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Abstract: The electrical conductivity of extrinsically conducting polymer composite systems passes
through a transition state known as percolation threshold. A discussion has been made on how
different Sigmoidal models (S-models), such as Sigmoidal-Boltzmann (SB), Sigmoidal-Dose Response
(SD), Sigmoidal-Hill (SH), Sigmoidal-Logistic (SL), and Sigmoidal-Logistic-1 (SL-1), can be applied to
predict the percolation threshold of electrical conductivity for ethylene vinyl acetate copolymer (EVA)
and acrylonitrile butadiene copolymer (NBR) conducting composite systems filled with different
carbon fillers. An interesting finding that comes from these observations is that the percolation
threshold for electrical conductivity determined by SB and SD models are similar, whereas, the other
models give different result when estimated for a particular composite system. This similarity and
discrepancy in the results of percolation threshold have been discussed by considering the strength,
weakness, and limitation of the models. The percolation threshold value for the composites has also
been determined using the classical percolation theory and compared with the sigmoidal models.
Moreover, to check the universal applicability, these Sigmoidal models have also been tested on
results from some published literature. Finally, it is revealed that, except SL-1 model, the remaining
models can successfully be used to determine the percolation threshold of electrical conductivity for
extrinsically conductive polymer composites.

Keywords: polymer composites; electrical conductivity; percolation threshold; sigmoidal models

1. Introduction

Most of the polymers are inherently insulating in nature. However, these insulating polymers
can be made semi-conducting/conducting by the inclusion of a certain amount of conducting
fillers. Actually, these polymer/filler systems are known as extrinsically conductive polymer
composites. Generally, different forms of filler, such as particulate, flake, tubular or fibrous fillers,
are used as inclusion in the host polymer matrix. The use of particulate carbon black, carbon
nanotubes, carbon fibers, and metallic particles as conducting fillers has been reported by several
authors [1-5]. The quantity of filler at which an extrinsically conducting polymer composite system
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undergoes transition from its insulating to conducting state is known as percolation threshold [2].
Electrical percolation of extrinsically conductive composites depends on filler type, shape and size;
filler dispersion and distribution in the composite; and the processing condition of the composite
systems [3,6]. At percolation threshold, the conductive components are dispersed in such a manner
that one or more continuous conductive networks are formed throughout the polymer matrix.

Several Models and equations have been proposed to explain the percolation threshold of polymer
conductive composites. Kirkpatrick proposed the behavior of electrical conductivity above percolation
threshold, which follows the power law relationship [7]. Many studies have shown that the theory
works well with the polymer composites filled with carbon nanotubes [8], carbon blacks [9], metal
particles [10], and intrinsically conducting polymers in insulating polymer matrix [11]. Malliaris and
Turner formalized the theoretical percolation model based on the initial formation of infinite long chain
of metallic powder in the polymer matrix, where the conductive particles uniformly cover the surface of
large polymer particles [5]. A percolation model has been developed by Janzen based on the concept of
mean number of contacts between the filler particles [12]. Other than these models, many approaches
have been made to explain the percolation behavior of conducting polymer composite systems [13-18].
However, no such model alone predicts the percolation threshold of electrical conductivity when
one considers all of the experimental results of conductivity. However, the prediction of percolation
threshold through different S-model is scant.

In our present study, we have investigated the percolation threshold of electrical conductivity by
applying different Sigmoidal models such as Sigmoidal-Boltzmann (SB), Sigmoidal-Dose response
(SD), Sigmoidal-Hill (SH), Sigmoidal-Logistic (SL), and Sigmoidal-Logistic-1 (SL-1). A mathematical
approach has been made to determine the percolation threshold through all these models. These models
will produce the percolation threshold based only on the experimental results. The obtained results
of percolation threshold from these models have also been compared with the result of percolation
threshold calculated from classical percolation theory. Moreover, their applicability to determine the
percolation threshold value has also been tested with the conductivity data of some published literature.

2. Materials, Methods, and Characterization

2.1. Materials

The base polymer matrices, Acrylonitrile Butadiene Rubber (NBR, mooney viscosity, ML 1.4 at
100 °C is 45) with acrylonitrile content of 33%, was supplied by Japan Synthetic Rubber Co., Ltd. (Tokyo,
Japan) and Ethylene vinyl acetate rubber (EVA-2806, mooney viscosity, ML 1,4 at 100 °C is 20) with
vinyl acetate content 28% (MFI = 6) was purchased from NOCIL, Mumbai, India. The conductive fillers,
conductex (SC Ultra bead) carbon black (CCB), supplied by Columbian Chemicals Company, Atlanta,
GA, USA; printex XE2 carbon black (PCB), procured from Degussa Canada Limited, Burlington,
ON, Canada; and conductive short carbon fiber (SCF) (RK 30/12), obtained from RK Carbon Fiber,
Leatherhead, UK, were used in the preparation of the composites. The physical characteristics
of conductex and printex carbon blacks are reported in Table S1, whereas short carbon fiber has
been reported in Table S2 and some discussion of their physical characteristics are made in the
Supplementary Materials.

Curing agent, Dicumile peroxide (DCP), MP = 80 °C and a purity of 98%, was supplied
by Aldrich chemical company, St. Louis, MO, USA. Tri Allyl Cyanurate (TAC), supplied
by E. Merck (India limited), Mumbai, India, was used as co-vulcanizing agent. Antioxidant,
1,2-Dihydro-2,2 4-trimethylquinoline (TQ, polymerized), was obtained from Lanxess (India) Private
Ltd. (Bharuch, India).

2.2. Preparation of Composites and Samples

The composites of EVA and NBR were prepared with the help of a Brabender Plasticorder (PLE
330, Brabender GmbH & Co. KG, Duisburg, Germany) and two-roll mixing mill (Santec Exim Pvt Ltd.,
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Manesar, India). Initially, the neat EVA and neat NBR was separately melted in a Brabender at 120 °C
for 6 min at the shear rate 60 rpm to form a compact mass. The conductive additives (carbon blacks
or carbon fiber) along with other ingredients (TAC, TQ, and DCP) were mixed with neat EVA and
neat NBR separately in a two-roll mixing mill at room temperature in a sequential mannet, as per the
formulations given in Table 1. The additives and other ingredients were taken as per hundred parts of
polymers. Accordingly, the volume ratios of polymers and additives were also calculated, as shown in
Table 1. The calculation method of volume fraction of fillers is shown in Supplementary Materials (C1).
The curing time for various composites was measured using Monsanto rheometer R-100S (Gomaplast
Machinery, Inc., Wooster, OH, USA) at temperature 160 °C and time duration 1 h. The test specimens
of different composites were prepared under compression molding at curing temperature 160 °C for
the specific curing time.

Table 1. Formulations of ethylene vinyl acetate (EVA) and acrylonitrile butadiene rubber

(NBR) composites.
Composition Parts by Weight per Composition by Volume Fraction (V)
Ingredients Hundred Parts of Polymer
NBR Set EVA Set NBR Set EVA Set
EVA — 100 — 1-V; of carbons
NBR 100 — 1-V¢ of carbons —
DCP 02 02 0.02 0.02
TAC 01 01 0.01 0.01
TQ 01 01 0.01 0.01
CCB 0-60 0-60 0-0.24477 0-0.24191
PCB 0-50 0-50 0-0.21265 0-0.21006
SCF 0-30 0-30 0-0.13945 0-0.13760

Polymers, carbons, and composites designation: polymers NBR and EVA are designated as N
and E, respectively; and the carbons CCB, PCB, and SCF are designated as C, P, and F, respectively.
Accordingly, the composites of NBR and Conductex carbon black are designated as NC and so on.

2.3. Measurement of DC Resistivity

The direct-current (DC) volume resistivity of different composites vary over wide range of
resistivity were measured by using two sets of instruments: Agilent 4339B (Santa Clara, CA, USA,
High Resistance Meter attached with Agilent 16008B Resistivity Cell, Santa Clara, CA, USA) for high
resistance, and GOM-802 (GW Instek DC milli Ohm Meter, Good Will Instrument Co., Ltd., New Taipei
City, Taiwan) for low resistance measurements.

3. Results and Discussion

3.1. Origin of the Concept

In many cases, the progression of a dependent parameter starts with very small beginning
that accelerates and approaches a climax with respect to the independent parameter. If represented
graphically, this type of curve is called Sigmoidal curve or simply S-shaped curve. The variation
of electrical conductivity with respect to conductive filler loading in insulation polymer matrix also
follows the same trend: initially, the increase in conductivity starts with small beginning at low
filler loading followed by sharp increase in percolation region and then finally becomes asymptotic
in nature with further addition of conductive filler. This similarity of electrical conductivity curve
(against conductive additive loading) with S-shaped curve motivated us to make study on this
field to determine the electrical percolation threshold of extrinsically conductive composite systems.
To proceed further on this study, the variation of dependent parameters such as conductivity with
respect to volume fraction of filler for extrinsically conducting composite systems can be graphically
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represented (Figure 1). It is observed in Figure 1 that all curves are S-shaped, except G. However,
the nature of the S-shaped curves depends on the shape, size, aspect ratio, dispersion, distribution,
structure, and conductivity of the filler particles. The shape, size, and/or aspect ratio of carbon fillers
and their ggppesitesare shown in Figure S1 (see Supplementary Materials, Morpholpgy; Section of
Carbons and their Composites). The ercolatlon threshold for all the compos1te systems that exhibit
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Figure 2. Dimension of particulate and fibrous fillers inside a polymer composite, dimension of filler
in (a) is greater and (b-d) is smaller than the sample dimension.
Figure 2. Dimension of particulate and fibrous fillers inside a polymer composite, dimension of filler
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On differentiation of the above equation, we have:
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same methodology The percolation thresholds for these models have been presented below in their
separate sections.

Sigmoidal-Boltzmann model has successfully been used to determine the critical micelle
concentration of surfactant [19], to study the maximum change in viscosity against time during cross
linking process [20], and to estimate the temperature of maximum rate (transition state) during
carbon-iodine bond cleavage from ethyl iodide on the Pd (Ill) surface [21]. The equation and
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publications [2—4,22]. The value of percolation threshold for this model can also be obtained without
plotting the derivative curve. Since xo indicates the percolation threshold in the equation, its x-axis
value corresponding to y-axis value (A1 + A2)/2 will be the value of percolation threshold. Herein,
since Ax is the steepness of the curve around Yso [(A1 + A2)/2], which means halfway between the
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3.3. Sigmoidal-Dose Response Model
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percatatibia MadehErIs&¥Eras this model have already been mentioned earlier. According to this
model, the percolation thresholds of conductivity fg;\zﬁﬂl)g&and NBR composites filled with different
carbons have been shown in Figure Yib-dArespectiv 5xandsthe same with other paramd®rs are
reported in Table S3. It is observed from both the@%gre and table that the percolation thresholds of
NC, EC, NP, EP, NF, and EF composites are 0.140 + 0.005, 0.143 + 0.004, 0.038 + 0.006, 0.039 =+ 0.005,
0.041 +£ 0.002, and 0.023 £ 0.007, respectively. It is seen that the values of percolation thresholds are
higher for Conductex black filled composites compared to Printex black and SCF filled composites.
The reason behind these different values of percolation threshold has been discussed in our previous
publications [2—4,22]. The value of percolation threshold for this model can also be obtained without
plotting the derivative curve. Since xj indicates the percolation threshold in the equation, its x-axis
value corresponding to y-axis value (A; + Ay)/2 will be the value of percolation threshold. Herein,
since Ax is the steepness of the curve around Ys0[(A1 + Ay)/2], which means halfway between the
minimum and maximum of the response, it implies that conductivity is increased faster around the
percolation threshold for the present composite system.

3.3. Sigmoidal-Dose Response Model

This Dose Response model has been used in medical field to analyze a relationship between
the mean maximum viral reduction load and plasma inhibitory quotient or liver partition
coefficient-corrected inhibitory quotient, to analyze bioassays in herbicide, toxicology, and
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pharmacology, and to evaluate the dose response of anticancer agents [23-25]. The equation based on
this model can be given as:
Ay — Ay

Y=4+ 14+ 10(log xo—x)P

)
where A; is the bottom value of electrical conductivity; A, is the top value of electrical conductivity;
x is the volume fraction of the filler loading; log xy is the x-axis value halfway between bottom and
top value of electrical conductivity; and P is the steepness of the curve around log x. It is also called
Hill slope [%%‘yz}rcs)%%’fg%gg)r. For a standard dose response curve, the value of Hill slope i7solf11r7lity. If this
value is greater than unity, then the curve is steeper, while, at less than unity, the curve is shallow.

On differem}ﬂia}txi@hi@fhEqmﬁmm(ﬁé,omhaivzd:conductivity; A2 is the top value of electrical conductivity; x
is the volume fraction of the filler loading; log xo is the x-axis value halfway between bottom and top
value of electrical conductivw and 5 i3, the e%enge%(l)s i}aa(hlgrx@—amar-ld log . It is. also callled Hill
slope or slope factor. Fora s ard 7 ill slope is unity. If this value 4)
is greater than unity, then t %C curve is s%@pﬂ;x,l‘@ﬂﬂé,xaﬂéig ?‘mn unity, the curve is shallow. On
differentiation of Equation (3), we have:
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composite system.

i Figure 5. Experimental, theoretical, and derivative curves: (a) an ideal curve; (b) Conductex black
Figure 5. Experimentalptheqnetical s sribvabivgosiisiesed a) aRddeal setvredRh& anrdictex black
filled; (c) Printex black filled; and (d) SCF filled composites based on Sigmoidal-Dose Response model.
3.4. Sigmoidal-Hill Model

Levasseur and his coworkers applied this modified Hill model to find the time dependent
behavior of in vitro drug cytotoxicity [26]. Later, this model has been extensively used in
pharmacodynamic modeling for hematological toxicity for clinical practices and veterinary
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3.4. Sigmoidal-Hill Model

Levasseur and his coworkers applied this modified Hill model to find the time dependent behavior
of in vitro drug cytotoxicity [26]. Later, this model has been extensively used in pharmacodynamic
modeling for hematological toxicity for clinical practices and veterinary pharmacology, in an automated
fitting procedure for multiphasic features, etc. [27-30]. The equation based on Sigmoidal-Hill model
can be given as follows:

Ay — A
Y=A+ —F— 5
In another form, it can be written as:
x?l
Y:Al+(A2—A1)W (6)

where Y is the dependent parameter of electrical conductivity at any volume fraction of independent
parameter x; A1 and A; are the initial and final values of electrical conductivity, respectively; 7 is the
Hill coefficient, also known as hill slope/shape factor; and k is the volume fraction of filler at which
Y = (A1 + Ap)/2. On differentiation of the above equation, we have:

dy nk"x"1
= =(Ar—A)— 7
dx (42 1)(kn+xn>2 )
Hence, equating dzy /dx? =0, the percolation threshold value can be obtained from this model by
making the same type of mathematical arguments that has been mentioned earlier, and is given as:

n—1 %
x:k<n+1> ®)

Thus, the percolation threshold depends on the magnitude of n (Hill coefficient > 1) and k, which
in turns depend on the initial and final value of electrical properties. Putting the value of percolation
threshold x in Equation (6), we have:

AR (n 1) + Agk(n— 1)
 k'(n+1)+k(n—1)

Y ©)

This gives the value of y-axis parameter at the percolation threshold. Hence, an ideal plot based
on this equation and subsequent derivations can be drawn, as shown in Figure 6a. The values of
percolation thresholds, obtained from the maxima of the plots are shown in Figure 6b—d. Moreover,
the values of parameters, obtained by fitting of the equation are presented in Table S5. This fitting
gives the value of parameters Ay, Ay, k, n, and RZ. Using parameters k and 7, the value of
percolation threshold k[(n — 1)/(n + 1)]/" has been calculated, which is also shown in Table S5.
It is observed in both the figure and table that the values of percolation threshold resemble with
each other. A careful look into the tables or figures reveals that the value of percolation threshold
obtained through Sigmoidal-Hill model is always lower compared to Sigmoidal-Boltzmann and
Sigmoidal-Dose Response models for any particular composite system. Actually, the value of Y5
(value of Y parameter at its 50%) for all these three models is the same: (A; + Ap)/2. The corresponding
x-axis value for Sigmoidal-Boltzmann model is x, for Sigmoidal-Dose Response model is log x(, and
for Sigmoidal-Hill model it is k. The corresponding x-axis value of SB and SD models indicate their
percolation threshold value, whereas, in the case of Hill model, it is not k but k[(n — 1)/(n + 1)]*/",
which indicates the percolation threshold value. The value of right hand term [(n — 1)/(n + DI/ is
always less than unity. This is why we observe lower value of percolation threshold for Hill models
compared to the two other models. For the present model, as # is the steepness of the curve around
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Ys50[(A1 + Ap)/2], it implies that conductivity is increased faster around Y5, but not around percolation

11'h yeygergghpgcgﬁse the percolation point is different from its Y5 level. 9 of 17
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where Y is the response related to electrical coéﬁuc%lnty at the filler loading x, A: is the
wiinumflower vabpe At dhedendues villoctkidsitheo Audaany uppeier dneof dag ianductiitys Ahis
thinhakiyras bwier eeatibegniREeRGARS PR X IAYITY HREPARSSAREASIPErs A sIbH BfcXcandUl iR ihg
slapeief Hagfovay dalspdkRanamassiopadasiariehirhhedibigssnsiatina Rhshhabanragua ion gikasthe
fRilep et Gurve also known as slope factor (>1). The differentiation of the above equation gives

the following result:
(e A@Eﬁ@u@m
% e @
+ (x/xp 2
dx ﬁm X/ xon
Again, equating the second derivative (d4?y/dx?) to zero, we have:
Again, equating the second derivative (d2y/dx?) to zero, we have:

X =X (jPF (12)
]11> (12)

XDX

Hence, the parameter xo[(P — 1)/(P + 1)]'? give the value of percolation threshold for this
equation. Putting this value into Equation (10), we can calculate its corresponding y-axis value:

A (P-1D+A4,(P+1)

5P (13)
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Hence, the parameter xp[(P — 1)/(P + /P give the value of percolation threshold for this
equation. Putting this value into Equation (10), we can calculate its corresponding y-axis value:

A1 (P—1)+ Ax(P+1)
2P

Y = (13)

Thus, an ideal curve based on this equation and its subsequent derivatives can be plotted, which
is shown in Figure 7a. To find the value of percolation threshold graphically, the experimental and

derivative gcurves are al also plotted in Figure 7b—d. The value of percolation thresholds, obtamed from
Polymers

the maxima of the plots has been mentioned within the figures. To calculate the Value of percolat1on
threshold, the'ldata dnaidedbeury €itesddveitlihiheqtiotiond atscubreplstdineidl atikiecof thejoiedmeters Ag,
A, xo, and"Pighés ﬁ?«%&’éﬁf‘eﬁ%‘ff@faﬁo?é’ é‘é‘?égﬁ é?{%é‘fg Ybfﬁftléﬂﬂfé)ap@%ﬂ][ %%%ﬂﬂ%‘%ﬁéo and P in

curves are al lotted in 7b—d..Th erc latlo esholds, obtat
Equation ([}, (e HalheQRRrol ?slﬂsgfi&#hl% 3 o8 Ren cale A 3 iﬁﬂ%t@’%ﬁé%ﬁ o jp Table S6.
Interestinglszcthincaletladrgd tvallae: of peveal ation ‘thrﬂﬁbcdqllmﬁr@b@mée@bwm thewalurs obtained
graphicallparapeirrsadearefud cbdervartioreseviedlinthakleh# veduSuppisereathuyi dfntbrielshdldmwsbtadned using

the Loglstlca% odér fé‘&l’é&&s‘ll@%\?& LOnf ﬁa‘f%l&e 8 38‘1?%’1’:%15}‘5??3055?@ i’fé’%‘}f&ﬁ%a%@éﬁlﬁ he reason

ented in Table terestingly, d cg:roborates ith

is_calculated, v ue of perco]ation thre:
behind thi§p 1)91’4}85%8{&%& RAME Agdn, H l(ﬁi&m ivgmﬁgs NS L RFAQMSk Moreover,
the value Qﬁp@i@ﬂ&iﬁ@ﬁh&hrﬁsﬁglm@b@mﬁd&m klﬂlkm&dslvaﬂdoh@giémmd%aﬁa Jaﬁarﬂmsé not equal.

Although Resippeamodhlat Dstieareo dehingribiprhrensiation ighatioresaare Hid medeb,atldeiaabeenot exactly
the same. em@l&e%&g issys%é(lgfegﬁa lﬁléﬁf%l&? 3%@?593&@%@}0 ﬁ%b&ﬂ%&a%w&m%ﬁgél related,

gistic mod pears that_bot els and percolation

are near but, not equal. hough
and hence {g SSSPRRANG VSIS VANE ALNE Retsalation Mrsshalshaiticrss kap ﬁ;xlgnodel the
steepness pﬁrﬂi\ﬁz@lﬂﬂ@oﬂy incround iXsoléey relded/ 2:]&1h@ﬁé‘fetﬂalsoalsgp@nmplge}gﬂgld&;@@yﬂky{dncrement

is faster arpraendation fivethalst diftstntop drieta tiodeihtius edphdsech tive thisep Bréotationd Pt is different
from its Y. Azl/&/ é‘Fnce this also implies conductivity increment is faster around Yso, but not around percolation
E_{?\reshold because the percolation point is different from its Yso level.

Figure 7. Experimental, theoretical, and derivative curves: (a) an ideal curve; (b) Conductex black
Figure 7. Expetimental theoneticalsanddesivativeeumvas@basisealaupysidanductex black
filled; (c) Printex black filled; and (d) SCF filled composites based on Sigmoidal-Logistic model.
3.6. Sigmoidal-Logistic-1 Model

3.6.S igmoidal—ﬂdgﬂﬁﬁefmf logistic model was first proposed by Pierre Francois Verhulst to study the
population growth of human beings [35]. Singh et al. have utilized this equation in the growth

This thoeetipgrameterdogistic mddehmoas firstiprepiesedies Riente Fepneois Merhulstito study the
populatiorgddveiivkiaradysibensisifispwSinstyes slc- [RA3Y- hkibasdtithideegeativaiadthe growth

modeling oaipliJ SEYBs lactis under various conditions [36]. There are also reports of the use of this
A,
V=17 -
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model for wavelet analysis, bacterial growth analysis, etc. [37,38]. The equation based on this model
can be given as:

___ A

RE R
where Y is the electrical conductivity at the corresponding filler loading x, A, is the maximum value of
electrical conductivity, k is the steepness of the curve, and x. is the x value at the Sigmoidal midpoint.
The differentiation of the above equation results as:

(14)
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dy kAge~k(x—xc)
Where Y is the electrical conductiviidi}at the iqrggspem@jng@lf% loading x, A2 is the maximum value
of electrical conductivity, k is the steepness of the curve, and xc is the x value at the Sigmoidal

(15)

idpqint. The diff t £ b t
Agalrlln lrchlgilng Jdx2 1a610n e ﬁfv% =% af}iognrg%ullrsl;}cﬁe above-mentioned equation, x. indicates
the value of percolatlon threshold for thls‘fmocgl._l%}%%ng X = X¢ in the above equatimy, it results

Y=A,/2. Hence, an ideal curve based on thlS modethas been presented in Figure 8a. The experimental
2
data and t]:f11e1r Slrri Ny l%/fi ﬁle&:ﬁ‘avefco §' 1(/1]’3 oAl ﬁenhonedg Ut mdlc%tf’g shown in
o t

alue 0 perco ont res 1s mo x Xc 1N ove quatlon it resu
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ementar
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the pro er¥1 g¢ lowever, Ia com St ere is the v f of minima.
p p %‘l ere 1s t e va ue [0) éx1ma Cl;}yt e pI'O er%i%s OR/ er, S ourn&ata, or any para u]e

Hence, thléompgéﬁlswsl&bﬁ moreapplisable todhaseisystams a%h@revﬁhsevlﬁha@%ﬁ@amm%&m be equal

to zero.  systems where the values of minima will be equal to zero.

Figure 8. E'é)reerf;mExﬁfzafngﬂEacli thfmreflcalﬁan éélr‘i%‘é ive r‘f%seéa)(a ) an gl geniee b CO'H)L}C@E) 3uctex black
d; (c) Prmtex’black filled; ang é&F i 111lled composites based ‘on S1gm01dal Lg{glstlc -1"'model.
1

filled; (c) Printex black filled; and (d) ed composites based on Sigmoidal-Logistic-1 model.

3.7. Classical Percolation Theory and Model Comparison

Classical percolation theory was proposed by Kirkpatrick in 1973 [7]. This is also known as
scaling law or power law behavior of percolation theory. Many authors have calculated the electrical
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BopynetaduPPATolation Theory and Model Comparison 12017

Classical percolation theory was proposed by Kirkpatrick in 1973 [7]. This is also known as
peatiolg fion Srrpshodd lealuiseloativainé prdutttio pohomeyr. ddarppsaitetsystdms dyadpplytod thd etdassical
percolation tHe@shindhegbast [or—th¢irlkorduativa padednen ttosthesity isygiteensady applying this
classical percolation theory in the past [37—43]. The equation based on this theory is given as:

oc = 0op(Vg — Vfc) where, Vi > Vg (16)

o. = oo(Ve— Vi)', where Ve > Vi (16)
where 6 is the conductivity of the compssites; Vi is the veltme fraction of fillers, Vi is the velume
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conductivity results in some published literature [44-46]. The filler loading and electrical conductivity
in these studies have been converted into volume fraction and S/cm, respectively. The conductivity
results from References [44-46] are for EVA /graphene composites, PP (polypropylene)/carbon black
composites, and polyimides/single-walled carbon nanotubes (PI/SWCNTs) composites, respectively.
The results from these studies, their Sigmoidal fitted curves, and derivative curves are presented in
Figure 10a—c. The studies and model based percolation thresholds values are reported in Table S10.
It is observed in Figure 10a that there are good fittings of Sigmoidal curves with the experimental
results, although the value of percolation thresholds using different Sigmoidal models are a little higher
compared to the literature value. On the contrary, the fitting curves based on different Sigmoidal
models do not properly match the experimental results taken from Reference [45] (Figure 10b), but
the percolation threshold values have exactly matched with each other. Figure 10c shows that the
model based fitted curves of conductivity are mostly in good agreement with the conductivity results
in Reference [46]. However, the percolation threshold value mentioned in this study, calculated by
the classical percolation theory, is lower compared to Boltzmann and Dose response models, but is
higher compared to Hill and Logistic models (Table 510, see Supplementary Materials). Thus, it can be
said that the value of percolation threshold, calculated using the classical percolation theory, might
be higher, equal or lower compared to the percolation thresholds values based on Sigmoidal models,
g o%oendm on, the nature of the experimental curve of conductivity.
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x-axis value at the maximum of the derivative curve. It is observed that the percolation threshold
value obtained from SB and SD models are similar. This is because the corresponding y-axis value at
the percolation threshold for both equations are similar: (A1 + A2)/2. The percolation threshold values
determined using SH and SL models do not coincide with each other and are of low value compared
to SB and SD models. SL-1 model is not suitable for determining the percolation threshold value

hoeratice 9 varametor ramelyr hace e caondiickivityv 1e ahecont writhin the catiatiorn The roct1lie AfF



Polymers 2017, 9, 527 14 of 17

points. Sigmoidal-Boltzmann model has only been applied to find the percolation threshold value
for both cases, and its theoretical and derivative curves are also shown in Figure 10d. It is observed
in the figure that the theoretical conductivity curve based on SB model has shifted to higher value
when the intervals of the data points are large. Moreover, the derivative curves reveal that the value of
percolation threshold has shifted from 0.027 to 0.032 when the intervals of the data points are large.
Thus, it can be said that the number of data points affects the Sigmoidal conductivity, and the value
of percolation threshold determined using it. In this case, we observed high value of percolation
threshold when the intervals of data points are large for a particular composite system at the certain
range of filler loading.

4. Conclusions

The percolation threshold value from different types of Sigmoidal equations have been determined
mathematically based on the concept of where the rate of increase in conductivity is maximum.
Mathematically, the percolation threshold for SB, SD, SH, SL, and SL-1 models are xg, log xo,
kK[(n — 1)/(n + DIV", x[(P — 1)/(P + 1)]? and x, respectively, where these are the corresponding
x-axis value at the maximum of the derivative curve. It is observed that the percolation threshold
value obtained from SB and SD models are similar. This is because the corresponding y-axis value
at the percolation threshold for both equations are similar: (A; + A3)/2. The percolation threshold
values determined using SH and SL models do not coincide with each other and are of low value
compared to SB and SD models. SL-1 model is not suitable for determining the percolation threshold
value because a parameter, namely base line conductivity, is absent within the equation. The results of
percolation threshold determined using Sigmoidal models are close enough to the results of percolation
threshold calculated using the classical percolation theory. The physical validity of the fitting for these
Sigmoidal models has been clearly understood from the value of coefficient of correlation (R?); that
is, its closeness to unity. It is observed from the respective tables of these models that the value of
R? is close to unity for all models, except SL-1. The determination process of percolation threshold
using these S-models is also easy: one only needs to fit the models. However, the percolation threshold
value is affected by the number of interval in the data points: the higher is the number of data points,
the lower is its percolation threshold for a particular composite system at their certain range of filler
loading. These models have also been successfully used to determine the percolation threshold for
other polymer conductive composite systems. Hence, it can be concluded that, except SL-1 model,
the other sigmoidal models can universally be used to determine the percolation threshold value
of electrical conductivity for extrinsically conductive polymer composite systems. It is hoped that
researchers will also test these models when determining the percolation threshold value for their
composite system, and then a strong base for these models will be established.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/10/527/s1,
Figure S1: TEM image of (a) Structure of conductex black particle, (b) aggregated conductex black particle;
FESEM image of (c) conductex black particle, (d) EC composite at low loading, and (e) EC composite at high
loading; TEM image of (f) EC composite at high loading; TEM image of (g) a single printex black particle,
(h) structure/aggregated printex black particle; FESEM image of (i) printex black particle, (j) EP composite at
low loading, and (k) EP composite at high loading; TEM image of (1) EP composite at high loading; (m,n) are the
optical microscopy of SCF; SEM image of (0) SCF, (p) EF composite of cryo-fractured sample, and (q) EF composite
of solvent itched sample; TEM image of (r) EF composite showing a single fiber, Table S1: General specification of
Conductex SC ultra beads and Printex XE2 carbon black; and so on.
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