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ABSTRACT This paper presents a multivariate homogeneously weighted moving average (MHWMA)
control chart for monitoring a process mean vector. The MHWMA control chart statistic gives a specific
weight to the current observation, and the remaining weight is evenly distributed among the previous
observations. We present the design procedure and compare the average run length (ARL) performance of the
proposed chart with multivariate Chi-square, multivariate EWMA, and multivariate cumulative sum control
charts. The ARL comparison indicates superior performance of the MHWMA chart over its competitors,
particularly for the detection of small shifts in the process mean vector. Examples are also provided to show

the application of the proposed chart.

INDEX TERMS Average run length, control chart, manufacturing process, quality control, statistical process

control.

I. INTRODUCTION

Rapid developments in data-acquisition in industry have led
to increased interest in the joint monitoring of several related
process parameters [1]. As a result, multivariate process con-
trol (MPC) methodology, in which several related process
parameters are jointly monitored [2], is one of the most
rapidly developing areas in statistical process control (SPC).
Several MPC tools that use the relationships among the vari-
ables to provide efficient monitoring schemes for identifying
any changes in the quality of the products have been pro-
posed. These tools are capable of giving information as to
when the process is in-control, provide diagnostic procedures
for out-of-control situations, and are able to provide guidance
on the overall process when it is out-of-control [3]. They
are currently used in a range of scientific and technologi-
cal application domains, including health-related monitoring,
quality improvements, ecological monitoring, spatiotemporal
surveillance, and profile monitoring [4].

MPC tools are generally applied in two monitoring
phases [4]. In Phase I, a historical reference sample is ana-
lyzed to establish the values and stability of process parame-
ters while in the in-control state. If the in-control parameter
values are unknown, the data from Phase I are used to estimate
these values and their control limits [5]. In Phase II, the pro-
cess parameters are monitored and checked for departure

from the in-control state. If Phase II values (or statistics)
remain inside the in-control Phase I limits, the process is
believed to be in control; if they go outside the control limits,
this indicates that the process may be out-of-control and
remedial actions are triggered.

Hotelling [6] was the first to propose and employ a mul-
tivariate process control tool; his x? statistic represented the
weighted Mahalanobis distance of the sample point from the
center of the cloud and is known as the multivariate x 2 control
chart. This chart signals whenever the x? values obtained
from the process variable are greater than the chart’s control
limit & = Xzia (where Xzioz is the o™ upper percentage point
of the chi-square distribution and p is the number of quality
characteristics being monitored). The multivariate x 2 chart is
a memoryless-type chart that uses only the most current pro-
cess information and disregards any previous observations,
and very efficient in detecting large shifts in the process mean
vector.

To increase the sensitivity of the multivariate process con-
trol tool for the detection of small-to-moderate shifts in
the process mean vector, different multivariate memory-type
tools that use information from both the current and previ-
ous process observations have been proposed. For example,
Crosier [7] and Pignatiello and Runger [8] proposed different
possible multivariate extensions of the univariate cumulative
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sum (CUSUM) chart proposed by [9]. The multivariate expo-
nentially weighted moving average (EMWA) control chart
proposed by [10] is a multivariate extension of the uni-
variate EWMA chart proposed by [11]. The memory-type
charts are particularly effective for individual-observation
monitoring [4].

In this article, we propose a new memory-type multivari-
ate charting procedure, namely, the multivariate homoge-
neously weighted moving average (MHWMA) control chart.
Like other memory-type charts, MHWMA uses the current
observation and past observations. However, previous meth-
ods allocate equal weight across the observations, includ-
ing the current one. With our proposed MHWMA method,
the weight of the current observation can be specified, with
the remaining weight then allocated equally across previous
observations. We will show that this can provide more effi-
cient monitoring of small shifts in the process mean vector,
when compared to other memory-type multivariate charting
procedures.

The remainder of this article is organized as follows.
A review of the design structures of the multivariate expo-
nentially weighted moving average (MEWMA) chart by [10],
the multivariate cumulative sum #1 (MCI) chart by [8], and
the multivariate cumulative sum (MCUSUM) chart by [7],
respectively, are provided in Section II. The design of the
MHWMA chart is discussed in Section III, and the run length
performance of the chart is evaluated in Section IV. The
ARL comparisons of the MHWMA chart with that of the
%2 chart, MEWMA chart, MCUSUM chart, and MCI chart,
respectively, are provided in Section V. Illustrative examples
concerning the application of the proposed MHWMA chart
are given in Section VI. Finally, conclusions and directions
for future work are presented in Section VII.

In Appendix A, we derive the covariance matrix of the
vector of HWMAs used with the MHWMA procedure. This
matrix is used in Section III to obtain the MHWMA control-
chart statistic. In Appendix B, we provide the proof of the
dependency of the ARL performance of the MHWMA chart
on the mean vector and covariance matrix only through the
non-centrality parameter.

II. LITERATURE REVIEW: THE MEMORY-TYPE
CONTROL CHARTS

Suppose we have p x n independently and identically
distributed multivariate normal random variables Y7, Y2, ...,
with mean vector pg and covariance matrix Xg. For mon-
itoring the mean vector (xg) of an individual-observation
(i.e., n = 1), the design structures of the memory-type charts
are briefly described below:
A. THE MCUSUM CHART
Crosier [7] proposed two multivariate CUSUM charts. The
one with better ARL performance obtains the CUSUM vector
directly from the multivariate observation, and the MCUSUM
vectors for the observed vector y; are given as:

Ci = [(Si—1Cyi — r0)'Zg * (Siz1 Cyi — mo)]V2 (1)

VOLUME 7, 2019

where
$;=0 ifC;<k
Si = (Si—1 Cyi — no)(1 —k/Cy)

So = 0 and k > 0. The MCUSUM control chart signals
when 77 = [$/257'Si] > h.

ifC; > k

~

B. THE MCI CHART

Two directionally invariant multivariate CUSUM charts were
proposed by [8]; the one with better ARL performance is the
MCI chart. Here, the CUSUM vectors for the observed vector
y; are given as:

Ci= Y. (—nro)

j=i—ni+1

T; = max {,/C,.'zo—lc,- — kny, o} 2)

and
ni—1+1, ifTi—;1 >0
n, =
! 1, if otherwise
where n; (i = 1,2,...), is interpreted as the number of

subgroups up to the most recent cumulative sum statistic. The
MCI control chart signals when 7; > h, for positive values of
h > 0and k > 0. The parameters of the MCUSUM and MCI
charts, k and h, are chosen to give the desired in-control ARL
performance of the chart [7], [8].

C. THE MEWMA CHART

The MEMWA control chart, proposed by [10], is a multi-
variate extension of the EWMA chart. It is a memory-type
method that accumulates information from previous observa-
tions. The MEWMA statistics for the observed vector y; are
given as:

Pi=ry;i + (1 —r)Pi_1 3

The use of small values for the smoothing parameter increases

the power of the control chart and, if » = 1, the chart is iden-

tical to the memoryless control chart based on Hotelling’s 72
The MEWMA chart gives an out-of-control signal when:

T? = (P; — o) Zpi ' (Pi — o) > h (4)

where & and r are chosen to achieve a desired in-control
performance measure (such as a desired value of in-control
ARL), and Xp, is the covariance matrix at time point i.
Lowry et al. [10] provided two alternative forms of Xp,: the
exact covariance matrix is given as:

1—(1—r)
5p = ==Yy
2—r

and the asymptotic covariance matrix is given as:

0 ©)

-
Yp = b 6
p=5—"%0 (6)
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The MEWMA, MCUSUM and MCI charts are directionally
invariant charts; the ARL performance of the charts depend
on ug and Xg, only through the non-centrality parameter
given as:

§ = \/(ﬂl — #0)"Zg (w1 — mo) ™

where p1 is the mean vector for the out-of-control process.

Several enhancements of these memory-type control
charts in detecting small-to-moderate shifts have been
proposed in SPC and related literature. For example,
Hawkins et al. [12] proposed a self-starting MEWMA con-
trol charting for monitoring the process mean vector. Also,
a self-starting control chart for multivariate individual obser-
vations monitoring was proposed by [13]. Kramer and
Schmid [14] proposed EWMA charts for multivariate time
series observation monitoring. Ngai and Zhang [15] pro-
posed a MCUSUM control chart based on projection pursuit.
Part and Jun [16] investigated a MEWMA control chart via
multiple testing. Qiu and Hawkins [17] proposed a non-
parametric MCUSUM procedure for detecting shifts in all
directions. Qiu and Hawkins [18] proposed a rank-based
MCUSUM Procedure. A multivariate sign EWMA control
chart was proposed by [19]. A cumulative sum control charts
for monitoring the covariance matrix [20]. A MEWMA con-
trol chart that can handle a non-constant smoothing parameter
of the chart was proposed by [21]. An adaptive multivari-
ate CUSUM control chart for signaling a range of location
shifts was proposed by [22]. The performance of multivariate
memory-type control charts with estimated parameters are
investigated by [23]-[27].

Ill. THE MULTIVARIATE HOMOGENEOUSLY WEIGHTED
MOVING AVERAGE (MHWMA) CONTROL CHART

To increase the sensitivity of the memory-type charts given
in Section II in monitoring small shifts in the process mean
vector, we propose a MHWMA control chart. The MHWMA
control chart statistic gives a specific weight to the current
observation, and the remaining weight is evenly distributed
among the previous observations. The monitoring statistic of
the proposed MHWMA chart is defined as:

H; =Wy, +I — W)y, , ®)

where,i = 1, 2, ..., ,y,_; represents the sample average of the
previous information up to and including the i—1 observation,
and yo = po. W is a p x p diagonal square matrix with
smoothing or sensitivity parameters wy, k = 1, 2, ..., p, along
the diagonal such that 0 < wy < 1. The matrix I is a diagonal
matrix of 1’s. If the values of the smoothing parameter, which
determine the weight of each prior observation, are equal
across variables, then the MHWMA vector becomes:

Hi = wy; + (1 —w)y;_, &)
The MHWMA chart gives an out-of-control signal when
T} = (H; — o) Emi~ ' (Hi — po) > h (10)
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Here, / and w are chosen to achieve a desired in-control ARL
performance measure, and Xpg; is the covariance matrix at
time point i. From Appendix A, we have

ifi=1

WZZ()
Xy Yo (11)

T Wz + (1 —w)? ifi>1

i

The MHWMA chart is a directionally invariant chart.

In Appendix B, we give a proof that shows the relationship

between the ARL performance and the non-centrality param-
eter given in equation 7.

SPECIAL CASES
o If w = 1, the monitoring statistic in equation (9)
becomes:

H; =y; (12)
and, Xg; in equation (11) becomes:
Xpi = Xo (13)

In this case, the MHWMA chart is identical to the mem-
oryless x 2 control chart, and we recommend monitoring
either the x2 chart or the MHWMA chart (with w = 1).

o« If p = 1, the monitoring statistic in equation (9)
becomes:

Hi = wyi + (1 = w)yi—1 (14)

and, the variance of the monitoring statistic H; in equa-
tion (14) becomes:

wlo? ifi=1
o, = o2 (15)
w2002 +(1 - w)2% ifi>1
i—
where og is the variance of a normally distributed uni-
variate random variable. In this case, we recommend
monitoring the proposed chart by [28].

o« When n > 1, the vector y in the plotting statistic for the
MHWMA vector in equation (9) can be replaced by the
average of the ith sample (i.e, y). Hence, the covariance
structure of the MHWMA chart becomes

2
Y5 ifi=1
Tui=1"% % (16)
— Yo+ (1 —w?—— ifi>1
n n(ii—1)

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
MHWMA chart by using different run length characteristics
such as the average run length and standard deviation of the
run length (SDRL) distribution. ARL is the most commonly
used performance measures for control chart procedures. The
in-control ARL (denoted by ARLy), is the average number of
plotted samples until an out-of-control signal is detected by
a control chart when the process is in control. The out-of-
control ARL (denoted by ARL1), is the average number of
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TABLE 1. ARL values for MHWMA charts (p = 2).

w

0.03 0.05 0.2 0.4 0.6 0.8
1) ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0 199.26  202.01  199.35 18257 202.99 186.06 201.63 19236  200.54 201.62 200.39  199.06
0.05 16624 19729  173.00 15748 18694  169.67 19377  189.26 19431  190.36  199.62  198.50
0.10  115.64 132.81 129.55 119.99 154.16 136.29 177.88 173.09 184.99 185.98 192.07 194.5
0.25  43.05 44.91 53.32 46.28 74.00 60.41 107.64  102.17  139.03  137.16 161.6 160.77
0.50 15.80 14.3 19.87 15.56 27.50 19.5 41.84 36.4 64.86 62.32 91.91 90.24
0.75 8.56 6.83 10.65 7.7 14.50 9.24 19.25 155 31.66 29.95 50.15 49.11
1.00  5.70 4.09 6.91 4.52 9.23 5.31 10.94 7.96 16.54 14.56 27.24 26.23
1.50 3.32 2.04 3.90 2.22 4.85 2.48 5.05 3.05 6.3 4.8 9.69 8.71
200 232 1.4 2.67 1.49 3.19 1.49 3.13 1.62 3.41 22 4.54 3.63
2.50 1.74 1.06 1.99 1.16 2.35 1.12 222 1.05 2.26 1.2 2.66 1.79
3.00 1.37 0.79 1.53 0.9 1.81 0.9 1.7 0.76 1.7 0.79 1.86 1.07
5.00 1.00 0.08 1.01 0.09 1.03 0.17 1.03 0.16 1.03 0.18 1.03 0.17
h
5.40 6.79 10.19 10.56 10.61 10.62
ARL plot of the MHWMA Charts when p=2
—&— w=0.03
X —— w=0.05
o 4 RS —— w=02
1\ —— w=04
o —+— w=06
= w=038
N
<

log(ARL)
G
Z

Z

FIGURE 1. Plot of the logarithms of the ARL values given in Table 1.

plotted points until an out-of-control signal is detected by a
control chart when the process is out of control [29]-[33].
It is generally desirable to have large values of ARLy and
small values of ARL; for any control-chart setting [34].
The SDRL measures the spread of the run length distribu-
tion of the ARL [35]. Similarly, SDRLy and SDRL; can be
defined.

The results are based on 10° Monte Carlo simula-
tions, and § denotes the shift size (given in equation (7)).
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The appropriate values of & are also obtained using simu-
lation. The relative standard errors of the results in Table 1
and other findings in the paper are less than 1%. Table 1
reports the ARL and SDRL results for the case when p = 2 at
varying levels of smoothing parameter (w) and shift (§). The
chart’s parameters in Table 1 are chosen to fix the ARLy at
200. Visual representation of the logarithm of the ARL values
in Table 1 are also provided in Figure 1. From the reported
results in Table 1 (and/or Figure 1), we observe that:
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TABLE 2. ARL values for MHWMA charts (w = 0.1).

p=2 p=3 p=4
h
4 5.27 7.01 11.52 13.31 7.02 9.02 13.86 15.75 8.60 10.8 16.01 17.98
0 51.04 102.17 500.23 1000.53 | 51.01 103.07 502.15 997.44 | 50.07 102.32 498.68 1001.21
0.05 48.99 95.51 419.86 753.6 49.46 96.37 42295 789.64 | 49.65 97.48 434.69 790.14
0.1 4475 81.68 282.59 439.03 45.06 84.3 297.86  475.59 | 45.22 85.66 313.6 497.17
0.25 2774  43.66 96.55 123.65 29.54  47.15 105.34  137.94 | 30.03 48.93 113.53 150.3
0.5 13.31 18.56 33.7 40.35 14.38 20.66 37.18 44.56 15.44 22.34 40.61 47.83
0.75 7.81 10.39 17.39 20.52 8.51 11.56 19.17 22.52 9.2 12.44 20.87 24.13
1 5.27 6.84 10.86 12.49 5.83 7.59 11.98 13.79 6.2 8.12 12.9 14.74
1.5 3.08 3.85 5.74 6.43 342 4.21 6.23 6.97 3.6 4.51 6.65 7.51
2 2.15 2.63 3.78 4.2 2.38 2.87 4.08 4.53 2.49 3.09 4.32 4.8
2.5 1.64 1.96 2.8 3.1 1.77 2.15 3.02 3.35 1.9 2.27 3.21 3.51
3 1.3 1.51 2.17 241 141 1.66 2.34 2.61 1.49 1.78 2.5 2.77
5 1 1.01 1.06 1.1 1.01 1.01 1.09 1.15 1.01 1.03 1.12 1.2
TABLE 3. SDRL values for MHWMA charts (w = 0.1).
p=2 p=3 p=4
h
1 5.27 7.01 11.52 13.31 7.02 9.02 13.86 15.75 8.60 10.8 16.01 17.98
0 47777 8558 41584 869.58 | 48.22 87.45 423.09 872.89 | 48.39 88.1 428.78  895.68
0.05 4555 8029 34437 648.49 | 4631 8271 349.15 688.85 | 46.86 83.06 36429 678.68
0.1 4198 68.54 224.9 356.51 | 43.11 7144 23745 386.67 | 43.22 7295 251.34  408.2
0.25 2548 3521 67.11 82.15 26.96 38.13 72.29 92.24 27.35 39.51 77.69 100.23
0.5 11.15 13.9 20.31 23.13 11.88 15 22.06 25.13 12.7 16.1 23.85 26.82
0.75 5.98 7.13 9.81 10.92 6.47 7.79 10.59 11.72 6.94 8.37 11.3 12.28
1 3.71 4.36 5.81 6.29 4.04 4.79 6.28 6.8 4.35 5.13 6.66 7.17
1.5 1.89 2.16 2.72 2.9 2.08 2.32 2.9 3.14 2.16 2.45 3.09 3.32
2 1.28 1.42 1.64 1.73 1.37 1.5 1.73 1.81 1.43 1.57 1.8 1.9
2.5 0.96 1.1 1.25 1.26 1.03 1.17 1.27 1.3 1.1 1.21 1.3 1.29
3 0.68 0.85 1.07 1.09 0.77 0.93 1.09 1.11 0.84 0.98 1.11 1.11
5 0.05 0.09 0.28 0.37 0.09 0.14 0.35 0.45 0.11 0.19 0.42 0.52

« Smaller values of w are more effective in detecting shifts
in the mean vector. Specifically, the use of small values
for the smoothing parameter increases the power of the
MHWMA control chart.

o The proposed MHWMA chart is ARL unbiased, i.e., for
any combinations of 4 and w, the ARL; values from the
chart are always lesser than the ARLy.

o The higher the ARL values of the chart, the higher the
SDRL value as well.

o It is apparent that both ARL and SDRL decrease as
the size of the shift increases. This indicates that larger
shifts can be detected quickly and will result in a smaller
spread in the run length distribution.

Tables 2-3 report the ARL and SDRL results for the case
when w = 0.1 but with varying levels of p (i.e., p = 2, 3,
and 4), and §. The values shown for parameter A, in each
case, are chosen such that the ARLy is fixed at 50, 100,
500, or 1, 000, respectively. We used w = 0.10, because small
values of w are effective at detecting small shifts in the mean
vector. From the reported results in Tables 2-3, we observe
that:

o The ARL and SDRL performance of the chart depend on
the number of quality characteristics (p). Specifically,
the performance of the chart increases with the small
value of p.

o The logarithm of the in-control ARL is very close to a
linear function of the chart’s upper limits. This property
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of the MHWMA chart can be used to approximate the
appropriate value of the chart’s control limits for other
in-control ARL's.

o Larger shifts are detected quickly and result in a smaller
spread in the run-length distribution.

V. AVERAGE RUN LENGTH COMPARISONS

In this section, the (zero-state) ARL performance of the
MHWMA chart is compared with that of the X2 chart,
the MCUSUM chart by [7], the MCI chart by [8],
and the MEWMA chart by [10]. Since, the MEWMA,
the MCUSUM, the MCI and the Hotelling’s X2 charts are all
directional invariant; these charts can be compared with each
other and with the proposed MHWMA chart. We consider
both the time-varying and the asymptotic limits MEWMA
control chart.

The ARL values of the charts are presented in Tables 4 to 9,
forp = 2,3,4,5, 10 and 20, respectively. To allow reason-
able comparisons of the proposed chart with the other charts,
each chart is designed to give ARLy of approximately 200.
We observed from Tables 4 to 9 that:

o The Hotelling’s X2 chart, the MCUSUM chart, the MCI
chart, and the MEWMA chart based on the asymptotic
covariance structure (given in equation (6)), respec-
tively, are all inferior to the proposed MHWMA chart
(i.e., the MHWMA chart resulted in smallest values of
the ARL1) across all shifts.

VOLUME 7, 2019
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TABLE 4. ARL comparisons for p = 2.

TABLE 5. ARL comparisons for p = 3.

TABLE 6. ARL comparisons for p = 4.

MCI MCUSUM; MEWMA (5); MEWMA (6); MHWMA;
X2 k1 =0.50, ko =0.5, r=0.1,0 r=0.1, w=0.1,
5 h=10.60 h=4.75 h = 5.50 h =8.79 h = 8.66 h = 8.965
0.00 201.08 202.27 201.34 202.01 200.54 202.64
0.05 198.13 190.92 192.48 187.92 190.68 181.90
0.10 194.47 169.74 166.02 159.35 163.79 144.53
0.25 171.97 91.65 83.85 73.69 77.20 64.12
0.50 117.39 31.40 29.91 25.08 28.02 24.94
0.75 71.04 15.00 15.11 12.62 15.21 13.49
1.00 41.95 9.44 9.92 7.76 10.14 8.61
1.50 15.78 5.26 5.78 4.06 6.09 4.63
2.00 6.80 3.69 4.11 2.60 441 3.15
2.50 3.56 2.90 3.24 1.90 3.50 2.32
3.00 2.14 242 2.69 1.50 2.94 1.78
5.00 1.03 1.58 1.82 1.01 1.97 1.02
MCI MCUSUM MEWMA (5); MEWMA (6); MHWMA
X2 k1 =050 ko =05 r=0.10 r=0.1 w=0.1
5 h=1285 h=548 h=6.88 h =10.97 h =10.79 h =11.09
0.00 200.90 198.29 199.07 199.38 200.08 19891
0.05 198.49 192.56 189.36 189.23 190.41 182.28
0.10 196.50 173.47 165.69 164.35 164.96 148.01
0.25 179.66 99.52 86.58 83.57 85.22 70.22
0.50 130.17 34.17 31.70 29.04 32.07 27.26
0.75 83.78 16.33 16.78 14.23 17.00 14.84
1.00 52.27 10.08 11.18 8.78 11.20 9.47
1.50 19.94 5.70 6.74 4.48 6.72 5.06
2.00 8.81 4.04 4.84 2.88 4.85 341
2.50 4.42 3.18 3.81 2.07 3.82 2.51
3.00 2.54 2.65 3.18 1.61 3.20 1.96
5.00 1.05 1.80 2.03 1.03 2.04 1.03
MCUSUM; MEWMA; (5); MEWMA (6); MHWMA;
x2; ko = 0.5, r = 0.10, r=0.1, w=0.1,
5 h=1486 h=8.15 h =12.93 h=12.73 h=13.11
0.00 199.67 198.82 200.35 201.31 202.48
0.05 199.22 189.39 192.01 192.38 185.14
0.10 196.49 166.35 170.33 170.00 157.64
0.25 182.25 86.83 90.02 94.14 74.38
0.50 139.90 33.24 31.94 35.25 30.01
0.75 94.32 18.28 15.54 18.40 16.32
1.00 61.12 12.46 9.45 12.05 10.21
1.50 24.27 7.57 4.83 7.23 5.42
2.00 10.77 5.47 3.07 5.17 3.62
2.50 5.16 433 2.21 4.09 2.71
3.00 2.93 3.61 171 3.41 2.09
5.00 1.07 2.20 1.04 211 1.05

o The simulation results show that the MHWMA chart
detects shifts more rapidly than the MEMWA chart
based on the exact covariance structure when § < 0.5.
However, the ARL performance the MEWMA chart
(given in equation (5)) is superior to the ARL perfor-
mance of the proposed chart when there is a moderate-
to-large shift in the mean vector. Specifically, the ARL;
value of MEWMA chart based on the varying limit
is smaller than the proposed chart when § > 0.5 is

considered.
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VL. ILLUSTRATIVE EXAMPLE

In this section, we provide a couple of examples for illus-
trating the application of the proposed MHWMA chart. The
first example is based on a simulated dataset following [7],
whereas, the second example is based on the bimetal dataset
given in [36].

A. SIMULATED EXAMPLE

The dataset (see Table 10) is from a similar example given
by [7], and also used for illustration in [10]. The data consists
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TABLE 7. ARL comparisons for p = 5.

MCI; MCUSUM; MEWMA (5); MEWMA (6); MHWMA,
x2; k1 =0.50, ko =0.5, r = 0.10, r=0.1, w=0.,1
é h = 16.75 h =6.81 h =9.46 h =14.74 h = 14.56 h =14.92
0.00 201.27 204.29 200.10 201.17 201.09 201.25
0.05 199.91 194.57 191.99 192.94 193.66 187.90
0.10 198.00 178.31 175.26 172.87 174.92 159.04
0.25 184.88 109.22 91.95 95.63 99.13 77.97
0.50 143.82 38.74 35.81 34.40 38.35 31.38
0.75 102.37 17.72 19.95 16.71 19.83 17.08
1.00 68.25 11.04 13.71 10.12 12.91 10.78
1.50 28.44 6.39 8.47 5.16 7.65 5.79
2.00 12.27 4.60 6.16 3.24 5.47 3.85
2.50 6.00 3.64 4.87 2.34 431 2.82
3.00 3.35 3.03 4.05 1.80 3.60 2.23
5.00 1.10 2.01 2.53 1.06 2.20 1.08
TABLE 8. ARL comparisons for p = 10.
MCUSUM; MEWMA (5); MEWMA (6); MHWMA,
x2; ko = 0.5, r = 0.10, r=0.1, w=0.1,
1 h = 25.19 h = 14.90 h =22.91 h = 22.67 h = 23.08
0.00 200.03 198.63 195.71 204.11 199.09
0.05 199.15 192.01 194.58 197.11 190.02
0.10 198.4 170.55 173.78 182.80 162.23
0.25 190.45 96.34 114.45 117.35 89.52
0.50 162.01 42.89 45.20 47.94 37.53
0.75 124.50 25.96 21.47 24.94 20.86
1.00 92.80 18.62 12.60 15.85 13.05
1.50 44.70 11.92 6.38 9.19 6.87
2.00 20.60 8.80 3.97 6.57 4.52
2.50 9.90 7.02 2.78 5.15 3.36
3.00 5.20 5.86 2.13 4.28 2.64
5.00 1.24 3.63 1.12 2.69 1.19
TABLE 9. ARL comparisons for p = 20.
MCUSUM; MEWMA (5); MEWMA (6); MHWMA,
x2; ko = 0.5, r = 0.10, r=0.1, w=0.1,
1 h =40.00 h=24.70 h = 37.32 h = 37.01 h = 37.59
0.00 202.01 199.21 198.61 200.78 202.12
0.05 199.98 193.02 194.59 197.51 193.61
0.10 198.73 175.36 185.65 187.59 173.59
0.25 193.11 109.37 130.76 135.51 102.77
0.50 173.05 55.99 58.31 63.09 46.24
0.75 145.62 36.65 27.89 32.27 25.60
1.00 116.96 27.18 16.32 20.16 16.34
1.50 66.53 17.94 7.99 11.28 8.50
2.00 34.46 13.50 4.90 8.00 5.47
2.50 17.26 10.81 3.40 6.26 4.01
3.00 9.07 9.05 2.59 5.20 3.13
5.00 1.58 5.57 1.29 3.19 1.44

of 10 observations, the mean is in-control at uy = (0, 0) for
the first five observations and out-of-control at uy = (1, 2)
for the last five observations. This example is illustrative of
a moderate-to-large shift in the process mean vector, as the
size of § (in equation (7)) is approximately 2.65.

The first two columns of Table 10 give the sample of
bivariate observations for the random variables Y; and Y>.
The columns H; and H; are the corresponding values of the
MHWMA vector as provided in equation (9) using w = 0.10.
The T2 values obtained from equation (10) are given in the
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last column. For a fair comparison, the control limits were
selected to give the desired ARLy of 200 for all the charts
using w 0.10. A plot of the MCUSUM chart with the
same ARL of 200, given by [7] (also reproduced in Figure 2),
signals after the tenth observation. Plots of the MEWMA
charts based on the exact and asymptotic limits of the same in-
control ARL, given by [10], signals after the ninth and tenth
observation, respectively. The plot of the MCI and MHWMA
charts also signal an out-of-control situation after the tenth
observation.
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MEWMA control chart for example 1

2

UCL=8.79

Sample

MCI control chart for example 1

UCL=475

7

Sample

FIGURE 2. Plots of the memory-type charts of the simulated dataset.

TABLE 10. The simulated dataset.

Observation MHWMA vector
n Y1 Y2 Hy H> T2
1 -1.19 059  -0.12 0.06 3.29
2 0.12 0.9 -1.06 0.62 3.52
3 -1.69 04 -0.65 0.71 4.47
4 0.3 046  -0.80 0.61 7.15
5 0.89 -0.75 -0.46 0.45 3.97
6 0.82 0.98 -0.20 0.39 2.07
7 -0.3 228 -0.14 0.62 4.47
8 0.63 1.75  -0.07 0.80 7.45
9 1.56 1.58 0.11 0.90 8.71
10 1.46 3.05 0.26 1.12 13.85*
h 8.965

* Out-of-control signal

B. BIMETAL THERMOSTAT DATASET EXAMPLE

For the second example, we used the bimetal thermostat
dataset taken from [36]. The dataset contains measurements
of the deflection, curvature, resistivity, and hardness for each
of the low and high-expansion sides of brass and steel bimetal
thermostats [37]. The process was employed in Phase I and
Phase II, and data from the process at each phase consisted of
sample size m = 28, and with p = 5 variables. The Phase I

VOLUME 7, 2019

MCUSUM control chart for example 1

UCL=55

Sample

MHWMA control chart for example 1

15

10

UCL=8.965

process is used to study a historical reference sample, which
involves establishing the in-control state and evaluating the
process stability to ensure that the reference sample is repre-
sentative of the process. After this, the process parameters
Mo and X, are estimated from Phase I, and control chart
limits are obtained to be used in Phase II. The Phase II aspect
involves on-line monitoring of the process. In essence, any
shift in the process needs to be detected quickly in Phase II,
so that corrective actions can be taken at an early stage.

The estimated mean vector (fy) and covariance
matrix (230) are shown bottom of the next page.

Considering these estimates as the known parameters,
we generated 20 Phase II observations from a multivariate
normal distribution with mean g1 and covariance matrix )fo,
such that the size of § (in equation (7)) is approximately
0.087, which is a small shift in the mean vector. Specifi-
cally, we used, w1 = (21.12,40.12, 15.29, 22.12, 26.11).
The inspiration for generating data in such manner is taken
from [38] and [39]. The simulated bimetal Phase II data is
given in Table 11.

The first five columns of Table 11 give the sample num-
ber (n) and the observations of the random variables: the
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MEWMA control chart for example 2

MCUSUM control chart for example 2

15 - 10
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MCI control chart for example 2 MHWMA control chart for example 2
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o
¢ 4 ¢
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Sample

FIGURE 3. Plots of the memory-type charts of the bimetal dataset.

deflection (D), curvature (C), resistivity (R), Hardness low
side (HL), and Hardness high side (HS). The columns H{,H>,
H3, Hy, and H; are the corresponding values of the MHWMA
vector from equation (9) with w = 0.10. The T2 values
obtained from equation (10) are given in the last column.
The values of the control limits and w were used to give an
ARLy of 200. The control limits are obtained from Table 7
for all of the charts. The MEWMA chart with time-varying
structure and the MCUSUM chart failed to detect the out-
of-control signal (see Figure 3). The MCI chart detected the
signal after the twentieth observation, while the MHWMA

chart detected the shift in the mean vector after the nineteenth
observation.

Although the MEWMA chart generally performed better
than the other memory-type control charts to detect moderate-
to-large shifts in the mean vector, the MHWMA chart was
superior to the other methods when interest lies in detecting
a small shift in the mean vector. Furthermore, the HWMA
vector elements (in Tables 10, and 11) give an indication of
the direction that the mean has shifted. This indication of the
direction of the shift is common among memory-type control
chart.

o = (21.01607, 40.01607, 15.19214,22.02393, 26.01214)

D C R HL HH
0.091877 0.025443  0.037909 0.027931 0.026753 D
0.025443  0.018543  0.026342 0.016131  0.016998 C
o = | 0.037909 0.026342  0.106284 0.016439  0.023377 R
0.027931 0.016131 0.016439  0.05444  0.011088 | HL
0.026753  0.016998 0.023377 0.011088  0.021477 ) HH
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TABLE 11. Simulated bimetal Phase Il dataset.

Observation MHWMA vector

n D C R HL HH H, Ho> Hs H, Hs T2

T 2137514 4025279 1536849 2222992 26.28214 | 21.05198 40.03974 1520978 22.04453 26.03914 | 3.848
2 20.74688 39.9778 14.95244 2197061  25.94238 | 21.31232  40.22529  15.32689  22.20399  26.24817 3.727
3 21.47224  40.06028 15.344 22.18321 26.0622 | 21.10213  40.10979  15.17882  22.10856  26.10726 1.998
4 2091048 40.10609 1519133  21.95731  26.01251 | 21.16933  40.09787 1521861 22.11085 26.08727 | 1.832
5 21.5028 40.04228  15.14889  22.16699  26.09236 | 21.16385  40.09355  15.20755 22.09343  26.07656 | 2.429
6 21.40367  40.23477 15.4103 2236709  26.26783 | 21.22173  40.10254  15.22196  22.12816  26.09727 3.909
7 2153276 40.23035 1532421 2216859  26.27783 | 21.26496  40.12414 1524474  22.14813  26.1267 | 6.781
8 21.14701 40.1041 1479022  21.71361  26.26096 | 21.26464  40.12669  15.20269  22.10555  26.14661 | 10.135
9 21.44861 40.16828  15.59713  22.16583  26.17052 | 21.2801 40.13028 1523182  22.10178  26.15186 | 11.516
10 20.32414  39.9469 14.69693  22.21045  25.84648 | 21.18637 40.11237  15.18239  22.11336  26.12153 8.933
11 21.47476  40.33704  16.09065 22.44353  26.34193 | 21.21521  40.13483  15.27322  22.14638  26.14357 | 10.719
12 21.22772  40.02005 1525308 22.12308  25.89487 21.2141 40.12152 1526377  22.14135  26.11689 8.983
13 2099839  40.07298  15.38705  22.26694  26.12767 | 21.19231 40.11835  15.27628  22.15421  26.12167 9.271
14 21.24963  40.15326 1523967  22.36554  26.06599 | 21.20251  40.12289  15.27006  22.17274  26.11597 | 10.869
15 2112245 39.97848 153732 21.93203 2595203 | 21.19316 40.10758  15.28124 22.14316  26.101 8.131
16  21.82112  40.15864 1532999  22.24247  26.27943 | 21.25831 40.11699  15.28305 22.16013  26.12381 | 13.387
17 20.94721  40.07874 15.3307 2226007  26.03262 | 21.2061 40.11161 1528606  22.16704  26.10885 | 10.957
18 20.73335  40.06492 1537731  22.12997  26.00501 | 21.16948  40.10829  15.29335 22.1595 26.10161 9.724
19 21.35438 4034669 1551139  22.18066  26.35229 | 21.20736  40.13406  15.31142  22.16293  26.13097 | 15.388
20 21.3523 40.17716  15.04093 2197396  26.14652 | 21.21489  40.1283 15.2749 22.14319  26.12204 15.37

The interpretation of out-of-control signals from multi- APPENDIX A

variate control charts can be quite difficult. For a univariate
control chart, an out-of-control state can be easily detected
and interpreted, since a univariate chart is associated with
only a single variable. However, this is not the case for the
multivariate charts. Because the charts involve a number of
correlated variables, the identification and interpretation of
any out-of-control signals are not straightforward and has
been an interesting topic in SPC literature. We refer the inter-
ested reader to [1] for guidance and recommendation on inter-
preting out-of-control signals in multivariate control charts.
In line with [10], we recommend monitoring the principal
components if these are interpretable. Different researchers,
including [3], [40], and [41], among others, have proposed
various principal-component methods to aid interpretation of
out-of-control signals. For example, an MHWMA chart based
on the first k principal components or the joint univariate con-
trol charts with standard or Bonferroni control limits across
the p variables can be plotted.

VII. CONCLUSION AND DIRECTION FOR FUTURE WORK
In this paper, a new multivariate chart, namely, multivariate
homogeneously weighted moving average (MHWMA) con-
trol chart, is proposed for the monitoring of process mean vec-
tor. The performance of the chart is evaluated and compared
with multivariate XZ, MEWMA, MCI and MCUSUM charts
considering a variety of charting parameters. The run length
comparison revealed that the proposed MHWMA chart is
superior to the compared charts, particularly for the detection
of small shifts in the process mean vector.

In future research, the inertia problem and robustness to
non-normality of the proposed chart need to be investigated.
Guidelines on the interpretation of out-of-control signals of
the MHWMA chart also require further investigation. Also,
the effect of parameter estimates on the Phase II performance
of the chart needs to be investigated.
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DERIVATION OF THE MEAN VECTOR AND

COVARIANCE MATRIC OF H;

From equation (9), we have that for an in-control situation:
The mean vector of H; is given as:

E(H;) = wE(Y;) + (1 — w)E(Y;_1)

EH;) = w(pg) + (1 —w)(mg)
E(H;) = py.

The covariance matrix of H; is given as: when i = 1, we have
H; = wy1 + (1 —w)po
Var(H;) = WZZO + (1 — w)2 Var(po)
Var(H;) = w* X
when i > 1, we have:

Var(H;) = w? Var(Y;) + (1 — w)? Var(Y;_1)
+2w(1 — w)Cow(Y;, Yi_1)

where, we have assumed that Y; are independent and iden-
tical distributed. Hence, Cov(Y;, Y;,—1) = 0 for all pair

ofiandi— 1.

2 ) X0
Var(Hi) = w™Xo + (1 — w)"— ,
@—=1
Hence, the covariance matrix of H; is given as:
) w2Xo ifi =1
Yo = % 17
H = 1280+ (1—w)?—2 ifi>1 17

(i—1)

APPENDIX B

This proof that the distribution of the MHWMA test statistic
H; depends only on the value non-centrality parameter is
based on the proof in [7] and [10]. The basic idea is to show
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that
tion

the values of H; are invariant to any full-rank transforma-
of the data. That is, if M is a p x p full rank matrix and

y* = My, then the MHWMA statistics H;, and also, the T2
value, have the same value when calculated from y* as when
calculated from y. Hence, H* = MH . Reference [7] have
chosen an orthogonal matrix M that diagonalizes X. From
equation (9), when i = 1, we have

HY = M(wy1 + (1 = w)po) = MH,

Hence, it follows that

17 = Hy'Z;

132 = HiM' M~ s ' M~ MH,y

where, MM~ =M—IM =1

-1
T? =H{Z, 'Hy =T;

When i > 1, we have:

Hi* =Mwy; + (1 —w)y,_1) = MH;

Hence, it follows that

The

2 ry—1
T* = H"®, "H],
2 —1y—13s,—1
T° =HM' M2, "M~ )MH;
2 /y—1 2
T;* = H/Xy H; =T;

results in [7] can now be applied.
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