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ABSTRACT This work introduces a novel local patch descriptor that remains invariant under varying condi-
tions of orientation, viewpoint, scale, and illumination. The proposed descriptor incorporate polynomials of
various degrees to approximate the local patch within the image. Before feature detection and approximation,
the imagemicro-texture is eliminated through a guided image filter with the potential to preserve the edges of
the objects. The rotation invariance is achieved by aligning the local patch around the Harris corner through
the dominant orientation shift algorithm. Weighted threshold histogram equalization (WTHE) is employed
to make the descriptor in-sensitive to illumination changes. The correlation coefficient is used instead
of Euclidean distance to improve the matching accuracy. The proposed descriptor has been extensively
evaluated on the Oxford’s affine covariant regions dataset, and absolute and transition tilt dataset. The
experimental results show that our proposed descriptor can categorize the feature with more distinctiveness
in comparison to state-of-the-art descriptors.

INDEX TERMS Covariant, descriptor, handcrafted feature, patch, textures.

I. INTRODUCTION
Feature descriptor is used to describe the image interest
region in such a way that the description remains robust
against geometric and photometric transformations of the
image. Inmany computer vision, applications feature descrip-
tors play a vital role to describe the local neighborhood of a
feature point within the image. Image local patch descriptor
has a wide variety of applications in object recognition, such
as plant species [1], blood cell [2], and fingerprint [3]. More-
over, the image retrieval [4], 3D scene reconstruction [5], and
panoramic stitching [6] problems also utilize the local patch
descriptors. The local features are employed to track [7],
localize [8] objects in the image. The feature representation is
required to be invariant in the presence of variations, such as
scale, orientation, viewpoint, and illumination. Without any
information about image condition, it is a very challenging
task to identify the correct visual correspondence.

The associate editor coordinating the review of this manuscript and
approving it for publication was Gangyi Jiang.

Image local features have been described using histogram
of oriented gradient, that are scale invariant feature trans-
form (SIFT) [9], visual orientation inhomogeneity SIFT
(V-SIFT) [10], and gradient location and orientation his-
togram (GLOH) [11]. Histogram of oriented gradient based
descriptors are scale and rotation invariant [12]. However,
they are computationally expensive [13], also in-case of
illumination difference and image blur, their performance
degrades. Dominant SIFT [14], speeded up robust features
(SURF) [15], and DAISY [16] is developed to reduce the
computational complexity and feature dimensionality [17].
However, their matching performance is lower than SIFT.
The edge-oriented histogram scale-invariant feature trans-
form (EOH-SIFT) [18] is developed for face recognition that
provides a better result than SIFT, but requires pre-processing
and filtering. Unlike SIFT and its variants, moment-based
invariant feature transform (MIFT) [19] remains insensitive
to complicated shape deformation.

Illumination robust description have also been achieved
by using the intensity orders, in local binary pattern
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FIGURE 1. Flow chart of the proposed scheme.

(LBP) [20] orientation based descriptor, local intensity
order pattern (LIOP) [21], histogram of relative intensities
center-symmetric local ternary patterns (HRI-CSLTP) [22],
local second-order statistics with soft-pooling (L2SSP) [23],
and local tri-directional patterns (LTriDP) [24]. The intensity
order based descriptors are very sensitive to noise in the input
image. In [25] Overlapped Multi-oriented Tri-scale Local
Binary Pattern (OMTLBP) is developed to bring invariance
to illumination, scale and orientation for the noisy texture.
However, the OMTLBP can not effectively represent the
small local patches of the image.

The local patch representation get more robustness to vari-
ations when the deep learning method is adopted. In Deep-
Desc [26] the Siamese Network structure is trained by hard
sample mining strategy to grab 28-dimensional feature vector
from the local patch. Although DeepDesc provides excellent
matching performance, it comes up with a substantial com-
putational cost [5]. The visual geometry group (VGG) [27]
integrate the convex optimization objective function with
the sparse low-rank regularizer to describe the local image
segment. The VGG descriptor is not suitable for realtime
application due to its computational complexity. The L2 norm
of the extracted features train the L2Net [28] by adopting pro-
gressive sampling strategy. The incremental sampling capac-
itate the L2Net to bring better performance in comparison to
DeepDesc and VGG model. The overall limitation of deep
learning mechanism is that it requires an enormous amount
of ground truth training data in the form of matched and
mismatched patches. Besides the training data requirement,
the deep learning craves for expensive GPUs to meet their
computational needs.

The descriptor is desired to have high discriminative power
to retain its properties even in the presence of image trans-
formations. Since natural images contain complex intrin-
sic structures and large extrinsic variations, therefore it a
challenging problem to extract distinctive and robust fea-
tures [29]–[31]. It is desirable that feature descriptors are
invariant against the scale, rotation, translation, blur, illumi-
nation, and compression changes. This work focuses on the
development of an improved image local descriptor, which
is robust to compression noise, blurriness, illumination, and
view-angle variations.

Object retrieval also requires stable key-points of the input
image. Several feature detectors have been developed in the

literature to detect corner, edges, and blobs. The detectors like
Harris corner [32] are rotation invariant that are used to iden-
tify corners. The Harris-affine [33], and Hessian-affine [33]
are also rotation invariant, but less efficient than Harris cor-
ner. The maximally stable extremal regions (MSER) [34] is
a rotation, scale, and affine invariant, which is used to detect
the feature points with high repeatability and efficiency, but it
is sensitive to image blur. For rotation invariance, the Harris
detector has the highest repeatability and localization accu-
racy as compared to other detectors.

The polynomial approximation can represent the image
local interest region/patch verified by Savitzky-Golay
filters [35] for both 1D and 2D signals. The difference of
polynomial (DoP) [36] uses the approximation capability of
the polynomial, has a better performance in different match-
ing cases excluding JPEG compression. The work in [36]
shows that the performance of DoP is better than SIFT and
SURF for view angle variation, image blur and illumination
difference in the image.

To bring improvement in the local patch representation
under varying conditions of illumination and 3D view angle
variation, image blur, and JPEG compression noise in the
picture, we have introduced Polynomial Approximation of
Local Surface (PALS) which provide a more distinctive rep-
resentation of the local features. The feature vectors matching
technique is modified to improve the classification accuracy.

II. PROPOSED DESCRIPTOR
In the proposed scheme, guided image filtering [37] is
included to filter out the noise from the input image. Noise
affects the performance of the orientation alignment algo-
rithm. Harris corners are detected in the filtered image. A cir-
cular shape window instead of square shape window is used
to extract the neighborhood of each key-point. The dominant
orientation of the gradient aligns the patch orientation in the
proposed method. The polynomial approximation approach
is used to represent the extracted patch as shown in the
flow diagram. The recall vs. (1-precision) plot is used to
present and compare the performance of the proposed feature
descriptor.

A. TEXTURE SMOOTHING
In the proposed scheme shown in Fig. 1, the image is first
subjected to guided image filtering [37] to remove the noise
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and unwanted textures while preserving the edges. The tex-
tured portion of the image contains those structures which are
similar in shape. When the texture is not smoothed the Harris
corner detects many key-points from the repeated ‘‘Textons’’
of the textured region. The ultimate drawback of the patch
associated with the textured region is that the descriptor
represents each patch with the similar feature vector, and the
overall matching performance gets poor. Moreover, the spe-
cial filtering operation improves the localization accuracy and
distinctiveness in-case of blur images. The work in [38] has
used L0 gradient minimization [39] to make the descriptor
blur invariant. The L0 gradient minimization based filtering
was applied, but better results were obtained by using guided
image filtering [40] in the proposed scheme. The Harris cor-
ner is sensitive to noise in the image; therefore filtered images
were subjected to the detector to get precise key-points or
interest points.

Ii =
∑
j

hij(J )(Jj) (1)

hij(J ) = 1
Ni

exp
(−‖ci − cj‖2

σ 2
c

)
exp

(−‖Ji − Jj‖2
σ 2
J

)
(2)

In Eq. (1) Ii represents the filtered pixel value with coor-
dinate i, Jj is the pixel values of the input image with
coordinates j, J is the input image that is used as a guided
image. The hij(J ) in Eq. (2) represent the filter kernel centered
at position i and overlapping the pixels j, ci and cj repre-
sent the location of the center pixel and the neighbor pixel
and σ 2 represent the variance of the gaussian function. The
Ni in Eq. (2) is the normalization parameter to ensure that∑

j hij = 1.

B. HARRIS CORNER DETECTION
The local image features are desired to be invariant to scale,
orientation, translation, and illumination variations. The cor-
ner points that are the junction point of two edges are the sta-
ble regions of the image. Harris identified the corner points by
using the gradient information of the image. All feature points
that have significant variations in the gradient values have
been selected. Harris extracts eigenvalues from the Hessian
matrix, and then identify the feature point by using threshold
value. The feature points of the images in the first and second
row of Fig. 3 have been marked by the help of blue and
green colors respectively. The pictures of each row belong
to a different dataset shown the Fig. 3.

C. PATCH EXTRACTION
The interest points or key-points were detected using Harris
corner in the filtered image I . The patch Ik in Eq. (3) around

FIGURE 2. (a) Extracted patch around key-point with dimension
61×61 pixel (b) Extracted patch cropped using circular window of radius
30 Pixel.

each key-point was extracted using a square window of spec-
ified 62 pixel side length as shown in Fig. 2(a). The xk and yk
in Eq. (3) are the pixel coordinates around the kth key-point
of the input image.

Ik = I (xk , yk ) (3)

In the proposed scheme the patch around each key-point is
cropped using circular window instead of using square win-
dow before the patch orientation detection. Due to the rotation
of the image, the circular window can extract the same pixel
at any orientation of the image as shown in Fig. 2(b). Cir-
cular window improves the orientation detection capability
of the patch alignment scheme. The circular window dis-
cards the corner pixels of the square patch. This modification
in the patch extraction scheme improves the performance of
the feature descriptor. The structural representation of the
feature exclude all corner pixels of the patch. The pixel at
a uniform distance around the key-point is used to represent
the local image patch.

D. PATCH ORIENTATION ALIGNMENT
In the proposed scheme rotation invarience is achieved by
aligning patch using dominant orientation shift [48], [49].
The extracted patches are aligned using the dominant orien-
tation of the gradient. The gradient of the cropped patch is
calculated to see at which angle in the cropped patch there
is a maximum intensity variation. The gradient magnitude
and orientation of the kth patch of the image is calculated
using Eqs. (4) and (5), as shown at the bottom of this page.
The mk in Eq. (4) represents the magnitude and θk in Eq. (5)
represent the orientation angle of the gradient. Histogram of
gradient magnitude against angle θk is used to calculate the
orientation of the patch. All gradient magnitude values that
have the same orientation are added together to create the
histogram bins. In Fig. 4, the normalized weighted gradient
has a magnitude above the threshold level of 80% at angle
160 degrees, so the extracted patch will be described after
rotating it by -160 degree. The patch is described for all

mk =
√(

Ik (x + 1, y) − Ik (x − 1, y)
)2 +

(
Ik (1, y+ 1) − Ik (x, y− 1)

)2
(4)

θk = tan−1
(
Ik (1, y+ 1) − Ik (x, y− 1)
(Ik (x + 1, y) − Ik (x − 1, y)

)
(5)
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FIGURE 3. 1st row is the affine covariant features test dataset [11], while second row is absolute and
transition tilts test dataset [47] (a) Ubc image (b) Graffiti (c) Buildings (e) Painting zoom x1 (f) Magazine
zoom x4 (g) Magazine tilt t: 4.

FIGURE 4. Histogram of dominant gradient orientation.

dominant orientations, in the case where more than one ori-
entation has the gradient magnitude value above the defined
threshold. An optimum value of the threshold is selected for
orientation alignment. If we reduce the amount of the thresh-
old, then we get many orientations for the patch alignment,
which is not a realistic approach. The orientation of the patch
is not changed, in the case where no gradient magnitude value
is above the defined threshold value.

E. PATCH ENHANCEMENT
The extracted patches of the image are equalized by weighted
threshold histogram equalization (WTHE) [41]. The Equal-
ization through WTHE bring more invariance within the pro-
posed PALS against illumination change. The local patches
around the detected Harris key-point a equalized individu-
ally before the feature extraction process. The light intensity
within the extracted patch get normalized and the similarity
between identical structures of image increases by enhanc-
ing through WTHE scheme. Among various equalization

techniques tested for the patch enhancement, the WTHE
brings more robustness and distinctiveness in the proposed
ASLA representation. The local patch was also subjected to
layered difference representation (LDR) [42], contextual and
variational contrast enhancement (CVC) [46], and histogram
equalization (HE), but better results were obtained using
WTHE. WTHE has improved the matching results even in
the presence of illumination difference in the images. The
local image patch is enhanced by the weighted threshold
histogram equalization approach before the feature extraction
process. Each input pixel intensity Ik , is enhanced individu-
ally through Eq. (6). The illumination difference within the
patches is equalized through this approach to get similar patch
representation even in different lighting conditions.

Ík = (M − 1).Cwt(Ik) (6)

Cwt(Ik) =
Ik∑
j=0

Pwt (j) (7)

Pwt
(
Ik

) =

⎧⎪⎪⎨
⎪⎪⎩
Tu, if P

(
Ik

)
> Tu(P(Ik )−Tl

Tu−Tl
)r×Tu, if Tl ≤ P

(
Ik

) ≤ Tu

0, if P
(
Ik

)
< Tl

(8)

The Pwt in Eq. (8) is the weighted and threshold probability
distribution function, Cwt in Eq. (7) is the cumulative distri-
bution function and Ík in Eq. (6) is the resulting enhanced
intensity of the patch coordinate xk . The Tu and Tl in Eq. (8)
are the upper and lower threshold level of the probability.
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The M in Eq. (6) represents the maximum gray-scale value
in the input patch.

F. POLYNOMIAL APPROXIMATION
The Ík represents the enhanced kth patch detected through
Harris corner. The enhanced patch is approximated by using
polynomial fr (x, y) of different degrees as shown in Eq. (9).
The subscript r in Eq. (10) represents the degree value of the
approximated polynomial.

fr (x, y) =
{ r∑
m+n=0

Gm,nxmyn
}N
r=0

(9)

Er =
{

1
RC

R−1∑
i=0

C−1∑
j=0

(
Ík (xi, yj) − fr (xi, yj)

)2}N
r=0

(10)

dr−1,r =
{
Er−1 − Er

}N
r=1

(11)

F = {
dr−1,r

}N
r=1 (12)

TheGm,n in Eq. (9) are the coefficients of the approximated
polynomial. The mean square error Er of the original inter-
est region and the approximated patch is calculated for the
polynomials of different degree as shown in Eq. (10). R and
C in Eq. (10) represent the number of rows and columns of
the patch respectively. The consecutive difference of themean
square error dr−1,r in Eq. (11) is used to represent the PALS
feature vector F .

G. MATCHING
The normalized cross-correlation coefficient (NCC) is used
instead of using the square sum of difference (SSD) to
improve the matching accuracy. The reason for choosing the
NCC is that it has a defined range of values that are [−1 1].
Whenever the features perfectly match each other, the NCC
results into 1, similarly when features perfectly mismatch
each other, the result is −1. The Nearest neighbor threshold
selection for better matching results is quite simple in such
a short span of values for the similarity index. However,
in the case of Euclidean distance, the perfect match is repre-
sented by 0, while complete mismatch has no specific limited
value. The Nearest neighbor threshold selection in such a
case is quite tricky. Therefore we have used NCC in the
nearest neighbor threshold matching process of the proposed
descriptor, with a selected threshold of 0.75. Feature vectors
of both images are matched using transformed normalized
cross-correlation coefficient ρt .

ρt = 1 − ρ
(
F1
i ,F

2
j

)
2

(13)

The ρ in Eq. (13) is the normalized cross-correlation coef-
ficient F1

i is the ith feature vector of first image and F2
j is

the jth feature vector of the second image. 0 value of ρt

represent perfect match and 1 value of ρt represent perfect
mismatch. The matched pair is decided with the help of
nearest neighbourmatching ratio threshold. The ρt has lowest
value for F1

i and F
2
j , while ρt has the second lowest value for

F1
i and F2

k . The F
2
k in Eq. (14) represent all the kth features

extracted from the second image excluding the jth feature
vector only.

Rnn
(
F1
i ,F

2
j
) = ρt

(
F1
i ,F

2
j

)
min

{
ρt

(
F1
i ,F

2
k

)} for j �= k (14)

The key-points of the respective feature vectors are
matched pairs if the nearest neighbor ratio Rnn of the trans-
formed correlation coefficient ρt in Eq. (14) is below the
threshold τ . The τ is kept as 0.75 to decide the matching pair
of the key-points within the images. The Fig. 7 the τ has been
varied from the range 0 to 1, and the recall vs. (1-precision)
plots are drawn, it is observed that 0.75 is an optimum value
of the threshold which provides a better matching. The τ

if further reduced, will increase the False Negatives in the
matching set, similarly if the tau is increased, it increases
False Positives in the matching set.

M (i, j) =
{ (

KP1i ,KP
2
j
)
, ifRnn < τ

0, ifRnn ≥ τ
(15)

In Eq. (15), the KP represents the detected key-point or
commonly known as the feature points. The subscript i and
j of the term KP in Eq. (15) denote the index of the feature
point, while the superscript 1 and 2 pointing the first and sec-
ond image respectively.

H. EVALUATION
A matched pair M (i, j) in Eq. (15) is the correct match if the
transformed patch associated with the key-points KP1i and
the patch I2j associated with KP2j has overlap above 50%.
The coordinates of the patch I1i are transformed by the
3×3 homography matrix of the database to get the trans-
formed patch. In the proposed scheme the evaluation is per-
formed using recall vs. (1-precision) as shown in Fig. 7. The
evaluation parameters, that are precision and recall have been
described with Eqs. (16) and (17) respectively.

precision = #correctmatchings
#matchings

(16)

recall = #correctmatchings
#correspondences

(17)

The correct matches are all those estimated matched pairs,
that can satisfy the homographic transformation of the
dataset. Feature homography transformation matrix can be
obtained by random sample consensus (RANSAC) algorithm,
if not available with the test dataset. Number of correspon-
dence in Eq. (17) is the total of matched pairs that exist in the
test image pair.

III. SIMULATIONS AND RESULTS
The recall vs. (1-precision) plots is used as the descriptor
evaluation criterion [11]. (1-precision) is the ratio of incorrect
matches to the total number of matches, and recall is the ratio
of the correct match to the correspondences. Correspondence
is calculated using the homographic transformation matrix
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FIGURE 5. Matching performance of the proposed ASLA descriptor with various combinations of feature detectors tested on Oxford affine covariant
dataset [11], the first row is the Graf sequence with 20 degrees view angle difference, the second row is the matching results on bark sequence with
difference in view angle and scale, the third row is the boat sequence with 20 degrees orientation and 2x zoom level.

associated with each image pair. The key-points coordinate of
the image is transformed using the homography matrix. For
feature correspondence, the patch overlap should be higher
than 50%. The recall vs. (1-precision) plot is calculated by
varying the threshold value τ between 0 and 1. Each value
of threshold results in a new value of precision and recall
that are used to plot the performance graph of the feature
descriptor. The descriptor is evaluated using two benchmark
datasets, that are the affine covariant regions and absolute
and transition tilt dataset. The execution time of the proposed
descriptor is 407mswhen tested on 1000 key-points. The pro-
posed approach has 41ms, and 1397 ms lower computation
time than SIFT and LIOP, respectively.
The proposed descriptor, in combinationwith various types

of feature point detectors, is tested on the Affine covariant
dataset, as shown in Fig. 5. The neighborhood pixels of
the detector like difference of Gaussian (DoG) [9], features
from accelerated segment test (FAST) [43], binary robust
invariant scalable keypoints (BRISK) [44], Shi-Tomasi [45],
and Harris corner [32] are described to evaluate the better per-
formance in each case. Fig. 5 shows the Shi-Tomasi and DoG
both results in a poor performance in the case of orientation
and scale changes. Moreover, in case of view angle changes,
the performance of FAST and BRISK also fails to provide
satisfactory performance. The Harris corner outperforms the
other detector, as shown in Fig. 5.
The influence of parameters such as patch radius, match-

ing threshold, and the degree of the polynomial, on the
feature matching performance, is examined. The matching
of the proposed descriptor is evaluated for various radii of
the patch. The mean value of the correct correspondence
achieved in the presence of a view angle difference from

10 to 50 degrees is presented in Fig. 8. The highest num-
ber of mean correct matched pairs have been found at the
25-pixel size of the patch radius. The total number of cor-
rectly matched pairs for various degrees of the proposed poly-
nomial is shown in Fig. 9. It can be seen that the polynomial
with degrees 0-4 provides the highest correct matching in
comparison to other variants of the proposed descriptor. Due
to the overfitting problem, the polynomials with a degree
higher than four produce less number of correct matches.
The higher degree polynomials overfit the surface of the local
image patch, which reduces the distinctiveness in the feature
representation.

A. ROBUSTNESS TO DISTORTIONS
The descriptor is evaluated using the images of affine covari-
ant regions database [11]. The robustness of the descrip-
tor to the 1) viewpoint change 2) image blur 3) illumi-
nation changes and 4) JPEG compression is studied. The
key-points are detected using Harris corner, the patches with
radius size 31 pixel is used for the feature extraction. The
matching results of the proposed scheme are compared with
DAISY, DoP, GLOH, HRI-CSLTP, L2SSP, LIOP, SIFT, and
VSIFT as shown in Fig. 7. The proposed descriptor of
0-4 degree polynomial with dimension 200 variables provides
better results in comparison to other feature descriptors. The
descriptors evaluated in recall vs. (1-precision) plot have
different similarity measures. As mentioned in the literature
HRI-CSLTP, LIOP, GLOH, SIFT, V-SIFT, and SURF use
Euclidean distance-based matching, while L2SSP, DAISY,
and DoP use the correlation-based matching technique.

To evaluate the robustness of the descriptor on blur images,
we have used the blur image sequence ‘‘bikes’’ and ‘‘trees’’ of
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FIGURE 6. Matching performance of the proposed ASLA descriptor on Oxford affine covariant dataset [11].

the Oxford dataset [11]. The blur sequences in the dataset are
acquired by changing the camera focus. The image sequence
contains blur images with dimension 1000 × 700 pixel.
The proposed descriptor is evaluated by using complete
set of image pairs available within the dataset as shown
in Fig. 6(a) - (j). Each image pair has a different intensity of
blurriness specified by the image label. The matched pair
of the feature point has been highlighted through the cyan
color line with both ends pointing towards the corresponding

feature coordinates of the image pair. The performance of
the proposed method is superior to all other state of the art
methods as shown in the Fig. 7(a) and (b) for the tree sequence
1-4 and 1-5.

The invariance of the proposed descriptor to view angle
variation is evaluated by using the complete ‘‘wall’’ and
‘‘graf’’ sequence from the Oxford dataset. The dataset con-
tains six different imageswith camera viewpoint varies from a
fronto-parallel view to one with significant foreshortening at
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FIGURE 7. Descriptor performance evaluation on Oxford dataset [11].

FIGURE 8. Proposed descriptor’s average matching results on different
radii of the input patch using the from graf sequence of Oxford database.

approximately 60 degrees to the camera. The complete image
set from ‘‘wall’’ and ‘‘graf’’ sequence of Oxford dataset

FIGURE 9. The matching performance on different degrees of the
polynomial is presented in this figure.

shown in the Fig. 6(k) - (t) is used to evaluate the descriptor.
The image sequence Wall 1-5 and 1-6 have a view angle
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FIGURE 10. Proposed descriptor’s performance on absolute tilt and transition dataset [47].

FIGURE 11. The influence of key-points on the performance of the
method.

difference of 50 and 60 degrees. The cyan color line shows
the feature correspondence. The performance graph of the

proposed descriptor shown in the Fig. 7(e) and (f), out-forms
the state of the art descriptors. The matching results of the
‘‘boat’’ sequence are evaluated in the presence of scale and
rotation variations in the images. The scale changes to a factor
of four with orientation difference up to 60 degrees in the
image pair shown in Fig. 6 (u) - (y).
The Leuvin sequence of the Oxford dataset is used to

measure the illumination invariance of the proposed descrip-
tor. The dataset [11] consists of six images with different
intensity of light. The light variation in the dataset is intro-
duced by varying the camera aperture. The image sequence
of Leuvin with all images pairs collected from the Oxford
dataset has been used to evaluate the proposed descriptor. The
matched key-point coordinates represented using cyan color
lines shown in the Fig. 6(z) - (ad). The performance graph
shown in Fig. 7(g) and (h) represents the proposed method
gives better performance as compared to other techniques.
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TABLE 1. Total number of correct matching in Oxford dataset [11].

The robustness of the proposed descriptor to compression
noise is evaluated on JPEG compressed images. The JPEG
image pairs of the ‘‘ubc’’ 1-5 sequence collected fromOxford
dataset shown in the Fig. 6(ae) - (ai) are used to evaluate
the proposed descriptor. The JPEG sequence is generated
by changing the image quality parameter from 40% to 2%
through a standard xv image browser. The image sequence
contains compressed imageswith dimension 800× 640 pixel.
The matched features have been highlighted through the cyan
color line with both ends pointing towards the correspond-
ing feature points. The proposed descriptor provides high
recall vs. (1 - precision) in comparison to DAISY, DoP,
GLOH, HRI-CSLTP, L2SSP, LIOP, SIFT, and VSIFT as
shown in the Fig. 7(c) and (d).
The homographic transformation matrix is associated with

each image pair in the Oxford dataset, that is used to iden-
tify the correct match in the estimated correspondence. The
Table 1 shows the comparison of various feature descrip-
tors. The proposed approach provides more recognition as

compared to other techniques. In Table 1 the proposed
technique is compared with SURF, SIFT, V-SIFT, DoP,
GLOH, DAISY, HRI-CSLTP, LIOP, and L2SSP, with fea-
ture dimensionality 64, 128, 96, 200, 128, 136, 384, 144,
and 201 variables respectively. The number of Harris corner
points depends on the threshold value of the corner response.
The larger the threshold value, fewer feature points will be
detected, and vice versa. The key-points identified through
Harris corner in Fig. 3, show the smooth region of the image
lacks the presence of key-points. A uniform set of key-points
has been detected by changing the threshold value on the Har-
ris corner response. The feature repeatability of the ‘‘Wall’’
sequence presented in Fig. 11 shows an increase with the
increase in feature points.

B. INVARIANCE TO ABSOLUTE AND TRANSITION TILTS
The descriptor performance is also evaluated using tilt test
dataset [47]. The circular patch with radius size 61 pixel is
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TABLE 2. Total number of correct matched feature points in absolute tilt test suit [47].

TABLE 3. Total correct matched feature points in transition tilt test
suit [47].

represented using the polynomial of 0-4 degree. The feature
correspondence of the images shown in Fig. 10 belongs to
absolute tilt and transition test suits of the image dataset
(systematic evaluation of robustness to absolute and transition
tilts). The correspondence map of the proposed descriptor
shown in Fig. 10 have variations in absolute tilt and transition
angle. In Table 2 the total number of correct matching of
the proposed approach is shown in comparison to SIFT and
V-SIFT by using the absolute tilt test suit of the dataset.
In Table 2 the results have been analyzed for the tilt angle
θ = ±45◦, ±65◦, ±75◦, and ±80◦ along with optical zoom
of 1 and 10. In all cases shown in Table 2 the proposed
feature representation techniques give the highest number
of correct identification of the corresponding feature points.
In transition tilt test suit, two fixed latitude angle θ , with t =
2 and 4 have been set to capture test images with longitude
angle φ varies from 0◦ to 90◦. The absolute tilt t = 2 and
4 in the transition tilt test suit corresponds to latitude angle
θ = 60◦ and 75◦ respectively. Table 3 show that even the
performance of all the descriptors degrades with an increase
in longitude angle φ, but the proposed descriptor provides
better recognition in comparison to SURF, SIFT, V-SIFT,
DoP, GLOH, DAISY, HRI-CSLTP, LIOP, and L2SSP.
Table 4 compare the proposed descriptor feature dimen-

sionality with other recently reported works. The proposed
descriptor has a dimensionality of 200 variables within
its feature vector. The proposed feature vector has bet-
ter performance while lower dimension as compared to
HRI-CSLTP, and L2SSP. The proposed descriptor provides
more recognition in comparison to SIFT, V-SIFT, SURF,

TABLE 4. A comparison of the feature dimensionality with
state-of-the-art methods.

DoP, GLOH, DAISY, and LIOP; however, the feature dimen-
sion of the proposed descriptor is higher than the mentioned
techniques.

IV. APPLICATIONS
The local features are essential in various applications of
computer vision. The visual trackers, panorama stitching,
and 3D reconstruction of the visual scene all require a
robust descriptor. The proposed ASLA descriptor is tested on
PAnorama Sparsely STructured Areas (PASSTA) [50] dataset
for the panorama stitching of translated images. Fig. 12,
shows the achieved results after stitching. Fig. 12(a)-(d) show
the left, right, matched, and stitched images. The images har-
ris key-points are matched through the proposed descriptor,
and the matching results are used to calculate the homog-
raphy by Random sample consensus (RANSAC). The set
of matched key-points and the homographic transformation
matrix are used to stitched the translated images together. The
panorama stitching results of the GLOH, and SIFT descriptor
in comparison to the proposed descriptor shown in Fig. 12.
The images in the first three rows are from Lunchroom,
while the remaining three rows are from the LunchroomBlue
sequence of the PASSTA dataset. The stitching performance
of GLOH, SIFT, and the proposed descriptor is shown in the
first, second, and third row of Fig. 12. The GLOH descriptor
stitching has discontinuities demonstrated in the last col-
umn of both sequences. However, the proposed descriptor
stitching is smooth in comparison to SIFT and GLOH.
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FIGURE 12. A comparison of various descriptor in panorama stitching validated on PASSTA dataset. [50].

V. CONCLUSION
A novel local feature descriptor, Polynomial Approxima-
tion of Local Surface (PALS), is developed in this work.
The proposed PALS is invariant to the changes in orienta-
tion, scale, viewpoint, and illumination. The pre-processing
through WTHE, and guided filtering provide robustness
against blurriness, illumination difference, and JPEG com-
pression noise. The PALS crops the ROI using a circular mask
followed by a dominant orientation shift that imparts rotation
invariance to the local features representation. The feature
descriptor matching is archived with transformed normalize
correlation coefficient instead of using the square sum of
difference, that has improved the matching accuracy. When
evaluated on Oxford Affine Covariant and Absolute Tilt
and Transition dataset the proposed PALS descriptor offers

a high recognition rate under conditions of geometric and
photometric variations. The proposed PALS holds potential
for improvement across a broad array of applications related
to local feature matching including panorama stitching, 3D
reconstruction, facial landmark representation, and so on.
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