

Full-Scale Seawater Reverse Osmosis Desalination Plant Simulator

Mariam Elnour¹, <u>Hammad Siddiqui²</u>, Khaled M. Khan³, Raj Jain⁴, Nader Meskin^{1*},Syed Zaidi^{2*}

Department of Electrical Engineering, Qatar University¹, Center for Advanced Materials, Qatar University² Department of Computer Science and Engineering, Qatar University³, Department of Computer Science and Engineering, Washington University³,

ABSTRACT: Reverse Osmosis (RO) is an efficient and clean membrane-based technology for water desalination. This work presents a full-scale Seawater Reverse Osmosis (SWRO) desalination plant simulator using MATLAB/Simulink that has been validated using the operational data from a local plant. It allows simulating the system behavior under different operating conditions with high flexibility and minimal cost.

1 Introduction

Given the increased demand on freshwater due to the worldwide population growth, technologies for seawater desalination have become essentially important. Among the existing technologies for seawater desalination, **Reverse Osmosis** (RO), which is a membrane-based separation technique, has been proven to be one of the most efficient methods due to its low carbon footprint and energy requirement.

2 Objective

The objective is to develop a **simulator** capable of demonstrating the operation of the reverse osmosis plants, **1**) It simulates the actual full-scale plant operation and incorporates the full control system of the plant. **2**) It can be used for several research purposes such as performance analysis, health monitoring applications, and cybersecurity-related research with high flexibility.

Architecture of the Simulated Reverse Osmosis Plant

Design of the RO Plant Simulator

• It is a two-pass RO desalination plant operating with an overall salt rejection of 99.9% and a recovery rate of 40%.

• The RO membrane units are manufactured by TORY with models TM820M-440 and TM720D-440.

Parameter	Value	
Number of elements in a pre	7	
Number of pressure vessels	RO 1 pass	141
ivullibel of pressure vessels	RO 2 pass	52

 A Pressure Exchanger - Energy Recovery Device (PX-ERD) is used o recover and transfer the pressure to a portion of the main feed water

- The pre-treatment stage's model is based on regression models from the practical data.
- The simulation model of the RO process is based on the mathematical models in [1].
- The control system is implemented using
 Proportional Integral Derivative (PID) controllers.

Stage	Number of controllers
Pre-treatment	6
Reverse Osmosis	2
Post-treatment	1

variable	Mathematical Expression
Disk Filter	$M_{\rm out} = M_{\rm in}$ $P_{\rm out} = P_{\rm in} - \Delta P$ $\Delta P = \alpha_{\rm f1} T^2 + \alpha_{\rm f2} T + \alpha_{\rm f3}$
Permeate flux	$J = \frac{\Delta P - \Delta \pi}{\eta (R_m + R_c)}$
Permeate concentration	$C_{\rm p} = \frac{K_{\rm s}C_{\rm b}}{\frac{J}{\exp(J/k) + K_{\rm s}}}$
Permeate flow rate	$M_{\rm p} = K_{\rm w} A_{\rm em} T_{\rm m} \rho_{\rm w} (\Delta P - \beta \Delta \pi)$
Temperature dependency correction factor	$\exp\left(\mathbf{b_T} \; \frac{T_{\mathrm{f}} - \mathrm{T_{ref}}}{T_{\mathrm{f}} + 273.15}\right)$

Simulation Results

(kg

	Unit	Variable	Actual	Simulation	Error
	RO 1	$M_{\rm f}$ (kg/s)	5010	5171	3.21%
		$C_{\rm f}$ (ppm)	45817	45900	0.18%
		P _f (kPa)	7210	7210	0.00%
		$M_{\rm p}~({\rm kg/s})$	2178	2150	1.29%
		$C_{\rm p}({\rm ppm})$	252	242	3.97%
	DO 2	$M_{\rm p}({\rm kg/s})$	1474	1570 6.51%	
	RO 2	$C_{\rm p}({\rm ppm})$	3.80	3.45	8.95%
	0000	R.0	O 2 permea	te flow rate	
	2000 [No.	ı	1	1

6 Conclusion

- A full-scale seawater reverse osmosis desalination plant simulator has been developed and validated using MATLAB/Simulink
- It is capable of simulating the actual plant operation with an average error of less than 5% for most of the system variables.
- It provides a feasible, low-cost, and flexible solution for: 1) analyzing the plant performance, and 2) promoting research in the area of health monitoring and cybersecurity of industrial control systems.

7 Acknowledgement

This work was supported by Qatar National Research Fund (a member of Qatar Foundation) under NPRP Grants number NPRP 10-0206-170360 and

[1] Joseph, A. and Damodaran, V. (2019). Dynamic simulation of the reverse osmosis process for seawater using LabVIEW and an analysis of the process performance. Computers and Chemical Engineering, 121, 294 – 305