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Abstract
Background: Several studies showed that aberrant DNA methylation is involved 
in leukemia and cancer pathogenesis. Protein tyrosine phosphatase receptor gamma 
(PTPRG) expression is a natural inhibitory mechanism that is downregulated in 
chronic myeloid leukemia (CML) disease. The mechanism behind its downregula-
tion has not been fully elucidated yet.
Aim: This study aimed to investigate the CpG methylation status at the PTPRG locus 
in CML patients.
Methods: Peripheral blood samples from CML patients at time of diagnosis [no 
tyrosine kinase inhibitors (TKIs)] (n = 13), failure to (TKIs) treatment (n = 13) and 
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1  |   BACKGROUND

Chronic myeloid leukemia (CML) is a clonal myeloid stem 
cell disorder associated with abnormal exponential prolifer-
ation of granulocytes and their precursors (Goldman, 2010). 
CML incidence rates are estimated to be 0.7–1.0/100,000 
(Hoglund, Sandin, & Simonsson, 2015). BCR-ABL1 fusion 
oncogene that results from the Philadelphia (Ph+) chromo-
some t (9; 22) (q34; q11), is the hallmark of CML disease. 
The translocation juxtaposes the c-abl (ABL1) gene on chro-
mosome 9 with the breakpoint cluster region (BCR) gene 
on chromosome 22. The BCR-ABL oncoprotein plays a key 
role of the constitutive activation of the tyrosine kinase do-
main (Aladag & Haznedaroglu, 2019; Deininger, Goldman, 
& Melo, 2000), therefore it has become an important target 
for therapeutic interventions with small molecule tyrosine ki-
nase inhibitors (TKIs) which compete with the ATP binding 
site of the catalytic domain of ABL tyrosine kinase (Soverini, 
Bassan, & Lion,  2019). In the past decade, the introduc-
tion of these TKIs has demonstrated a significant improve-
ment in managing and treating CML. At present five TKIs; 
Imatinib Mesylate (IM), Nilotinib, Dasatinib, Ponatinib, 
and Bosutinib are approved by the United States Food and 
Drug Administration (FDA) for the treatment of CML pa-
tients (Druker et  al.,  2006; Gover-Proaktor et  al.,  2019; 
Jabbour & Kantarjian,  2016; Sasaki et  al.,  2016). Despite 
the safety and efficacy of these TKIs in achieving major /  
complete response at the molecular, cytogenetic, and hema-
tological levels (Baccarani, Rosti, & Soverini, 2019; Druker 
et al., 2006; Hochhaus et al., 2007), a substantial proportion 
of patients (around 20%–25%) develop resistance to treat-
ments (Al-Dewik, Jewell, Yassin, & Morsi, 2015; Apperley, 
2007; Baccarani et al., 2019). TKIs resistance that is BCR-
ABL1-dependent, where mechanisms such as point mutations 
or cellular/biological processes that interfere with TKI bio-
availability disrupt the effectiveness of BCR-ABL1 kinase 

inhibition. Moreover, BCR-ABL1-independent resistance is 
attributed to alternative signaling pathways operating in the 
presence of effective TKI inhibition of BCR-ABL1 (Al-Dewik, 
Ayoubi et al., 2011 Kalle, Sachchidanand, & Pallu,  2010; 
Nambu et al., 2010; Patel, O'Hare, & Deininger, 2017). One 
of the potential independent inhibitory mechanisms is the 
epigenetic regulation of protein tyrosine phosphatases.

Epigenetic silencing is a phenomenon whereby gene tran-
scription is suppressed through DNA methylation (a pro-
cess that may regulate gene function) resulting in decreased 
protein expression. Several studies have suggested that hy-
permethylation might play a role in disease progression in 
CML. Hypermethylation of several genes was associated 
with the progression of CML, its pathogenesis and response 
to treatment (Heller et al., 2016; Jelinek et al., 2011; Machova 
Polakova, 2013; Toyota et al., 2001; Wang et al., 2009, 2010).

Protein tyrosine phosphatase (PTP) superfamily of en-
zymes represents a natural regulatory mechanism of the 
tyrosine kinase family. They have the ability to remove phos-
phate groups from phosphorylated tyrosine residues lead-
ing to an equilibrium status in normal populations. Based 
on their cellular localization, PTPs are classified as recep-
tor-like and nonreceptor. Even though receptor-type protein 
tyrosine phosphatases (PTPRs) share similar basic structure, 
distinct PTPRs have specific targets and, may thus, play al-
ternative roles in cell regulation (Du & Grandis, 2015; Jiang, 
den Hertog, & Hunter,  2000; Tonks, 2006). Of these, pro-
tein tyrosine phosphatase receptor gamma (PTPRG) was 
described as a tumor suppressor gene in several tumors and 
its expression level was found to be significantly downregu-
lated in CML patients and correlates with its promoter meth-
ylation in both patients and cell lines (Della Peruta,  2010; 
Tomasello et al., 2020). Moreover, PTPRG expression is re-
stored in patients who respond optimally to TKIs treatment, 
and its expression remains low in patients who fail treatment 
(Vezzalini et al., 2017). More recently, we identified a single 

healthy controls (n = 6) were collected. DNA was extracted and treated with bisulfite 
treatment, followed by PCR, sequencing of 25 CpG sites in the promoter region and 
26 CpG sites in intron-1 region of PTPRG. The bisulfite sequencing technique was 
employed as a high-resolution method.
Results: CML groups (new diagnosed and failed treatment) showed significantly 
higher methylation levels in the promoter and intron-1 regions of PTPRG compared 
to the healthy group. There were also significant differences in methylation levels of 
CpG sites in the promoter and intron-1 regions amongst the groups.
Conclusion: Aberrant methylation of PTPRG is potentially one of the possible mech-
anisms of PTPRG downregulation detected in CML.
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Nucleotide Polymorphism (SNPs) (rs62620047) in PTPRG 
(Y92H) in patients who failed Imatinib Mesylate (IM) treat-
ment (Al-Dewik et al., 2016). While the molecular and flow 
cytometry characteristics of PTPRG were studied (Vezzalini 
et al., 2017), the contributing epigenetic mechanisms that in-
fluence the PTPRG activity in CML patients remains unclear 
and warrants further investigation.

The aim of this study is to investigate the methylation pat-
terns of PTPRG gene in a cohort of CML patients in Qatar 
where resistance to IM treatment has been reported to be 
significantly higher than other parts of the world (Al-Dewik, 
Jewell, Yassin, El-Ayoubi, & Morsi, 2014).

2  |   MATERIALS AND METHODS

2.1  |  Patient recruitment, characteristics, 
and sample collection

Informed consent was obtained from all participants. The 
study was approved by both Ministry of Public Health and 
institutional review board of Hamad Medical Corporation 
(Project No. 11118/11). This study adhered to the World 
Medical Association's Declaration of Helsinki (1964–2008) 
and its amendments for Ethical Human Research including 
confidentiality, privacy, and data management. A total of 26 
adult CML patients and 6 matched healthy controls that were 
confirmed to have normal complete blood count (CBC) and 
negative for BCR-ABL1 translocation were included in this 
study.

The peripheral blood samples were collected in EDTA 
tubes for newly diagnosed patients before starting TKIs and 
at time of failure for patients who relapsed or failed treat-
ment according to European Leukemia Net (ELN) guidelines 
2013. The CML patients' response to TKIs treatment was 
assessed based on the hematologic, cytogenetic, and molec-
ular response results according to (ELN 2013) (Baccarani 
et al., 2013; Steegmann et al., 2016). Resistance to treatment 
was defined as showing lack of one of the following; hemato-
logical response and/or Ph+ >95% by 3 months, BCR-ABL1 
>10% and/or Ph+ >35% by 6 months, BCR-ABL1 >1% and/
or Ph+ >0 by 12 months after the start of treatment.

2.2  |  DNA isolation and bisulfite conversion

Total DNA was isolated from total leucocytes with Maxwell® 
16 DNA Purification Kits as per manufacture guidelines 
(Khokhar, Mitui, Leos, Rogers, & Park, 2011). Purity of ex-
tracted DNA was assessed by a Nano Drop spectrophotom-
eter 2000 (Thermofisher Scientific), a ratio of 1.8–2.4 was 
considered acceptable and for optimal results, an absolute 
quantity of 200–500 ng of DNA was used.

The DNA samples were then treated with sodium bisul-
fite according to the manufacturer's instructions (EpiTect 
Bisulfite Kit, QIAGEN). The bisulfite treatment catalyzes 
the deamination of all the unmethylated cytosine (uC), nu-
cleotides to uracil (U), or thymidine (T) nucleotides and 
leaves the methylated cytosine (mC) unchanged. For optimal 
results, the amount of starting DNA in the bisulfite modifica-
tion process was kept at 200–500 ng.

2.3  |  Primers design, bisulfite sequencing 
PCR (BSP), and Gradient Polymerase 
Chain reaction

The University of California, Santa Cruz (UCSC) Genome 
Browser (UCSC, 2013) was utilized to identify the possible 
“CpG sites” flanking the cytosine phosphate guanine (CpG) 
region followed by “Bio Edit Sequence Aliqment Editor” tool 
to identify the forward and reverse primers. Finally, BiSearch 
is a primer-design and search tool utilized to ensure amplifi-
cation of specific PCR products (Table S1) (BiSearch, 2019). 
Gradient PCR was performed to find the specific annealing 
temperature for the selected gene. Specific products 321bp 
and 218bp were detected at 60°C for promoter and intron-1 
regions of PTPRG, respectively. Bisulfite treatment was per-
formed followed by Sanger sequencing (Table S2).

2.4  |  Bisulfite sequencing

The PCR products were sequenced with an ABI PRISM 
BigDye terminator sequencing kit v1.1 (Life Technologies) 
and directly analyzed by an automated ABI 3130 Genetic 
Analyzer (Life Technologies).

2.5  |  Methylation analysis

The analysis of the methylation status of CpG sites in 
the region amplified by PCR was performed using the 
ESME (Epigenetic Sequencing Methylation) Analysis 
Software (Lewin, Schmitt, Adorjan, Hildmann, & 
Piepenbrock,  2004). The software uses a genomic se-
quence as a reference and four-dye trace sequencing data as 
tests. The ratio of C to T at CG sites was determined after 
correction for incomplete conversion to determine extent 
of methylation. Furthermore, the percentage of methyla-
tion was calculated as the peak height of C versus the peak 
height of C plus the peak height of T for each CpG site 
as shown in the computer-generated sequencing chromato-
gram extracted from the Chromas program (Version 2.32, 
Technelysium). The ABI sequencing data files (*.ab1) 
along with reference fasta-files (*.fa) were run through 
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the ESME software. A single C at the corresponding CpG 
site was considered as 100% methylation, a single T as no 
methylation and overlapping C and T as partial methyla-
tion (0%–100%) (Jiang et al., 2010).

Cytosine phosphate guanine sites of promoter and in-
tron-1 regions of PTPRG were plotted using Methylation 
plotter (Mallona, Díez-Villanueva, & Peinado,  2014). 

The methylation levels (0%–100%) were converted to 
(0–1) for plotting purposes (Mallona, Diez-Villanueva, & 
Peinado, 2014). The genomic co-ordinates were identified for 
the CpG sites (Table S3). The methylation data obtained was 
represented diagrammatically as follows: a horizontal series 
represented a single sample, circles referred to CpG sites and 
shape filled indicated the methylation of the site.

T A B L E  1   CML patients’ characteristics according to gender, age, clinical phase, the type and total dose of TKIs received and response to 
treatments

Patients
Gender
Male (M), Female (F)

Age 
(years)

Clinical 
phase

BCR-
ABL1(IS)

PTPRG/ 
ABL*100       Treatment Response

CML case 01. M 45 CP 100% 0.02% No treatment. Newly diagnosed

CML case 02. M 23 CP 100% 0.01% No treatment. Newly diagnosed

CML case 03. M 28 CP 100% 0.01% No treatment. Newly diagnosed

CML case 04. M 38 CP 100% 0.01% No treatment. Newly diagnosed

CML case 05. M 43 AP 100% 0.01% No treatment. Newly diagnosed

CML case 06. F 45 CP 100% 0.01% No treatment. Newly diagnosed

CML case 07. M 46 CP 100% 0.02% No treatment. Newly diagnosed

CML case 08. F 28 CP 100% 0.01% No treatment. Newly diagnosed

CML case 09. M 40 CP 100% 0.01% No treatment. Newly diagnosed

CML case 10. M 34 CP 100% 0.01% No treatment. Newly diagnosed

CML case 11. M 58 CP 100% 0.01% No treatment. Newly diagnosed

CML case 12. F 43 CP 100% 0.01% No treatment. Newly diagnosed

CML case 13. M 32 CP 100% 0.01% No treatment. Newly diagnosed

CML case 14. F 49 CP 37% 0.2% Imatinib (400 mg)
No changes in treatment

Failed treatment

CML case 15. F 35 CP 86% 0.01% Imatinib(400 mg), then 
shift to Dasatinib (50 mg)

Failed treatment

CML case 16. M 23 CP 35% 0.3% Imatinib (400 mg)
No changes in treatment

Failed treatment

CML case 17. M 25 CP 12% 0.3% Imatinib (400 mg)
No changes in treatment

Failed treatment

CML case 18. F 34 CP 45% 0.2% Imatinib (400 mg)
No changes in treatment

Failed treatment

CML case 19. M 31 CP 33% 0.2% Imatinib (400 mg)
No changes in treatment

Failed treatment

CML case 20. F 29 CP 25% 0.3% Imatinib (400 mg)
No changes in treatment

Failed treatment

CML case 21. F 35 CP 68% 0.1% Imatinib (400 mg)
No changes in treatment

Failed treatment

CML case 22. M 38 CP 80% 0.02% Imatinib (400 mg)
No changes in treatment

Failed treatment

CML case 23. M 38 CP 60% 0.1% Imatinib (400 mg)
No changes in treatment

Failed treatment

CML case 24. M 34 CP 55% 0.1% Imatinib (400 mg) Failed treatment

CML case 25. M 61 CP 11% 0.4% Nilotinib (300 mg)
No changes in treatment

Failed treatment

CML case 26. M 40 BC 15% 0.3% Dasatinib (70 mg)
No changes in treatment

Failed treatment

Abbreviations: AP, accelerated phase; BC; blast crisis phase; CP, chronic phase.
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2.6  |  BCR-ABL1 and PTPRG quantification 
by RQ-PCR

The BCR-ABL1 and PTPRG quantification were carried 
out using RQ-PCR as previously described (Al-Dewik 
et  al.,  2014; Della Peruta et  al.,  2010; Piras et  al.,  2013; 
Vezzalini et al., 2017) (Table 1).

2.7  |  Statistical analysis

Descriptive statistics in the form of median range and fre-
quency, and percentages were calculated. For continuous 
outcomes and categorical independent variables, T test for 
independent samples was used to test the mean differences 
for two groups and one-way ANOVA with Bonferroni post 
hoc analysis was employed to test the mean differences 
for three groups using SPSS 24. All p values presented are 
two-tailed, and p values <  .05 are considered statistically 
significant.

3  |   RESULTS

3.1  |  Participants’ characteristics

Out of the 26 CML patients, 13 were newly diagnosed (ND) 
with CML and 13 failed treatment (F) (Table  1). Patients’ 
age ranged from 25–60 years (mean 37.48 and SD: 9.82) with 
a male to female ratio of 18 (69.2%) males and 8 (30.8%) 
females. In addition, there were six healthy participants who 
have never had cancer (H) (Age range: 23–46 years mean: 
37.17; SD: 9.58; Gender: five (83.3%) male and one (16.7%) 
female). Out of the 26 patients, 24 patients were in Chronic 
Phase (CP) (92.3%), one patient was in accelerated phase 
(AP) (3.85%) and one patient was in Blast Crisis (BC) phase 
(3.85%).

3.2  |  Hypermethylation of the promoter 
region of PTPRG

T test was performed to study the methylation pattern of pro-
moter of PTPRG in both cases and controls. The results re-
vealed a significant difference in promoter methylation levels 
between CML (ND and F groups) and the healthy group (t 
(30) = 5.7, p < .001) (CML: mean = 6.77, SD: 2.87; Healthy: 
mean = 0.00, SD: 0.00).

Additionally, we tested the differences between the three 
groups (ND, F and H). One-way ANOVA and Bonferroni 
post hoc test results indicated that the ND and F groups had 
significantly higher methylation compared with the H group 
(p < .001). There was no significant difference between ND 
and F groups (Table 2).

3.3  |  Methylation patterns in the 25 CpG 
sites of promoter region of PTPRG

One-way ANOVA was performed to compare methylation status 
in each CpG site in the promoter region between the three groups 
(ND, F, and H). There were significant differences in 2 out of 
25 CpG sites (13 and 143) among the groups (F (2, 29) = 7.0; 
p = .003 and F (2, 29) = 4.35; p = .022 respectively). Bonferroni 
post hoc test results indicated that methylation in CpG 13 for 
the ND and the F groups was significantly higher compared to 
the H group (p = .002 and p = .035 respectively). Furthermore, 
methylation in CpG 143 for the F group was significantly higher 
compared to the H group (p = .045). (Figure 1). No significant 
differences were found in the rest of the CpG sites.

3.4  |  Hypermethylation of intron-1 
region of PTPRG

T test was performed to study the methylation pattern of 
intron-1 of PTPRG in both cases and controls. The results 

Region Groups N Mean ± SD

95% confidence interval 
for mean

Lower bound
Upper 
bound

Promotor Newly Diagnosed 
(ND)

13 7.3 ± 3.0 5.5 9.2

Failed (F) 13 6.1 ± 2.6 4.5 7.7

Healthy (H) 6 0.00 0.00 0.00

Intron-1 Newly Diagnosed 
(ND)

13 14.13 ± 3.6 11.95 16.312

Failed (F) 13 15.11 ± 3.3 13.147 17.08

Healthy (H) 6 0.00 0.00 0.00

T A B L E  2   Descriptive analysis for 
methylation levels of the Promoter region 
and Intron-1 region
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revealed a significant difference in intron-1 methylation lev-
els between CML (ND and F groups) and the healthy group 
(t (30) = 10.38, p < .001) (CML: mean = 14.62, SD: 3.41; 
Healthy: mean = 0.00, SD: 0.00).

One-way ANOVA showed significant differences in meth-
ylation between the three groups (ND, F and H) for intron-1 
region [F (2, 29) = 53.590, p = .001]. Bonferroni post hoc 
test results indicated that the methylation status for the ND 

F I G U R E  1   Data visualization with Methylation plotter for 25 sites of Promoter region of PTPRG. (a) Lollipop-like visualization of 
methylation sites. (b) Methylation profiling plot reflecting with asterisks those positions for which significant differences between groups were 
detected. (c) Boxplots for each group showing the methylation data distribution. (d) Unsupervised hierarchical clustering of the data; sample label 
colors reflect groups classification

F I G U R E  2   Data visualization with Methylation plotter for 26 sites of Intron-1 region of PTPRG. (a) Lollipop-like visualization of methylation 
sites. (b) Methylation profiling plot reflecting with asterisks those positions for which significant differences between groups were detected. (c) 
Boxplots for each group showing the methylation data distribution. (d) Unsupervised hierarchical clustering of the data; sample label colors reflect 
the groups classification
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and the F groups was significantly higher than the H group 
(p < .001). There was no significant difference between the 
ND and the F groups (Table 2).

3.5  |  Methylation patterns in 26 CpG sites of 
Intron-1 region of PTPRG

One-way ANOVA was also performed to compare methyla-
tion levels in each CpG sites in the intron-1 region between 
the three groups; ND, F, and H. The results indicated that 
there were significant differences in 23 out of 26 CpG sites 
(Figure 2 and Table 3). Bonferroni post hoc test revealed that 
the methylation levels were significantly higher amongst the 
ND and the F groups compared to the H group in most of the 
intron-1 CpG sites except CpG 70, CpG 94, CpG 155 and 
CpG 161 (in the ND group) and CpG 173 (in the F group). 
In addition, the F group had significantly higher methylation 
levels in the CpG sites 94 (p = .003) and 155 (p = .01) com-
pared to the ND group.

4  |   DISCUSSION

This is the first prospective study to evaluate epigenetic mecha-
nisms of PTPRG regulation amongst CML patient's population 
where the rate of IM resistances is higher than other reported 
parts of the world (Al-Dewik, Ayoubi et al., 2011; Al-Dewik 
et al., 2014; Al-Dewik, Jewell et al., 2014; Al-Dewik, Morsi 
et al., 2016; Patel et al., 2017). It addresses the important role 
of PTPRG as a regulatory element in BCR-ABL1-mediated on-
cogenesis. Our study provides an evidence of the involvement 
of the epigenetic modification of PTPRG in the pathogenesis 
of CML. PTPRG was found to be significantly hyper methyl-
ated compared to the control (Figures 1 and 2).

Protein tyrosine phosphatase receptor gamma is known 
to induce a reduction of protein BCR-ABL-specific tyrosine 
phosphorylation of its direct downstream targets/substrates 
such as CRKL and of STAT5 (Della Peruta et al., 2010). In 
the current study, we expanded the methylation coverage of 
PTPRG via studying two regions of its promoter; 321bp and-
intron-1 218 bp using advanced molecular technique such as 
Sanger sequencing. In the same context, Della Peruta et al., 
documented earlier that upregulated PTPRG expression is 
associated with a reduction in methylation levels in 166 bp 
of PTPRG using Methylation-specific PCR technique (Della 
Peruta et al., 2010). More recently, we demonstrated that in 
PTPRG-negative CML cell lines, the methylating enzyme 
DNA (cytosine-5)-methyl transferees 1 (DNMT1) is over- 
expressed, bind to PTPRG promoter and is responsible for its 
hypermethylation, while its inhibition or downregulation cor-
relates with PTPRG re-expression (Tomasello et al., 2020). 
Our findings revealed that the methylation occurs more 

frequently in the intron-1 region compared to the promoter 
region in CML patients besides showing a significant in-
crease of the methylated percentage at the CpG sites in both 
promoter and intron-1 regions compared to healthy individ-
uals (Table 3). Interestingly, our findings indicated and con-
firmed that the hyper methylated pattern of PTPRG gene in 
CML patients acts as an early promoter for CML formation 
and to be dependent on BCR-ABL1 titers. It may well contrib-
ute as a BCR-ABL1 independent resistance molecular event.

We analyzed 51 CpG sites in PTPRG in CML and healthy 
control groups for methylation. Overall, the frequency of 
methylated CpG sites was significantly higher in CML cases 
compared to healthy controls, suggesting the potential in-
volvement of CpG methylation sites in CML (Figures 1 and 2).  
Interestingly, two CpG sites in the intron-1 region were found 
to be significantly hyper-methylated amongst failed groups 
compared with newly diagnosed. In the newly diagnosed 
group, the frequency of CpG site methylation was signifi-
cantly different from the healthy group, suggesting that CpG 
site methylation have a central role in the molecular events 
leading to CML. These findings support the assumption that 
the CML disease is not only driven by the BCR-ABL1 translo-
cation (Lecca & Sorio, 2016). Moreover, we also observed a 
significantly higher methylated CpG sites in the failed group 
compared to the healthy group, indicating that CpG site meth-
ylation may be important for disease progression (Table 3).

Several studies have documented the effect of DNA 
methylation pattern of regulatory genes on various cellu-
lar activities such as cell proliferation and survival, as well 
as cell-signaling molecules in CML (Behzad et al., 2018). 
Jelinek et  al.,  2011 studied the Methylation levels of 10 
genes in CML patients and found that the frequency of 
methylated genes ranged from 11%to 86% as follows: 
ABL1 (86%), CDH13 (79%), NPM2 (74%), PGRA (66%), 
TFAP2E (63%), DPYS (54%), PGRB (52%),OSCP1 (30%), 
PDLIM4 (21%), and CDKN2B (11%), suggesting an aber-
rant methylation of DNA associated with the progression 
of the disease (Jelinek et al., 2011). Another study using a 
whole methylome approach in 36 CML patients, found that 
31 genes were uniquely hyper methylated in CML and 42 
genes that became hyper methylated with the progression 
of CML. Remarkably, the same group showed that utilizing 
DNA methylation inhibitor such as azacytidine in blastic 
crisis CML patients resistant to Imatinib Mesylate (IM) 
could reverse the aberrant hypermethylation associated 
with progression of CML to blast crisis and supports the 
use of this drug as an epigenetic therapy (Byun, 2007). In 
another study with CML cell line K562 and its IM resis-
tant variant (K562-R) the methylation levels were found 
to be significantly higher and that the gene expression lev-
els were significantly lower for MLH1, RPRM, FEM1B, 
and THAP2 in K562-R cells when compared to parental 
K562 cells. Further, treatment of the K562-R cells with 
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T A B L E  3   Methylation levels of the 23 CpG sites in the Intron-1 region amongst F and ND groups compared to H group

Site Groups Mean ± SD 95% confidence interval range p value

CpG 59 F 17.00 ± 10.47 10.67 ± 23.32 .013

ND 16.07 ± 13.66 7.82 ± 24.33 .019

CpG 70 F 21.38 ± 24.21 6.75 ± 36.02 .034

ND 15.00 ± 5.89 11.44 ± 18.56 .204

CpG 77 F 8.30 ± 5.089 5.23 ± 11.38 .001

ND 8.30 ± 3.79 6.01 ± 10.60 .001

CpG 86 F 5.46 ± 3.69 3.23 ± 7.69 .001

ND 4.62 ± 1.61 3.64 ± 5.59 .003

CpG 88 F 2.69 ± 2.39 1.25 ± 4.14 .027

ND 2.85 ± 1.86 1.72 ± 3.97 .018

CpG 91 F 1.92 ± 3.59 −0.25 ± 4.09 .352

ND 1.00 ± 1.08 0.34 ± 1.65 1.000

CpG 94 F 11.38 ± 6.70 7.33 ± 15.43 .000

ND 4.92 ± 2.22 3.58 ± 6.26 .109

CpG 111 F 2.08 ± 6.64 −1.94 ± 6.09 1.000

ND 0.15±0.55 −0.18±0.49 1.000

CpG 117 F 1.84 ± 5.18 −1.29 ± 4.98 .817

ND 0.23±0.44 −0.03±0.50 1.000

CpG 155 F 11.30 ± 11.78 4.19 ± 18.43 .016

ND 1.77 ± 1.48 0.87 ± 2.66 1.000

CpG 161 F 9.46 ± 11.23 2.68 ± 16.25 .041

ND 2.69 ± 1.75 1.63 ± 3.75 1.000

CpG 173 F 4.00 ± 2.97 2.204 ± 5.80 .169

ND 5.85 ± 5.59 2.46 ± 9.22 .021

CpG 189 F 12.38 ± 6.51 8.45 ± 16.32 .042

ND 15.07 ± 13.44 6.95 ± 23.20 .011

CpG 191 F 13.85 ± 10.97 7.22 ± 20.47 .002

ND 10.92 ± 3.33 8.91 ± 12.93 .016

CpG 193 F 11.38 ± 4.37 8.74 ± 14.02 .000

ND 12.70 ± 4.73 9.83 ± 15.55 .000

CpG 199 F 8.00 ± 4.14 5.50 ± 10.50 .000

ND 7.85 ± 4.02 5.42 ± 10.27 .001

CpG 226 F 14.62 ± 7.10 10.32 ± 18.90 .000

ND 13.62 ± 4.23 11.06 ± 16.17 .000

CpG 228 F 23.62 ± 9.82 17.68 ± 29.55 .000

ND 24.46 ± 6.92 20.28 ± 28.65 .000

CpG 236 F 17.62 ± 9.22 12.05 ± 23.18 .000

ND 17.62 ± 5.58 14.25 ± 20.98 .000

CpG 238 F 17.54 ± 9.47 11.81 ± 23.26 .000

ND 17.62 ± 5.55 14.26 ± 20.97 .000

CpG 243 F 36.23 ± 13.23 28.24 ± 44.23 .000

ND 43.23 ± 14.76 34.21 ± 52.15 .000

CpG 246 F 28.54 ± 10.71 22.07 ± 35.01 .000

ND 28.54 ± 7.48 24.02 ± 33.06 .000

(Continues)
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epigenetic drugs, such as 5-azacytidine (AzaC) reduced 
resistance to Imatinib Methylate (REN, 2012). In another 
study, SOX30 methylation has been correlated with dis-
ease progression in patients with chronic myeloid leukemia 
(Zhang et al., 2019).

Protein tyrosine phosphatase receptor gamma expression 
has been shown to be downregulated by RAS activation, 
while its upregulation has been observed in hypo-methyla-
tion condition in in childhood acute lymphoblastic leukemia 
(ALL) (Xiao et al., 2014). Finally, PTPRG methylation has 
also been reported in solid cancer (Cheung et al., 2008; Wang 
& Dai,  2007). Eddy et al., suggested that PTPRG inton1 
methylation could be a biomarker for early detection of col-
orectal cancer (van Roon et al., 2011).

5  |   CONCLUSION

Hypermethylation of PTPRG locus might suggest a molecu-
lar mechanism independent of BCR-ABL1 function in CML 
patients. Our data contributes to deepen our understanding 
of the crucial role of aberrant DNA methylation in CML 
disease initiation and progression. Potentially, PTPRG 
methylation could be a biomarker for early detection of 
CML. However, further studies are needed on the validation 
of specific aberrant methylation of PTPRG and its prognos-
tic and predictive values for the response to therapy in the 
CML patients.
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