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Abstract: Magnetic core–shell nanocarriers have been attracting growing interest owing to 

their physicochemical and structural properties. The main principles of magnetic nanoparticles 

(MNPs) are localized treatment and stability under the effect of external magnetic fields. 

Furthermore, these MNPs can be coated or functionalized to gain a responsive property to a 

specific trigger, such as pH, heat, or even enzymes. Current investigations have been focused 

on the employment of this concept in cancer therapies. The evaluation of magnetic core–shell 

materials includes their magnetization properties, toxicity, and efficacy in drug uptake and 

release. This review discusses some categories of magnetic core–shell drug carriers based 

on Fe
2
O

3
 and Fe

3
O

4
 as the core, and different shells such as poly(lactic-co-glycolic acid), 

poly(vinylpyrrolidone), chitosan, silica, calcium silicate, metal, and lipids. In addition, the 

review addresses their recent potential applications for cancer treatment.

Keywords: magnetic, mesoporous, core–shell, drug carriers, active targeting, passive targeting, 

controlled release, targeted cancer treatment

Introduction
Drug delivery technology has witnessed significant developments over the last four 

decades. Scientists have focused their efforts on developing a new class of highly 

efficient carrier materials that are capable of meeting the vital demands of the health 

care industry. The concept of drug delivery entails the transfer of a specific dose of 

different therapeutic agents such as synthetic or natural drugs, genes, and proteins to 

the desired site in the body within a predetermined time using a specific formula or 

different devices.1–6 The concentration of the medicinal formula should lie between 

minimal toxic concentrations and the minimal effective concentration. Moreover, drug 

carriers enhance the pharmacokinetic effect, protect the medicinal agent from degra-

dation via enzymes, and carry lipophilic and hydrophilic drugs to meet the intended 

usage of the system.7 Targeted drug delivery is an approach to deliver the therapeutic 

agents to an intended organ or tissue to increase the efficacy and reduce toxicity.7

Two essential requirements must be fulfilled to have a successful drug delivery 

system. First, the system must have a minimal loss of activity and dose in the blood 

circulation system. Second, the therapeutic formula should act only on the desired 

tissues without harming other healthy cells.8 There are four routes to control drug 

release: erosion, diffusion, swelling,9,10 and by using external stimulation to initiate 

drug release.11,12 Drug delivery systems based on diffusion mechanisms are driven 

and controlled via a concentration gradient.13,14 Water swelling leads to improved 

drug mobility by offering larger pores and enhanced polymer flexibility. The drug 

release in this system depends on diffusion and dissolution mechanisms.15,16 Drug 

delivery systems depending on erosion have gained much attention especially with the 
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evolution of biodegradable polymers. Using this approach, a 

physical, chemical, or material loss is used to regulate drug 

delivery.17–19 Finally, drug release can be controlled by chemi-

cal composition, pH value, and temperature.20 In this review, 

we will focus on the fourth class of drug delivery, which is 

mainly linked to the effect of an external factor and connected 

to the specific type of carriers, namely magnetic core–shell 

drug carriers. Here, some questions arise including:

1.	 Are magnetic core–shell carriers considered promising 

drug carriers in drug delivery systems?

2.	 Is using a drug carrier better than conventional drugs?

Drug carriers and drug targeting
During the 20th century, Paul Ehrlich introduced the idea of 

drug targeting. In the 1960s, Peter Paul synthesized the first 

nanoparticles (NPs) for drug targeting.21,22 In 1963, the use 

of magnetic nanocarriers was introduced. Meyers et al used 

an externally applied magnet to compile small iron particles 

to be injected into the leg veins of dogs.23,24 Several years 

later, specifically in the late 1970s, Widder et al23,25 declared 

the synthesis of magnetic microspheres using magnetite par-

ticles and albumin. These microspheres were enclosed with 

Adriamycin as an anticancer drug. They were magnetically 

directed to the tumor cells.23,25 Then, the researchers contin-

ued their trials to fabricate, modify, and coat these magnetic 

nanoparticles (MNPs) until 1996 when Lübbe et al declared 

for the first time the use of MNPs coated with anhydroglucose 

polymers and loaded with epirubicin. These MNPs were 

tested in a clinical trial on a group of patients with advanced 

cancers.23,26 The progressive approaches in the improvement 

of magnetic nanocarriers since these advancements have 

been impressive. They represent promising vehicles in drug 

delivery, especially in the treatment of tumors.

Drug nanocarriers
Nanocarriers are defined as small entities with size ,500 nm.27,28 

There are many types of nanocarriers such as polymers, 

micelles,29–38 liposomes,39 dendrimers,40–50 gold,51 carbon 

nanotubes,52–56 silicon, and iron oxide.57 They have been 

developed and employed as carriers for drugs or vehicles 

for the controlled release of drugs, especially for anticancer 

medicines.58–67 NPs are known as prospective and profitable 

drug carriers over conventional drugs for cancer therapy due 

to their promising characteristics such as the ability to be func-

tionalized with drugs, increased therapeutic efficacy, enhanced 

drug stability, and capability to entrap lipophilic, hydrophilic, 

lipophobic, and hydrophobic drugs.7,68–71

Loading and release behavior is an essential parameter. A 

study conducted by Lian et al described the potential of using 

mesoporous silica thin films as an efficient drug carrier.72 The 

effect of loading methods, mesostructure, and morphologies 

were studied on two types of mesoporous silica thin films 

(three-dimensional hexagonal structure and two-dimensional 

hexagonal structure). Three loading methods were used to load 

fluorescein isothiocyanate molecules into the thin films. The 

loading methods were cleavable binding, physical adsorption, 

and entrapment. The results revealed that these mesoporous 

silica thin films exhibited a dissolution-controlled release 

contrary to the release behavior of mesoporous powders, 

which was a diffusion-controlled release. Furthermore, these 

mesoporous silica films can load an extra amount of guest 

molecules due to their high external surfaces.72

Drug targeting
Drug targeting can be achieved via two strategies: active 

targeting and passive targeting.7,73 Owing to some limita-

tions of passive targeting, active targeting outperforms 

passive targeting.7

Active targeting
Active targeting entails the binding of a ligand such as antipo-

des, peptides, and vitamins to the surface of nanocarriers. The 

function of these ligands is to attach an individual receptor 

on the surface of the cell, via receptor-mediated endocytosis 

mechanism (RME).27 This RME mechanism consists of three 

steps. First, the ligand attaches to a suitable receptor on the 

cell, subsequently resulting in the formation of endosomes. 

Endosomes are compartments of a plasma membrane, which 

include the receptor and ligand complex. Finally, the endo-

somes transfer to the desired site, and the drug is released 

under the influence of pH difference or enzymes.7 Figure 1 

describes the specific ligand-mediated active targeting.74

Passive targeting
Passive targeting exploits natural conditions of the target 

tissue or organ to direct the drug to the desired position. 

This targeting exploits the physiological nature of tumor 

cells. The tumors have leaky vessels, and these vessels have 

a high number of pores with a size of 100–800 nm. The 

significant number of pores leads to an extended vasculature 

because the gap junction between endothelial cells expands.7 

Furthermore, tumor cells have a deficient lymphatic 

drainage. Consequently, drug carriers and therapeutic agents 

accumulate in the tumor cells.75

Figure 2 compares passive and active targeting. Passive 

targeting depends mainly on the leaky tumor vessels, while 

active targeting depends on the presence of ligands on 

the nanocarrier surface.75
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Fundamental features of targeted drug 
delivery systems
To achieve the anticipated impact of a drug, the drug should 

be in physical contact with its target and maintain contact 

with the targeted area for an adequate period of time. Not all 

drugs are suitable for drug delivery systems. For instance, 

some drugs exhibit a high specificity for their targets such as 

therapeutic antibodies. Other drugs have the same sites for 

toxicity. Hence, administering these drugs in a drug deliv-

ery system may induce either therapeutic or toxic effects. 

Furthermore, some drugs do not remain in the targeted sites 

long enough to cause the desired therapeutic action. The 

desired drug delivery system should exhibit fundamental 

features, which are briefly summarized in Table 1.76

Magnetic drug delivery
The concept of magnetic drug delivery is to apply an external 

magnetic field to drive a drug carrier with a magnetic property 

Figure 1 Illustration of a ligand-mediated active targeting.
Notes: A carrier(1) loaded with the drug (2) is treated with a ligand (3) capable 
of recognizing the binding positions (4) on the surface of the cell (5). Reprinted 
by permission from Springer Nature Customer Service Centre GmbH: Springer 
Nature. Passive and active drug targeting drug delivery to tumors as an example. By 
Torchilin VP. In: Schäfer-Korting M, editor. Drug Delivery. Handbook of Experimental 
Pharmacology. Berlin, Heidelberg: Springer; 2009:3–53. Copyright 2009.74

Figure 2 In passive targeting (A), drug targeting can be described as passive when nanoparticles diffused via the leaky tumor vessels. While in active targeting (B), drug 
delivery took place when the ligands of the nanocarriers were attached to the receptor on the tumor cells.
Notes: Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature. Systemic targeting systems-EPR effect, ligand targeting systems. 
By Pawar PV, Domb AJ, Kumar N. In: Domb AJ, Khan W, editors. Focal Controlled Drug Delivery. Boston, MA: Springer US; 2014:61–91. Copyright 2014.75

Abbreviation: NP, nanoparticle.
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Table 1 Fundamental characteristics of a targeted drug delivery system

Features Effect on drug delivery system

The rate of carrier delivery (encapsulated with the 
drug) to the targeted sites

•	 An adequate amount of a drug should be delivered to the desired sites
•	 The free drug should reach a particular concentration in the targeted area

The rate of carrier elimination (encapsulated with the 
drug) from the targeted sites

•	 The drug should remain in the desired area for a sufficient time
•	 Elimination process of carrier drug conjugate should not be faster than the delivery process

The duration between drug release and drug removal 
in the targeted sites

•	 The drug should retain a specific concentration in the targeted tissues for sufficient 
time to act on it

The rate of drug release at non-targeted sites •	 Releasing the drug at non-targeting tissue will reduce the amount of drug delivered to 
the intended areas

•	 The systematic toxicity will increase

The rate of carrier drug conjugate removal from the 
body

•	 The rate of drug elimination from the circulation system should be faster than its 
transition rate from the targeted tissues to the central compartment of the body

to an intended site in the body. Among the different classes 

of MNPs, magnetite (Fe
3
O

4
) and maghemite (ɣ-Fe

2
0

3
77) are 

the most used magnetic materials, especially in biomedical 

applications. They have inverse spinel crystal structures and 

physical properties.78 MNPs are characterized by magnetiza-

tion (M), saturation magnetization (M
s
), and coercivity (H

c
). 

M
s
 is the magnetization value of an NP when it is subjected 

to an increased magnetic field. Also, H
c
 is the value of the 

outer magnetic field required to reduce the magnetic field 

of an NP down to zero. This parameter should be taken into 

consideration, mainly in biomedical applications where no 

residual magnetization is critical in hindering their coagula-

tion and sustaining a long time of circulation.79 There are 

many reports that have discussed the recycling of MNPs.80 

Other DDS studies illustrated that MNPs can be recycled at 

least 15 times without losing their potency.81

Potential of magnetic hyperthermia of  
magnetic drug delivery systems
Hyperthermia is a method of treating cancer which involves 

the application of excessive heat to kill tumor cells. The 

term “hyperthermia” is derived from Greek etymology and 

consists of two parts: “hyper” which literally translates to 

“rise” and “thermia” which literally translates to “heat.”82 

Hyperthermia is a procedure carried out by locally generat-

ing and raising the temperature of tumor cells to a particular 

range, usually between 41°C and 46°C for a period of time 

(20–60 minutes) to kill tumor cells.83,84 Unlike other methods, 

hyperthermia is administered specifically with the goal of 

eliminating tumor cells while rendering minimal damage to 

other normal healthy cells. It is a very effective method and 

has outperformed other conventional procedures in cancer 

treatment. There are some drawbacks and challenges that 

must be addressed and overcome in order to achieve opti-

mal therapy. There are two main challenges rendered by the 

hyperthermia approach to treating cancer: overheating of the 

tumor region and heterogeneity of the temperature distribu-

tion in the tumor mass.85

Using MNPs in hyperthermia (magnetic hyperthermia) 

will reduce the side effects of hyperthermia, as these MNPs 

can be injected into the tumor directly.85 The following 

studies represent the recent trends of synthesizing MNPs to 

be used as magnetic hyperthermia tools. Dias et al fabricated 

vortex iron oxide particles (VIPs) to be used in magnetic 

hyperthermia.86 Three types of VIPs were synthesized with 

deferent aspect ratios (VIP1, VIP3, and VIP6). Furthermore, 

the toxicity was also evaluated on human embryonic kidney 

cells (HEK293). Different concentrations of these MNPs 

were examined for 24 and 48 hours, respectively. HEK293 

cells were treated with 100 µg/mL of these MNPs, followed 

by incubation for 24 hours. Following incubation, the cells 

were exposed to a magnetic field. Finally, the cells were 

stained using propidium iodide, and cell death was measured 

using flow cytometry. All MNPs induced cell death and the 

results were found to be exposure time-dependent and ranged 

from 10% to 65%.86

Magnetic nanocarriers: importance of  
coating and functionalization
MNPs are considered to be promising materials for biomedi-

cal applications. Coating them with biodegradable and bio-

compatible materials is essential to reducing their potential 

toxicity and protecting their magnetic core from corrosion.77,87 

Moreover, biodegradable polymers can release the absorbed 

drugs at a rate determined by their degradation.87,88

Some studies illustrated the coating influence on the 

magnetization properties and it was claimed that surface 

disorder can control the magnetization of MNPs. It was 

observed through these studies that an inverse relationship 

exists between surface disorder and magnetization wherein 
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the less the surface disorder, the more the magnetization.89 

Other studies suggested a reduction in particle size to obtain 

higher magnetization.90

Magnetic core–shell nanocarriers
To consider a material as an efficient drug carrier, it should 

contain unoccupied sites to act as a reservoir to carry the 

drug as well as to enhance drug loading.91 Researchers have 

recently focused their efforts on developing efficient drug 

delivery materials that improve the cell internalization of 

medicines and reduce cytotoxicity.92,93 Moreover, a magnetic 

drug carrier should have individual properties, such as mag-

netization, low toxicity, and proper drug uptake and release.

Despite the available synthesis techniques of MNPs, the 

resulting MNPs may have insufficient magnetization espe-

cially when targeting some deep tissues in the body.94 Hence, 

a new strategy must be integrated to obtain better results. In 

addition to the magnetic core–shell spheres, other anisotro-

pic shapes of MNPs can be synthesized such as nanorods, 

nanotubes, nanodiscs, nanoworms, and nanochains.94 These 

materials display better magnetic responsiveness and higher 

magnetic moment when compared to the magnetic core–shell 

spheres. Some researchers discussed the benefits of using 

alternating magnetic fields in drug delivery and magnetic 

hyperthermia, with a combination of MNPs.95 It was claimed 

that using AMF resulted in localized and deeper penetration 

in tumor cells. Furthermore, it can be beneficial in triggering 

drug release from encapsulated MNPs.95

In this context, this review addresses different types 

of magnetic core–shell drug carriers such as magnetic@

polymer, magnetic@mesoporous silica, magnetic@calcium 

silicate (CS), magnetic@metal, and magnetic@liposomes 

core–shell materials. Figure 3 depicts an outline of different 

types of shells to encapsulate the MNPs for drug carriers, 

which will be discussed in the following sections.

The adsorption of drug molecules on the drug carrier 

represents an important parameter, and the physicochemi-

cal stability of the therapeutic agent is enhanced by this 

phenomenon.96 Many studies have been conducted to evalu-

ate the adsorption behavior of drugs onto drug carriers and 

magnetic drug carriers. Previous studies investigated the 

adsorption–desorption behavior of many drugs such as 

methotrexate (MTX), doxorubicin (DOX), camptothecin, 

mitomycin C, and verapamil onto magnetically targeted 

carriers.96 The results illustrated that these drugs demonstrated 

a different behavior, which can be described as nonlinear 

behavior.96 For DOX administered to patients with hepatomas 

and metastases to the liver, for both intravenous and intra-arte-

rial administrations (30 mg/m2), it was found that DOX plasma 

concentrations quickly decreased to the 100 ng/mL range.97

In vivo evaluation of magnetic core–shell 
nanocarriers
In vivo tests represent an important step in the evaluation 

process of drug carriers as it provides a closer perspective 

on how the drug carrier impacts the human body and organs. 

In vivo tests begin with the selection of a suitable animal 

model.98 The most widely used animal models are swine, 

daphnia magna, zebrafish, albino star rat strains, albino 

mouse strains, and chick embryos.99

In vivo tests were conducted on different types of MNPs. 

To illustrate, Fe
3
O

4
 MNPs efficacy was evaluated by treating 

nude mice suffering from blood cancer (leukemia cells K562) 

with daunorubicin-Fe
3
O

4
 MNPs.100 It was realized that these 

MNPs induced apoptosis and reduced the tumor growth. In 

addition, Albino rats suffering from sarcoma S-180 cells were 

injected with DOX-Fe
3
O

4
-citric acid-chitosan composites 

encapsulated with poly(lactic-co-glycolic acid) (PLGA).100 

It was clearly observed that these MNPs were accumulated 

in the tumor cells, and the cancer cells size was reduced. 

Moreover, Kunming mice were injected with MPEG-

PLGA loaded with evodiamine, and the tumor suppression 

was realized to be 50%.100 Recently, Li et  al synthesized 

magnetic mesoporous silica core–shell nanocarriers via the 

sol-gel method.101 These MNPs were functionalized with 

matrix metalloproteinase (MMP)-2 enzyme responsive 

peptide. The in  vivo results illustrated that accumulation 

and cell uptake of these MNPs in tumor cells were enhanced 

when an external magnetic field was applied. Furthermore, 

magnetic resonance imaging (MRI) test revealed the ability 

of these MNPs in the suppression of cancer cells growth.101Figure 3 Classifications of shells for magnetic nanoparticles encapsulation.
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Polymer core–shell drug carriers
Polymer-based materials can be used in a wide range of 

applications.102–108 It is worth noting that the most remark-

able known applications of polymer composites are the 

biomedical ones, including tissue engineering and wound 

healing.109–111 In addition, polymer-based nanoagents are 

the most reported organic-based photothermal carriers for 

cancer therapy.112 Due to their exceptional characteristics 

such as high energy density, low cost, structural diversity, 

and design flexibility, the conducting polymer matrices have 

been widely applied as supercapacitors.113

Natural and synthetic polymers
PLGA was utilized in biomedical applications for an 

extended period, and many records and studies have been 

conducted to assure its efficacy and safety.114–120 Furthermore, 

PLGA was approved by the European Medicine Agency121 

and US Food and Drug Administration.87,122,123 It is widely 

used in drug delivery systems due to its desirable properties 

such as biodegradability and biocompatibility.87,121,124 There 

are many previous reports that have used PLGA to coat 

the magnetic particles for magnetic drug delivery systems. 

Because of the high magnetization values of MNPs, they 

tend to accumulate. To use MNPs in drug delivery systems, 

agglomeration can be prevented by inducing steric repulsion 

between the MNPs. As a result, the particles will be more 

stabilized and have less tendency to agglomerate.87,125 Many 

studies discussed the use of oleic acid in fabricating MNPs in 

order to enhance their stability.126 Furthermore, encapsulation 

of magnetite with PLGA enhanced the magnetite encapsula-

tion efficacy to 60%.127 As an illustration of this approach, 

DOX-PLGA-MNPs were fabricated by Tansık et al,87 who 

reported the use of Fe
3
O

4
 as the core, and it was then coated 

with oleic acid and finally encapsulated with PLGA. They 

displayed a uniform spherical core–shell morphology with a 

diameter of 65 nm. Coating with oleic acid improves particle 

stability by preventing them from agglomeration as a result 

of their high magnetization. Due to their superparamagnetic 

properties, these MNPs could be targeted to a specific tissue 

using an external magnetic source. The drug release test 

showed a sustained release behavior of DOX, and 65% of 

the drug was released after 35 days at a pH =7.4. Further-

more, XTT cell proliferation assay was conducted on MCF-7 

breast cancer cells using PLGA-MNPs before and after DOX 

loading. The cells were seeded at a concentration of 104, in a 

96-well plate. In the XTT cell proliferation assay, an XTT-

based colorimetric assay kit (2,3-bis(2-methoxy-4-nitro-

5-sulfophenyl)-2H-tetrazolium-5 carboxanilide) was used. 

The unloaded particles offered good biocompatibility even 

at a high dose of 250 µg/mL. They demonstrated significant 

toxicity at 500 µg/mL, and the DOX-loaded PLGA-MNPs 

displayed significant cell death. This study also reported that 

the superparamagnetic and biocompatibility characteristics 

of PLGA-MNPs allowed them to be applied in drug delivery 

systems. In contrast, the magnetic entrapment efficacy was 

decreased with increasing the content of oleic acid.87

Moreover, PLGA-MNPs have been reported to be utilized 

in aerosols to treat many lung diseases such as lung cancer, 

respiratory infections, chronic obstructive pulmonary disease, 

and asthma.128–131 Many aerosol chemotherapy drugs were 

evaluated in human and animal models as well as in vitro 

to investigate their efficiency in lung cancer treatment.130–134 

A case in point, Verma et  al declared the synthesis of 

MNPs loaded with flavonoid quercetin drug as inhalers and 

nebulizers for lung diseases.135 The MNPs were coated with 

PLGA for better biocompatibility, dispersion in the aquatic 

medium, and stability toward oxidation.136,137 This study 

lacks the desired specificity toward cancer cells, which is 

required to reduce the side effects. Thus, more specificity 

in drug release is required and can be obtained via surface 

modification or functionalization, which will be discussed 

in the upcoming studies.

To reduce the side effects of the drugs, advanced tech-

niques and different materials are incorporated to restrict the 

drug release solely to the intended tissues. For example, a 

pH-responsive drug carrier to a trigger gains an advantage 

from the nature of the targeted tissues or cells. To get the opti-

mum efficacy from the drug delivery system, it is necessary 

to control the drug release rate from the carriers. Chitosan is 

a low toxic, biocompatible, and biodegradable material, and 

it is widely used to encapsulate or functionalize the surface 

of the drug nanocarriers to enhance their pH-responsive drug 

release.124,138–147 It is soluble in the acidic medium; thus, it can 

induce pH sensitivity to control the drug release according to 

pH change.148 Moreover, it is used in the coating of MNPs to 

enhance their biodegradation.124 Montha et al122 declared the 

assembly of pH-responsive drug carriers, where chitosan has 

been chosen to stabilize Mn
0.9

Zn
0.1

Fe
2
O

4
/PLGA MNPs.122 

In addition, DOX was selected to evaluate the efficacy of 

these MNPs. It was clarified that these chitosan-MNPs 

exhibited a core–shell morphology with a uniform size of 

about 25 nm and superparamagnetic properties. MTT assay 

was conducted on Hela cells using DOX and DOX-MNPs. 

Cell viability decreased progressively with increasing doses.

Nanoscale metal-organic frameworks (NMOFs) represent 

a new category of porous materials as they drag much attention 
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in many fields, especially in drug delivery approaches owing 

to their promising properties such as large surface area, ultra-

high porosity, and tunable functionality.149–151 They can be 

prepared through highly efficient and more straightforward 

synthetic methods, especially when compared to other 

porous materials such as silica. Recent years have witnessed 

numerous studies aimed at improving the usefulness of these 

magnetic NMOFs in drug delivery systems.152–154 Some of 

these concepts aimed to deliver chemotherapeutics, but 

they showed weak encapsulation efficacy and fast drug 

release. Thus, an alternative approach is necessary to achieve 

enhanced efficiency. Many studies discuss the modification 

of NMOFs using polymers. For instance, Ren et al devel-

oped polyacrylic acid@zeolitic imidazolate framework-8 

(PAA@ZIF-8) NPs as pH-responsive carriers.155 These 

PAA@ZIF-8 NPs exhibited an ultrahigh drug loading 

ability and pH-responsive drug release. The drug release 

tests were conducted on both neutral (pH =7.4) and acidic 

(pH =5.5) mediums and showed that these NPs possessed a 

pH-controlled drug release. The release at pH =5.5 was about 

75.9% of DOX after 60 hours, while it was only 35.6% after 

60 hours. Moreover, they noted a nontoxic effect to MCF-7 

cells even at high concentrations.

In addition, Chowdhuri et al156 coated magnetic isoreticu-

lar metal-organic framework-3 with chitosan to achieve better 

degradability, enhanced drug loading, improved drug release, 

and pH-triggered release.156 Furthermore, the particles were 

functionalized with folic acid (FA) ligands to obtain more 

specificity owing to the presence of folate receptors in cancer 

cells compared to healthy cells. These MNPs were tested on 

Hela cancer cells, and the findings revealed that these MNPs 

exhibited a high encapsulation efficacy of DOX of about 96% 

and a pH-dependent DOX drug release.

The above studies revealed some promising findings 

and were considered reasonable, but more studies and more 

strategies must be incorporated to not only have responsive 

drug carriers but also provide carriers with the ability to 

localize drug administration to the intended cells only so as 

to minimize any adverse effects on the healthy cells, and to 

overcome the disadvantages of using conventional chemo-

therapy approaches. Furthermore, reducing the loss of the 

drug encapsulated in these MNPs represents a challenge. This 

can be addressed by introducing measures to increase their 

stability so as to minimize the amount of drug that escapes 

from the drug carriers inside the human body.157,158

Remarkably, the pH-responsive effect can also be 

achieved by using different combinations.122,123,159 Also, 

new strategies and functionalization methods are employed 

to achieve more specific targeting techniques and to have 

the ability to select only the intended cells. For example, 

Vivek et  al developed a targeted breast cancer therapy 

using multifunctional Herceptin (Her)-Fe
3
O

4
@PLGA-

poly(vinylpyrrolidone) (PVP) particles encapsulated with 

tamoxifen.123 Figure 4 describes the effective nanocombi-

nations therapy. These particles offered superparamagnetic 

properties and high stability, which may be attributed to the 

presence of PVP. The drug entrapment efficacy reached about 

87.5%. The packing capacity of tamoxifen into Her-Fe
3
O

4
@

PLGA-PVP particles was 7% as a result of firm interac-

tion between tamoxifen and PLGA and of the high surface 

area of the PLGA.158,160 Moreover, 96% of tamoxifen was 

released at pH =5, while only 4% was released at pH =7.4. 

On the other hand, MTT assay in vitro showed that the cell 

(MCF-7) viability was reduced from 88% to 31%. In addition, 

Her-Fe
3
O

4
@PLGA-PVP-loaded tamoxifen particles showed 

remarkable toxicity against cancer cells.

Inorganic core–shell drug carriers
The continuous discovery of new release trigger agents 

represent a step forward and open the door to utilize many 

drugs or to use one drug in multiple targeting aspects, and 

this leads to more selective and remarkable progress.

MNPs@mesoporous silica core–shell drug carriers
Mesoporous silica is a new carrier for different drugs with 

remarkable properties such as biocompatibility, high loading 

capacity due to its high specific surface area and high pore 

volume, and tunable pore size.161–165 Core–shell nanocompos-

ites with mesoporous silica have attracted growing interest in 

recent years.166 Combining them with a magnetic core leads 

to benefits including magnetic cores to control these carriers 

and mesoporous silica to build such efficient vehicles.

Figure 4 Schematic illustration describing the effective nanocombinations therapy.
Notes: Reprinted with permission from Vivek R, Thangam R, Kumar SR, et al. HER2 
targeted breast cancer therapy with switchable “Off/On” multifunctional “Smart” 
magnetic polymer core-shell nanocomposites. ACS Appl Mater Interfaces. 2016; 
8(3):2262–2279. Copyright © 2016, American Chemical Society.123
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Using mesoporous silica-based carriers is one of the 

exciting concepts, where specific materials are designed to 

be attached on the surface of the mesoporous silica to seal 

the entrances to the pores to assure minimum leakage of the 

therapeutic agents. A case in point, Yang et al167 reported the 

synthesis of mesoporous Fe
3
O

4
@mSiO

2
 core–shell nanocom-

posites (about 65 nm) with β-thiopropionate-poly(ethylene 

glycol) (PEG) as the gatekeeper and loaded with DOX. The 

gatekeeper polymer was synthesized with different concen-

trations and different molecular weights. The study showed 

that the drug release was mainly dependent upon the medium 

pH, concentration, and packaging of β-thiopropionate-PEG.

Different methods, materials, and drug release triggers 

have been proposed to apply the gatekeeper concept in meso-

porous silica-based drug delivery systems. For instance, the 

following study developed a core–shell mesoporous-based 

drug that belongs to the glutathione-sensitive drug delivery 

category by grafting the glutathione cleavable diselenide 

linker on the surface of the mesoporous-based drug. It was 

emphasized that the drug release kinetics depends mainly on 

the amount of diselenide linker.168

The same concept was successfully applied to deliver 

DOX and safranin O using mesoporous MNPs coated with 

PEG.169 Safranin O is a biological stain dye, which has 

become a basic guide for identifying degenerative processes 

such as osteoarthritis. Moreover, introducing FA to this sys-

tem promoted the targeting of cancer tissues. The Fe
3
O

4
@

mSiO
2
-DOX@-Se-Se-FA nanocomposites showed an effi-

cient encapsulation of DOX.168 The drug release rate was 

increased by increasing the amount of glutathione because 

of the presence of diselenide, which is sensitive to glutathi-

one. Cell uptake and release were improved by adding FA. 

Moreover, the cytotoxicity of this carrier showed negligible 

toxicity (3.9%±0.38%), while after DOX encapsulation, the 

cell viability decreased. The selectivity of the prepared drug 

was examined using healthy cells (L02 and HUVEC) and 

cancer cells (Hela cells), and it demonstrated little toxicity 

on healthy cells, while recorded higher toxicity on Hela cells 

(about 65%±1.3%).

Layered double hydroxides (LDHs) are pH-sensitive 

materials that decompose in an acidic environment. Jiang 

et  al170 prepared Fe
3
O

4
@mSiO

2
@LDH NPs via mixing 

method. In this subject, LDH was used to control the release 

rate. It was revealed that these MNPs showed sensible 

loading proportion as well as superparamagnetic properties. 

The release rate values of MTX-loaded MNPs were varied 

depending on pH value; 66% at pH =4.0 during 72 hours. 

On the contrary, the release rate of MTX was much slower 

(about 20.91%) in the neutral pH medium (pH =7.4). In vitro 

tests showed no significant toxicity of the drug carriers toward 

Hela cells, while it showed high toxicity after MTX loading. 

It also showed better toxicity than using MTX alone, which 

indicated the suitability of this carrier as a potential drug car-

rier as a result of the multidrug resistance of the cancer cells.

Synthesizing mesoporous drug carriers with multiple 

shell thicknesses could be beneficial. There are specific 

parameters that can be controlled by varying the shell 

thickness, like surface area, the amount of loaded drug, and 

the drug release kinetics. This approach was introduced by 

Madrid et  al,171 wherein the fabrication of Fe
3
O

4
@mSiO

2
 

composites with different shell thicknesses via hydrothermal 

and sol-gel techniques was reported. The intake and release 

efficiency were examined using ibuprofen drug. Transmis-

sion electron microscopic (TEM) images realized the forma-

tion of different shell thicknesses as clearly seen in Figure 5. 

These NPs were favored to be employed as drug carriers 

because they provided up to 80% of biocompatibility. The 

particles with higher shell thicknesses demonstrated more 

toxicity than those with lower ones (Figure 6). A dependency 

between surface area, drug loading, and shell thickness was 

observed through this study. The higher the shell thickness, 

the higher the surface area, and the higher the drug loading. 

On the other hand, the drug release results were the opposite, 

where the higher the shell thickness exhibited, the lower the 

drug release. The study provided an exciting concept reflect-

ing the importance of designing the carrier to its function. 

This study ignored the effect of loaded drug content by using 

only one concentration of 20 µg/mL. This research would 

be more relevant if multiple concentrations were explored 

in determining the toxicity.

In the human body, enzymes play an essential role in 

regulating nearly all the body processes. So, any disorder in 

enzymes can be used to design a responsive drug carrier.172–174 

For example, benefits of some enzymes like protease and 

phospholipase, which are responsible for the metastasis and 

invasiveness of the tumor cells, can be used.175–179 MMP protein 

is considered one of the significant changes in the cancerous 

cell’s microenvironment.180 Many attempts have been made to 

design a carrier with a responsive reaction to MMPs associated 

with tumor formation. However, these approaches were some-

what complicated.181–184 Thus, the upcoming report represents 

an easier synthesis process with promising findings.

A recent study conducted by Li et al101 summarized that 

enzyme responsive drug carrier could be fabricated easily to 

target tumor cells only. The study reported the synthesis of 

Fe
3
O

4
@mSiO

2
 nanoagents, which were then surface modified 

by Pro-Leu-Gly-Val-Arg peptide that have a responsive action 

to the presence of MMP-2 peptide (Gly-Gly-Pro-Leu-Gly-
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Figure 5 TEM results of (A–C) SG-1, (D–F) SG-2, and (G–I) SG-3 composites.
Notes: The composites prepared with 0.22, 0.31, and 0.45 mmol of TEOS were named as SG-1, SG-2, and SG-3 composites, respectively. Reproduced from Uribe Madrid 
SI, Pal U, Kang YS, Kim J, Kwon H, Kim J. Fabrication of Fe3O4@mSiO2 core-shell composite nanoparticles for drug delivery applications. Nanoscale Res Lett. 2015;10(1):217. 
Copyright © Uribe Madrid et al.; licensee Springer. 2015. Creative Commons License available from: https://creativecommons.org/licenses/by/4.0/legalcode.171

Abbreviations: TEM, transmission electron microscopy; TEOS, tetraethylorthosilicate.

Val-Arg-Gly-Lys). After surface modification with peptide, 

these magnetic nanoagents were encapsulated with DOX. The 

prepared carriers were tested on two types of cells (NIH/3T3 

normal cells and HT-1080 tumor cells) and showed high bio-

compatibility toward both normal and cancer cells. They pro-

vided better biocompatibility toward normal cells, even when 

they were encapsulated with the anti-tumor drug. Besides, the 

in vivo and in vitro examinations proved the enzyme depen-

dent drug release. The accumulations of the nanoagents in the 

tumor sites were achieved using an external magnetic field.

MNPs@CS core–shell drug carriers
CSs attracted the attention of scientists because of their prom-

ising features such as biocompatibility, biodegradability, 

and bioactivity even more than other materials like gold 

and silica.185,186 Furthermore, they exhibit good drug load-

ing efficiency and sustained drug release.187 Researchers 

reported many studies to enroll these materials in biomedical 

applications such as bone repairing and drug delivery 

systems.185,188,189

Lu et al synthesized a magnetic iron oxide-CS mesopo-

rous core–shell nanocomposite as a promising vehicle for 

drug delivery applications.185 The synthesis process was 

conducted by ultrasound irradiation using two liquid phase 

systems in the presence of various contents of isooctane as an 

inert hydrophobic solvent (Figure 7). These nanocomposites 

showed novel properties such as high drug loading capac-

ity, high pore volume, high specific surface area, excellent 
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Figure 6 Ibuprofen release rate in different wall thicknesses.
Notes: Reproduced from Uribe Madrid SI, Pal U, Kang YS, Kim J, Kwon H, 
Kim J. Fabrication of Fe3O4@mSiO2 core-shell composite nanoparticles for drug 
delivery applications. Nanoscale Res Lett. 2015;10(1):217. Copyright © Uribe Madrid  
et al.; licensee Springer. 2015. Creative Commons License available from: https://
creativecommons.org/licenses/by/4.0/legalcode.171

A

B

500 nm 500 nm

C

Isooctane
Mixture of TEOS and isooctane Calcium silicate

Magnetic iron oxide

Ultrasound Washing

Ca(OH)2

Figure 7 (A) Synthesis of magnetic iron oxide–calcium silicate mesoporous core–
shell nanocomposites with a hollow structure using two liquid phase system and 
ultrasound irradiation in the presence of isooctane. (B, C) TEM of the nanocomposites 
fabricated by using two liquid phase systems and ultrasound irradiation in the 
presence of isooctane.
Notes: Reprinted with permission from Lu BQ, Zhu YJ, Ao HY, Qi C, Chen F. 
Synthesis and characterization of magnetic iron oxide/calcium silicate mesoporous 
nanocomposites as a promising vehicle for drug delivery. ACS Appl Mater Interfaces. 
2012;4(12):6969–6974. Copyright © 2012, American Chemical Society.185

Abbreviations: TEM, transmission electron microscopy; TEOS, tetraethylorthosilicate. 

biocompatibility, and good superparamagnetic properties. 

Ibuprofen, docetaxel, and hemoglobin were used as drug 

models. Pore size distribution and specific surface area were 

found to be dependent on the concentration of isooctane. The 

highest surface area was obtained using 0.3 mL of isooctane, 

while the highest pore size distribution and pore size volume 

were obtained from 0.6 mL of isooctane. This suggests that 

the pore size distribution, pore volume, and surface area can 

be tuned using isooctane. The specific surface areas were 

164, 474, and 427 m2/g for the nanocomposites fabricated 

without isooctane, with 0.3 mL, and 0.6 mL of isooctane, 

respectively, while the pore volumes were 0.77, 2.75, and 

2.18 cm3/g, respectively, and pore size distributions were 

9.5, 9.0, and 15.1 nm, respectively. This indicates the depen-

dence of these parameters on the concentration of isooctane, 

where using 0.3 mL of isooctane shows better results than 

using larger concentrations. In addition, pore volume and 

specific surface area were higher for 0.3 mL of isooctane. 

TEM images also emphasize that using 0.3 mL of isooctane 

have better results than using 0.6 mL of isooctane, which 

illustrated that a part of these nanocomposites was collapsed 

in the case of 0.6 mL of isooctane because the cavity was 

so large. In addition, these materials are capable of loading 

both low molecular mass (docetaxel and ibuprofen) and 

high molecular mass drugs (hemoglobin) and are capable 

of loading both hydrophobic (docetaxel and ibuprofen) and 

hydrophilic (hemoglobin) drugs. Anticancer ability and toxic-

ity assays were conducted on MCF-7 human breast cancer 

cells using these nanocomposites loaded with docetaxel. 

The carriers showed favorable biocompatibility even at high 

concentrations up to 500 µg/mL. The anti-cancer ability of 

docetaxel-loaded nanocomposites and free docetaxel nano-

composites are comparable.

Other studies aimed to build multilayers instead of hav-

ing only one shell layer. To illustrate, Lu et al190 fabricated a 

double shell magnetic nanocarrier consisting of iron oxide as 

the core and coated with two shells of silica and CS, and used 

ibuprofen as a drug model. These nanocomposites showed 

an excellent drug delivery and superparamagnetic behavior.

In summary, this section illustrated drug carriers based on 

silica and CS, either alone or by combining them. Control-

ling drug release is achieved by taking benefits from tumor 

nature like differences in pH or the presence of a substance 

like glutathione or protein. Magnetic cores can be coated 

with other materials or even metals to gain other properties 

or to target other therapeutics like bacteria. The next section 

briefly discusses the coating of magnetic cores with metals.

MNPs@metal core–shell drug carriers
More developed systems that target the microorganisms in the 

human body, which may cause infections or other types of dis-

eases, have attracted the interest of researchers. Intracellular 

pathogens can cause many infections like meningitis, hepa-

titis, and tuberculosis. Treatment of these diseases with con-

ventional drugs involves some health implications associated 

with prolonged exposure to the drug and its inherent toxicity.
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Furthermore, MNPs can be utilized for the treatment of 

some infections related to the contamination of implants. 

It was reported previously that the superparamagnetic iron 

oxide nanoparticles (SPIONPs) alone might kill bacteria 

when they were used in concentrations above 100 µg/mL. 

Furthermore, SPIONPs grafted with carboxyl group killed 

about 44% of the pathogens.191,192

Candida is one of the fungal species, which is well known 

for causing not only systematic but also superficial infections. 

In this approach, Niemirowicz et al functionalized the MNPs 

with two types of antibiotics, which are amphotericin B and 

nystatin.193 These antibiotics were integrated to the surface 

of the MNPs and were examined by Candida species and 

human red blood cells to realize their hemolytic activities. 

The examination results revealed a low resistance of Candida 

species toward these modified antibiotics.

Gold nanostructures gained much attention in many 

biomedical applications such as thermal ablation of tumors, 

delivery of therapeutics, imaging, gene targeting, and cancer 

targeting. Therefore, combining gold and MNPs will provide 

a promising targeted drug delivery system for cancer therapy. 

For instance, Maleki et al192 discussed the antimicrobial activ-

ity and human cell cytotoxicity of superparamagnetic iron 

oxide–gold core–shell NPs functionalized with antimicrobial 

peptide (AMP) and cecropin mellitin (CM). The AMP-NPs 

showed promising applications in targeting pathogens as 

these NPs were based on the inhibition effect of CM. It was 

noticed that the AMP-NPs showed the minimal inhibitory 

concentration when examined on Escherichia coli. Further-

more, AMP-NPs have desirable properties such as targeting 

microorganisms without harming human body cells, where 

they did not show any pro-inflammation signs to concentra-

tions up to 200 µg/mL.

MNPs@liposome core–shell drug carriers
Magnetic liposomes can be prepared by encapsulating MNPs 

with liposomes. Magnetic liposomes are considered promis-

ing for MRI, hyperthermia, and drug delivery due to their fac-

ile functionalization. Some limitations such as instability and 

tendency to aggregate in suspensions do exist. Interestingly, 

however, these limitations can be solved by the synthesis of 

liposomal cerasome carriers, which are spherical vesicles, 

consisting of lipid bilayer and covered with silica. Also, 

cerasomes are more stable than liposomes and can accom-

modate with both hydrophilic and hydrophobic drugs.194

The synthesis of magnetic liposomes to be employed 

as targeted drug carriers for cancer therapy was mentioned 

by Cao et al.194 In this approach, DOX hydrochloride was 

loaded into the magnetic cerasomes (MCs). The authors 

used the self-assembly and sol-gel approaches to load 

DOX and Fe
3
O

4
 NPs into the cerasomes to synthesize the 

DOX-loaded magnetic cerasomes (DLMCs). The schematic 

fabrication of DLMCs is shown in Figure 8. It was noted 

that the prepared DLMCs exhibited novel properties such 

as prolonged drug release and high stability. The drug 

release results showed that the DOX-encapsulated cera-

somes exhibited a sustained release. Free DOX release was 

about 92.32% after 10 hours, while the rate of encapsulated 

DOX release was about 61% and it was extended to 120 

hours. This sustained release is favored in cancer treat-

ment. Furthermore, the MCs provided an excellent intake 

into the tumor cells, and this behavior can be ascribed to 

the strong response of the MCs to the magnetic field. The 

response of these DLMCs to the presence of magnetic 

field was proven by applying an external magnetic field to 

the dispersed MNPs in water which caused the DLMCs to 

exhibit superparamagnetic behavior. The M
s
 of DLMCs 

was 25.95 emu/g, which is considered low when compared 

to the M
s
 of Fe

3
O

4
 (69.65 emu/g). However, the value of 

25.95 emu/g was sufficient to consider these DLMCs as 

efficient magnetic drug delivery carriers.

Moreover, cell toxicity can be reduced by coating MNPs 

with silica, which results in an increase in hydrophilicity. 

Because of the presence of silanol group, silica surface is 

negatively charged, and this is not favorable especially for 

oncological therapeutic agents, whereas cationic particles 

are preferred because many cancer cells have a negatively 

charged surface. Thus, the synthesis of cationic magnetoli-

posomes is achieved by coating Fe
2
O

3
 MNPs with dual-chain 

lipids, especially zwitterionic phospholipids.195

The efficacy of DOX was enhanced by using MNP-

supported lipid bilayers (SLBs) as a drug carrier. SLBs were 

studied by Mattingly et al195 to evaluate their potential use 

DOX

Ceramic surface

andFe3O4

Fe3O4

Fe3O4

Fe3O4

H

Si Si
O O O O

Figure 8 Schematic illustration of the synthesis of DLMCs.
Notes: Reprinted with permission from Cao Z, Yue X, Li X, Dai Z. Stabilized 
magnetic cerasomes for drug delivery. Langmuir. 2013;29(48):14976–14983. 
Copyright © 2013, American Chemical Society.194

Abbreviations: DLMC, DOX-loaded magnetic cerasome; DOX, doxorubicin.
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as drug carriers. Bilayers were prepared via self-assembly 

approach to allow their use as drug delivery carriers. These 

bilayers are composed of iron oxide–silica core–shell NPs and 

enclosed in a bilayer cationic lipid to host the amphiphilic 

DOX (Figure 9). The prepared NPs were tested in vitro against 

MCF-7 breast cancer cells. The MCF-7 cells were grown in a 

12-well plate with each well containing 50,000 cells. The cells 

were incubated for 24 hours. Later, 50 µg of DOX-loaded 

SLBs were diluted and added to the wells. Surprisingly, the 

DOX-loaded SLBs showed a higher toxicity toward MCF-7 

cells than using DOX alone. In addition, the DOX-loaded 

SLBs killed about 90% of MCF-7 breast cancer cells.

Besides the types mentioned in the previous sections, 

other inorganic materials are considered promising in the 

drug delivery systems. For instance, carbon nanotubes 

were used to deliver some drugs such as platinum drugs-

cisplatin (IV) prodrug for cancer treatment as declared by 

Feazell et al.196 Other studies reported the successful usage 

of carbon nanotubes in the delivery of other drugs such as 

DOX, mitoxantrone, paclitaxel (PTX), quercetin, and FA.197 

Moreover, there are other interesting approaches in drug 

delivery systems including quantum dots (QDs) synthesized 

from metals. QD is a nanocrystal material with size ranging 

from 2 to 10 nm and consists of semiconductors such as CdSe, 

ZnS, PbSe, PbS, InP, GaAs, and GaN. QDs are usually used 

in sensing and biological imaging. Due to their unique proper-

ties, research studies attempt to apply them in drug delivery 

systems. Due to their fluorescence properties, QDs are able 

to elucidate the pharmacodynamics and pharmacokinetics of 

drugs. Hence, combining drug with QD carriers will promote 

a more in-depth perspective of drug carrier biodistribution, 

drug release, and intracellular uptake using real-time moni-

toring. Integrating QDs in drug delivery systems can be 

achieved via two approaches: the first approach is loading 

the drug in a polymer or liposome that contains QDs and 

the second approach is linking the drug into the surface of 

QDs. Using QDs, scientists succeeded in delivering some 

chemotherapeutic drugs such as DOX and PTX.197

Conclusion
The magnetic drug carriers discussed in this review exhibit 

promising properties, particularly those modified with syn-

thetic and natural polymers and bioactive materials. They 

show low toxicity and enhanced efficacy even though the 

results vary from one carrier to another. Another remarkable 

carrier is mesoporous silica. With their biocompatibility and 

ability to carry therapeutic agents like anti-tumor drugs, the 

presence of tunable pores leads to the attention surrounding 

these carriers. All critical findings in the previous studies can 

answer the question, “is using delivery systems better than 

using conventional drugs?” Although, it is not beneficial for 

some drugs as mentioned in this article, the benefits were 

obvious particularly in chemotherapy. The results show a 

high cell death against cancer cells in many drug carriers 

encapsulated with an anti-cancer drug. In some cases, they 

even show a higher cell death than that resulting from the 

use of the therapeutic agent alone.

With no doubts, the employment of these MNPs as vehi-

cles in the magnetic-directed drug delivery systems will play 

a remarkable role in the enhancement of the drug efficacy 

of many diseases, especially in cancer treatment. Although 

some of these magnetic nanocarriers already exist in the 

market or have been used in clinical trials, some limitations 

are associated with the enhancement of the efficacy of drug 

loading and release. Moreover, further investigations need 

to be carried out with regard to the toxicity of nanocarriers, 

and this is a crucial step in the interpretation of these findings 

to a clinical endpoint. Herein lies a question of “what can 

be done to turn this potential into tangible outcomes, that is, 

formulations that can benefit patients?” Kinman Park.198,199

However, very few nano formulations are granted to be 

used in clinical practice when compared with the efforts made 

in this field. Therefore, the effective translation of a nanocar-

rier into clinical usage represents a challenge. Subsequently, 

some substantial issues must be addressed: first, enhanced 

NPs fabrication; second, standardization of NP efficacy with 

quantitative assessment; and third, establishment of a detailed 

profile of in-use formulations containing information about 

safety, immunogenicity, and toxicity. Another critical issue 

to be taken into account is investigating and understanding 

the interface between biological environments and Nano 

formulations. Finally, the adequate translation of these NPs 

Fe3O4

SiO2

Cationic lipid

Amphiphilic drug

Figure 9 SLB-MNPs consisted of iron oxide–silica nanoparticles enclosed in a 
cationic lipid bilayer that contains the amphiphilic DOX.
Notes: Reprinted with permission from Mattingly SJ, O’Toole MG, James KT, Clark GJ,  
Nantz MH. Magnetic nanoparticle-supported lipid bilayers for drug delivery. 
Langmuir. 2015;31(11):3326–3332. Copyright © 2015, American Chemical Society.195

Abbreviations: DOX, doxorubicin; MNP, magnetic nanoparticle; SLB, supported 
lipid bilayer.
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into human medicine in commercial scale must be preceded 

with intensive research on the therapeutic development and 

preclinical estimations.199
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