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Abstract This paper aims to develop a robust and practical photovoltaic (PV) Maximum Power

Point (MPP) identification tool developed using reliable experimental data sets. The correlations

between the voltage and the current (Vmp and Imp) at maximum power from one side, and the irra-

diance information, electrical parameters, thermal parameters and weather parameters from

another side, are investigated and compared. A comparative study between a number of input sce-

narios is conducted to minimize the MPP estimation error. Four scenarios based on a combination

of various PV parameters using various Artificial Neural Network (ANN)-based MPP identifiers

are presented, evaluated using the most common regression measure (Mean Squared Error

(MSE)), improved in terms of the accuracy of the identification of MPP, and then compared.

The first scenario is divided into two parts I(a) and I(b) and considers the irradiance information

in addition to the highest correlated parameters with Imp and Vmp, which are circuit current (Isc)

and open-circuit voltage (Voc), respectively. The second scenario considers irradiance information

and the electrical parameters only. The irradiance information, in addition to the electrical, thermal,

and weather parameters, are considered in the third scenario using a single layer network, while the

irradiance information, in addition to the electrical, thermal, and weather parameters, are consid-

ered in the fourth scenario using a two-layer ANN network. Although the correlation study shows

that the Vmp and Imp have the best correlation with the open-circuit voltage and the short circuit

current (scenario I), respectively. Nonetheless, the consideration of irradiance, electrical, thermal,

and weather parameters (scenario IV) yielded higher identification accuracy. The results showed

a decrease in the MSE of Vmp by 74.3% (from 1.6 V to 0.411 V), and in the MSE of Imp by

95% (from 4.4e�6 A to 2.16e�7 A), respectively. In comparison to the conventional methods,

the proposed concept outperforms their performances and dynamic responses. Moreover, it has
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Fig. 1 Typical neural net
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the potential to eliminate the oscillations around the MPP in cloudy days. The MPP prediction per-

formance is 99.6%, and the dynamic response is 276 ms.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

Photovoltaic (PV) solar systems exist in different configura-
tions for a broad range of applications such as grid-

connected mode and isolated mode of operation. PV panels
have non-linear relationships not only between voltage and
current but also between their operating environmental condi-
tions, panel characteristics, and their maximum power genera-

tion. This can be investigated using the well-known Current-
versus Voltage (I-V) curve [1,2]. The non-linear behavior of
solar panels can be represented primarily by the Fill Factor

(FF), which is defined as the ratio between the maximum
power produced by a solar panel to the product of open-
circuit voltage (Voc) and short-circuit current (Isc). In general,

FF, Voc, and Isc are the basic electrical parameters that can
yield a convenient approximation for the electrical behavior
of PV panels under typical operating conditions [3].

As the irradiance level varies during the day, the load char-
acteristic, at which the power transfer is maximum, changes.
To obtain the maximum power at any given environmental
conditions, the electrical load characteristic should be adjusted

to track the Maximum Power Point (MPP) on the Current-
Versus-Voltage (I-V) characteristics of the PV system, where
the Maximum Power Point Tracking (MPPT) is the process

of identifying the MPP and maintaining the load operating
point there all the time [3]. The MPPT approach is typically
integrated with the power converter control [4–7]. Various

MPPT techniques were developed to identify PV MPP. The
conventional MPPT techniques are Perturb and Observe
(P&O), Incremental Conductance (IncCond) [3,8,9].

A multilayer perceptron (MLP) is a dominant class of feed-

forward ANN. It is commonly used for pattern recognition
and function approximation (regression). MLP is made of, at
least, three layers of neurons that utilize a nonlinear activation

function. These three layers are (a) an input layer, (b) a hidden
layer(s), and (c) an output layer. The Sigmoidal and Hyper-
bolic Tangent functions are of the most common ANN activa-

tion functions. The basic structure of the MLP is illustrated in
Fig. 1. Backpropagation is a supervised learning technique,
work architecture.
which is utilized for training MLP based networks. The multi-
layer option and the nonlinear activation function are the
options that make the MLP networkers different from linear
perceptron networks [13].

The most common performance evaluation function for
regression problems is the Mean-Squared Error (MSE) [13–
15], and it is used in this study to assess the prediction perfor-

mance of the proposed network configurations. There are
numerous types of ANN learning algorithms in the literature.
However, it is challenging to identify which of these training

algorithms would be the most suitable for a given problem
in terms of accuracy. Based on the results of various experi-
ments, MLP is an effective ANN architecture, and the
Levenberg-Marquardt (LM) is one of the most accurate

ANN training algorithms as it can obtain the lowest MSE
when employed to solve various function approximation prob-
lems [15]. On the other hand, the Scaled Conjugate Gradient

(SCG) algorithm also provides good performance over a wide
variety of function approximation problems.

The LM algorithm is defined as an iterative technique,

which locates a local minimum of multivariate functions.
These functions are expressed as the sum of squares of several
non-linear and real-valued functions, while the SCG is a

second-order conjugate gradient algorithm that is developed
to accelerate and improve the identification of the global min-
imum of multivariate functions [12,15].

ANN-based MPPT may be used as the main MPPT

approach [20–29]. On another frontier, ANN-based MPPT
may be combined as an auxiliary MPPT technique with
one of the Artificial Intelligence MPPT techniques, such as

Fuzzy Logic Controller. Moreover, ANN-based MPPT tech-
niques can be classified based on the controller input type.
The major three types are (a) electrical inputs only (short-

circuit current (ISC) and open-circuit voltage (VOC)), (b)
non-electrical inputs only (irradiance (G) and temperature
(T)), and (c) combined electrical and non-electrical inputs.
The majority of researches considered a single type only,

while a few of them considered a combination of electrical
and non-electrical input types [12].

It can be observed that the parameter combination scenar-

ios are limited in the literature and need further investigation,
to maximize the accuracy of the MPP identification using a
good combination of parameters as well as a proper configura-

tion of an ANN architecture. To the best knowledge of the
authors, the combination of the fill factor, relative humidity,
atmospheric pressure, and surface temperature of the PV panel

have not been considered, and their effect on the overall per-
formance of the ANN-based MPPT controller has not been
addressed before, which will be pinpointed in this paper.
Fig. 2 illustrates the research methodology employed in this

study.
Therefore, among a large number of ANN-based PV

MPPT techniques, the following approaches have not been

investigated thoroughly:
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Fig. 2 The methodology of the comparative study.

A robust experimental-based artificial neural network approach 3701
(a) The correlation between a large number of PV parame-

ters, including the electrical, thermal, and meteorologi-
cal parameters on the one hand and the MPP
parameters, on the other hand.

(b) The impact of the combination of these parameters on
the prediction accuracy of ANN-based solutions based
on the correlation as well as by using trial and error

method. The prediction results are significantly affected
by the input parameters combination, and, unlike the
previous work, this paper considers a large number of

different PV parameters.

The P&O technique has the following disadvantages: (a)
power oscillations at steady-state operation around the MPP,

(b) slow convergence, and (c) inaccurate MPP determination
in cloudy days [10]. While the incremental conductance tech-
nique is more accurate then P&O as it can determine the

MPP without oscillating around it, however, it requires heavy
computation in the controller, fast power slope calculation as
well as a high sampling rate. This adversely affects its transient

performance producing oscillations when operating conditions
change rapidly [11]. Moreover, the majority of the introduced
methods employ a limited number of PV parameters, in partic-
ular, electrical parameters, which hinder the efforts to investi-

gate the effect of other non-electrical parameters on the MPP
identification accuracy. Thus, this work will not only consider
the electrical parameters but also will be extended to consider

the thermal and meteorological parameters that affect the non-
linear internal resistance of a PV panel. These parameters vari-
ably affect the load resistance for MPP, increase the complex-

ity, and affect the performance of the aforementioned MPPT
approaches.
Although the major conventional MPPT techniques pro-
vide acceptable performance, Artificial Neural Network

(ANN)-based MPPT techniques demonstrated faster and more
accurate MPP identification results, particularly when consid-
ering partial shading or fast environmental changes. This

comes in agreement with the strength of ANN in solving
non-linear problems [3,9]. ANN-based PV MPPT methods
have been addressed extensively in the literature, and ANN
algorithms demonstrated a number of capabilities such as (a)

non-linear mapping, (b) fast response, (c) reliable and stable
operation, (d) compact and accurate solution for multi-
variable problems, (e) off-line training and (f) reduced compu-

tational burden [12].
Thus, in this context, the main contribution of the paper

can be summarized in the following bullets:

� Investigate the correlation between the voltage and current
at maximum PV power on the one hand, and the electrical,
thermal, and weather parameters, on the other hand.

� Develop, compare, and evaluate the performance of a set of
experimental ANN models for MPP detection at various
working conditions, including cloudy days to overcome

the drawbacks of the conventional MPPT methods as well
as to improve the MPP identification performance. The
experimental networks will consider the correlation results

as well as other parameters combination scenarios. This is
carried out using accurate and reliable experimental data
collected by the National Renewable Energy Laboratory,

U.S. Department of Energy, USA [16].

This paper is divided into 5 sections. Section 1 presents
the introduction, literature review, and the scope of this work.
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Sections 2 explains the mathematical model of PV arrays and
delivers information about the experimental data sets used in
this study. The correlations between different PV parameters

are investigated and identified in the same section. In Section 3,
the performances of improved conventional MPPT methods
are discussed and summarized. Various ANN models based

on several parameter combinations and ANN configuration
scenarios are introduced, investigated, and evaluated for their
MPP identification performance in Section 4. Finally, the

results of this study are summarized in Section 5.

2. Correlation between Imp and Vmp with PV electrical, thermal,

and meteorological parameters

This section provides the mathematical model along with the
parameters that influence the power generation of PV arrays.

Also, it provides the correlation relationships between MPP
parameters and various PV parameters. The PV cell equivalent
circuit is shown in Fig. 3. The voltage-current characteristic
equations of a solar PV cell are given in (1)–(3).

I ¼ Iph � Is e
q VþIRsð Þ
KATc

� �
� Vþ IRs

Rsh

ð1Þ

Iph ¼ G½Isc þ KIðTc � TrefÞ� ð2Þ

IS ¼ Irs
Tc

Tref

� �3
e
qEgðTc�TrefÞ
TrefTcKA ð3Þ

where I: Solar cell current (A), V: Solar cell voltage (V), Iph:

Light generated current (A), Is: Cell saturation current (A),
q: Electron charge; 1.602x10–19 J/V, Rs: Series resistance (O),
Rsh: Shunt resistance (O), K: Boltzmann’s constant; 1.38x10-
23 J/K, A: Diode ideality factor, TC: Cell temperature (K),
and G: Insolation (W/m2). ISC: Cell’s short-circuit current at
298 K and 1 kW/m2, Tref: Reference temperature of the cell;

298 K, and KI: Short circuit temperature coefficient; 0.0017
(A/�C). Irs: Cell’s reverse saturation current at a reference tem-
perature and solar radiation, and Eg: Band-gap energy.

The correlation study presented in this paper is based on
experimental data sets. These data sets were collected by the
National Renewable Energy Laboratory, U.S. Department
of Energy, USA. The data were recorded for one year at three

climatically diverse locations (Cocoa, Florida; Eugene, Ore-
gon; and Golden, Colorado) and for PV modules representing
all technologies available in 2010 when the work began [16].

The different types of PV modules are shown in Fig. 4. This
Fig. 3 PV cell equivalent circuit diagram.
study utilizes the experimental data provided about the Amor-
phous Silicon/ Microcrystalline Silicon PV panel (Model H).
The panels were deployed at Coca, Florida, in 2010. The data

sets contain data for an entire year, including cloudy days.
Regression analysis is performed to identify the highly cor-

related parameters with Imp and Vmp. The parameters consid-

ered in this correlation study are:

� The back surface temperature of the PV panel (B.S.Temp).

� Short circuit current (Isc).
� Open circuit voltage (Voc).
� Fill Factor (FF) that reflects the quality of the solar cell.
� The meteorological information; namely Relative Humidity

(RH) and Atmospheric Pressure (AT. P.).

The degree of relationship in the patterns of variation of

input Xa and output Yb variables is calculated through the cal-
culation of Pearson’s linear correlation coefficient (q). q can be
calculated as follows [17,18].

q a; bð Þ ¼
Pn

i¼1 Xa;i � Xa

� �
Yb;i � Yb

� �
Pn

i¼1 Xa;i � Xa

� �2Pn
j¼1 Yb;j � Yb

� �2n o1=2
ð4Þ

Xa ¼
Xn

i¼1

Xa;ið Þ=n and Yb ¼
Xn

j¼1

Yb;j

� �
=n ð5Þ

where n is the length of each column.

The value of q varies between ‘‘100 for perfect correlation,
and ‘‘-1” for the perfect negative correlation. While zero corre-
lation means that the variation of one variable cannot be

employed to explain the variation in the other variable. Table 1
shows the results of the regression analysis. It displays a matrix
of the pairwise linear correlation coefficient between the out-
put parameters (Imp and Vmp) and the input parameters (irra-

diance, B.S.Temp, Isc, Voc, FF, RH, and AT.P.). Imp was found
in a good correlation with Isc and Irradiance, while Vmp was
found in a good correlation with Voc and irradiance (the two

highest correlated parameters).

3. Performance of improved conventional MPPT methods

Tan et al. [30] conducted various experiments to improve the
performance of MPP identification using the Perturb and
Observe technique. The results showed that 99.25% perfor-

mance could be achieved when using a variable step-size algo-
rithm applied to a Cascaded Multilevel Converter (CMC)
converter and that the performance remained unchanged with

the variation of solar irradiance. Yilmaz et al. [31] proposed a
new MPPT method with a 99.5% minimum performance. This
method is based on the calculation of the reference voltage
using the Fuzzy Logic technique to adjust the PWM duty cycle

that controls the output of a DC-DC converter. Yang and
Wen [32] managed to improve the dynamic response of the
conventional Perturb and Observe (P&O) technique using a

variable and adaptive (P&O) method with current predictive
control. The results showed that the oscillations were reduced
and that the dynamic response was improved by 23.3%, low-

ered from 9.92 s to 7.6 s in cloudy days (considerable variation
in Vmp). Support Vector Machine (SVM) technique was also
employed to improve the identification accuracy of MPP

[33]. The results showed that the proposed method yielded



Table 1 Coefficients of correlation (q) between output and

input PV variables.

Imp Vmp

Irradiance 0.998455 0.540097

B.S.Temp. 0.8471 0.272529

Isc 0.999936 0.520085

Voc 0.698083 0.955706

FF �0.272 0.144094

RH �0.03582 �0.15133

AT. P. �0.02822 �0.14822

Fig. 4 PV modules deployed at the National Renewable Energy Laboratory [16].

Table 3 Performance improvement using FFCL technique

[35].

Technique P&O PSO P&O PSO

FFCL No No Yes Yes

Settling time (s) 0.9 2.7 0.6 1.2

Overshoot (%) 47.8 39.1 4.3 4.3
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an RMSE of 0.71 V and a performance of 96% (accuracy per

sample), given that the maximum voltage of the panel is 18 V
only. However, the method was tested using a limited number
of data sets, and the dynamic response is not reported.

Padmanaban et al. [34] presented a Modified Sine-Cosine
Optimized (MSCO) maximum power point tracking algorithm
for grid integration. The authors demonstrated improved per-

formance when compared to the performances of the classical
Particle Swarm Optimization (PSO) and Artificial Bee Colony
(ABC) algorithms (see Table 2).

Silva et al. [35] proposed the implementation of a Feed-

Forward Control Loop (FFCL) to enhance the dynamic
response of double-stage single-phase grid-tied PV systems
subjected to sudden solar radiation changes, like in cloudy

days. The results shown in Table 3 demonstrate that the pro-
posed technique yielded a better performance and dynamic
response as it managed to improve the performance by reduc-

ing the overshoot to 4.3% and the dynamic response to 0.6 s.
In summary, various researches have been performed to

improve the drawbacks of the conventional MPPT methods.

Based on the reviewed work, it can be observed that the
Table 2 Performance comparison of

MPP tracking algorithms [34].

Method Average performance

PSO 94.63

ABC 97.13

MSCO 98.40
best-reported performance is 99.5%, and this could be

achieved by using a Fuzzy Logic controller. However, the reli-
ability of the reported results should be improved, as the
authors utilized a limited number of data sets in the evaluation

process. The dynamic response of the improved conventional
MPP identification process was also improved, reaching
0.6 s. It can also be observed that the main drawback of the
hill-climbing conventional methods, which is the oscillations

around the MPP, particularly in cloudy days, still exists. The
results of this study are compared with the performances of
the conventional and improved MPP methods reported in this

section.

4. MPP prediction using ANN

The most popular and well-proven ANN architecture, training
algorithm, and error calculation method utilized for function
approximation are employed to carry out this comparative

study. MLP architecture is utilized in combination with the
SCG and LM supervised learning algorithms. The perfor-
mance of the network is evaluated using the MSE quantitative

measure at different neurons and hidden layer configurations.
Four ANN configuration scenarios are studied in this paper
(see Table 4), namely:

(a) The first scenario (divided into two parts I(a) and I(b))
considers the irradiance information in addition to the
highest correlated parameters with Imp and Vmp, which

are Isc and Voc, respectively.
(b) The second scenario considers irradiance information

and the electrical parameters only.

(c) The irradiance information, in addition to the electrical,
thermal, and weather parameters, are considered in the
third scenario using a single layer network.



Table 4 Scenarios of the development of ANN networks.

Scenario Parameters Output(s) ANN

I(a) Irradiance and Voc Vmp Single-layer LM trained network

I(b) Irradiance and Isc Imp Single-layer LM trained network

II Irradiance, Voc, Isc & FF Imp and Vmp Single-layer LM trained network

III Irradiance, Voc, Isc, FF, B.S. Temp, At. Pressure & RH Imp and Vmp Single-layer SCG & LM trained network

IV Irradiance, Voc, Isc, FF, B.S. Temp, At. Pressure & RH. Imp and Vmp Two-layered LM trained network
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(d) The irradiance information, in addition to the electrical,
thermal, and weather parameters, are considered in the
fourth scenario using a two-layer network.

In the first three scenarios, a single-layered ANN configura-
tion (a single hidden layer only) is addressed, and the near-
optimal node number is decided by trial and error method.

The number of nodes ranges from 2 nodes to 60 nodes. While
the fourth scenario investigates the effect of increasing the hid-
den layer number on the accuracy of the most accurate net-

work (two-layered network). Due to the difference between
the output parameters (i.e., current and voltage), it was imper-
ative to carry out data normalization (or standardization), so

that the data points to be within uniform scale range prior
to any training or testing. The normalization is carried out
within the uniform scale range for each of the two output sig-
nals. The normalization process ensures a better fit and helps

to prevent the training from diverging. This standardization
process results in training data with zero mean and a unity
variance [19].

Six supervised neural network models are developed based
on the four parameters combinations and ANN configuration
scenarios shown in Table 4. The best scenario and ANN archi-

tecture are selected based on the results of the comparative
study shown in Table 5, where the MPP identification perfor-
mance of all of the network options is evaluated.

Due to the importance and significance of the irradiance

information, it is considered as an essential parameter in all
Fig. 5 The architecture of the neural ne

Table 5 MSE across the training points for the proposed ANN co

Scenario I

Number of Inputs 2 inputs (Ia) 2 inputs (Ib)

Number of layers Single Single

Training algorithm LM LM

Number of nodes 38 38

MSE (Imp + Vmp) 0.4 1.63

MSE (Imp) 4.4e�6 –

MSE (Vmp) – 1.60
of the ANN models. A total of 12,149 data sets related to
amorphous silicon/ microcrystalline silicon PV panel (model

H) were utilized for the training, validation, and testing of
the proposed ANN models; 70% for training and 30% for val-
idation and testing.

For the first scenario (I (a) & I (b)), near-optimal neural
network configurations are identified by trial and error method
considering a single-layered neural network with 2 nodes to 60

nodes per layer. The results favored the utilization of an ANN
configuration of 38 nodes, trained using the LM algorithm, as
it yielded an MSE (Imp) and MSE (Vmp) of as low as 0.4A and
1.6 V, respectively. More input parameters are incorporated to

investigate the possibility of further improvement in the
achieved results (Scenario II). These parameters are the three
electrical parameters in addition to the irradiance information.

The improved ANN model yielded a better overall MSE value
of 0.229, MSE (Imp), and MSE (Vmp) values of 2.5e�7A and
0.541 V, respectively. Next, more comprehensive sets that

include electrical, weather, and thermal parameters are consid-
ered to investigate their effect on MPP identification
performance.

The results showed that the latter scenario provided more

accuracy over the other addressed scenarios. Therefore, to
investigate the effect of the second popular training algorithm
on the MPP identification accuracy, the same input parameters

were utilized to develop a single-layered ANN model that was
trained using the SCG algorithm (Scenario III). The results
demonstrate that the LM training algorithm gives better
twork with the most accurate results.

nfigurations.

Scenario II Scenario III Scenario IV

4 inputs 7 inputs 7 inputs

Single Single Single Two

LM SCG LM LM

33 39 18 35–35

0.229 0.544 0.186 0.115

2.5e�7 2.1e�6 2.6e�7 2.16e�7

0.541 0.91 0.427 0.411



Fig. 6 Error histogram of a two hidden layers network with 35

nodes each.

Fig. 7 MSE of the best network model.

Table 6 Samples of The current error for maximum power

and the MSE values for 3644 points (training data sets

excluded).

S Scenario I Scenario II Scenario IV

1 7.59296E�05 �0.000180972 0.0001809724

2 0.000551884 �0.000234894 0.0002348944

3 0.000482563 �5.13366E�05 0.0000513366

4 0.000900787 �2.14501E�05 0.0000214501

5 �0.000727202 �8.60215E�05 0.0000860215

6 0.000878776 0.000205323 �0.0002053227

7 0.000516021 �9.87946E�05 0.0000987946

8 0.000443478 0.000103108 �0.0001031079

9 0.000367478 0.000259074 �0.0002590738

10 0.000273192 �9.6786E�05 0.0000967860

. . .

. . .

3635 0.0023392011 �0.0007630250 �0.0000886039

3636 0.0028326705 �0.0005146894 �0.0001388747

3637 0.0027477459 �0.0006504482 0.0000370465

3638 0.0021374672 �0.0005386899 0.0000157155

3639 0.002405071 �0.000258079 �1.16437E�06

3640 0.002175054 �0.00023125 �0.000134678

3641 0.002215853 �0.000134343 �0.000316017

3642 0.000874619 �0.000567427 �0.000253311

3643 0.000239029 �0.000204717 �0.0001237

3644 1.81451E�05 �0.000404709 �0.000116551

MSE 0.002100214 0.000500584 0.00046484

Table 7 Samples of the voltage error in voltage for maximum

power and the MSE values for 3644 points (training data sets

excluded).

S Scenario I Scenario II Scenario IV

1 �0.315682398 0.080088797 0.5089664399

2 0.792194143 0.33575908 0.1555556258

3 0.072142446 0.365742399 �0.0848434944

4 1.678976533 0.437869104 �0.1793745477

5 0.262960693 0.41761099 0.3625636701

6 1.625984023 0.048632379 0.0407990771

7 0.682766561 0.084234265 0.0348331697

8 0.174077534 0.030091712 �0.1903545549

9 0.833287455 0.347491104 �0.1435572542

10 0.559585086 1.752304009 �0.3394664499

. . .

. . .

3635 0.3519796918 0.2556361102 0.0344177713

3636 0.0486194993 0.2110844636 0.0899433344

3637 0.0704423213 0.2987839416 �0.0859520088

3638 �0.0002262156 0.2847134232 �0.0218535078

3639 �0.0139322 0.171866152 �0.225077031

3640 �0.071487996 0.125900627 �0.461139559

3641 0.07571133 �0.014985689 0.33900374

3642 �0.036736199 0.250141462 0.493316299

3643 �0.394013485 �0.003182016 �0.339584519

3644 �0.401909547 0.244218224 �1.274276248

MSE 1.268193694 0.73591758 0.641528513
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results. Thus, the LM trained model is considered for further
improvement through the investigation of the performance

of a two-layered ANN model.
The results reveal that a two-layered neural network,

trained using the LM algorithm, with 35 nodes per each layer,
yields an identification accuracy of as low as 2.16e�7 A for Imp

and 0.411 V for Vmp. The configuration of the best ANN is
shown in Fig. 5, and Fig. 6 depicts the error histogram of
the neural network. It can be observed that the vast majority

of the predicted results are very close to Zero Error and that
the prediction accuracy using the validation and testing data
sets are very close to the training data set. Fig. 7 shows the

MSE values for the training, validation, and testing data sets.
The performance of the three major scenarios was re-

evaluated using the validation and testing data sets only, given

that these data sets were not used for training. The error values
between the experimental and predicated Imp and Vmp values,
along with their MSE values, are presented in Tables 6 and 7.
The values provided in both tables are based on 3,644 data

sets, which represent 30% of the total number of data sets,
which the network was not trained for. The MSE values for
Imp and Vmp are 0.00046484 A and 0.641528513 V, respec-
tively. These values are higher than the training MSE values,

which are 2.16e-7 A and 0.411 V, respectively. The average
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computer processing time required for the prediction of MPP
is 276 ms using a DELL OPTIPLEX 7440 AIO machine (Core
I7-6700 CPU @ 3.4 GHz (8CPUs) processor with 8 GB

memory).
Knowing that the maximum Vmp in all experiments is 190 V

and that the errors did not exceed 0.8 V (MSE of 0.64 V), this

gives an MPP prediction performance of 99.6% (P = max.
error/max. Vmp). Despite the difference between the training
MSE values, and the validation and testing MSE values, the

error values are still relatively small and hence lead to an
MPP identification with reasonable accuracy. The perfor-
mance of the proposed ANN network using this particular
set of input parameters outperforms the best dynamic response

and performance reported in Section 3, as it yields an MPP
prediction performance of 99.6% and a dynamic response of
276 ms only in comparison to 99.5% and 0.6 s, respectively

(see Section 3). The proposed network has the potential to
eliminate the main drawback of hill-climbing techniques,
which is the oscillations during cloudy days, as well as the slow

dynamic response.

5. Conclusion

This paper aimed to develop a reliable practical ANN-based
MPP identification tool that can be utilized to maximize the
efficiency of PV panels. The prediction accuracy of MPP is

influenced by the number, type, and combination of the differ-
ent PV parameters in addition to the tool utilized for predic-
tion. Thus, unlike the previous work, this paper considered a
large number of PV input parameters with different combina-

tion scenarios to investigate their influence on the MPP predic-
tion accuracy. ANN-based models are employed due to their
dynamic, fast, and precise performance. Thus, ANN-MPPT

models have the potential to consider variations in atmo-
spheric and operating conditions in general. Training, valida-
tion, and testing of the proposed ANN models were carried

out using sets of reliable experimental data collected by the
National Renewable Energy Laboratory, U.S. Department
of Energy. Six ANN-based MPP identification models with

different input PV parameters were introduced and then eval-
uated for their performance. Two input parameters for the first
two models were selected based on the highest correlated
parameter in addition to the irradiance information. Four

input parameters for the third model were incorporated to
consider the irradiance information along with the three basic
electrical parameters (Voc, Isc, and FF). For the remaining

ANN models, seven input parameters were carefully selected
to represent the irradiance, weather, thermal and electrical
parameters (Voc, Isc, FF, RH, atmospheric pressure, PV back

surface temperature, and Irradiance information) to improve
their identification accuracy further.

The results showed that, although the MPP is highly corre-
lated with the open-circuit voltage and the short circuit current

(scenario I), the consideration of irradiance, electrical, thermal,
and weather parameters (scenario IV) yielded a higher MPP
identification accuracy. The comparison results between both

scenarios showed that the incorporation of all parameters
decreased the MSE (Vmp) from 1.6 V to 0.411 V and the
MSE (Imp) from 4.4 e�6 A to 2.16e�7 A, respectively. More-

over, with respect to the ANN configuration, the utilization of
a two-layered neural network introduced in scenario IV is
favored as it produced a higher prediction accuracy than the

single-layered network introduced in scenario III (refer to
Table 2 and Table 3). The comparison results between both
scenarios showed that the utilization of a more deep network

decreased the MSE (Vmp) from 0.427 V to 0.411 V and the
MSE (Imp) from 2.6 e to 7 A to 2.16e-7 A, respectively. The
performance of the proposed AI-based method outperforms

the best dynamic response and performances reported in
Section 3 and shown in Fig. 8, as it produces anMPP prediction
performance of 99.6% and a dynamic response of 276 ms only
in comparison to 99.5% and 0.6 s. Furthermore, the proposed

method has the potential to eliminate the main drawbacks of
the hill-climbing techniques, which are the oscillations during
cloudy days and the slow dynamic response. The results of this

study are limited to similar PV panels and, in particular amor-
phous silicon/ microcrystalline silicon – model H - PV panels. It
is also limited to similar electrical, thermal, and meteorological

conditions (the experimental conditions).
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