
Future Generation Computer Systems 112 (2020) 982–995

M
a

b

c
m
e
h
T
i
d
b
o
v

e
t
h
t

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

RL-OPRA: Reinforcement Learning for Online and Proactive Resource
Allocation of crowdsourced live videos
Emna Baccour a,∗, Aiman Erbad a, Amr Mohamed b, Fatima Haouari b, Mohsen Guizani b,
ounir Hamdi a

College of Science and Engineering, Hamad Bin Khalifa University, Qatar
CSE Department, College of Engineering, Qatar University, Qatar

a r t i c l e i n f o

Article history:
Received 23 February 2020
Received in revised form 16 June 2020
Accepted 24 June 2020
Available online 29 June 2020

Keywords:
Live streaming
QoE
Geo-distributed clouds
Machine and reinforcement learning

a b s t r a c t

With the advancement of rich media generating devices, the proliferation of live Content Providers (CP),
and the availability of convenient internet access, crowdsourced live streaming services have witnessed
unexpected growth. To ensure a better Quality of Experience (QoE), higher availability, and lower
costs, large live streaming CPs are migrating their services to geo-distributed cloud infrastructure.
However, because of the dynamics of live broadcasting and the wide geo-distribution of viewers and
broadcasters, it is still challenging to satisfy all requests with reasonable resources. To overcome this
challenge, we introduce in this paper a prediction driven approach that estimates the potential number
of viewers near different cloud sites at the instant of broadcasting. This online and instant prediction of
distributed popularity distinguishes our work from previous efforts that provision constant resources
or alter their allocation as the popularity of the content changes. Based on the derived predictions,
we formulate an Integer-Linear Program (ILP) to proactively and dynamically choose the right data
center to allocate exact resources and serve potential viewers, while minimizing the perceived delays.
As the optimization is not adequate for online serving, we propose a real-time approach based on
Reinforcement Learning (RL), namely RL-OPRA, which adaptively learns to optimize the allocation and
serving decisions by interacting with the network environment. Extensive simulation and comparison
with the ILP have shown that our RL-based approach is able to present optimal results compared to
heuristic-based approaches.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recently, crowdsourced live streaming applications have be-
ome very popular due to the technological advancement of
obile devices, high-speed communication networks, and the
xpansion of CPs such as YouTube and Netflix. This new paradigm
as attracted the interest of millions of users [1]. As an example,
witch.Tv stated that more than 3.7 million broadcasters used
ts platform in 2019 and more than 15 million viewed its videos
aily [2]. Another well-known crowdsourcing application is Face-
ook, which attracted more than 2 billion active users in 2018 [3],
ut of which 78% watch live videos and 1 in every 5 broadcasted
ideos is live [4].
The crowdsourcing live streaming services have unique prop-

rties compared to single and multi-source broadcasting. First,
he new generation of broadcasters and viewers are extremely
eterogeneous in terms of device capacities and network condi-
ions, in addition to their high and global geo-distribution. For

∗ Corresponding author.
E-mail address: ebaccourepbesaid@hbku.edu.qa (E. Baccour).
https://doi.org/10.1016/j.future.2020.06.038
0167-739X/© 2020 The Authors. Published by Elsevier B.V. This is an open access ar
instance, Twitch.Tv is broadcasting live contents coming from
more than 100 countries with more than 150 different quali-
ties [5]. Second, the behavior of crowdsourcers is highly dynamic
over time, as broadcasters can start and end their streamings
randomly, which makes it hard to estimate the resource re-
quirements. Finally, the most critical feature of crowdsourced
streaming is that a broadcaster can interact with the viewers
in live, making this service very sensitive to latency. To cope
with these challenges, the crowdsourced streaming service [6–9]
has recently presented an overwhelming interest for the industry
and academia to attract more audience and increase the CPs’
revenues. Recent studies [6] revealed that two key factors are
responsible for enhancing the viewers’ QoE: First, the authors
highlighted that viewers are likely to abandon the video, if startup
delays are high and would stop revisiting the live streaming plat-
form if they experience buffering stalls. Second, another factor
to enhance the QoE is providing the requested video qualities by
allocating enough resources to transcode the content. Therefore,
the research question will be how to achieve the best QoE while
minimizing the operational cost to allocate resources and serve

viewers.

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2020.06.038
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.06.038&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ebaccourepbesaid@hbku.edu.qa
https://doi.org/10.1016/j.future.2020.06.038
http://creativecommons.org/licenses/by/4.0/


E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995 983
Fig. 1. Geo-distributed cloud platform for crowdsourced live streaming.

Cloud computing is a powerful technology that offers elastic
and rapid resource provisioning and pay-as-you-go charging ser-
vices for highly dynamic live applications, with minimum man-
agement efforts [10]. Since viewers and broadcasters are globally
dispersed, an infrastructure comprising geo-distributed data cen-
ters is required to minimize the perceived delays. Accordingly,
when a viewer requests a video, the CP can benefit from on-
demand resource renting and redirect the request to the closest
and cheapest cloud site, as seen in Fig. 1. Nowadays, crowdsourc-
ing platforms, including Twitch.Tv, have migrated their services
to geo-distributed clouds to profit from ‘‘infinite’’ resources and
efficient charging.

To benefit from the capacity of geo-distributed cloud plat-
forms in supporting crowdsourced services, some challenges re-
main to be solved. First, renting computational servers, and al-
locating transmission and migration resources may have differ-
ent costs depending on the cloud site [11]. Using the broad-
caster adjacent data center to serve viewers, may lead to in-
creased costs. Second, compared to other streaming services,
crowdsourced CP should act timely and efficiently towards dy-
namic situations, as the broadcasters’/viewers’ behaviors are hard
to predict, and live videos are time-sensitive. Thus, it is chal-
lenging to ensure a trade-off between cost and QoE by adopting
static resource-provisioning approaches as done in [12]. Indeed,
over-provisioning can lead to additional charges, while under-
provisioning may result in lower serving efficiency. Third, the
strategy of using the provisioned resources to allocate videos
is very important as selecting the adequate data center affects
both users and CPs. Crowdsourced live providers should avoid
traditional video allocation, where each content is copied to all
data centers to offer maximum QoE. Furthermore, most of the
efforts, including [12] and [13], have adopted a strategy of renting
servers on cloud sites, where the video is popular. Meanwhile,
existing efforts [14,15] predict this popularity after receiving the
feedback of viewers (e.g., reacts, joining viewers, etc.) and not at
the instant of the broadcasting. Also, because of the dynamics of
viewership, the popularity could change over-time, which causes
allocation inefficiency and requires alteration of video location.
Finally, such works opt for greedy algorithms to establish a trade-
off between QoE and operational costs. These algorithms rarely
achieve optimum and cannot adapt to the change of load or users’

behaviors.
To summarize, it is not difficult to design an efficient alloca-
tion strategy, when the scale of users’ demand or the number
of broadcasted videos are fixed. The challenge is to propose
an online algorithm that benefits from cloud resources to host
randomly incoming live videos and handle dynamic and geo-
distributed users on the fly. Meanwhile, it pursues the optimal so-
lution presented by offline optimizations and having an overview
of the system over a long period.

Compared to the previous works in the literature, we take
into consideration all the discussed issues. The first step is han-
dling the dynamic behavior of viewers. More specifically, we
design a predictive model based on machine learning techniques
that forecasts, the potential number of viewers in the proximity
of different cloud sites, at the instant of broadcasting. To the
best of our knowledge, we are the first to study geo-distributed
popularity of videos, at the start of live streaming and based
only on the content features (e.g., broadcaster, category, creation
time and date). After assessing the viewers’ distribution and the
video popularity, the next step is to design an online algorithm
that assists the crowdsourced live streaming system to optimize
resource utilization, while ensuring the best QoE and adapting to
the network dynamics and fluctuations. Recently, RL techniques
have become increasingly popular, in particular for dealing with
complex and large problem spaces. These techniques are able to
react under unforeseen environment, by a continuous process of
gaining rewards and incurring penalties for each taken action.
Compared to heuristic-based approaches, RL methods do not act
based on greedy decisions. Instead, they learn an optimal decision
making policy from batches of environment states and knowledge
of the system, which is similar to the optimization process. As a
result, online and near-optimal decisions will be taken from the
learned optimum policy. Another advantage of the RL approach
is that it keeps learning to adapt to any system fluctuation. Our
contributions in this paper can be described as follows:

• To face the challenge of geo-distribution and dynamics of
online viewers, we develop a machine learning model that
predicts, online and proactively, the popularity of live videos
at different geo-located cloud sites, based only on the video
features. This prediction is trained on a realistic and recent
dataset containing streams from a well-known crowdsourc-
ing platform: Facebook.
• We formulate the problem of crowdsourced live streaming

allocation on geo-distributed cloud platform as an ILP op-
timization that aims to minimize the operational cost by
using the predicted viewers as an input. The binary decision
variables will be: choosing data centers for video alloca-
tion, deciding on video distribution between broadcaster
and serving regions, and planning for sites to serve potential
viewers.
• To relax the optimization problem and tackle heuristic is-

sues, we design a novel approach based on Reinforcement
Learning for Online and Proactive Resource Allocation,
namely RL-OPRA. This approach learns the allocation and
serving policy and takes real-time actions based on the
predicted number of viewers. In this context, we define the
set of states, actions, and reward function, and we use an
efficient RL-approach, namely, Deep Q-Learning (DQN).
• We conduct extensive simulations to evaluate the perfor-

mance of the RL-OPRA predictive model. We illustrate that
the proposed approach can minimize the network cost com-
pared to recent resource allocation systems. Additionally,
we show that our popularity prediction accuracy exceeds
80%, and that the RL-approach presents close results to the
optimal solution, exceeding 90%.



984 E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995
2. Related works

Due to the expansion of CPs such as YouTube and Netflix,
the development of gaming platforms, and the emergence of
multimedia technologies, such as 3D videos and Virtual Reality
(VR), crowdsourcing live streaming has gained the attention of
both academia and industry.

In the last decade, many existing live platforms relied on
peer-to-peer (P2P) solutions [16], content distribution networks
(CDNs) [17] or hybrid solutions [18]. However, with the evolu-
tion of high performance devices and the availability of internet
access, video streaming services have evolved from single source
broadcasting to crowdsourcing live streaming [19]. The dynamic
and distributed live video sources impose critical delays and
computing constraints, which draws new challenges to exist-
ing architectures to accommodate resources as close as possible
to users and maximize their streaming experience. Many ear-
lier works [20–25] derived measurements on crowdsourced live
streaming platforms to understand the special features of dis-
tributed live videos, the architecture and performance of content
providers, and viewers’ behavior. These studies revealed, first,
that live videos are broadcasted and watched from all over the
world. Second, not only the number of broadcasters and viewers
is enormous but it also includes heterogeneous users with dif-
ferent mobile and network capacities. Third, the crowdsourcers
are highly dynamic since they can start and end their streaming
randomly. Similarly, mobile users are frequently joining and end-
ing their streaming sessions with a volatile online time. With the
above properties, it is challenging for the CPs to meet the viewers
demands with cost-effective resources and reasonable QoE.

More recently, geo-distributed cloud computing platforms
have been offering flexible and elastic resource provisioning as
a solution for highly distributed videos. As an example, Amazon
AWS cloud [26] leases storage, transmission, and computation
resources with low charges, high performance and increasing
scale. Many research efforts have been conducted to orchestrate
video allocation among these cloud platforms. The studies in [27]
and [5] introduced cost effective geo-distributed frameworks for
crowdsourced live streaming. More specifically, the work in [27]
presented a generic framework that uses the adaptive leasing and
price diversity to provision cloud servers and deal with service
migration among geo-distributed cloud sites. Authors studied the
impact of video location on the operational cost of the network
and the streaming quality. Accordingly, they formulated an op-
timization to select the optimal number of cloud data centers
for crowdsourcers to migrate their videos under lower costs.
This static storage strategy cannot be applied to highly dynamic
and distributed viewers, as authors focused only on the network
cost and the QoE was not taken into consideration. In our work,
we adopt a dynamic strategy to distribute live video streams
to multiple data center sites, while considering the viewers’
locations. The work in [5] covered the maximization of viewers’
QoE by observing their locations and demands. Indeed, authors
proposed a greedy cloud rental scheduler that allocates the pop-
ular videos in the cheapest cloud sites and offers the requested
representations to the appropriate regions. Authors considered
also the case where the resources are limited in different regions.
However, the perceived delay is not studied as a constraint for
video allocation and a metric to enhance users’ satisfaction. In
geo-distributed cloud platforms, redirecting requests to different
data center sites is of paramount importance to serve viewers
with minimum latency. In this context, authors in [28] and [29]
proposed two frameworks named, CALMS and DYRECEIVE, which
aim to lease cloud servers flexibly and redirect users’ requests to
appropriate servers in order to minimize serving delays. CALMS
is proposed as a solution to accommodate viewers’ location
heterogeneity and mitigate the impact of requests globalization,
through greedy cloud lease scheduling; while DYRECEIVE uses
Lyapunov optimization framework to deal with unpredictable
viewers demands/locations at a finer granularity and to adapt
to the diversity of VM prices at different times and regions. The
latter algorithm can have a distributed implementation. The work
in [30] improved the crowdsourcing live streaming platforms by
introducing the distribution of live videos among different VM
instances. However, they mainly focused on the migration of
the content between one fixed broadcaster and geo-distributed
cloud sites. Obviously, this assumption cannot be applied to
live streaming systems, where sources are distributed. To sum-
marize, the aforementioned efforts mainly focused on offering
better services to geo-distributed viewers. Still, they did not take
into account the dynamics of broadcasters, which can broadly
impact the performance of the crowdsourcing system. In our
work, the impact of broadcaster location is taken into consider-
ation in the migration and allocation strategy. The distribution
of broadcasters is considered by the work in [31]. The authors
proposed a greedy algorithm, namely GMC, that selects cloud
sites to transcode live videos with the objective to minimize the
operational cost and maximize the QoE. The wide distribution
of viewers’ locations was not considered in the above work,
as will be done in our work. Furthermore, this solution opted
for proactive static provisioning of resources without knowledge
about distributed demands, which may incur additional costs and
impose higher delays. To the best of our knowledge, only few
works, including [11], were devoted to accommodate live video
services in geo-distributed clouds while considering the satisfac-
tion of both broadcasters and viewers. Particularly, authors in [11]
proposed a joint optimization of data center selection and video
streaming distribution, aiming at minimizing the network cost
and reducing the delays to deliver live contents. However, in this
work, the distribution of viewers and the popularity of videos
are considered as constant from the beginning of broadcasting,
which is not always the case of crowdsourced contents that gain
or lose followers during the streaming. To face this problem,
authors, in [32], designed a cloud assignment strategy to cope
with the fluctuation of viewers’ requests, where content-delivery
servers are re-assigned to users based on demand change. Estab-
lishing the allocation based on initial video popularity or altering
the request assignment can cost the network additional delays
and extra fees to serve viewers. In our approach, we propose
a prediction driven approach that estimates the potential total
number of viewers near different cloud sites at the instant of
broadcasting. This online and instant prediction contributes to
design an efficient and proactive resource allocation.

Authors in [33] and [34] proposed prediction based
approaches, that forecast and provision the required resources
for future demands. Then, based on greedy heuristics, incoming
videos are allocated in real-time, while being constrained by the
provisioned servers. However, studying the popularity of contents
is essential to use the provisioned resources more efficiently.
Furthermore, greedy decisions are taken based on the current
state of each cloud site. Additionally, in the literature, the cloud
platform configuration is assumed to be static and predefined
(e.g., number of cloud sites, costs, delays), which distinguishes
our RL approach that pursues the optimal solution decisions and
adapts to any environment changes through continuous online
learning.

As we discussed previously, some of the aforementioned ap-
proaches exploited flexible content allocation strategies, which
require knowledge of viewers behavior. Indeed, they either sup-
pose that the number of viewers and their distribution are known
from the beginning of the streaming or suppose that all view-
ers are located at the broadcaster neighborhood, which is not



E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995 985

r
l
a
s
p

i
m
t
o
i
e
o
t
i
p
b
t
T
p
t
i
H
w
b
v
l
o

(
o
f
t
a
o
b
i

Fig. 2. System model: the RL-OPRA predictive model is deployed in a centralized master server that orchestrates resource allocation.
ealistic. Such assumptions are not adequate for crowdsourcing
ive streaming because of the property of instant content gener-
tion and the requirement for timely actions towards dynamic
ituations. Therefore, an online and accurate prediction of the
opularity of live videos in different cloud locations, is required.
The studies of online video popularity have been conducted

n various fields such as gaming, news, TV shows and social
edia. Researchers in [14,15,35–37] tried to accurately estimate

he popularity of a video by studying the historical parameters
f the content such as the comments, shares, rating, and daily
ncrement of view count. These works aimed at establishing an
arly popularity prediction. However, their methods require the
bservation of videos’ historical features, which cannot be applied
o live videos having random ending time and volatile duration
nsufficient to collect the required data. Authors in [38] and [39]
resented a new approach to predict the popularity of contents
ased on visual features (video frames). Despite its efficiency,
his method is complex and not always efficient for live videos.
he described approaches are different from our work where the
rediction is done at the instant of broadcasting based only on
he metadata of the video. As claimed by the authors, the work
n [40] was the first to predict viewing count for online videos.
owever, the study forecasted the total number of future views,
hich is not useful for geo-distributed resource allocation. To the
est of our knowledge, we are the first to predict the number of
iewers near each geo-distributed cloud site for each incoming
ive video, in order to timely allocate resources at the proximity
f potential viewers.
In summary, the novelty and contributions of this paper are:

1) The prediction of distributed video popularity at the instant
f broadcasting, based only on metadata of the stream; (2) The
ormulation of a strategy that minimizes the operational cost of
he network and maximizes the QoE, while taking into consider-
tion both viewers’ and broadcasters’ dynamics; (3) The design
f an online reinforcement learning based solution, characterized
y its performance compared to the optimal framework and by
ts continuous learning of system fluctuation.
3. QoE-aware resource allocation for crowdsourced live
streaming

3.1. System model

As illustrated in Fig. 2, our crowdsourcing live streaming sys-
tem is deployed in a geo-distributed cloud platform composed
of multiple data centers and located in different geographical
regions. These data centers cooperate to satisfy the demands of
viewers and broadcasters. We suppose that our platform consists
of N geo-distributed regions; in each region, one data center is
set to offer services to end-users located in the same region or
distributed in other regions. Several services are indispensable to
run the live streaming system smoothly, namely, video compu-
tation to transcode a content from a higher quality to a lower
one, video migration to distribute the content to other regions,
and request response to serve viewers. We assume that these
services’ charges are potentially different across cloud regions.
The first service is charged by time unit while the rest are charged
depending on the traffic volume. In this paper, we follow the
charging model, EC2 [41] and S3 [42], of Amazon, which is a
leader in commercial cloud services. The goal of this work is to
reduce the total operational cost, while offering the best QoE of
live streaming viewers. As we discussed previously, to ensure
minimum networking cost, it is required to allocate live and
proactively the exact number of servers that achieves the targeted
QoE. Hence, in our work, we propose a RL-OPRA predictive model,
which we deploy in a centralized master server (see Fig. 2).
More precisely, when the platform user broadcasts a video in real
time, the content is hosted by default in the adjacent data center
and its information (category, broadcaster, creation time,etc.) are
reported to the master server. The RL-OPRA predictive model is
composed of two phases: In the first phase, we will predict the
expected number of viewers to join the streaming, related to
each region. Based on the prediction results, the second phase
will decide on the fly where to migrate the videos replicas and
from which geo-located data center to serve viewers, in order
to reduce the perceived delays and the experienced stalls with
maximum cost gain. The trade-off between cost and delay will be



986 E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995

h
a
p
g
R
c
u

3

s
c
l
J
f
a
p
c
l
c
t
t

a
n
m
f
r
s
a l

t
c
g
t
s
i
t
o
m
o
i
c
t
e
L
b

Fig. 3. Illustration of the viewers predictive model.

andled by an ILP optimization and an RL framework that serves
s an online solution. This framework mimics the optimization
rocess by learning the optimal policy from batches of videos to
ive best allocation decisions online. Another advantage of the
L-OPRA framework is that it learns to adapt to the environment
hanges. For convenience, Table 1 presents some key notations
sed in ulterior sections.

.2. Online prediction of geo-distributed viewers: phase 1

In this work, we adopt Facebook as a crowdsourcing live
treaming platform and we use the Facebook dataset [25] recently
ollected by our team. This dataset contains more than 3 million
ive video streams collected in January, February, May, June and
uly 2018. Each live video stream is collected with plenty of
eatures, including the broadcaster, the category, the description,
nd the number of viewers and their locations. For our first
rediction phase, we select five relevant features, which are the
reation time, creation date, the category, and broadcaster ID and
ocation (see Fig. 3). We choose this list of features as it can be
ollected from the video at the broadcasting instant, which is not
he case of the number of likes, comments, length and frames of
he content used by other related works to predict the popularity.

Using these data, we predict the popularity of live contents
t each region in terms of number of viewers. However, we
eed to pre-process the raw data. First, each viewer’s location is
apped to one Amazon Web Services (AWS) cloud site [43], by

inding the nearest site to him/her. In this way, for every video
ecord, we define the number of viewers related to each cloud
ite. Similarly, the location of the broadcaster is mapped to the
djacent site. We design our system to be composed of N = 10

AWS sites, namely US West-California, US East-Virginia, US East-
Ohio, South America-Sao Paulo, Europe-Paris, Europe-Frankfurt,
China-Ninxgia, Asia-Singapore, Asia-Seoul, and Asia-Mumbai. As
a next step, we convert high-cardinality features (video category
and broadcaster id) to hashed feature vectors, using feature hash-
ing methods. Moreover, we map the creation date into different
week-days and cluster the creation time into 6-time intervals.
Finally, we apply the categorical one-hot encoding to process the
broadcaster location and the creation date and time.

As shown in Fig. 3, the regression model will be trained to pro-
duce 10 outputs. Each predicted output represents the potential
number of viewers related to each AWS data center. The data is
trained using three machine learning algorithms namely, Random
Forest (RF), Decision trees (DT) and Multilayer-perceptron (MLP).
Since it is not possible to predetermine the combination of hyper
parameters that gives the best results, we test different models.
We varied the forests number in RF algorithm, the max depth for
DT, and the number of neurons and hidden layers of MLP. Then,
Fig. 4. Illustration of the RL predictive model.

based on the determination coefficient (R2), we select the model
giving the best accuracy. R2 is calculated as follows:

R2
= 1−

∑V
i=1 (ri − pi)2∑V
i=1 (ri − v̄)2

, (1)

where V is the total number of video records, ri and pi present re-
spectively, the real and the predicted viewers joining the stream
i, and v̄ denotes the mean number of viewers among all records.
We note that different models give accurate predictions, when R2

approaches 1.

3.3. Resource allocation of crowdsourced live video streaming: phase
2

The contribution of this paper is the design of an online
approach that optimally copies live video to different data center
sites with different costs and different distances to viewers and
proactively dispatches the potential requests incoming from pre-
dicted viewers to timely response with highest QoE and lowest
charges. We, first, formulate an ILP optimization that grants the
best strategy for video allocation and requests serving, while hav-
ing complete knowledge about the network (video arrivals and
predicted viewers), over a long period of time T . The optimization
that is run offline, serves as a guideline to design the reward
function of the RL-approach and a benchmark to evaluate the
performance of the system (see Fig. 4).

3.3.1. Problem formulation: trade-off between QoE and cost
In the following, we will present different factors that have an

impact on the users’ QoE and the operational cost of services.
Service QoE: One of the characteristics that distinguishes the

ive streaming from other multimedia services is that the in-
eraction delay between viewers and broadcasters (e.g. online
omments and reactions) is very critical and affects the QoE
reatly. Hence, we should ensure that the average delay is lower
han the application required threshold to guarantee maximum
atisfaction. High thresholds will be tested to see the trade-off
n terms of cost. In this paper, we will consider only the round-
rip delay between different cloud sites. Also, for the evaluation
f QoE, we will focus only on reducing the delivery delays as
uch as possible and we will not consider the transcoding impact
n the users’ satisfaction. The main contribution of our strategy
s the selection of optimal data centers to migrate and replicate
ontents for transcoding and determine the closer sites to viewers
o serve them with minimum cost. We split the period T into
qual intervals t , where t = 0 denotes the initial time slot.
et V (t) = {v1, v2, v3, . . . , vm} present the set of live videos
roadcasted at the interval t . We assume that all contents have

equal size Zv and that the time interval t is enough to upload
the full stream to the system. The set Rg = {r , r , r , . . . , r }
1 2 3 N



E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995 987

s

Table 1
Table of notations.
Notation Description

N Number of geo-distributed cloud sites.
R2 Determination coefficient.
V Total number of videos.
v̄ Mean number of viewers among all records.
T Period of testing.
vi Video index.
Zv Size of a video.
Rg Set of cloud regions.
rj Region index.
rbvi Broadcasting site of video vi .
ravi Allocation region of video vi .
r svi Viewers’ region where vi is served.
d(ravi , r

s
vi
) Round-trip delay between ravi and r svi .

R Total rental cost.
c jr Rental cost per GB in the region rj .
H(vi, ravi ) Decision variable, indicates that vi is hosted in the site ravi .
M Total migration cost.

c
rbvi
m Cost of migrating a copy of vi from broadcasting site rbvi .
S Total serving cost.
c js Cost of data transfer.
p(vi, r sk) Predicted number of viewers in the streaming region r sk .
P(vi) Set of viewers of video vi in different regions.
Cost Total operational cost.
B(vi, raj , r

s
k) Decision variable, indicates that vi is served to viewers in r sk from the allocation site raj .

E(vi, r sk) Binary variable, indicates that p(vi, r sk) > 0.
D Delay threshold.
(S, A, R) (State, Action, Reward).
ts Time-step.
IAD Incremental Average Delay.
dr Deferred reward.
π RL policy function.
γ , α Discount factor, learning rate.
Q Action–state function.
θ Weights of the deep network.
L Loss function.
D RL memory.
G RL updating step.
Qtarget Update network.
denotes different cloud sites that cooperate to allocate videos,
which are equal to 10 in our study. Let rbvi denote the broadcasting
ite, ravi the allocation region and r svi present viewers region. The
round-trip delay, between the region ravi where vi is allocated and
transcoded and r svi to where the video is streamed, is denoted by
d(ravi , r

s
vi
).

Operational cost: The CPs should rent different resources from
the geo-distributed cloud platform to transcode live video
streams into different qualities, dispatch it to different data cen-
ters, and distribute it to viewers to satisfy their requests. In this
work, we will assume that a rented server has enough capacity to
transcode one video to different requested qualities. To summa-
rize, a CP that intends to deploy its streaming services, should pay
the following operational costs: (1) rental cost, (2) dispatching
and migration cost, and (3) serving cost. We assume that different
charges stay constant during each studied time interval t . The
operational costs are detailed as follows:

(1) Rental cost: We assume that the provisioning of resources
is based on on-demand charging. This cost, namely cr , varies
depending on the cloud site and the data usage level fixed by the
cloud platform. As an example, Amazon charges 0.023$ per GB for
the first 50 TB, while it charges 0.021$ when exceeding 500 TB
in US East Virginia region [42]. The cost/GB of renting a server
for computation and transcoding tasks in different data centers
ra can be represented by:

R(t) =
∑

v ∈V (t)

∑
a

c jr (t) ∗ Zv ∗ H(vi, raj ), (2)

i rj ∈Rg o
where H(vi, raj ) = 1 indicates that a live video stream vi ∈ V (t) is
hosted in a server located at the cloud site raj ; 0 otherwise.

(2) Dispatching and migration cost: When a viewer requests
a video from his/her closest data center, which is not currently
serving the content, the request is either satisfied from a far-
away cloud or migrated to a closer one in order to meet the
overall latency requirement of the system. The migration cost is
expressed as follows:

M(t) =
∑

vi∈V (t)

∑
raj ∈Rg,

raj ̸=r
b
vi

c
rbvi
m (t) ∗ Zv ∗ H(vi, raj ),

(3)

where c
rbvi
m is the price of migrating a copy of the content vi from

the broadcaster data center rbvi to the target site raj per GB. If

rbvi = raj , no migration is needed and c
rbvi
m (t) ∗ H(vi, rj) should be

equal to 0.
(3) Serving cost: It is called also bandwidth cost. When dis-

tributed viewers download contents from selected cloud sites, the
CP should pay the cost of serving these requests. The bandwidth
cost is presented as follows:

S(t) =
∑

vi∈V (t)

∑
raj ∈Rg

∑
rsk∈Rg

c js ∗ Zv ∗ p(vi, r sk) ∗ B(vi, raj , r
s
k), (4)

where c js is the cost of data transfer from the cloud site raj to the
internet per GB. p(vi, r sk) denotes the predicted number of viewers
f the video v , at the streaming region r s. Since each stream v
i k i



988 E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995

f
c
o
e
c
c
s
t
0
f
t
a

3
l

s

b
t
o
d
a
f
I
m
T
a

r
d
r
e
s
t
r
a
t
a
w
i
w
t

d
F
c
w
n
c
I
t
c
s

m
s

is viewed in different geo-distributed locations, we define the set
of predicted number of viewers as P(vi) = {p(vi, r1), p(vi, r2), . . . ,
p(vi, rN )}. B(vi, raj , r

s
k) = 1 indicates that a cloud site raj serves the

video vi to viewers at region r sk; 0 otherwise.
The total operational cost for crowdsourced live streaming

system deployed on geo-distributed cloud platform during the
time interval t , can be calculated as follows:

Cost(t) = R(t)+M(t)+ S(t) (5)

The selection of cloud sites for video allocation (defined by the
decision variable H(vi, raj )) and the redirection of viewers to be
served from geo-distributed data centers (defined by the decision
variable B(vi, raj , r

s
k)) have a large impact on perceived delays

and system costs. Hence, to balance the trade-off between the
network cost and the QoE, these two decision variables should
be properly designed. To achieve this goal, we formulate our
problem into the ILP optimization (6). In order to make reading
the optimization easier, we remind that V (t) denotes the total
number of videos in the time interval t , Rg presents the set of
cloud sites, and ravi , r

b
vi

and r svi denote respectively the allocation
region, the broadcaster region and the streaming region of a
video vi. Furthermore, p(vi, r sk) denotes the number of viewers
in the region r sk and D defines the delay threshold fixed by the
crowdsourcing streaming platform. Finally, let E(vi, r

vi
s ) present a

binary variable, equal to 1, if the predicted viewers p(vi, r svi ) > 0
near the region r svi ; and 0 otherwise.

min
H(vi,raj ),B(vi,r

a
j ,rsk)

lim
T→∞

∑
t∈T

Cost(t), (6a)

H(vi, rbvi ) = 1 ∀vi ∈ V (t),∀rbvi ∈ Rg (6b)

B(vi, ravi , r
s
vi
) ≤ H(vi, ravi ) ∀vi ∈ V (t),∀ravi , r

s
vi
∈ Rg (6c)

(vi, ravi , r
s
vi
) ≤ E(vi, r svi ) ∀vi ∈ V (t),∀ravi , r

s
vi
∈ Rg (6d)∑

raj ∈Rg

B(vi, raj , r
s
vi
) = E(vi, r svi ) ∀vi ∈ V (t),∀r svi ∈ Rg

(6e)

∑
raj ∈Rg

∑
rsk∈Rg

p(vi, r sk) ∗ d(r
a
j , r

s
k) ∗ B(vi, raj , r

s
k)∑

rsk∈Rg
p(vi, r sk)

≤ D

∀vi ∈ V (t)

(6f)

H(vi, raj ), B(vi, raj , r
s
k) ∈ {0, 1} (6g)

Different constraints are described as follows: the constraint (6b)
ensures that every new incoming stream is hosted by default in
the adjacent data center to the broadcaster. The constraint (6c)
guarantees that each video vi is served to viewers at region r svi
rom the cloud site raj , only if it is allocated at this site. The
onstraint (6d) specifies that a video vi is served to region r svi ,
nly if requests are received from this region. The constraint (6e)
nsures that viewers’ requests can only be handled by one data
enter. Respecting the average delay constraint is described in
onstraint (6f), where the average serving time to all viewers
hould be lower than the required threshold. Finally, (6g) imposes
hat the decision variables are binary and can only take a value of
or 1. The problem in (6) is an NP-hard problem, which makes

inding the optimal solution extremely challenging in terms of
ime. To reduce the complexity of the optimization, we propose
n RL-based approach for online resource allocation.

.3.2. Reinforcement learning for online and proactive resource al-
ocation

In this section, we formulate the resource allocation of crowd-
ourcing live videos as a reinforcement learning process. RL can
Fig. 5. Illustration of an episode.

e considered as one of the machine learning paradigms, in addi-
ion to supervised and unsupervised learning. The key advantage
f the RL is that it learns by interacting with its environment (geo-
istributed cloud platform and crowdsourcing system) and then
dapts to it. The RL system gains rewards and receives penalties
or every action it takes until reaching the optimum of the policy.
n this case, it becomes able to adapt to the environment, maxi-
ize the cumulative rewards on the fly, and achieve the objective.
he essential elements of an RL approach can be presented as
tuple (S, A, R), which refers to State, Action, and Reward, re-

spectively. When a state is presented to the system, an action
is taken and a reward is attributed to judge the effectiveness
of the prediction. This State/Action task is called a time-step or
epoch. All the time-steps that occur between the initial state and
the terminal state are named an episode. The goal of the RL is
to maximize the total reward gained during different time-steps
of an episode. Different episodes are independent and the total
reward is initialized to 0, at the beginning of each episode. An
intuitive idea to design the RL tuple is to define the state as the set
P(vi) of predicted viewers at different cloud sites. Furthermore,
the action in a time-step can be defined as the matrix of serving
B(vi, raj , r

s
k); introduced in the previous section. Each time-step

epresents an incoming video vi. Different columns represent the
ata centers raj that allocate and serve viewers, while the rows
epresent the sites r sk that have viewers for a video vi. As an
xample, B(vi, raj , r

s
k) = 1 indicates that the viewers related to the

ite r sk are served by the data center raj . We note that N defines
he number of cloud sites deployed in our platform. The total
eward will be attributed based on respecting the average delay
nd minimizing the cost of different actions in the episode (period
). However, this design requires the exploration of 2N2

possible
ctions (2100 in case of 10 sites) to find the best allocation. In this
ay, the convergence to an optimal solution becomes impossible

n terms of computation and time. To simplify the exploration,
e redefine the tuple (S, A, R) as shown in Fig. 5 and we identify
he state space, action space, and reward function as follows:

State space: Each matrix B(vi, raj , r
s
k), where vi is fixed, will be

ivided into N time-steps, each row presents a separate step (see
ig. 5). The system state at the tsth time-step (ts = 1, 2, . . . ,N)
onsists of four components S(ts) = (r sk, p(vi, r sk),Cost, IAD),
here r sk presents the data center index, p(vi, r sk) presents the
umber of predicted viewers at the location r sk , Cost defines the
ost incurred from previous time-steps, and IAD describes the
ncremental Average Delay. We update the Cost and IAD at each
sth time-step according to the predicted action. The updated
ost/delay will be the input to the next (ts + 1)th time-step as
hown in Fig. 5.
Action space: In order to reduce the operational costs and

aximize the QoE, the RL agent needs to decide which cloud
ite will serve the p(v , r s)viewers in region r s at time-step t . An
i k k s



E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995 989

t

o
t
s

t

a
b
Q

w
s
t
i
t
a
t

w
Q
s
i
s
v
e
s
t
a

A
t
a
T
t
M
a
s
3
m
s
T
l
c
Q
i
t
e
a
k
i

example of an action space is represented as follows:

A(ts) = [0 0 1 ... 0 0], (7)

where only one element of the vector should be 1, which indi-
cates the index raj of the site that will serve the viewers. If p(vi, r sk)
is equal to 0, all elements should be null. Furthermore, if the
element raj is equal to 1, it means that H(vi, raj ) and B(vi, raj , r

s
k)

are equal to 1.
Reward function: When the RL agent executes an action A(ts)

based on the state S(ts), a reward is attributed. A decision should
be taken in each time-step while respecting three constraints,
namely C1, C2 and C3, as presented in Eq. (8). C1 indicates that
the sum of the action vector should be equal to 1, if there are
viewers at site r sk , which is equivalent to constraint (6e). C2 indi-
cates that the sum of the action vector should be equal to 0, if no
request is received from the site r sk , which matches the constraint
(6d). C3 shows that each serving decision should respect the
average delay threshold, which is equivalent to the constraint
(6f). Let delayts denote the incurred delay in only the current
time-step ts after serving the viewers p(vi, r sk). More specifically,
if at a step ts, we have p(vi, r sk) viewers in the region site r sk and
he action is to serve from a cloud site raj , delayts will be equal to
d(rsk,r

a
j )∗p(vi,r

s
k)∑

rsk∈Rg
p(vi,rsk)

. Next, let IAD denote the Incremental Average Delay

f different time-steps in one episode. Particularly, IAD defines
he average delay of the current time-step ts and previous time-
teps, meaning the sum of {delay1...delayts} as shown in Fig. 5.
At each ts, we test if the incremental average delay respects the
threshold. When ts = N , IAD is equal to the total average delay
o serve all viewers in all regions.⎧⎪⎨⎪⎩

C1: if p(vi, r sk) > 0→
∑

A(ts) = 1, constraint (6d)

C2: if p(vi, r sk) = 0→
∑

A(ts) = 0, constraint (6e)

C3: IAD+ delayts ≤ D, constraint (6f)

(8)

We define the immediate reward in Eq. (9). If constraints C1
and C2 are not respected, the geo-distributed cloud platform will
have a poor performance because requests are not satisfied or
unneeded resources are allocated. Hence, we set the reward to
be 0 to avoid invalid situations. If C1, C2, and C3 are respected,
we attribute 1 as a reward. However, it is not compulsory that
each site is served with minimum delays and it is only required
that the average delay of all cloud sites respects the threshold.
Therefore, if only C3 is not respected, we save the reward as a
deferred recompense in a variable dr . At the end, when ts = N
and the average delay IAD is lower than D, dr will be added to
the reward.⎧⎪⎨⎪⎩

C1, C2 not satisfied, 0

C1, C2, C3 satisfied, 1

C1, C2 satisfied, C3 not satisfied, dr = dr + 1

(9)

In addition to the rewards given for respecting different con-
straints, the geo-distributed platform charges the system for host-
ing copies of the live video and serving distributed viewers.
Therefore, these charges are counted as penalties given to the
system and added to the reward function. In this way, the RL
agent tries to maximize the cumulative rewards by minimizing
the penalties and selecting optimal allocations. More specifically,

when ts = 1, the reward R(ts) is initialized to Cost = −c
rbvi
r ∗ Zv ,

which is the cost of allocating a copy of the video by default at
the adjacent data center to the broadcaster as indicated by the
constraint (6b). This cost will be loaded with the state S(ts = 1).
Deep Q-learning algorithm: Since our geo-distributed cloud
platform is highly dynamic and the action space is highly dimen-
sional, it is hard for the RL agent to make resource allocation de-
cisions using traditional reinforcement learning methods. Hence,
we use a Deep Q-Learning (DQN) approach [44] to determine the
optimal actions and learn a policy that maximizes the cumulative
rewards. The policy function is defined as π : S(ts)×A(ts)→ [0, 1],
where π (S(ts), A(ts)) represents the probability of choosing an
ction A(ts) when receiving a state S(ts). In Q-leaning, the feed-
ack for each action is represented by the action–state function
(S(ts), A(ts)), which is expressed as follows:

Q (s, a) = E[
N∑

k=1

γ kR(ts + k)|S(ts) = s, A(ts) = a], (10)

here E[∗] denotes the action expectation under the received
tate and following the policy function π . γ ∈ [0, 1] is defined as
he discount factor that serves to trade-off the immediate reward
n the current time-step and the long-term reward at the end of
he episode. We remind that (S, A, R) represents the state and
ctions spaces, and the reward function. To evaluate Q (s, a), a
emporal difference method is used:

Q (s, r)← Q (s, r)+ α(R(ts)+ γ max
a′

Q (s′, a′)− Q (s, a)), (11)

here α ∈ (0, 1] denotes the learning rate. In the traditional
-learning algorithms, for each state, a Q (s, r) is calculated and
aved into a Q-table. Then, the action that has the larger Q (s, r)
s selected. However, since in our system, the state and action
paces are highly dimensional, it is challenging to save all Q-
alues in the Q-table. Therefore, deep learning is used for Q (s, r)
valuation. We approximate Q (s, r, θ ) ≈ Q (s, r), where θ repre-
ents the weights of deep networks. The key idea of the DQN is
o train deep networks to minimize the loss function illustrated
s follows:

L(θ ) = E[(R(ts)+ γ max
a′

Q (s′, a′, θ ′)− Q (s, a, θ ))2]. (12)

lgorithm 1 presents our DQN approach. Line 2 → line 5 illus-
rate the initialization phase, where the Q-network is prepared
nd a target Q-network is initialized with the same parameters.
hen, at real time, the DQN model continues learning while
aking online decisions, in order to adapt to any system change.
ore particularly, in line 33, the new states, actions and rewards
re saved in an experience memory D. Note that the described
teps to calculate the reward are summarized in line 6 → line
0. Next, a random mini-batch is sampled from the experience
emory D (line 34) and target values for each tuple in the
ample-batch are calculated using the target Q-network (line 37).
his mechanism, known as experience replay, helps to further
earn from past experience and leads to the stabilization and
onvergence of the learning process. While improving the main
-network, the target network is held fixed, to stabilize the learn-
ng. Then, at each G steps, the target network is updated towards
he main one, so that it always reflects the most recent knowl-
dge (line 38) [44]. In this way, after the initialization phase,
nd when implementing the system in real-time, the DQN model
eeps learning and adapting to any change in the environment,
ncluding costs update, demands load, and clouds number.



990 E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995

a
d
t

4

t
a
A
s
o
(
J

r
t

t
w
c
D
1
d
d
w
c

Algorithm 1 RL-OPRA

1: Initialization:
2: Use historical states to estimate Q (S, A) values.
3: Save Q (S, A) values and states in experience memory D.
4: Pre-train the DNN (Q-network) with input pairs (S, A) and

the corresponding estimated Q (S, A) and introduce network
parameters θ .

5: Initialize a second target Q-network θ ′ = θ

6: DQN continuous Learning:
7: for each episode vi ∈ V do
8: IAD = 0, dr = 0

9: Cost = −c
rbvi
r ∗ Zv

10: for each time-step ts = 1..N do
11: delayts = 0
12: S(ts) = (ts, p(vi, ts),Cost, IAD)
13: A(ts) =arg maxQ (S(ts), A(ts))
14: for k = 1 : N do
15: if ts ̸= rbvi then

16: Cost = Cost − (ckr + c
rsk
m + cks ∗ p(vi, ts)) ∗ Zv ∗ A(ts)(k)

17: end if
18: delayts = delayts + p(vi, ts) ∗ A(ts)(k)
19: end for
20: IAD = IAD+ delayts
21: R(ts) = R(ts)+ Cost
22: if (

∑
A(ts) = 1 and p(vi, ts) > 0) or (

∑
A(ts) = 0 and

p(vi, ts) = 0) then
23: if IAD < D then
24: R(ts) = R(ts)+ 1
25: else
26: dr = dr + 1
27: end if
28: end if
29: if IAD < D and ts = N then
30: R(ts) = R(ts)+ dr
31: end if
32: Observe R(ts) and the next state S(ts + 1).
33: Save (S(ts), A(ts), R(ts), S(ts + 1)) in the experience mem-

ory D.
34: Sample a mini-batch of (S(j), A(j), R(j), S(j+ 1)) from the
35: memory D.
36: Find target Q-value Qtarget (j) from target Q-network:
37: Qtarget (j) = R(j)+ γmaxa′Q (s′, a′, θ ′).
38: Update the target Q -network with loss function:
39: L(θ ) = [Qtarget (j)− Q (s, a, θ )]2 every G steps.
40: end for
41: end for

4. Performance evaluation

In this section, we evaluate the performance of our machine
nd reinforcement learning for online resource allocation in geo-
istributed cloud platform. First, we present the simulation set-
ings, then, we discuss the simulation results.

.1. Simulation settings

As described in Section 3.2, we used our Facebook dataset [25]
o train and test our predictive models. Also, we opted for AWS as
geo-distributed cloud platform, and we chose to adopt N = 10
WS cloud sites. We will show the performance of the RL-OPRA
ystem on a period T = 24 h corresponding to July 3, 2018. The
ptimization was run on hourly-based videos’ arrival; t = 1 h
see Section 3.3.1). The number of hourly broadcasted videos, on
uly 3, 2018, is presented in Fig. 6. Note that the total number
 w
Fig. 6. Hourly broadcasted videos.

Table 2
Parameters of the RL simulation.
Parameter Description Value

γ Discount factor 0.99
α Learning rate 0.0005
M Batch size 32
bz Buffer size 1000
G Network update frequency 100
Policy DNN policy MLP, 2 layers,

64 neurons

Fig. 7. Models testing: R2 comparison.

of videos is equal to V = 8015. Furthermore, as the qualities of
equested videos are out of the scope of this work, we assumed
hat all videos have the same size Zv equal to 0.738 Gbit. Next,
the round trip time matrix d(ra, r s) is created by finding the ping
imes between different geo-distributed cloud sites [45]. Finally,
e followed the charging model of Amazon [41] S3 and EC2 to
alculate cr , cm and cs. We considered different latency thresholds
to evaluate the performance of our system, specifically 60 ms,

20 ms and 220 ms. According to [11], the maximum interactive
elays in live streaming systems should be around 200 ms. Higher
elays will bring poor user experience. Hence, in our simulation,
e chose three thresholds to show the trade-off between the per-
eived delays and operational costs. Regarding the RL approach,
e listed the parameters in Table 2.



E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995 991

4

4

u
d
r
d
W
a
o
m
i
M
c
b
t
s
w
d
t
m
m
e
3

e

a
o
b
t
o
r
r
t
o

4

t
e
e

n
i
r
t

m
a
n
2
f
R
o
r
i
i
t
T
t
m

t
c
t
c
e
d
d

t
a
s
6
i
i
t
n
o
m
s
c
s
e
c

Fig. 8. Hourly actual vs predicted global number of viewers.

.2. Simulation results

.2.1. Performance of viewers prediction model
As we described previously in Section 3.2, we trained our data

sing three machine learning algorithms (RF, DT and MLP) and
ifferent hyper-parameters. We used only 225 thousand video
ecords from the complete dataset to train our models. This re-
uced dataset was sufficient to achieve a satisfactory prediction.
e divided the streams into 80% entries for the training task

nd 20% for the test and validation. Fig. 7 presents the results
f testing models on the unseen data. Results show that the RF
odel outperforms MLP and DT in terms of R2 by achieving 0.9

n Sao Paulo cloud site, 0.89 in Seoul region, and 0.87 and 0.86 in
umbai and California regions, respectively. Furthermore, as we
an see in the Figure, the prediction of the number of viewers is
etter in some regions, including Seoul and Sao Paulo, compared
o other sites having lower accuracy such as China. The results
how also that the DT algorithm presents the worst performance
ith an average R2 equal to 0.73. Finally, the findings in Fig. 7
epict that increasing the number of layers of the MLP contributes
o improve the prediction accuracy. However, since the improve-
ent is minimal and due to the increasing complexity of MLP
odels, we did not test more than 7 layers. Next, we extend our
xperiments to perform hourly-based prediction for 24 h of July
, 2018.
Fig. 8 shows the total predicted number of viewers globally at

ach hour compared to the actual total number.
Similarly, Fig. 9 presents a comparison between the predicted

nd the actual number of viewers in different cloud sites. We
nly presented RF and MLP-7-layers results as they performed
etter than other algorithms. These graphs further prove that
he predicted popularity in different regions is close to the real
ne, particularly in Sao Paulo, Frankfurt, and Ohio. Finally, the
esults demonstrate that the RF algorithm achieves better accu-
acy than MLP. Therefore, we will adopt this model to predict
he geo-distributed viewers, and results will be the input to the
ptimization problem and the RL approach.

.2.2. Performance of RL-OPRA resource allocation
Fig. 10 illustrates the variation of cumulative rewards among

raining episodes. We trained the RL agent to 200 thousand
pisodes and we presented the average cumulative rewards for
ach 500 episodes.
We can notice that constraints are not respected at the begin-

ing of the learning process. However, as the number of episodes
ncreases, the number of respected constraints increases until
eaching a stability after 25 thousand episodes, which confirms
he convergence performance of our RL system. We note that the
aximum cumulative rewards is equal to 10, if all constraints
re respected for the N = 10 time-steps and the cost of the
etwork is equal to 0. We can, also, see that before reaching
5 thousand episodes, the cumulative rewards learning increases
ast. This is explained by the fact that, during this phase, the
L agent covers different allocation scenarios until finding the
nes associated with optimal actions. Once actions with higher
ewards are found, the agent obtains larger chances to increase
ts gain. Furthermore, Fig. 10 reveals that when the threshold
s equal to 60, the learning process starts to be slow after 25
housand episodes and converges after 150 thousand episodes.
hese results show that the threshold is very tight and finding
he optimal allocation that respects the delay constraint and
inimizes the cost is very challenging.
Fig. 11 shows the convergence of the cumulative cost penal-

ies, when D is equal to 220 ms. We can see that minimizing the
ost while being constrained by the latency is slowly learned and
he penalties start to stabilize after 100 thousand episodes. This
an be explained by the fact that this problem is NP-hard and the
xploration space is large. However, when the system starts to
iscover optimal actions related to each received state, adequate
ecisions will be taken on the fly.
Fig. 12 shows the total cost incurred by our algorithm against

he cost of the optimal solution and the Greedy Minimal Cost
lgorithm (GMC) [31], which considers constant resource provi-
ioning. We evaluated our system under 3 latency thresholds:
0 ms, 120 ms, and 220 ms. The GMC algorithm is presented
n the related work, Section 2. First, we can see that the cost
ncurred by the optimal solution, while having as input the ac-
ual number of viewers is very close to the results where the
umber of viewers is predicted. This proves again the robustness
f our prediction. Next, we can see that our online reinforce-
ent learning approach achieves near-optimal results and the
ame operational cost trend compared to the optimization. We
an notice, also, that the RL-OPRA achieves lower costs in some
cenarios, when the threshold is equal to 120 or 220. This can be
xplained by the fact that the accuracy of respecting the delay
onstraint is equal to 0.955. 0.957 and 0.85 for D equal to 60,
120 and 220, respectively. Fig. 14 shows the number of videos,
where the system does not respect the average delay threshold
while serving viewers. When checking these videos, we found
that they correspond to contents that charge high amounts to be
delivered with the right threshold. In such scenarios, the RL-OPRA
allocates the live videos with much lower costs and a slightly
higher delays than required. Meanwhile, the optimization serves
all videos, while always respecting the required threshold.

When the threshold is equal to 60, the difference between the
RL approach and the optimal one is more noticeable compared
to other thresholds, which is explained by the challenging task
(in terms of exploration) of achieving a delay close to 60 ms,
while minimizing the cost. Moreover, we can notice that when
the threshold is higher, the system incurs less operational costs.
Therefore, the content provider can sacrifice in terms of cost
to satisfy all viewers by serving them with low latencies or
vice versa according to the application requirements. Finally, we
compared our approach to GMC. We remind that GMC considers
constant resources provisioning that we fixed in our simulation to
be AR = 50 in each cloud site. Results show that GMC cost follows
the trend of video broadcasting illustrated in Fig. 6, which is not
the case of the optimal and the RL-based approach. This can be
explained by the fact that GMC opted for a greedy solution, where
the video is allocated in the site having minimum cost and able
to serve all viewers while respecting the required threshold. If al-
locating the content in one site does not satisfy the requirements
of the system, this algorithm keeps migrating copies of the video

to the next cheapest cloud, until respecting the threshold. Such



992 E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995

g
c

Fig. 9. Hourly actual vs predicted geo-distributed viewers.
Fig. 10. Cumulative rewards vs. training episodes.

Fig. 11. Cumulative cost penalties (Threshold = 220 ms).

reedy solution applies a static strategy that does not take into
onsideration the distribution of viewers to establish a trade-off
between the operational cost and the QoE, which makes the cost
follow the trend of video broadcasting. As the optimization takes
decisions based on an overview of the system state including
costs, delays and number of potential geo-distributed viewers, it
will present a non-static allocation. The same behavior is shown
by our RL-based approach that learns the optimal policy and
adapts to the dynamics of the crowdsourcing system. Therefore,
compared to the greedy heuristic, our approach presents a lower
operational cost.

Fig. 13 depicts our achieved hourly average delay compared to
the optimal solution and the GMC approach. When the threshold
is equal to 60 and 120 ms, our RL-OPRA accomplishes better per-
ceived delays than the optimal solution. This can be interpreted
by the fact that the predictive system does not present optimal
allocation, which means videos can be allocated with slightly
higher cost and lower delays. When the threshold is equal to
220 ms, the perceived delays are high, which is related to the
impact of delivering a number of videos without respecting the
threshold (see Fig. 14).

Regarding the computing complexity of our approach compar-
ing to GMC, the DQN strategies depend, in general, on the adopted
network, while heuristics depend on how they are designed. In
our case, we adopted an MLP DNN network composed of 2 layers
of 64 neurons, which is a light-weight network. Therefore, the
complexity of our approach will be equal to O(VNC), where V is
the total number of videos, N is the number of cloud sites and
C is the complexity of the DNN, which is negligible. Meanwhile,
the complexity of the GMC approach is equal to O(2VN). We can
see that both complexities are similar, with a higher performance
presented by our RL-OPRA approach. Furthermore, increasing the
number of cloud sites N can add a complexity to the training
phase, as the convergence and exploration speed is dependent on
the size of the action set. In our case, the size of the action set
is N = 10. In real world scenarios, the current number of AWS
cloud sites is 22, the number of Facebook data centers is 12, 20
for Google and 54 for Microsoft, which is considered as acceptable
for exploration complexity. We remind that the training is done
offline or in parallel with online decisions.

To show how the RL-OPRA adapts to the system fluctuations,
we trained the RL agent to 300 thousand episodes and we pre-
sented the average cumulative rewards/penalties for each 200
episodes. After 150 thousand episodes, we removed the cheapest

data center and we opted for a geo-distributed cloud platform



E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995 993

o
c
t
s
w
e
a
t
i
F
p
i

m
b
l
p

Fig. 12. Total system cost: RL-OPRA Vs Optimal Vs GMC: (1) Threshold = 60 ms, (2) Threshold = 120 ms, (3) Threshold = 220 ms.
Fig. 13. Average delay: RL-OPRA Vs Optimal Vs GMC: (1) Threshold = 60 ms, (2) Threshold = 120 ms, (3) Threshold = 220 ms.
Fig. 14. Number of videos delivered without respecting thresholds over time.

f 9 sites. Figs. 15 and 16 illustrate the cumulative rewards and
umulative cost penalties, respectively. We can see in Fig. 15 that
he cumulative rewards decreased, at episode 150k, because the
ystem has learned to host videos at the cheapest region, which
as disconnected from the platform. However, 200 episodes were
nough for the RL agent to gain its performance and converge
gain. This rapid convergence shows that the RL-OPRA adapts to
he environment changes easily and uses its past learning, specif-
cally delays in different regions, to respect again the constraints.
ig. 16 shows that, when we removed the cheapest site, the cost
enalties increased. However, the system directly converged, as
t learned previously the costs in all data centers.

To conclude, our RL-OPRA system presented a good perfor-
ance compared to heuristic based approaches, which is justified
y the fact that DQN networks explore different scenarios until
earning an optimum policy. The comparison to the ILP results
roved that this policy is near-optimal. Additionally, the online
Fig. 15. Cumulative rewards while removing a cloud site at episode 150k.

popularity prediction of live videos helped the system to establish
a proactive trade-off between operational costs and perceived
delays. Finally, when the environment changes, RL-OPRA adapts
easily to the new parameters, which is explained by the past
learning.

5. Conclusion

In this paper, we studied the problem of offering a cost effec-
tive crowdsourcing live streaming services in a geo-distributed
cloud platform while maximizing the viewers’ QoE. Because of the
dynamics of viewers behavior, we designed a predictive model
that forecasts the potential number of viewers at each cloud
site, based only on the content features. This predictive model
is combined with our proposed RL-based resource allocation ap-
proach to present a video allocation solution, RL-OPRA, that per-
forms well compared to the optimal results. Using extensive



994 E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995

s
g
c
w
t
o

D

c
t

A

R

Fig. 16. Cumulative cost penalties while removing a cloud site at episode 150k.
imulations, we, also, illustrated that our RL-OPRA outperforms
reedy-based heuristics and can adapt to the dynamics of the
rowdsourcing system, through continuous learning. As a future
ork, we can consider serving users with their requested quali-
ies as a QoE parameter. Furthermore, we can study the impact
f having limited resources on the RL-approach.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

This work was supported by the Qatar Foundation.

eferences

[1] C. Zhang, J. Liu, H. Wang, Cloud-assisted crowdsourced livecast, ACM Trans.
Multimed. Comput. Commun. Appl. 13 (3S) (2017) Art. no. 46.

[2] 25+ INcredible twitch statistics to know in 2020, 2020, URL https://
leftronic.com/twitch-statistics/. (Accessed 19 January 2020).

[3] Number of monthly active facebook users worldwide as of 3rd quarter
2019, 2019, URL https://www.statista.com/statistics/264810/number-of-
monthly-active-facebook-users-worldwide/. (Accessed 19 January 2020).

[4] Facebook live: What you should know, 2017, URL https://telescope.tv/
facebook-live-know/. (Accessed 19 January 2020).

[5] Q. He, J. Liu, C. Wang, B. Li, Coping with heterogeneous video contributors
and viewers in crowdsourced live streaming: A cloud-based approach, IEEE
Trans. Multimed. 18 (5) (2016) 916–928.

[6] F. Haouari, E. Baccour, A. Erbad, A. Mohamed, M. Guizani, QoE-Aware
Resource Allocation for Crowdsourced Live Streaming: A Machine Learn-
ing Approach, in: ICC 2019-2019 IEEE International Conference on
Communications, ICC, Shanghai, China, 2019, pp. 1–6.

[7] A. Ben Said, A. Erradi, A.G. Neiat, A. Bouguettaya, A deep learning
rowdsourced services, Mobile Netw. Appl. 24 (3) (2018) 1120–1133.

[8] A. Ben Said, A. Erradi, A probabilistic approach for maximizing travel
journey wifi coverage using mobile crowdsourced services, IEEE Access
7 (2019) 82297–82307.

[9] Vishal Sharma, Ilsun You, Dushantha Nalin K. Jayakody, Mohammed
Atiquzzaman, Cooperative trust relaying and privacy preservation via edge-
crowdsourcing in social Internet of Things, Future Gener. Comput. Syst. 92
(2019) 758–776.

[10] W. Xiao, W. Bao, X. Zhu, L. Liu, Cost-aware big data processing across geo-
distributed datacenters, IEEE Trans. Parallel Distrib. Syst. 28 (11) (2017)
3114–3127.

[11] Chongwu Dong, et al., Joint optimization of data-center selection and
video-streaming distribution for crowdsourced live streaming in a geo-
distributed cloud platform, IEEE Trans. Netw. Serv. Manag. (2019)
729–742.

[12] Lei Wei, et al., Qos-aware resource allocation for video transcoding in
clouds, IEEE Trans. Circuits Syst. Video Technol. 27 (1) (2017) 49–61.

[13] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, F.C.M. Lau, Scaling social media
applications into geo-distributed clouds, IEEE/ACM Trans. Netw. 23 (3)
(2015) 689–702.

[14] X. Wang, B. Fang, H. Zhang, X. Wang, A Dynamic Model on News Popularity
Prediction in Online Social Networks, in: 2019 IEEE 3rd Information
Technology, Networking, Electronic and Automation Control Conference,
ITNEC, Chengdu, China, 2019, pp. 847–851.

[15] Yen-Liang Chen, Chia-Ling Chang, Early prediction of the future popularity
of uploaded videos, Expert Syst. Appl. 133 (2019) 59–74.
[16] J. Liu, S.G. Rao, B. Li, H. Zhang, Opportunities and challenges of peer-to-peer
internet video broadcast, Proc. IEEE 96 (1) (2008) 11–24.

[17] V.K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, Z. Zhang, Un-
reeling Netflix: Understanding and Improving Multi-CDN Movie Delivery,
in: Proc. IEEE INFOCOM, 2012.

[18] F. Wang, J. Liu, M. Chen, CALMS: Migration towards CloudAssisted Live
Media Streaming, in: Proc. IEEE INFOCOM, 2012.

[19] P. Simoens, et al., Scalable crowd-sourcing of video from mobile devices,
in: Proc. ACM 11th Annu. Int. Conf. Mobile Syst. Appl. Services, Taipei,
Taiwan, 2013, pp. 139–152.

[20] C. Zhang, J. Liu, On crowdsourced interactive live streaming: A twitch.
TV-based measurement study, in: Proc. 25th ACM Workshop Netw. Oper.
Syst. Support Digit. Audio Video, Portland, OR, USA, 2015, pp. 55–60.

[21] K. Pires, G. Simon, Youtube live and twitch: A tour of usergenerated live
streaming systems, in: Proceedings of the 6th ACM Multimedia Systems
Conference, MMSys ’15, ACM, 2015, pp. 225–230, ser..

[22] C. Zhang, J. Liu, H. Wang, Towards hybrid cloud-assisted crowdsourced live
streaming: Measurement and analysis, in: Proc. ACM 26th Int. Workshop
Netw. Oper. Syst. Support Digit. Audio Video, Klagenfurt, Austria, 2016,
Art. no. 1.

[23] R. Shea, D. Fu, J. Liu, Towards bridging online game playing and live
broadcasting: Design and optimization, in: Proceedings of the 25th ACM
Workshop on Network and Operating Systems Support for Digital Audio
and Video, NOSSDAV ’15, ACM, 2015, pp. 61–66, ser..

[24] T. Smith, M. Obrist, P. Wright, Live-streaming changes the (video) game,
in: Proceedings of the 11th European Conference on Interactive TV and
Video, EuroITV ’13, ACM, 2013, pp. 131–138, ser..

[25] Emna Baccour, Aiman Erbad, Kashif Bilal, Amr Mohamed, Mohsen Guizani,
Mounir Hamdi, FacebookVideoLive18: A live video streaming dataset for
streams metadata and online viewers locations, 2020, arXiv:2003.10820.

[26] Amazon EC2 reserved instances pricing, 2020, URL https://aws.amazon.
com/ec2/pricing/reserved-instances/pricing/. (Accessed 19 January 2020).

[27] Fei Chen, et al., Cloud-assisted live streaming for crowdsourced multimedia
content, IEEE Trans. Multimed. 17 (9) (2015) 1471–1483.

[28] F. Wang, J. Liu, M. Chen, H. Wang, Migration towards cloud assisted live
media streaming, IEEE/ACM Trans. Netw. 24 (1) (2016) 272–282.

[29] W. Xiao, et al., Dynamic request redirection and resource provisioning for
cloud-based video services under heterogeneous environment, IEEE Trans.
Parallel Distrib. Syst. 27 (7) (2016) 1954–1967.

[30] X. Qiu, H. Li, C. Wu, Z. Li, F.C. Lau, Cost-minimizing dynamic migration of
content distribution services into hybrid clouds, IEEE Trans. Parallel Distrib.
Syst. 26 (12) (2015) 3330–3345.

[31] K. Bilal, A. Erbad, M. Hefeeda, QoE-aware distributed cloud-based live
streaming of multi-sourced multiview videos, J. Netw. Comput. Appl. 120
(2018) 130–144.

[32] A.A. Haghighi, S.S. Heydari, S. Shahbazpanahi, Dynamic QoS aware resource
assignment in cloud-based content-delivery networks, IEEE Access 6 (2018)
2298–2309.

[33] F. Haouari, E. Baccour, A. Erbad, A. Mohamed, M. Guizani, Transcoding
Resources Forecasting and Reservation for Crowdsourced Live Streaming,
in: 2019 IEEE Global Communications Conference, GLOBECOM, Waikoloa,
HI, USA, 2019, pp. 1–7.

[34] X. Yuan, M. Sun, Q. Fang, C. Du, DLECP: A Dynamic Learning-based Edge
Cloud Placement Framework for Mobile Cloud Computing, in: IEEE INFO-
COM 2019 - IEEE Conference on Computer Communications Workshops,
INFOCOM WKSHPS, Paris, France, 2019, pp. 1035–1036.

[35] S. Ouyang, C. Li, X. Li, A peek into the future: Predicting the popularity of
online videos, IEEE Access 4 (2016) 3026–3033.

[36] C. Li, J. Liu, S. Ouyang, Characterizing and predicting the popularity of
online videos, IEEE Access 4 (2016) 1630–1641.

[37] J. Wu, Y. Zhou, D.M. Chiu, Z. Zhu, Modeling dynamics of online video
popularity, IEEE Trans. Multimed. 18 (9) (2016) 1882–1895.

[38] T. Trzciński, P. Rokita, Predicting popularity of online videos using support
vector regression, IEEE Trans. Multimed. 19 (11) (2017) 2561–2570.

[39] A. Bielski, T. Trzcinski, Understanding multimodal popularity prediction of
social media videos with self-attention, IEEE Access 6 (2018) 74277–74287.

http://refhub.elsevier.com/S0167-739X(20)30626-9/sb1
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb1
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb1
https://leftronic.com/twitch-statistics/
https://leftronic.com/twitch-statistics/
https://leftronic.com/twitch-statistics/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://telescope.tv/facebook-live-know/
https://telescope.tv/facebook-live-know/
https://telescope.tv/facebook-live-know/
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb5
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb5
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb5
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb5
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb5
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb7
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb7
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb7
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb8
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb8
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb8
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb8
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb8
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb9
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb9
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb9
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb9
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb9
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb9
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb9
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb10
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb10
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb10
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb10
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb10
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb11
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb11
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb11
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb11
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb11
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb11
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb11
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb12
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb12
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb12
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb13
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb13
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb13
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb13
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb13
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb15
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb15
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb15
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb16
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb16
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb16
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb21
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb21
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb21
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb21
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb21
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb23
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb23
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb23
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb23
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb23
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb23
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb23
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb24
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb24
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb24
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb24
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb24
http://arxiv.org/abs/2003.10820
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb27
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb27
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb27
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb28
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb28
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb28
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb29
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb29
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb29
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb29
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb29
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb30
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb30
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb30
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb30
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb30
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb31
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb31
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb31
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb31
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb31
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb32
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb32
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb32
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb32
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb32
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb35
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb35
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb35
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb36
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb36
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb36
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb37
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb37
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb37
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb38
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb38
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb38
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb39
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb39
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb39


E. Baccour, A. Erbad, A. Mohamed et al. / Future Generation Computer Systems 112 (2020) 982–995 995

e

2
e
e
c

d
l
i
D
a
j
i
s
W
c
a
i
W
A

[40] H. Jeon, W. Seo, E. Lucy Park, Sungchul Choi, Hybrid machine learning
approach to popularity prediction of newly released contents for online
video streaming service, 2019, arXiv:1901.09613.

[41] Amazon EC2, 2019, URL https://aws.amazon.com/fr/ec2/. (Accessed 01
November 2019).

[42] Amazon S3, 2019, URL https://aws.amazon.com/fr/s3/. (Accessed 01
November 2019).

[43] Global Infrastructure, 2019, URL https://aws.amazon.com/about-aws/
global-infrastructure/. (Accessed 19 January 2020).

[44] K. Mnih V. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjel, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518
(7540) (2015) 529–533.

[45] Global ping statistics, 2020, URL https://wondernetwork.com/pings.
(Accessed 01 November 2019).

Emna Baccour received the Ph.D. degree in computer
Science from the University of Burgundy, France, in
2017. She was a postdoctoral fellow at Qatar University
on a project covering the interconnection networks for
massive data centers and then on a project covering
video caching and processing in mobile edge com-
puting networks. She currently holds a postdoctoral
position at Hamad Ben Khalifa University. Her research
interests include data center networks, cloud comput-
ing, green computing and software defined networks
as well as distributed systems. She is also interested in

dge networks and mobile edge caching and computing.

Aiman Erbad is an Associate Professor at the Col-
lege of Science and Engineering at Hamad Bin Khalifa
University (HBKU). Dr. Erbad obtained a Ph.D. in Com-
puter Science from the University of British Columbia
(Canada), and a Master of Computer Science in Em-
bedded Systems and Robotics from the University of
Essex (UK). Dr. Erbad received the Platinum award from
H.H. The Emir Sheikh Tamim bin Hamad Al Thani at
the Education Excellence Day 2013 (Ph.D. category).
Dr. Erbad received the 2020 best research paper award
from the Computer Communications journal, IWCMC

019 best paper award, and IEEE CCWC 2017 best paper award. Dr. Erbad is an
ditor in KSII Transactions on Internet and Information Systems and was a guest
ditor in IEEE Networks. Dr. Erbad research interests span cloud computing, edge
omputing, IoT, private and secure networks, and multimedia systems.

Amr Mohamed (S’ 00, M’ 06, SM’ 14) received his
M.S. and Ph.D. in electrical and computer engineering
from the University of British Columbia, Vancouver,
Canada, in 2001, and 2006 respectively. He has worked
as an advisory IT specialist in IBM Innovation Centre
in Vancouver from 1998 to 2007, taking a leadership
role in systems development for vertical industries. He
is currently a professor in the college of engineering
at Qatar University and the director of the Cisco Re-
gional Academy. He has over 25 years of experience
in wireless networking research and industrial systems

evelopment. He holds 3 awards from IBM Canada for his achievements and
eadership, and 4 best paper awards from IEEE conferences. His research
nterests include wireless networking, and edge computing for IoT applications.
r. Amr Mohamed has authored or co-authored over 160 refereed journal
nd conference papers, textbook, and book chapters in reputable international
ournals, and conferences. He is serving as a technical editor for the journal of
nternet technology and the international journal of sensor networks. He has
erved as a technical program committee (TPC) co-chair for workshops in IEEE
CNC’16. He has served as a co-chair for technical symposia of international

onferences, including Globecom’16, Crowncom’15, AICCSA’14, IEEE WLN’11,
nd IEEE ICT’10. He has served on the organization committee of many other
nternational conferences as a TPC member, including the IEEE ICC, GLOBECOM,
CNC, LCN and PIMRC, and a technical reviewer for many international IEEE,
CM, Elsevier, Springer, and Wiley journals.
Fatima Haouari received the B.Sc. and MSc. degree
in computer science (with distinction) from Qatar
University. She is currently a Ph.D. student and a
Research Assistant at Qatar University. Her research
interests span cloud computing, crowdsourced multi-
media, and machine learning. She also interested in
fog/edge computing and distributed systems.

Mohsen Guizani (S’85–M’89–SM’99–F’09) received the
B.S. (with distinction) and M.S. degrees in electrical
engineering, the M.S. and Ph.D. degrees in computer
engineering from Syracuse University, Syracuse, NY,
USA, in 1984, 1986, 1987, and 1990, respectively.
He is currently a Professor at the Computer Sci-
ence and Engineering Department in Qatar University,
Qatar. Previously, he served in different academic
and administrative positions at the University of
Idaho, Western Michigan University, University of West
Florida, University of Missouri-Kansas City, University

of Colorado-Boulder, and Syracuse University. His research interests include
wireless communications and mobile computing, computer networks, mobile
cloud computing, security, and smart grid. He is currently the Editor-in-Chief
of the IEEE Network Magazine, serves on the editorial boards of several
international technical journals and the Founder and Editor-in-Chief of Wireless
Communications and Mobile Computing journal (Wiley). He is the author of nine
books and more than 500 publications in refereed journals and conferences. He
guest edited a number of special issues in IEEE journals and magazines. He
also served as a member, Chair, and General Chair of a number of international
conferences. Throughout his career, he received three teaching awards and four
research awards. He also received the 2017 IEEE Communications Society WTC
Recognition Award as well as the 2018 Ad hoc Technical Committee Recognition
Award for his contribution to outstanding research in wireless communications
and Ad hoc Sensor networks. He was the Chair of the IEEE Communications
Society Wireless Technical Committee and the Chair of the TAOS Technical
Committee. He served as the IEEE Computer Society Distinguished Speaker and
is currently the IEEE ComSoc Distinguished Lecturer. He is a Fellow of IEEE and
a Senior Member of ACM.

Mounir Hamdi received the B.S. degree (Hons.) in
electrical engineering (computer engineering) from the
University of Louisiana, in 1985, and the M.S. and Ph.D.
degrees in electrical engineering from the University of
Pittsburgh, in 1987 and 1991, respectively. He was a
Chair Professor and a Founding Member of The Hong
Kong University of Science and Technology (HKUST),
where he was the Head of the Department of Computer
Science and Engineering. From 1999 to 2000, he held
visiting professor positions at Stanford University and
the Swiss Federal Institute of Technology. He is cur-

rently the Founding Dean of the College of Science and Engineering, Hamad Bin
Khalifa University (HBKU). His area of research is in high-speed wired/wireless
networking, in which he has published more than 360 publications, graduated
more 50 M.S./Ph.D. students, and awarded numerous research grants. In addition,
he has frequently consulted for companies and governmental organizations in
the USA, Europe, and Asia. He is a Fellow of the IEEE for his contributions
to design and analysis of high-speed packet switching, which is the highest
research distinction bestowed by IEEE. He is also a frequent keynote speaker
in international conferences and forums. He is/was on the editorial board of
more than ten prestigious journals and magazines. He has chaired more than
20 international conferences and workshops. In addition to his commitment
to research and academic/professional service, he is also a dedicated teacher
and a quality assurance educator. He received the Best 10 Lecturer Award and
the Distinguished Engineering Teaching Appreciation Award from HKUST. He is
frequently involved in higher education quality assurance activities as well as
engineering programs accreditation all over the world.

http://arxiv.org/abs/1901.09613
https://aws.amazon.com/fr/ec2/
https://aws.amazon.com/fr/s3/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb44
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb44
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb44
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb44
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb44
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb44
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb44
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb44
http://refhub.elsevier.com/S0167-739X(20)30626-9/sb44
https://wondernetwork.com/pings

	RL-OPRA: Reinforcement Learning for Online and Proactive Resource Allocation of crowdsourced live videos
	Introduction
	Related works
	QoE-aware resource allocation for crowdsourced live streaming
	System model
	Online prediction of geo-distributed viewers: phase 1
	Resource allocation of crowdsourced live video streaming: phase 2
	Problem formulation: trade-off between QoE and cost
	Reinforcement learning for online and proactive resource allocation


	Performance evaluation
	Simulation settings
	Simulation results
	Performance of viewers prediction model
	Performance of RL-OPRA resource allocation


	Conclusion
	Declaration of competing interest
	Acknowledgment
	References


