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.e main purpose of this paper is to study mixed equilibrium problems in Hadamard spaces. First, we establish the existence of
solution of the mixed equilibrium problem and the unique existence of the resolvent operator for the problem. We then prove
a strong convergence of the resolvent and a Δ-convergence of the proximal point algorithm to a solution of the mixed equilibrium
problem under some suitable conditions. Furthermore, we study the asymptotic behavior of the sequence generated by a Halpern-
type PPA. Finally, we give a numerical example in a nonlinear space setting to illustrate the applicability of our results. Our results
extend and unify some related results in the literature.

1. Introduction

Let C be a nonempty set and Ψ be any real-valued function
defined on C. .e minimization problem (MP) is defined as

findx
∗ ∈ C such thatΨ x

∗
( 􏼁≤Ψ(y), ∀y ∈ C. (1)

In this case, x∗ is called a minimizer of Ψ and
argminy∈CΨ(y) denotes the set of minimizers of Ψ. MPs are
very useful in optimization theory and convex and nonlinear
analysis. One of the most popular and effective methods for
solving MPs is the proximal point algorithm (PPA) which
was introduced in Hilbert space by Martinet [1] in 1970 and
was further extensively studied in the same space by
Rockafellar [2] in 1976..e PPA and its generalizations have
also been studied extensively for solving MP (1) and related
optimization problems in Banach spaces and Hadamard
manifolds (see [3–7] and the references therein), as well as in
Hadamard and p-uniformly convex metric spaces (see [8–
13] and the references therein).

An important generalization of Problem (1) is the fol-
lowing equilibrium problem (EP), defined as

findx
∗ ∈ C such thatF x

∗
, y( 􏼁≥ 0, ∀y ∈ C. (2)

.e point x∗ for which (2) is satisfied is called an equi-
librium point of F. .e solution set of problem (2) is denoted by
EP(C, F). .e EP is one of the most important problems in
optimization theory that has received a lot of attention in recent
time since it includes many other optimization and mathe-
matical problems as special cases, namely, MPs, variational
inequality problems, complementarity problems, fixed point
problems, and convex feasibility problems, among others (see,
for example, [5, 14–18]). .us, EPs are of central importance in
optimization theory as well as in nonlinear and convex analysis.
As a result of this, numerous authors have studied EPs inHilbert,
Banach, and topological vector spaces (see [19, 20] and the
references therein), as well as in Hadamard manifolds (see
[3, 21]).

Very recently, Kumam and Chaipunya [5] extended
these studies to Hadamard spaces. First, they established the
existence of an equilibrium point of a bifunction satisfying
some convexity, continuity, and coercivity assumptions, and
they also established some fundamental properties of the
resolvent of the bifunction. Furthermore, they proved that
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the PPA Δ-converges to an equilibrium point of a monotone
bifunction in a Hadamard space. More precisely, they
proved the following theorem.

Theorem 1. Let C be a nonempty closed and convex subset of
an Hadamard space X and F : C × C⟶ R be monotone
and Δ-upper semicontinuous in the first variable such that
D(JF

λ )IC for all λ> 0 (where D(JF
λ ) means the domain of

JF
λ ). Suppose that EP(C, F)≠∅ and for an initial guess

x0 ∈ C, the sequence xn􏼈 􏼉 ⊂ C is generated by

xn ≔ J
F
λn

xn− 1( 􏼁, n ∈ N, (3)

where λn􏼈 􏼉 is a sequence of positive real numbers bounded
away from 0. 5en, xn􏼈 􏼉Δ-converges to an element of
EP(C, F).

Other authors have also studied EPs in Hadamard spaces
(see, for example, [14, 15]).

In the linear settings (for example, in Hilbert spaces), EPs
have been generalized into what is called the mixed equi-
librium problem (MEP), defined as

find x
∗ ∈ C such thatF x

∗
, y( 􏼁 + Ψ(y) − Ψ x

∗
( 􏼁≥ 0, ∀y ∈ C.

(4)

The MEP is an important class of optimization problems
since it contains many other optimization problems as
special cases. For instance, if F ≡ 0 in (3), then the MEP (4)
reduces to MP (1). Also, if Ψ ≡ 0 in (3), then the MEP (4)
reduces to the EP (2). .e existence of solutions of the MEP
(4) was established in Hilbert spaces by Peng and Yao [22]
(see also [23]). More so, different iterative algorithms have
been developed by numerous authors for approximating
solutions of MEP (4) in real Hilbert spaces (see, for example,
[22–24] and the references therein).

Since MEPs contain both MPs and EPs as special cases
in Hilbert spaces, it is important to extend their study to
Hadamard spaces, so as to unify other optimization
problems (in particular, MPs and EPs) in Hadamard
spaces. Moreover, Hadamard spaces are more suitable
frameworks for the study of optimization problems and
other related mathematical problems since many recent
results in these spaces have already found applications in
diverse fields than they do in Hilbert spaces. For instance,
the minimizers of the energy functional (which is an ex-
ample of a convex and lower semicontinuous functional in
a Hadamard space), called harmonic maps, are very useful
in geometry and analysis (see [9]). Also, the gradient flow
theorem in Hadamard spaces was employed to investigate
the asymptotic behavior of the Calabi flow in Kahler ge-
ometry (see [25]). Furthermore, the study of the PPA for
optimization problems has successfully been applied in
Hadamard spaces, for computing medians and means,
which are very important in computational phylogenetics,
diffusion tensor imaging, consensus algorithms, and
modeling of airway systems in human lungs and blood
vessels (see [26, 27], for details). It is also worthy to note
that many nonconvex problems in the linear settings can be
viewed as convex problems in Hadamard spaces (see
Section 4 of this paper).

Therefore, it is our interest in this paper to extend the
study of the MEP (4) to Hadamard spaces. First, we establish
the existence of solution of the MEP (4) and the unique
existence of the resolvent operator associated with F and Ψ.
We then prove a strong convergence of the resolvent and
a Δ-convergence of the PPA to a solution of MEP (4) under
some suitable conditions on F andΨ. Furthermore, we study
the asymptotic behavior of the sequence generated by the
Halpern-type PPA. Finally, we give a numerical example in
a nonlinear space setting to illustrate the applicability of our
results. Our results extend and unify the results of Kumam
and Chaipunya [5] and Peng and Yao [22].

The rest of this paper is organized as follows: In Section 2,
we recall the geometry of geodesic spaces and some useful
definitions and lemmas. In Section 3, we establish the existence
of solution for MEP (4) and the unique existence of the re-
solvent operator associated with F and Ψ. Some fundamental
properties of the resolvent operator are also established in this
section. In Section 4, we prove a strong convergence of the
resolvent and a Δ-convergence of the PPA to a solution of
MEP (4) under some suitable conditions on F and Ψ. In
Section 5, we study the asymptotic behavior of the sequence
generated by the Halpern-type PPA. In Section 6, we generate
some numerical results in nonlinear setting for the PPA and
the Halpern-type PPA, to show the applicability of our results.

2. Preliminaries

2.1. Geometry of Geodesic Spaces

Definition 1. Let (X, d) be a metric space, x, y ∈ X and I �

[0, d(x, y)] be an interval. A curve c (or simply a geodesic
path) joining x to y is an isometry c : I⟶ X such that
c(0) � x, c(d(x, y)) � y, and d(c(t), c(t′) � |t − t′|) for all
t, t′ ∈ I. .e image of a geodesic path is called a geodesic
segment, which is denoted by [x, y] whenever it is unique.

Definition 2 (see [28]). A metric space (X, d) is called
a geodesic space if every two points of X are joined by
a geodesic path, and X is said to be uniquely geodesic if every
two points of X are joined by exactly one geodesic path. A
subset C of X is said to be convex if C includes every geodesic
segments joining two of its points. Let x, y ∈ X and
t ∈ [0, 1], and we write tx⊕ (1 − t)y for the unique point z in
the geodesic segment joining from x to y such that

d(x, z) � (1 − t)d(x, y) andd(z, y) � td(x, y). (5)

A geodesic triangleΔ(x1, x2, x3) in a geodesic metric space
(X, d) consists of three vertices (points in X) with unpar-
ameterized geodesic segment between each pair of vertices. For
any geodesic triangle, there is comparison (Alexandrov) tri-
angle Δ ⊂ R2 such that d(xi, xj) � dR2(xi, xj) for
i, j ∈ 1, 2, 3{ }. Let Δ be a geodesic triangle in X and Δ be
a comparison triangle for Δ , then Δ is said to satisfy the
CAT(0) inequality if for all points x, y ∈Δ and x, y ∈ Δ :

d(x, y)≤ dR2(x, y). (6)
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Let x, y, and z be points in X and y0 be the midpoint of
the segment [y, z]; then, the CAT(0) inequality implies

d
2

x, y0( 􏼁≤
1
2

d
2
(x, y) +

1
2

d
2
(x, z) −

1
4

d(y, z). (7)

Inequality (7) is known as the CN inequality of Bruhat
and Titis [29].

Definition 3. A geodesic space X is said to be a CAT(0) space
if all geodesic triangles satisfy the CAT(0) inequality.
Equivalently, X is called a CAT(0) space if and only if it
satisfies the CN inequality.

CAT(0) spaces are examples of uniquely geodesic
spaces, and complete CAT(0) spaces are called Hadamard
spaces.

Definition 4. Let C be a nonempty closed and convex subset
of a CAT(0) spaceX..emetric projection is a mappingPC :

X⟶ C which assigns to each x ∈ X, the unique point PCx

in C such that

d x, PCx( 􏼁 � inf d(x, y) : y ∈ C􏼈 􏼉. (8)

Definition 5 (see [30]). Let X be a CAT(0) space. Denote the
pair (a, b) ∈ X × X by ab

�→
and call it a vector. .en,

a mapping 〈., .〉 : (X × X) × (X × X)⟶ R defined by

〈 ab
�→

, cd
�→

〉 �
1
2

d
2
(a, d) + d

2
(b, c) − d

2
(a, c) − d

2
(b, d)􏼐 􏼑,

∀a, b, c, d ∈ X,

(9)

is called a quasilinearization mapping.
It is easy to check that 〈ab

�→
, ab
�→

〉 � d2(a, b), 〈ba
�→

,

cd
�→

〉 � − 〈ab
�→

, cd
�→

〉, 〈ab
�→

, cd
�→

〉 � 〈 ae
�→

, cd
�→

〉 + 〈eb
→

, cd
�→

〉, and
〈ab

�→
, cd
�→

〉 � 〈 cd
�→

, ab
�→

〉 for all a, b, c, d, e ∈ X. A geodesic
space X is said to satisfy the Cauchy–Swartz inequality
if 〈ab

�→
, cd
�→

〉≤d(a, b)d(c, d)∀a, b, c, d ∈ X. It has been
established in [30] that a geodesically connected metric
space is a CAT(0) space if and only if it satisfies the
Cauchy–Schwartz inequality. Examples of CAT(0) spaces
include Euclidean spaces Rn, Hilbert spaces, simply con-
nected Riemannian manifolds of nonpositive sectional
curvature [31], R-trees, and Hilbert ball [32], among
others.

We end this section with the following important
lemmas which characterize CAT(0) spaces.

Lemma 1. Let X be a CAT(0) space, x, y, z ∈ X, and
t, s ∈ [0, 1]. 5en,

(i) d(tx⊕ (1 − t)y, z)≤ td(x, z) + (1 − t)d(y, z)

(see [28])
(ii) d2(tx⊕ (1 − t)y, z)≤ td2(x, z) + (1 − t)d2(y, z) − t

(1 − t)d2(x, y) (see [28])

2.2. Notion of Δ-Convergence

Definition 6. Let xn􏼈 􏼉 be a bounded sequence in a geodesic
metric space X. .en, the asymptotic center A( xn􏼈 􏼉) of xn􏼈 􏼉

is defined by

A xn􏼈 􏼉( 􏼁 � v ∈ X : lim sup
n⟶∞

d v, xn( 􏼁 � inf
v∈X

lim sup
n⟶∞

d v, xn( 􏼁.

(10)

A sequence xn􏼈 􏼉 in X is said to be Δ-convergent to
a point v ∈ X if A( xnk

􏽮 􏽯) � v{ } for every subsequence xnk
􏽮 􏽯

of xn􏼈 􏼉. In this case, we write Δ-limn⟶∞xn � v (see [33]).
.e concept of Δ-convergence in metric spaces was first
introduced and studied by Lim [34]. Kirk and Panyanak [35]
later introduced and studied this concept in CAT(0) spaces
and proved that it is very similar to the weak convergence in
Banach space setting.

We now end this section with the following important
lemmas which are concerned with Δ-convergence.

Lemma 2 (see [28, 36]). Let X be an Hadamard space. 5en,

(i) Every bounded sequence in X has a Δ-convergent
subsequence

(ii) Every bounded sequence in X has a unique asymptotic
center

Lemma 3 ([37], Opial’s Lemma). Let X be an Hadamard
space and xn􏼈 􏼉 be a sequence in X. If there exists a nonempty
subset F in which

(i) limn⟶∞d(xn, z) exists for every z ∈ F

(ii) if xnk
􏽮 􏽯 is a subsequence of xn􏼈 􏼉which isΔ-convergent

to x, then x ∈ F

5en, there is a p ∈ F such that xn􏼈 􏼉 is Δ-convergent to p.

Lemma 4 ([14], Proposition 4.3). Suppose that xn􏼈 􏼉 is
Δ-convergent to q and there exists y ∈ X such that
lim sup d(xn, y)≤d(q, y), then xn􏼈 􏼉 converges strongly to q.

3. Existence and Uniqueness of Solution

In this section, we establish the existence of solution forMEP
(4). We also establish the unique existence of the resolvent
operator associated with the bifunction F and the convex
functional Ψ. In addition, we study some fundamental
properties of this resolvent operator. We begin with the
following known results.

Definition 7. Let X be a CAT(0) space. A function
Ψ : D(Ψ)⊆X⟶ R (where D(Ψ) means the domain of Ψ )
is said to be convex, if

Ψ(tx⊕ (1 − t)y)≤ tΨ(x) +(1 − t)Ψ(y),

∀x, y ∈ X, t ∈ (0, 1).
(11)
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Ψ is lower semicontinuous (or upper semicontinuous) at
a point x ∈ D(Ψ), if

Ψ(x)≤ lim inf
n⟶∞
Ψ xn( 􏼁 orΨ(x)≥ lim sup

n⟶∞
Ψ xn( 􏼁􏼠 􏼡, (12)

for each sequence xn􏼈 􏼉 in D(Ψ) such that limn⟶∞xn � x.
We say that Ψ is lower semicontinuous (or upper semi-
continuous) on D(Ψ), if it is lower semicontinuous (or
upper semicontinuous) at any point in D(Ψ).

Lemma 5 (See [9]). Let X be a Hadamard space and
Ψ : C⟶ Rbe a convex and lower semicontinuous function.
Then, Ψis Δ-lower semicontinuous.

For a nonempty subset C of X, we denote by conv(C),

the convex hull of C. .at is, the smallest convex subset of X
containing C. Recall that the convex hull of a finite set is the
set of all convex combinations of its points.

Theorem 2 (the KKM principle) (see [5], .eorem 3.3; see
also [14], Lemma 1.8). Let C be a nonempty, closed, and
convex subset of an Hadamard space X and G : C⟶ 2C be
a set-valued mapping with closed values. Suppose that for any
finite subset x1, x2, . . . , xn􏼈 􏼉 of C,

conv x1, x2, . . . , xm􏼈 􏼉( 􏼁 ⊂ %∪mi�1G xi( 􏼁. (13)

5en, the family G(x){ }x∈C has the finite intersection
property. Moreover, if G(x0) is compact for some x0 ∈ C, then
∩x∈CG(x)≠∅.

3.1. Existence of Solution for Mixed Equilibrium Problem

Theorem 3. Let C be a nonempty closed and convex subset of
an Hadamard space X. Let Ψ : C⟶ Rbe a real-valued
function and F : C × C⟶ R be a bifunction such that the
following assumptions hold:

(A1) F(x, x) � 0, ∀x ∈ C

(A2) For every x ∈ C, the set y ∈ C : F(x, y) +􏼈

Ψ(y) − Ψ(x)< 0}is convex
(A3) 5ere exists a compact subset D ⊂ C containing

a point y0 ∈ D such that F(x, y0) + Ψ(y0) − Ψ
(x)< 0whenever x ∈ C/D

5en, the MEP (4) has a solution.

Proof. For each y ∈ C, define the set-valued mapping G :

C⟶ 2C by

G(y) ≔ x ∈ C : F(x, y) + Ψ(y) − Ψ(x)≥ 0􏼈 􏼉. (14)

By (A1), we obtain that, for each y ∈ C, G(y)≠∅ since
y ∈ G(y). Also, we obtain from (A2) that G(y) is a closed
subset of C for all y ∈ C.

We claim that G satisfies the inclusion (13). Suppose for
contradiction that this is not true, then there exist a finite
subset y1, y2, . . . , ym􏼈 􏼉 of C and αi ≥ 0, ∀i � 1, 2, . . . , mwith
􏽐

m
i�1αi � 1 such that y∗ � 􏽐

m
i�1αiy1 ∉ G(yi) for each

i � 1, 2, . . . , m. .at is, there exists y∗ ∈ conv( y1, y2, . . . ,􏼈

ym}) such that y∗ ∉ G(yi), for each 1, 2, . . . , m. By (14), we
obtain for each i � 1, 2, . . . , m that

F y
∗
, yi( 􏼁 + Ψ yi( 􏼁 − Ψ y

∗
( 􏼁< 0. (15)

.us, for each i � 1, 2, . . . , m, yi ∈ y ∈ C : F(y∗, y) +􏼈

Ψ(y) − Ψ(y∗)< 0}, which is convex by (A2). Since
conv( y1, y2, . . . , ym􏼈 􏼉) is the smallest convex set containing
y1, y2, . . . , ym, we have that conv( y1, y2, . . . , ym􏼈 􏼉)

⊂ y ∈ C : F(y∗, y) + Ψ(y) − Ψ(y∗)< 0􏼈 􏼉, which implies
that y∗ ∈ y ∈ C : F(y∗, y) + Ψ(y) − Ψ(y∗)< 0􏼈 􏼉. .at is,
0 � F(y∗, y∗) + Ψ(y∗) − Ψ(y∗)< 0, which is a contradic-
tion. .erefore, G satisfies the inclusion (13).

Now, observe that (A3) implies that there exists
a compact subsetD of C containing y0 ∈ D such that for any
x ∈ C/D, we have

F x, y0( 􏼁 + Ψ y0( 􏼁 − Ψ(x)< 0, (16)

which further implies that

G y0( 􏼁 � x ∈ C : F x, y0( 􏼁 + Ψ y0( 􏼁 − Ψ(x)≥ 0􏼈 􏼉 ⊂ D.

(17)

.us, G(y0) is compact. It then follows from.eorem 2
that ∩y∈C G(y)≠∅. .is implies that there exists x∗ ∈ C

such that

F x
∗
, y( 􏼁 + Ψ(y) − Ψ x

∗
( 􏼁≥ 0, ∀y ∈ C. (18)

.at is, MEP (4) has a solution. □

3.2. Existence and Uniqueness of Resolvent Operator

Definition 8. Let X be an Hadamard space and C be
a nonempty subset of X. Let F : C × C⟶ R be a bifunc-
tion, Ψ : C⟶ R be a real-valued function, x ∈ X, and
λ> 0; then, we define the perturbation 􏽥Fx : C × C⟶ R of F
and Ψ, by

􏽥Fx(x, y) ≔ F(x, y) + Ψ(y) − Ψ(x) +
1
λ

〈xy
�→

, xx
�→

〉,

∀x, y ∈ C.

(19)

In the next theorem, we shall prove the existence and
uniqueness of solution of the following auxiliary problem:
find x∗ ∈ C such that

􏽥Fx x
∗
, y( 􏼁≥ 0, ∀y ∈ C, (20)

where 􏽥Fx is as defined in (19). .e proof for existence is
similar to the proof of .eorem 3. But for completeness, we
shall give the proof here.

Theorem 4. Let C be a nonempty closed and convex subset of
an Hadamard space X. Let Ψ : C⟶ Rbe a convex function
and F : C × C⟶ R be a bifunction such that the following
assumptions hold:

(A1) F(x, x) � 0, ∀x ∈ C

(A2) F is monotone, i.e., F(x, y) + F(y, x)≤ 0, ∀x, y, ∈ C
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(A3) F(x, .) : C⟶ R is convex ∀x ∈ C

(A4) For each x ∈ X and λ> 0, there exists a compact
subset Dx ⊂ C containing a point yx ∈ Dx such
that F(x, yx) + Ψ(yx) − Ψ(x) + (1/λ)〈xyx

���→
, xx
�→

〉<
0whenever x ∈ C/Dx.

5en, (20) has a unique solution.

Proof. Let x be a point in X. For each y ∈ C, define the set-
valued mapping G : C⟶ 2C by

G(y) � x ∈ C : F(x, y) + Ψ(y) − Ψ(x) +
1
λ

〈xy
�→

, xx
�→

〉≥ 0􏼚 􏼛.

(21)

.en, it is easy to see that G(y) is a nonempty closed
subset of C. As in the proof of .eorem 3, we claim that G
satisfies the inclusion (13). Suppose for contradiction that
this is not true, then there exists y∗ � 􏽐

m
i�1αiyi ∈

conv( y1, y2, . . . , ym􏼈 􏼉) such that

F y
∗
, yi( 􏼁 + Ψ yi( 􏼁 − Ψ y

∗
( 􏼁 +

1
λ
〈y∗yi

����→
, xy
∗���→
〉< 0,

i � 1, 2, . . . , m.

(22)

By (A3) and the convexity of Ψ, we obtain that

0 � F y
∗
, y
∗

( 􏼁 + Ψ y
∗

( 􏼁 − Ψ y
∗

( 􏼁 +
1
λ
〈y∗y∗

����→
, xy
∗���→
〉

≤􏽘
m

i�1αi F y
∗
, yi( 􏼁 + Ψ yi( 􏼁 − Ψ y

∗
( 􏼁( 􏼁

+
1
λ

􏽘
m

i�1αi〈y
∗
yi

����→
, xy
∗���→
〉􏼒 􏼓< 0,

(23)

which is a contradiction. .erefore, G satisfies the inclusion
(13). By (A4), we obtain that G(yx) ⊂ Dx. .us, G(yx) is
compact and by .eorem 2, we get that ∩y∈CG(y)≠∅.
.erefore, (20) has a solution.

Next, we show that this solution is unique. Suppose that
x and x∗ solve (20). .en,

0≤ 􏽥Fx x, x
∗

( 􏼁 � F x, x
∗

( 􏼁 + Ψ x
∗

( 􏼁 − Ψ(x) +
1
λ
〈xx

�→
, xx
∗���→
〉,

0≤ 􏽥Fx x
∗
, x( 􏼁 � F x

∗
, x( 􏼁 + Ψ(x) − Ψ x

∗
( 􏼁 +

1
λ
〈xx
∗���→
, x
∗
x

���→
〉.

(24)

Adding both inequalities and noting that F is monotone,
we obtain that

0≤ −
1
λ
〈xx

�→
, xx
∗���→
〉 +〈xx

∗���→
, xx
∗���→
〉􏼒 􏼓

� −
1
λ

d x, x
∗

( 􏼁
2
,

(25)

which implies that x � x∗. □

Definition 9. Let X be an Hadamard space and C be
a nonempty closed and convex subset of X. Let F : C ×

C⟶ R be a bifunction and Ψ : C⟶ R be a convex
function. Assume that (20) has a unique solution for each
λ> 0 and x ∈ X. .is unique solution is denoted by JΨλFx,
and it is called the resolvent operator associated with F andΨ
of order λ> 0 and at x ∈ X. In other words, the resolvent
operator associated with F and Ψ is the set-valued mapping
JΨλF : X⟶ 2C defined by

J
Ψ
λF(x) ≔ EP C, 􏽥Fx( 􏼁 � 􏼚z ∈ C : F(z, y) + Ψ(y) − Ψ(z)

+
1
λ

〈zy
�→

, xz
�→

〉≥ 0,∀y ∈ C􏼛, for allx inX.

(26)

Under the assumptions of .eorem 4, we have
the unique existence of JΨλF(x). .erefore, JΨλF is well
defined.

3.3. Fundamental Properties of the Resolvent Operator. In
the following theorem, we shall study some fundamen-
tal properties of the resolvent operator. First, we recall
the following definitions which will be needed for our
study.

Definition 10. Let X be a CAT(0) space. A point x ∈ X is
called a fixed point of a nonlinear mapping T : X⟶ X, if
Tx � x. We denote the set of fixed points of T by Fix(T). .e
mapping T is said to be

(i) Firmly nonexpansive, if

d
2
(Tx, Ty)≤ 〈TxTy

�����→
, xy
�→

〉, ∀x, y ∈ X. (27)

(ii) Nonexpansive, if

d(Tx, Ty)≤d(x, y), ∀x, y ∈ X. (28)

Theorem 5. Let C be a nonempty closed and convex subset of
an Hadamard space X. Let Ψ : C⟶ Rbe a convex function
and F : C × C⟶ R be a bifunction satisfying assumptions
(A1)–(A4) of 5eorem 4. For λ> 0, we have that JΨλFis single
valued. Moreover, if C ⊂ D(JΨλF),then

(i) JΨλFis firmly nonexpansive restricted to C
(ii) For F(JΨλF)≠∅,we have

d
2

J
Ψ
λFx, x􏼐 􏼑≤ d

2
(x, v) − d

2
J
Ψ
λFx, v􏼐 􏼑,

∀x ∈ C, ∀v ∈ fix J
Ψ
λF􏼐 􏼑,

(29)

(iii) For 0< λ≤ μ, we have d(JΨμFx, JΨλFx)≤��������
1 − (λ/μ)

􏽰
d(x, JΨμFx),which implies that

d(x, JΨλFx)≤ 2d(x, JΨμFx), ∀x ∈ C

(iv) Fix(JΨλF) � MEP(C, F,Ψ)
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Proof. For each x ∈ D(JΨλF) and λ> 0, let z1, z2 ∈ JΨλFx. .en
from (26), we have

F z1, z2( 􏼁 + Ψ z2( 􏼁 − Ψ z1( 􏼁 +
1
λ
〈z1z2

���→
, xz1
��→〉 ≥ 0,

F z2, z1( 􏼁 + Ψ z1( 􏼁 − Ψ z2( 􏼁 +
1
λ
〈z2z1

���→
, xz2
��→〉 ≥ 0.

(30)

Adding both inequalities and using assumption (A2), we
obtain that

〈z2z1
���→

, z1z2
���→〉≥ 0, (31)

which implies that d2(z1, z2)≤ 0. .is further implies that
z1 � z2. .erefore, JΨλF is single valued.

(i) Let x, y ∈ C, then

F J
Ψ
λFx, J
Ψ
λFy􏼐 􏼑 + Ψ J

Ψ
λFy􏼐 􏼑 − Ψ J

Ψ
λFx􏼐 􏼑

+
1
λ
〈JΨλFxJ

Ψ
λFy

����������→
, xJ
Ψ
λFx

�����→
〉 ≥ 0,

(32)

and

F J
Ψ
λFy, J

Ψ
λFx􏼐 􏼑 + Ψ J

Ψ
λFx􏼐 􏼑 − Ψ J

Ψ
λFy􏼐 􏼑

+
1
λ
〈JΨλFyJ

Ψ
λFx

����������→
, yJ
Ψ
λFy

������→
〉 ≥ 0.

(33)

Adding (32) and (33), and noting that F is monotone,
we obtain

1
λ
〈xJ
Ψ
λFx

�����→
, J
Ψ
λFxJ
Ψ
λFy

����������→
〉 +〈yJ

Ψ
λFy

������→
, J
Ψ
λFyJ
Ψ
λFx

����������→
〉􏼠 􏼡≥ 0, (34)

which implies that

〈xy
�→

, J
Ψ
λFxJ
Ψ
λFy

����������→
〉 ≥ 〈JΨλFxJ

Ψ
λFy

����������→
, J
Ψ
λFxJ
Ψ
λFy

����������→
〉. (35)

.at is,

〈xy
�→

, J
Ψ
λFxJ
Ψ
λFy

����������→
〉 ≥d

2
J
Ψ
λFx, J
Ψ
λFy􏼐 􏼑. (36)

(ii) It follows from (36) and the definition of quasili-
nearization that

d
2

x, J
Ψ
λFx􏼐 􏼑≤d

2
(x, v) − d

2
v, J
Ψ
λFx􏼐 􏼑,

∀x ∈ C, v ∈ fix J
Ψ
λF􏼐 􏼑.

(37)

(iii) Let x ∈ C and 0< λ≤ μ, then we have that

F J
Ψ
λFx, J
Ψ
μFx􏼐 􏼑 + Ψ J

Ψ
μFx􏼐 􏼑 − Ψ J

Ψ
λFx􏼐 􏼑

+
1
λ
〈xJ
Ψ
λFx

�����→
, J
Ψ
λFxJ
Ψ
μFx

����������→
〉≥ 0,

(38)

and

F J
Ψ
μFx, J

Ψ
λFx􏼐 􏼑 + Ψ J

Ψ
λFx􏼐 􏼑 − Ψ J

Ψ
μFx􏼐 􏼑

+
1
μ
〈xJ
Ψ
μFx

�����→
, J
Ψ
μFxJ
Ψ
λFx

����������→
〉 ≥ 0.

(39)

Adding (38) and (39), and using the monotonicity of F,
we obtain that

〈JΨλFxx
�����→

, J
Ψ
μFxJ
Ψ
λFx

����������→
〉≥

λ
μ
〈JΨμFxx

�����→
, J
Ψ
μFxJ
Ψ
λFx

����������→
〉. (40)

By quasilinearization, we obtain that

λ
μ

+ 1􏼠 􏼡d
2

J
Ψ
μFx, J

Ψ
λFx􏼐 􏼑≤ 1 −

λ
μ

􏼠 􏼡d
2

x, J
Ψ
μFx􏼐 􏼑

+
λ
μ

− 1􏼠 􏼡d
2

x, J
Ψ
λFx􏼐 􏼑.

(41)

Since (λ/μ)≤ 1, we obtain that

λ
μ

+ 1􏼠 􏼡d
2

J
Ψ
μFx, J

Ψ
λFx􏼐 􏼑≤ 1 −

λ
μ

􏼠 􏼡d
2

x, J
Ψ
μFx􏼐 􏼑, (42)

which implies that

d J
Ψ
μFx, J
Ψ
λFx􏼐 􏼑≤

�����

1 −
λ
μ

􏽳

d x, J
Ψ
μFx􏼐 􏼑. (43)

Moreover, we obtain by triangle inequality and (43) that

d x, J
Ψ
λFx􏼐 􏼑≤ 2d x, J

Ψ
μFx􏼐 􏼑. (44)

(iv) Observe that

x ∈ fix J
Ψ
λF􏼐 􏼑⟺F(x, y) + Ψ(y)

− Ψ(x) +
1
λ

〈xx
�→

, xy
�→

〉≥ 0,

∀y ∈ C

⟺F(x, y) + Ψ(y) − Ψ(x)≥ 0, ∀y ∈ C

⟺x ∈ MEP(C, F,Ψ).

(45)
□
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Remark 1. It follows from Cauchy–Schwartz inequality that
firmly nonexpansive mappings are nonexpansive, and it is
well known that the set of fixed points of nonexpansive
mappings is closed and convex. .us, by (i) and (iv) of
.eorem 5, we have that MEP(C, F,Ψ) is closed and convex.

4. Convergence Results

For the rest of this paper, we shall assume that C is a non-
empty closed and convex subset of an Hadamard space X
and that D(JΨλF)IC.

4.1. Convergence of Resolvent. In the following theorem, we
shall prove that JΨλFx􏼈 􏼉 converges strongly to a solution of
MEP (4) as λ⟶ 0.

Theorem 6. Let Ψ : C⟶ Rbe a convex and lower semi-
continuous function and F : C × C⟶ R be Δ-upper sem-
icontinuous in the first argument which satisfies assumptions
(A1)–(A4) of 5eorem 4. If MEP(C, F,Ψ)≠∅, then
JΨλnFx􏽮 􏽯converges strongly to q ∈ MEP(C, F,Ψ),which is the
nearest point of MEP(C, F,Ψ)to x as λ⟶ 0.

Proof. Let v ∈ MEP(C, F,Ψ), since JΨλF is nonexpansive (by
Remark 1), we obtain that JΨλFx􏼈 􏼉 is bounded. Let λn􏼈 􏼉 be
a sequence that converges to 0 as n⟶∞. .en, JΨλnFx􏽮 􏽯 is
bounded. .us, by Lemma 2(i), there exists a subsequence
JΨλnkFx􏽮 􏽯 of JΨλnFx􏽮 􏽯 that Δ-converges to q ∈ C.

Now, observe that, by the definition of JΨλF, the Δ-upper
semicontinuity of F, lower semicontinuous of Ψ, and
Lemma 5, we obtain that

F(q, y) + Ψ(y) − Ψ(q)≥ 0. (46)

.erefore, q ∈ MEP(C, F,Ψ). Hence, we obtain from
.eorem 5(ii) that

d
2

J
Ψ
λnkFx, x􏼐 􏼑≤ d

2
(x, v), ∀v ∈ MEP(C, F,Ψ). (47)

Since d2(., x) is Δ-lower semicontinuous, we obtain that

d
2
(q, x)≤ lim inf

k⟶∞
d
2

J
Ψ
λnkFx, x􏼐 􏼑≤ d

2
(x, v),

∀v ∈ MEP(C, F,Ψ),

(48)

which implies that

d(q, x)≤d(x, v), ∀v ∈ MEP(C, F,Ψ). (49)

.us, q � PΓx, where PΓ is the metric projection of X
onto Γ, and Γ � MEP(C, F,Ψ). .erefore, by taking λnk � λ,
we have that JΨλFx􏼈 􏼉Δ-converges to q � PΓx as λ⟶ 0.

Now, observe also that .eorem 5(ii) implies that

d J
Ψ
λFx, x􏼐 􏼑≤d(q, x). (50)

It then follows from Lemma 4 that JΨλFx􏼈 􏼉 converges
strongly to q � PΓx as λ⟶ 0.

By setting Ψ ≡ 0 in .eorem 6, we obtain the following
result which is similar to ([14], .eorem 4.4). □

Corollary 1. Let F : C × C⟶ R be Δ-upper semi-
continuous in the first argument which satisfies assumptions
(A1)–(A4) of 5eorem 4. If MEP(C, F)≠∅, then
JλFx􏼈 􏼉converges strongly to q ∈ MEP(C, F), which is the
nearest point of MEP(C, F) to x as λ⟶ 0.

4.2. Proximal Point Algorithm. In this section, we study the
Δ-convergence of the sequence generated by the following
PPA for approximating solutions of MEP (4): For an initial
starting point x1 in C, define the sequence xn􏼈 􏼉 in C by

xn+1 � J
Ψ
λnFxn, n≥ 1, (51)

where λn􏼈 􏼉 is a sequence in (0,∞), F : C × C⟶ R is
a bifunction, and Ψ : C⟶ R is a convex function.

Recall that the PPA does not converge strongly in general
without additional assumptions even for the case where
F ≡ 0. See for example, the question of interest raised by
Rockafella as to whether the PPA can be improved from
weak convergence (an analogue of Δ-convergence) to strong
convergence in Hilbert space settings. Several counterex-
amples have been constructed to resolve this question in the
negative (see [38, 39]). .erefore, only weak convergence of
the PPA is expected without additional assumptions. For this
reason, we propose the following Δ-convergence theorem
for the PPA (51).

Theorem 7. Let Ψ : C⟶ R be a convex and lower semi-
continuous function and F : C × C⟶ R be Δ-upper sem-
icontinuous in the first argument which satisfies assumptions
(A1)–(A4) of 5eorem 4. Let λn􏼈 􏼉 be a sequence in (0,∞)

such that 0< λ≤ λn, ∀n≥ 1. Suppose that MEP(C, F,Ψ)≠∅,
then, the sequence given by (51) Δ-converges to an element of
MEP(C, F,Ψ).

Proof. Let v ∈ MEP(C, F,Ψ). .en, by Remark 1 and
.eorem 5(iv), we obtain that

d v, xn+1( 􏼁 � d v, J
Ψ
λnFxn􏼐 􏼑≤d v, xn( 􏼁, (52)

which implies that limn⟶∞d(xn, v) exists for all
v ∈ MEP(C, F,Ψ). Hence xn􏼈 􏼉 is bounded. It then follows
from .eorem 5(ii) that

d
2

xn+1, xn( 􏼁≤d
2

xn, v( 􏼁 − d
2

xn+1, v( 􏼁⟶ 0, as n⟶∞.

(53)

.at is,

lim
n⟶∞

d xn+1, xn( 􏼁 � 0. (54)

Since xn􏼈 􏼉 is bounded, then there exists a subsequence
xnk􏼈 􏼉 of xn􏼈 􏼉 that Δ-converges to a point, say q ∈ C. From
(51) and (26), we obtain that

F xnk+1, y( 􏼁 + Ψ(y) − Ψ xnk+1( 􏼁≥ −
1
λnk

〈xnkxnk+1
���������→

, xnk+1y
������→〉

≥ −
1
λnk

d xnk+1, xnk( 􏼁d xnk+1, y( 􏼁.

(55)
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Since 0< λ≤ λnk, xn􏼈 􏼉 is bounded, F is Δ-upper semi-
continuous in the first argument and Ψ is lower semi-
continuous, we obtained from (54) and (55) that

F(q, y) + Ψ(y) − Ψ(q)≥ lim sup
k⟶∞

F xnk+1, y( 􏼁 + Ψ(y)( 􏼁

− lim inf
k⟶∞
Ψ xnk+1( 􏼁

≥ −
M

λ
lim sup

k⟶∞
d xnk+1, xnk( 􏼁 � 0,

(56)

for some M> 0 and for all y ∈ C. .is implies that
q ∈ MEP(C, F,Ψ).

It then follows from Lemma 3 that xn􏼈 􏼉Δ-converges to
an element of MEP(C, F,Ψ).

By setting Ψ ≡ 0 in .eorem 7, we obtain the following
result which coincides with ([5], .eorem 7.3). □

Corollary 2. Let F : C × C⟶ R be Δ-upper semi-
continuous in the first argument which satisfies assumptions
(A1)–(A4) of 5eorem 4 and λn􏼈 􏼉 be a sequence in (0,∞)

such that 0< λ≤ λn ∀n≥ 1. Suppose that EP(C, F)≠∅; then,
the sequence given for x1 ∈ C by

xn+1 � JλnFxn, n≥ 1. (57)

Δ-converges to an element of EP(C, F).
By setting F ≡ 0 in .eorem 7, we obtain the following

corollary which is similar to ([9], .eorem 1.4).

Corollary 3. Let Ψ : C⟶ R be a convex and lower sem-
icontinuous function and λn􏼈 􏼉 be a sequence in (0,∞) such
that 0< λ≤ λn, ∀n≥ 1. Suppose that argminy∈CΨ(y)≠∅;
then, the sequence given for x1 ∈ C by

xn+1 � J
Ψ
λn

xn, n≥ 1. (58)

Δ-converges to an element of argminy∈CΨ(y).

5. Asymptotic Behavior of Halpern’s Algorithm

To obtain strong convergence result, wemodify the PPA into
the following Halpern-type PPA and study the asymptotic
behavior of the sequence generated by it: For x1, u ∈ C,

define the sequence xn􏼈 􏼉 ⊂ C by

xn+1 � αnu⊕ 1 − αn( 􏼁J
Ψ
λnFxn, (59)

where αn􏼈 􏼉 is a sequence in (0, 1) and λn􏼈 􏼉, F and Ψ are as
defined in (51).

We begin by establishing the following lemmas which
will be very useful to our study.

Lemma 6. Let Ψ : C⟶ R be a convex and lower semi-
continuous function and F : C × C⟶ R be a bifunction
satisfying (A1)–(A4) of 5eorem 4. If λ, μ> 0 and x, y ∈ C,

then the following inequalities hold:

d
2

J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑≤ 2λF J

Ψ
λFx, J
Ψ
μFy􏼐 􏼑 + 2λ Ψ J

Ψ
μFy􏼐 􏼑 − Ψ J

Ψ
λFx􏼐 􏼑􏼐 􏼑 + d

2
x, J
Ψ
μFy􏼐 􏼑 − d

2
x, J
Ψ
λFx􏼐 􏼑,

(λ + μ)d
2

J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑 + μd

2
J
Ψ
λFx, x􏼐 􏼑 + λd

2
J
Ψ
μFy, y􏼐 􏼑≤ λd

2
J
Ψ
λFx, y􏼐 􏼑 + μd

2
J
Ψ
λFy, x􏼐 􏼑.

(60)

Proof. We first prove (60). Let λ, μ> 0 and x, y ∈ C. .en,
by (26), we obtain that

F J
Ψ
λFx, z􏼐 􏼑 + Ψ(z) − Ψ J

Ψ
λFx􏼐 􏼑 +

1
λ
〈xJ
Ψ
λFx

�����→
, J
Ψ
λFxz

�����→
〉 ≥ 0,

∀z ∈ C,

(61)

which implies that

2λΨ J
Ψ
λFx􏼐 􏼑≤ 2λF J

Ψ
λFx, z􏼐 􏼑 + 2λΨ(z) + 2〈xJ

Ψ
λFx

�����→
, J
Ψ
λFxz

�����→
〉

� 2λF J
Ψ
λFx, z􏼐 􏼑 + 2λΨ(z) + d

2
(x, z) − d

2
x, J
Ψ
λF􏼐 􏼑

− d
2

J
Ψ
λFx, z􏼐 􏼑

≤ 2λF J
Ψ
λFx, z􏼐 􏼑 + 2λΨ(z) + d

2
(x, z)

− d
2

x, J
Ψ
λFx􏼐 􏼑.

(62)

Now, set z � tJΨμFy⊕ (1 − t)JΨλFx for all t ∈ (0, 1) in (5).
SinceΨ is convex and F satisfies conditions (A1) and (A3) of
.eorem 4, we obtain that

2λΨ J
Ψ
λFx􏼐 􏼑 + d

2
x, J
Ψ
λFx􏼐 􏼑≤ 2λ􏼒tF J

Ψ
λFx, J
Ψ
μFy􏼐 􏼑

+(1 − t)F J
Ψ
λFx, J
Ψ
λFx􏼐 􏼑􏼓

+ 2λ tΨ J
Ψ
μFy􏼐 􏼑 +(1 − t)Ψ J

Ψ
λFx􏼐 􏼑􏼐 􏼑

+ td
2

x, J
Ψ
μFy􏼐 􏼑 +(1 − t)d

2
x, J
Ψ
λFx􏼐 􏼑

− t(1 − t)d
2

J
Ψ
μFy, J

Ψ
λFx􏼐 􏼑

� 2λtF J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑

+ 2λ tΨ J
Ψ
μFy􏼐 􏼑 +(1 − t)Ψ J

Ψ
λFx􏼐 􏼑􏼐 􏼑

+ td
2

x, J
Ψ
μFy􏼐 􏼑 +(1 − t)d

2
x, J
Ψ
λFx􏼐 􏼑

− t(1 − t)d
2

J
Ψ
μFy, J

Ψ
λFx􏼐 􏼑,

(63)
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which implies that

2λΨ J
Ψ
λFx􏼐 􏼑 + d

2
x, J
Ψ
λFx􏼐 􏼑≤ 2λF J

Ψ
λFx, J
Ψ
μFy􏼐 􏼑

+ 2λΨ J
Ψ
μFy􏼐 􏼑 + d

2
x, J
Ψ
μFy􏼐 􏼑

− (1 − t)d
2

J
Ψ
μFy, J

Ψ
λFx􏼐 􏼑.

(64)

As t⟶ 0 in (64), we obtain (60).
Next, we prove (60). From (60), we obtain that

μd
2

J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑≤ 2λμ F J

Ψ
λFx, J
Ψ
μFy􏼐 􏼑 + Ψ J

Ψ
μFy􏼐 􏼑 − Ψ J

Ψ
λFx􏼐 􏼑􏽨 􏽩

+ μd
2

x, J
Ψ
μFy􏼐 􏼑 − μd

2
x, J
Ψ
λFx􏼐 􏼑.

(65)

Similarly, we have

λd
2

J
Ψ
μFy, J

Ψ
λFx􏼐 􏼑≤ 2μλ F J

Ψ
μFy, J

Ψ
λFx􏼐 􏼑 + Ψ J

Ψ
λFx􏼐 􏼑 − Ψ J

Ψ
μFy􏼐 􏼑􏽨 􏽩

+ λd
2

y, J
Ψ
λFx􏼐 􏼑 − λd

2
y, J
Ψ
μFy􏼐 􏼑.

(66)

Adding both inequalities and noting that F is monotone,
we get

(λ + μ)d
2

J
Ψ
λFx, J
Ψ
μFy􏼐 􏼑 + μd

2
x, J
Ψ
λFx􏼐 􏼑 + λd

2
y, J
Ψ
μFy􏼐 􏼑

≤ μd
2

x, J
Ψ
μFy􏼐 􏼑 + λd

2
y, J
Ψ
λFx􏼐 􏼑.

(67)
□

Lemma 7. Let Ψ : C⟶ R be a convex and lower semi-
continuous function and F : C × C⟶ R be a bifunction
satisfying (A1)–(A4) of 5eorem 4. Let λn􏼈 􏼉 be a sequence in
(0,∞) and v be an element of C. Suppose that limn⟶∞λn �

∞ and A( JΨλn
xn􏽮 􏽯) � v{ } for some bounded sequence xn􏼈 􏼉 in

X, then v ∈ MEP(C, F,Ψ).
Proof. From (60), we obtain that

λn + 1( 􏼁d
2

J
Ψ
λnFxn, J

Ψ
F v􏼐 􏼑 + d

2
J
Ψ
λnFxn, xn􏼐 􏼑 + λnd

2
J
Ψ
F v, v􏼐 􏼑

≤ d
2

J
Ψ
F v, xn􏼐 􏼑 + λnd

2
J
Ψ
λnFxn, v􏼐 􏼑,

(68)

which implies that

d
2

J
Ψ
λnFxn, J

Ψ
F v􏼐 􏼑≤

1
λn

d
2

J
Ψ
F v, xn􏼐 􏼑 + d

2
J
Ψ
λnFxn, v􏼐 􏼑

2
. (69)

Since limn⟶∞λn �∞, xn􏼈 􏼉 is bounded and
A( JΨλn

xn􏽮 􏽯) � v{ }, we obtain that

lim sup
n⟶∞

d J
Ψ
λnFxn, J

Ψ
F v􏼐 􏼑≤ lim sup

n⟶∞
d J
Ψ
λnFxn, v􏼐 􏼑

� inf
y∈X

lim sup
n⟶∞

d J
Ψ
λnFxn, y􏼐 􏼑,

(70)

which by Lemma 2(ii) and Theorem 5(iv) implies that
v ∈ fix(JΨF ) � MEP(C, F,Ψ).

Lemma 8 (Xu, [40]). Let an􏼈 􏼉 be a sequence of nonnegative
real numbers satisfying the following relation:

an+1 ≤ 1 − αn( 􏼁an + αnσn + cn, n≥ 0, (71)

where (i) αn􏼈 􏼉 ⊂ [0, 1], 􏽐 αn �∞;(ii) lim sup σn ≤ 0;

(iii) cn ≥ 0; (n≥ 0), 􏽐 cn <∞. 5en, an⟶ 0 as n⟶∞.

Theorem 8. Let Ψ : C⟶ R be a convex and lower semi-
continuous function and F : C × C⟶ R be a bifunction
satisfying (A1–A4) of 5eorem 4. Let xn􏼈 􏼉 be a sequence
defined by (59), where αn􏼈 􏼉 is a sequence in (0, 1) and λn􏼈 􏼉 is
a sequence in (0,∞) such that limn⟶∞λn �∞. 5en, we
have the following:

(i) 5e sequence JΨλnFxn􏽮 􏽯 is bounded if and only
ifMEP(C, F,Ψ)≠∅

(ii) If limn⟶∞αn � 0, 􏽐
∞
n�1αn �∞ andΓ ≔ MEP

(C, F,Ψ)≠∅, then xn􏼈 􏼉 and JΨλnFxn􏽮 􏽯converge to
v � PΓu,wherePΓis the metric projection of X onto Γ

Proof. (i) Suppose that J
f

λn
xn􏼚 􏼛 is bounded..en by Lemma

2(ii), there exists v ∈ X such that A( J
f

λn
xn􏼚 􏼛) � v{ }. From

(59) and Lemma 1(i), we obtain that

d xn+1, v( 􏼁≤ αnd(u, v) + 1 − αn( 􏼁d J
Ψ
λnFxn, v􏼐 􏼑, (72)

which implies that xn􏼈 􏼉 is bounded. Also, since limn⟶∞λn �

∞ and A( JΨλnFxn􏽮 􏽯) � v{ }, we obtain by Lemma 7
thatMEP(C, F,Ψ)≠∅.

Conversely, let MEP(C, F,Ψ)≠∅. .en, we may assume
that v ∈ MEP(C, F,Ψ)≠∅. .us, by (59) and Lemma 1, we
obtain that

d xn+1, v( 􏼁≤ αnd(u, v) + 1 − αn( 􏼁d J
Ψ
λnFxn, v􏼐 􏼑

≤ αnd(u, v) + 1 − αn( 􏼁d xn, v( 􏼁

≤max d(u, v), d xn, v( 􏼁􏼈 􏼉,

(73)

which implies by induction that

d xn, v( 􏼁≤max d(u, v), d x1, v( 􏼁􏼈 􏼉, ∀n≥ 1. (74)

.erefore, xn􏼈 􏼉 is bounded. Consequently, JΨλnFxn􏽮 􏽯 is
also bounded.

(ii) Since Γ ≔ MEP(C, F,Ψ)≠∅, we obtain from (74)
that xn􏼈 􏼉 and JΨλnFxn􏽮 􏽯 are bounded. Furthermore, we obtain
from Lemma 1(ii) that

d
2

xn+1, v( 􏼁≤ αnd
2
(u, v) + 1 − αn( 􏼁d

2
J
Ψ
λnFxn, v􏼐 􏼑

− αn 1 − αn( 􏼁d
2

u, J
Ψ
λnFxn􏼐 􏼑

≤ αnd
2
(u, v) + 1 − αn( 􏼁d

2
xn, v( 􏼁

− αn 1 − αn( 􏼁d
2

u, J
Ψ
λnFxn􏼐 􏼑

� 1 − αn( 􏼁d
2

xn, v( 􏼁 + αnδn, ∀n≥ 1,

(75)

where δn � d2(u, v) + (αn − 1)d2(u, JΨλnFxn). Now, set vn �

JΨλnFxn, ∀n≥ 1..en, by the boundedness of vn􏼈 􏼉 and Lemma
2(i), we obtain that there exists a subsequence vnk

􏽮 􏽯 of vn􏼈 􏼉
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that Δ-converges to some 􏽢v ∈ C. .us, by Lemma 2(ii), we
obtain that A( vnk

􏽮 􏽯) � 􏽢v{ }. Moreover, limk⟶∞λnk
�∞ and

xnk
􏽮 􏽯 is bounded. Hence, by Lemma 7, we obtain that
􏽢v ∈ MEP(C, F,Ψ).

Next, we show that xn􏼈 􏼉 converges to 􏽢v. By the Δ-lower
semicontinuity of d2(u, .), we obtain that

d
2
(u, 􏽢v)≤ lim inf

k⟶∞
d
2

u, vnk
􏼐 􏼑 � lim

k⟶∞
d
2

u, vnk
􏼐 􏼑

� lim inf
n⟶∞

d
2

u, vn( 􏼁.
(76)

Since δn � d2(u, v) + (αn − 1)d2(u, vn), limn⟶∞αn � 0,
v � PΓu, and 􏽢v ∈ Γ, we obtain from the definition of PΓ and
(76) that
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Figure 1: Errors vs iteration numbers n: Case 1 (a); Case 2 (b); Case 3 (c); Case 4 (d).
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lim sup
n⟶∞

δn ≤ d
2
(u, v) − lim inf

n⟶∞
d
2

u, vn( 􏼁

≤ d
2
(u, 􏽢v) − lim inf

n⟶∞
d
2

u, vn( 􏼁≤ 0.
(77)

.us, applying Lemma 8 to (75) gives that xn􏼈 􏼉 con-
verges to v � PΓu. It then follows that JΨλnFxn􏽮 􏽯 is convergent
to v � PΓu.

By setting Ψ ≡ 0 in .eorem 8, we obtain the following
new result for equilibrium problem in an Hadamard
space. □

Corollary 4. Let F : C × C⟶ R be a bifunction satisfying
(A1–A3) of 5eorem 4 and xn􏼈 􏼉 be a sequence defined for
u, x1 ∈ C, by

xn+1 � αnu⊕ 1 − αn( 􏼁JλnFxn, (78)

where αn􏼈 􏼉 is a sequence in (0, 1) and λn􏼈 􏼉 is a sequence in
(0,∞) such that limn⟶∞λn �∞. 5en, we have the
following:

(i) The sequence JλnFxn􏽮 􏽯 is bounded if and only if
EP(C, F)≠∅

(ii) If limn⟶∞αn � 0, 􏽐
∞
n�1αn �∞ and Γ ≔ EP(C, F)≠

∅, then xn􏼈 􏼉 and JλnFxn􏽮 􏽯 converge to v � PΓu,where
PΓ is the metric projection of X onto Γ

By setting F ≡ 0 in 5eorem 8, we obtain the following
result which coincides with ([41], 5eorem 5.1).

Corollary 5. Let Ψ : C⟶ C be a proper convex and lower
semicontinuous function and xn􏼈 􏼉 be a sequence defined for
u, x1 ∈ C, by

xn+1 � αnu⊕ 1 − αn( 􏼁J
Ψ
λn

xn, (79)

where αn􏼈 􏼉 is a sequence in (0, 1) and λn􏼈 􏼉 is a sequence in
(0,∞) such that limn⟶∞λn �∞. 5en, we have the
following:

(i) The sequence JΨλn
xn􏽮 􏽯 is bounded if and only if

argminy∈CΨ(y)≠∅
(ii) If limn⟶∞αn � 0, 􏽐

∞
n�1αn �∞ and Γ ≔

argminy∈CΨ (y)≠∅,then xn􏼈 􏼉 and JΨλn
xn􏽮 􏽯 converge

to v � PΓu, where PΓis the metric projection of X onto
Γ

6. Numerical Results

In this section, we generate some numerical results in
nonlinear setting for Algorithms (58) and (79).

Let X � R2 be endowed with a metric dX : R2×

R2⟶ [0,∞) defined by

dX(x, y) �

���������������������������

x1 − y1( 􏼁
2

+ x2
1 − x2 − y2

1 + y2( 􏼁
2

􏽱

,

∀x, y ∈ R2
.

(80)

.en, (R2, dX) is an Hadamard space (see ([42], Ex-
ample 5.2)) with the geodesic joining x to y given by

(1 − t)x⊕ ty � 􏼒(1 − t)x1 + ty1, (1 − t)x1 + ty1( 􏼁
2

− (1 − t) x
2
1 − x2􏼐 􏼑 − t y

2
1 − y2􏼐 􏼑􏼓.

(81)

Now, define Ψ : R2⟶ R by

Ψ x1, x2( 􏼁 � 100 x2 − 2( 􏼁 − x1 − 2( 􏼁
2

􏼐 􏼑
2

+ x1 − 3( 􏼁
2
. (82)

.en, it follows from ([42], Example 5.2) that Ψ is
a proper convex and lower semicontinuous function in
(R2, dX) but not convex in the classical sense (Figure1).

Now, take αn � 1/(n + 1) and λn � n + 1 for all n≥ 1,
then all the conditions of Corollaries 4.5 and 5.6 are satisfied.
Hence, by considering the following initial vectors, we
obtain the numerical results for Algorithms (58) and (79) as
shown by the graphs as follows:

Case 1: x1 � (0.5, − 0.25)T and u � (0.5, 3)T

Case 2: x1 � (− 1.5, − 3)T and u � (0.5, 3)T

Case 3: x1 � (0.5, 3)T and u � (− 1.5, − 3)T

Case 4: x1 � (0.5, 3)T and u � (0.5, − 0.25)T
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