECG signal sent from the wearable system to the RPi3 was logged and compared for
the transmission reliability. It was compared frame by frame to identify any discrepancy of the
received data (e.g., packet loss) during the transmission. It was observed that acknowledged and
frame-based data transmission ensured the communication reliability, and no packet loss was observed
in the transmission.

The SIM 908 GSM module was used for calling and sending SMS to the medical emergency service
with the car location information acquired using the GPS module embedded in the SIM 908. During
normal ECG acquisition, pre-processing, and classification, GPS data were not acquired to keep the
power requirement of the RPi3 minimum. GPS data were only acquired when any abnormality was
detected; then, time stamp, latitude, and longitude of the car location with the MI detection information
were sent. The ECG simulator was connected to the wearable system to generate normal and abnormal
ECG signals. It was evaluated whether the system could detect real-time ECG abnormality.

It was observed that the wearable subsystem drew the largest amount of current when the
ECG data were acquired continuously, as shown in Figure 13A. In the case of burst transmission,
approximately a 6 mA current was drawn. This subsystem continuously drained 2 mA, even if there
was no BLE transmission. However, this system was designed to continuously transmit data every
20 ms and acquire data at every 2 ms interval. In continuous transmission mode, this subsystem drew
9.3 mA of current. Since the wearable subsystem would be running on battery, it was important to
calculate the lifetime of the battery if it drew 9.3 mA of continuous current. The battery capacity could
be calculated from the input current rating of the battery (1000 mAh in the prototype system) and the
maximum load current (9.3 mA) of the circuit.

Battery Li f e =
Battery Capacity(mAh)

Load Current in mill amps
∗ 0.70 (7)

Equation (7) leads to 1000 mAh/9.3 mA × 0.7, i.e., approximately 75 h. Here, the factor of 0.7
(https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-battery-life) was
used for external factors that could affect battery life. Therefore, it could be summarized that the
wearable subsystem could be powered continuously for around three days from a 1000 mAh battery.
However, the system would only be used by the driver during driving, therefore it would be expected
that the daily driving time should not be more than 2–3 h for normal users unless the driver was
driving a taxi. Battery should last up to a week for normal users if they do not use the system more
than couple of hours in any day. Therefore, for the battery to last at least 24 h, the battery should be
approximately 320 mAh in size.

The decision-making subsystem was designed with multiple components—RPi3, GPS,
a GPRS/GSM shield, a cooling fan, and a BLE dongle. The initialization current consumption
by RPi3 alone, RPi3 in idle mode and processing mode, fan consumption, and consumption of GSM
and GPS modules and the complete system were recorded. Figure 13B shows the variation of current
consumption by the decision-making subsystem at different scenarios. It is evident from Figure 13B that
the RPi3 consumed around 1 A of current in its normal operational mode; however, part of this current
was due to the cooling fan, as it was drawing approximately 0.3 A current. However, this subsystem
took a maximum of 1.3 A when it was in the processing mode with continuous BLE transmission and
GSM service and GPS data acquisition mode. The decision-making subsystem was powered using the
vehicle’s cigarette lighter port, which was capable of supplying a constant 5 V supply with a maximum
2 A continuous current, which was much less than the current drawn by this subsystem.

https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-battery-life
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Figure 13. Current consumption in different operational scenarios for the wearable subsystem (A) and
the RPI3 subsystem (B).

4.2. Performance Evaluation of MI Detection Algorithms

In the following section, the performance of linear and ML based algorithms are summarized.
Linear classification algorithm for MI detection: The characteristic points of the ECG signal beside the R

peak were extracted to fulfill the detection of myocardial infarction by the comparison of the isoelectric
line with the ST segment, as shown in Figure 14A. Figure 14A demonstrates that the classical detection
method worked reliably for noise free data. However, the linear classification and thresholding-based
algorithm was not robust enough in the presence of movement artifacts induced in the ECG signals
along with impulsive noises, and the algorithm failed in the noisy data (as shown in Figure 14B).
Therefore, the machine learning based algorithm should be used for classifying ECG signals.
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Machine Learning (ML) based MI detection algorithm: All the features listed earlier were extracted,
ROC analysis was performed for each feature, and AUC was calculated. Table 3 shows the AUC values
for the feature extracted for ST-elevation and T-wave inversion from the different original t-domain,
f-domain, and joint (t,f)-domain features for three different TFDs. All features that scored a minimum
of 0.5 and above were considered to be useful to apply to classifiers. It was noticed that all the selected
features fulfilled the requirement for any of the three distributions. Therefore, all the features were
used for training and validation of 22 different machine learning models.
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Table 3. Results of the ROC analysis of t-domain, f-domain, and (t,f)-domain features for the
ST-elevation detection.

Features
WVD SPEC EMBD

Original Joint(t,f) Original Joint(t,f) Original Joint(t,f)

Mean 0.53 0.67 0.53 0.75 0.53 0.75
Variance 0.51 0.71 0.51 0.66 0.51 0.58
Skewness 0.68 0.57 0.68 0.67 0.68 0.57
Kurtosis 0.75 0.57 0.75 0.69 0.75 0.56
Coefficient of Variation 0.50 0.74 0.50 0.65 0.50 0.58
Spectral Flux 0.76 0.82 0.76 0.83 0.76 0.55
Spectral Flatness 0.54 0.71 0.54 0.79 0.54 0.68
Spectral Entropy 0.81 0.71 0.81 0.65 0.81 0.59

Computation of the ML algorithms validation accuracy was done using k-fold cross validation,
where k was equal to five. There were five iterations, and the total accuracy was computed by obtaining
the averages of the five accuracies and their standard deviations. Table 4 shows the accuracies resulting
from classifying ST-elevation, and Table 5 shows the accuracies resulting from T-wave inversion
for the three different (t,f)-distributions for the two best performing algorithms, the SVM and the
k-nearest neighbors (KNN), where SVM outperformed KNN. The SVM training was selected to be a
three-degree polynomial kernel function. The average accuracies of SVM for ST-elevation classification
were 87.1 ± 7.77%, 85.3 ± 9.9%, and 97.4 ± 2.1% for WVD, SPEC, and EMBD distributions, respectively.
The average accuracies for T-wave inversion classification were 78.0 ± 17.2%, 72.1 ± 3.09%, and
96.3 ± 0.66% for WVD, SPEC, and EMBD distributions, respectively.

Table 4. Evaluation parameters in classifying ST-elevation.

Parameters/ML
Algorithms

WVD SPEC EMBD

SVM KNN SVM KNN SVM KNN

Recall (TPR) 92% 89% 89% 90% 99.1% 96.7%
FPR 11% 12% 14% 13% 1.7% 3.8%
Precision 89% 88% 86% 87% 98.3% 96.2%
F-score 90.5% 88.9% 87.5% 86% 98.7% 97%
Accuracy 87.1% 86.4% 85.3% 84.2% 97.4% 95.9%

Table 5. Evaluation parameters in classifying T-wave inversion.

Parameters/ML
Algorithms

WVD SPEC EMBD

SVM KNN SVM KNN SVM KNN

Recall (TPR) 86% 84% 83% 84% 98.5% 96.9%
FPR 19% 20% 22% 21% 1.3% 4.3%
Precision 81% 80% 78% 79% 97.8% 95.7%
F-score 83.4% 82.7% 75.9% 76.2 98.2% 96.6%
Accuracy 78% 76.3% 72.1% 74% 96.3% 95.1%

* WVD: Wigner-Ville distribution; SPEC: Spectrogram; EMBD: extended modified B-distribution; TPR: true positive
rate; FPR: false positive rate.

It was quite evident that the EMBD outperformed the others in classifying ST-elevation and
T-wave inversion in both the abnormal ECG wave classifications. Moreover, the standard deviation
showed that the variation for different iterations was at minimum for the EMBD distribution; therefore,
this distribution was more immune to noisy data. In the Python-based implementation, the t-domain,
the f-domain, and the (t,f)-domain EMBD distributions were implemented for real-time classification.
This was also revealed from the recall and the precision parameters. Both the recall and the precision
were reasonable for reliable detection, and this was true for both positive and negative classifications,
which was also reflected from the F-score.
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5. Conclusions

In this study, we proposed and implemented a portable wearable ECG system for real-time heart
attack detection. The hardware complexity was reduced by using off-the-shelf AD8232 AFE and a
miniaturized microcontroller with built-in BLE. By using this device, the driver could keep track of
his/her heart condition on a daily basis at low cost. Moreover, the immediate response on heart attack
detection and alerting could help the driver to avoid road accidents and most likely save valuable lives.
The linear classification algorithm is very fast in execution; however, it is unable to work with noisy
ECG signals. However, the SVM algorithm with extended time-frequency features with the EMBD
distribution showed highest accuracies of 97.4% and 96.3% for detecting ST-elevation and T-wave
inversion, respectively. In addition, the proposed wearable device has lower power consumption,
and therefore it is expected that the device can run for 24 h continuously with a 320 mAh battery.
In summary, the device could contribute to excellent health monitoring and improve alerting services
to the driver as well as to medical care-givers. In this manner, a driver could save himself/herself by
avoiding fatal road accidents before losing his/her consciousness, and emergency medical services
could approach the driver in a timely manner to provide required lifesaving medical procedures to
avoid any life-threatening consequences. In the future, we would like to make the wearable device a
wearable patch or a wearable smart watch to make it more feasible to the user. There will be some
challenges in using a smart watch because of the hand movements; however, an adaptive motion
artifact removal algorithm might enable a new way to modify this life-saving gadget.
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