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A B S T R A C T   

Global inventories that show mangrove forests have rich carbon stores currently lack data from arid areas where 
carbon stocks may be functionally impoverished relative to humid regions. We quantified total carbon stocks (C) 
of three arid Avicennia marina stands in Qatar and report an aboveground biomass allometric equation and the 
first below ground biomass allometric equation in the region. The allometric relationships indicate that below 
ground mangrove C stocks in arid locations are more important than previously reported. Comparison of pre
viously published and our locally developed allometric equations show that A. marina in Qatar allocate 
comparatively more biomass to below ground components than the same species in tropical humid settings, 
which is consistent with plant adaptations to living in stressed conditions. Total C stocks were 45.70 ± 3.70 Mg C 
ha− 1, of which tree and soil C stocks to 50 cm depth represented 10.18 ± 0.82 Mg C ha− 1 and 35.52 ± 2.88 Mg 
ha− 1 respectively. Soil C stocks to 1 m depth were 50.17 ± 6.27 Mg C ha− 1. Overall, mangroves sustain relatively 
small C stocks in the arid, hypersaline environment of Qatar, which may be due to both relatively low tree 
productivity and growth, as well as limited rainfall-driven transport of terrigenous sediment inputs. By providing 
further estimates of mangrove carbon at their climatic extremes, these results can contribute to a better quan
tification of global mangrove carbon, reduce uncertainty in below ground tree C estimates from arid mangroves 
and have implications for mangrove carbon stocks in the face of climate change.   

1. Introduction 

Research over the past decade has shown that coastal wetlands, 
mangroves, salt marshes and seagrass beds represent significant global 
carbon sinks (Alongi, 2014; Donato et al., 2011; Fourqurean et al., 2012; 
Murdiyarso et al., 2015). Accumulated organic carbon (C) is stored in 
slowly decomposing, anoxic soils over long time-scales (Alongi, 2014), 
generating deep below-ground ‘blue carbon’ stores with greater per-area 
carbon stocks than tropical upland forests (Alongi, 2012; Donato et al., 
2011; Fourqurean et al., 2012). Coastal wetlands are also of greater 
importance to ocean carbon dynamics than their relatively small area 
would suggest (Donato et al., 2011; Fourqurean et al., 2012). Among 
coastal wetlands, mangroves are particularly carbon rich; total tree and 
soil carbon stocks contain up to 1023 Mg C ha− 1 in the tropics, five times 

that of the most productive seagrass beds (~200 Mg C ha− 1) and almost 
double that of saltmarshes (~600 Mg C ha− 1) (Alongi, 2014; Donato 
et al., 2011). Consequently, mangrove carbon-storage potential has 
attracted much scientific and political interest as a means of mitigating 
against greenhouse gas (GHG) emissions (Cameron et al., 2019; Donato 
et al., 2011; Fourqurean et al., 2012; Liu et al., 2014; Schile et al., 2017; 
Wang et al., 2013). While mangrove soil carbon accumulates over cen
turies, current rates of deforestation makes the soil vulnerable to 
oxidation, with significant risks of increased GHG emissions (Alma
hasheer et al., 2017; Donato et al., 2011; Ezcurra et al., 2016; Kauffman 
et al., 2017). Conservation and restoration programmes have been 
identified as a profitable means of curbing GHG emissions that is com
parable to investment in traditional asset classes (Cameron et al., 2019), 
although the prevention of further loss is, by far, the most effective way 
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of maintaining wetland carbon storage (Kauffman et al., 2017). 
Carbon stocks in mangrove forests are mainly derived from estimates 

in the wet tropics, but there is limited emerging empirical data on how 
the ecological functioning of arid mangroves compares to that of their 
tropical humid counterparts (Almahasheer et al., 2017; Sanders et al., 
2016; Schile et al., 2017). Annual rainfall and air temperature are 
important drivers of carbon stocks in tropical and sub-tropical man
groves (Rovai et al., 2018; Sanders et al., 2016). Increased rainfall is 
associated with higher mangrove productivity, which can become stored 
in the soil (Xiong et al., 2018). In China, up to 97% of carbon in the top 
1m has been found to be of mangrove origin (Xiong et al., 2018), though 
terrigenous sediment contributions may be higher where there is 
freshwater-mediated input from river catchments (Adame et al., 2010). 
In estuarine soils across a large geographical area, strong inverse re
lationships have been found between rainfall and salinity and positive 
relationships between precipitation, plant productivity and soil organic 
matter (Osland et al., 2018). Mangroves in the western Arabian/Persian 
Gulf (hereafter referred to as “the Gulf”) persist in very arid conditions, 
with rainfall as low as 54 mm yr− 1 (Price et al., 1993), compared to even 
the semi-arid mangroves of Senegal, where precipitation averages 650 
mm yr− 1 (Kauffman and Bhomia, 2017) and with heightened salinity 
(~60, Practical Salinity Units) (Perri et al., 2018). Air temperatures are 
also extreme in the Gulf, ranging from 50 ◦C in the summer to below 0 ◦C 
in winter (Al-Khayat and Jones, 1999; Halwagy et al., 1982; Price et al., 
1993; Sheppard et al., 2010), which likely limits northerly mangrove 
distribution of the Gulf. Recent studies indicate carbon stocks are low in 
arid and semi-arid mangroves, with averages of 218.4 Mg C ha− 1 in the 
United Arab Emirates (Schile et al., 2017) and 463 Mg C ha− 1 in Senegal 
in soils deeper than 1m. However, carbon stocks are not universally 
impoverished in arid regions - soil carbon can reach up to 1130 Mg C 
ha− 1 in arid parts of Baja California from cores up to 2 m depth (Ezcurra 
et al., 2016). 

Tropical humid mangroves can hold a significant proportion of their 
carbon stocks in above and below ground biomass (Donato et al., 2011; 
Kauffman et al., 2011), often estimated from species-specific allometric 
equations (Komiyama et al., 2008). Relatively little work has investi
gated allometric equations of mangroves in arid regions, particularly the 
Gulf. Schile et al. (2017) applied an Avicennia marina allometric equa
tion from a tropical humid area of Australia to estimate tree carbon pools 
in the arid environment of the United Arab Emirates. There is also a lack 
of below ground biomass allometric equations, due to the logistical 
difficulties involved in sampling and accurately estimating mangrove 
root material (Komiyama et al., 2008). Many previous efforts have used 
either generic allometric models or equations developed in different 
climatic settings in estimating below ground biomass and carbon stocks 
(Hamilton and Friess, 2018; Hutchison et al., 2014; Schile et al., 2017), 
which may not necessarily provide accurate estimates. Past research has 
shown tree growth morphology and mangrove carbon allocation can 
vary between species and across climatic gradients (Banerjee et al., 
2013; Chave et al., 2005; Komiyama et al., 2005; Smith and Whelan, 
2006). Under stressful conditions previous work has shown that man
groves boost below ground partitioning and increase root biomass, 
which may be associated with increased soil salinity (Sherman et al., 
2003). Thus, arid mangroves may have lower shoot to root ratios, and 
proportionally greater below-ground carbon allocation than mangroves 
in higher rainfall, tropical humid locations. 

The current study provides results that are relevant to other arid 
regions where mangroves occur, for example, western Australia, western 
Africa, western South America, north-western Mexico and the western 
Gulf of Mexico. These results can also add to our knowledge of C stocks 
globally by refining estimates in arid countries. This study reports an 
aboveground biomass allometric equation and the first below ground 
biomass allometric equation for A. marina in the Gulf. This will add 
insight to the hypothesis that arid mangroves allocate more biomass 
below ground and will help reduce uncertainty in arid environment 
estimates. The study also aimed to develop and test regionally driven 

differences in above and below ground Avicennia marina allometric 
relationships. 

2. Methods 

Study Sites: Three mangrove sites were selected for study on the north 
east coast of Qatar (N 25.726251◦, E 51.565021◦, Fig. 1). Salinity can be 
highly variable, ranging from 37 to 64 in a lagoonal setting (Al-Masla
mani et al., 2013; Perri et al., 2018). Despite low annual precipitation, 
no incidents of drought-induced mortality, expansion or contraction in 
response to rainfall have been reported. Intertidal areas where sampling 
sites were located were dominated by mangroves. Sites were fringed by 
seagrass beds on the seaward side and, on the terrestrial side, by sabkha 
(supra-tidal salt flats vegetated with nonvascular halophytes) and mi
crobial mat habitats, above which was a rocky desert landscape. Man
groves in Qatar are monospecific Avicennia marina stands. All stands 
occur along the eastern and northern coasts, with just a few isolated 
A. marina trees on the western coast. Sites around Al Khor and Al Dha
kira bays were selected for study as they represent ~80% of total 
mangrove area in Qatar (Al-Khayat and Balakrishnan, 2014) and cover 
~680 ha, providing a large enough area to study effects of tidal gradi
ents throughout the mangroves. The Al Khor site was in the northern 
part of Al Khor bay and 4 km from Al Khor town. South and West Al 
Dhakira sites were situated in southern and western portions of Al 
Dhakira bay respectively and were separated by 3 km of sandy beach. 

Sampling design: Mangrove sites were sampled by nine 10 × 10 m 
plots in three zones (Fig. S1a): three plots along the seaward and land
ward fringes, respectively, and three plots in the mid-mangrove that 
were placed at roughly equal distances along a transect running 
perpendicular to the shoreline. Collectively, plot distribution sampled 
the effect of the intertidal gradient on carbon stocks, while leaving scope 
for factorial contrasts between the low (n = 3 plots), mid (n = 3) and 
high (n = 3) mangrove stands. Each plot was marked using a handheld 
GPS and distance to the seaward edge and each transect length were 
measured a priori in Google earth. Transect lengths were, 2500m, 990m 
and 1250m in Al Khor, South Dhakira and West Dhakira, respectively. 
Tidal ranges in Qatar are microtidal, <2m with a mean high water of 
circa 1.5m, with a relative height difference of approximately 0.7m 
between the low to high stations within the mangrove. 

Field and laboratory methods: Above and below-ground carbon stocks 
of mangrove trees are normally estimated from empirically-determined 
allometric relationships between tree dry mass and tree diameter at 
breast height (DBH) (Clough et al., 1997). DBH is not a good predictor of 
dry mass for arid countries, such as Qatar, where trees branch low to the 
ground and form multi-stemmed, bushy growths (Clough et al., 1997). 
Here, tree crown diameter (CD) and tree height were used instead of 
DBH for biomass and carbon allometry analysis (see below), as used by 
Clough et al. (1997) and Parvaresh et al. (2012) for multi-stemmed trees 
(Clough et al., 1997). All trees in each plot were measured for height, the 
diameter across the widest part of the canopy (Crown Length: CL) and 
the canopy diameter perpendicular to CL (Crown Width: CW). Crown 
Diameter (CD) was calculated as (CL + CW)/2. Below ground, the mass 
of large roots (>20 mm diameter) were estimated after establishing 
allometric equations (see below). The mass of fine roots (1–20 mm) 
(Sherman et al., 2003) was sampled using four 4.5 cm diameter 60 cm 
deep cores per plot (Alongi et al., 2000). Soil depth profile throughout 
the sites comprised an organic rich fine-root layer (ranging from 0 to 
<20 cm depth), below which was a homogenous soil layer to bedrock. 
The fine-root layer was a clearly visible horizon (Table 2). The depth of 
the fine-root layer was measured in four cores per plot. The contents of 
all cores were washed and sieved to 1 mm and all fine root material was 
dried to constant weight (60 ◦C for 48 h). Soil depth was observed at 
each plot by inserting a steel pole to the bedrock. To estimate dry bulk 
density (DBD) and organic carbon content, a hole was dug and two 5.5 
cm diameter 3 cm deep cores were inserted horizontally into the soil, 
one to represent the fine root layer at <20 cm depth, the other at >30 cm 
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depth (Mizanur Rahman et al., 2015) (Fig. S1b). Rather than sampling 
the whole depth range of the soil, subsamples were taken to represent a 
particular depth range as this strategy has been found to be adequate for 
mangroves where carbon content generally changes slowly with depth 
(Kauffman and Donato, 2012). Samples were dried to constant weight at 
60 ◦C for 48 h and weighed to obtain DBD. Soil organic matter content 
was determined by loss on ignition (LOI) where samples were placed in a 
blast furnace at 400 ◦C for 16 h (Kauffman and Donato, 2012) and 
converted to organic soil carbon content (hereafter referred to as soil C 
as wt%) using a recently published conversion equation (0.21LOI1.12, R2 

= 0.86) (Ouyang and Lee, 2020), which used 844 data points from 53 
countries and included data from arid mangrove settings including the 
adjacent United Arab Emirates. Soil C density (mg C cm− 3) was calcu
lated as (DBD (g cm− 3) x (%C/100)) x 1000. 

Tree excavation to establish allometric equations: Allometric relation
ships were established using 17 excavated trees designated for 
destruction by a coastal infrastructure project located in a bay 70 km 
south of the study sites (N 25.027395◦, E 51.614390◦). These mangroves 
were in a similar habitat to the study sites: sandy sediment and located 
adjacent to saltmarshes and seagrass beds. Isolated trees were selected to 
ensure that cable root material around the tree only originated from that 
tree (Matsui, 1998). Tree height (H), CL and CW were measured prior to 

excavation. Trees were marked at ground level before excavation to 
allow later separation of above and below ground biomass. The ground 
was excavated to 0.5 m depth (Komiyama et al., 2000), including the 
area falling below the canopy of each tree, plus 0.5 m radius beyond the 
edge of the canopy. This method provides a best estimate of 
below-ground biomass, as the excavation plot is proportional to the 
canopy size; it is superior to excavating in a constant 2 m radius for all 
excavated trees, irrespective of tree size (Comley and McGuinness, 
2005). The mass of removed trees was divided into leaf, branch, stem 
and below-ground large root materials (>20 mm), and the dry weight of 
each component was established after drying at 60 ◦C for 48 h. 

Converting Field Observations into Tree Carbon Stocks: The derived 
allometric equations were used at our study sites to convert CD mea
surements from plots to mean tree aboveground biomass (AGB) and 
large root (>20 mm) biomass ha− 1. Fine-root biomass (1–20 mm) ob
tained from plot cores was added to the large root biomass to obtain the 
below ground biomass (BGB) per plot. Biomass was converted to above 
and below ground tree carbon (onwards referred to as CAG and CBG) 
using 48% and 39% carbon content conversion, respectively (Kauffman 
and Donato, 2012). Measurements of soil C stocks are reported from soil 
depths that ranged from 16.25 to >200 cm depth. We standardised soil C 
stocks to a maximum 50 cm depth when sites were deeper than 50 cm. 

Fig. 1. Qatari A. marina sampling sites. Al Khor and Al Dhakira bays with mangrove transect locations marked.  
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When sites were shallower than 50 cm we calculated soil C stocks to 
bedrock to avoid overestimation of soil C stocks. To make comparisons 
with other reported stocks in the literature we also calculated stocks to 1 
m depth. Out of our 27 soil cores, 15 were at least 50 cm and 7 were >1 
m depth. The calculation was made by extrapolating the deeper soil 
layer to a total soil depth of 50 cm or 1 m by assuming that the deeper 
root-layer had constant soil properties (BD and %C) from 30 cm depth to 
1 m. This method may lead to under or over-estimation of soil C stocks in 
deeper soils as %C may change with depth (Kauffman and Donato, 
2012). Soil carbon stocks to 50 cm (C50) and 1 m (C100) depth for each 
mangrove plot was calculated as:  

Soil C50 stocks (Mg C ha− 1) = ((Fine-root layer DBD (g cm− 3) x depth (cm) x 
(%C / 100)) + ((Deeper soil layer DBD (g cm− 3) x (50 – Fine-root layer depth) 
(cm) x (%C / 100)). (Kauffman and Donato et al., 2012)                               

Soil C100 stocks (Mg C ha− 1) = ((Fine-root layer DBD (g cm− 3) x depth (cm) x 
(%C / 100)) + ((Deeper soil layer DBD (g cm− 3) x (100 – Fine-root layer 
depth) (cm) x (%C / 100)). (Kauffman and Donato et al., 2012)                     

Statistical Analysis: Two-way Analysis of Variance (ANOVA) were 
used to test for effect of study sites (random factor, 3 levels) or mangrove 
zone (3 levels: high, mid and low mangrove) on TreeCD and tree height. 
Linear regression was used to test for effect of distance to the seaward 
fringe on the responses of CAG, CBG and C50. Log-transformations were 
used where required to comply with test assumptions. Significant 
ANOVAs were followed by Tukey honest significant differences (HSD) 
post hoc comparisons of treatments. Regression analysis was used to 
establish allometric relationships of tree above and below ground 
biomass with CD and H. A logarithmic transformation was used to 
linearize the relationship between variables and ensure homogeneity of 
variance in model residuals (Estrada et al., 2014). A high degree of 
collinearity was detected between crown diameter and tree height so 
multiple regression was not used. Comparison of R2 and AIC, an estimate 
of the relative quality of statistical models, values was performed to 
determine the better predictor. After using allometric equations on log 
transformed data, the results were then back transformed for conversion 
to Mg ha− 1 values for biomass estimation (Estrada et al., 2014). 

To explore whether arid mangroves allocate proportionally more 
biomass below ground than mangroves in non-arid regions, we con
trasted the allometric relationships of Qatari A. marina with those of 
other previously published work from two other regions: Iran (Parvaresh 
et al., 2012) and Australia (Comley and McGuinness, 2005). Both studies 
were used to compare aboveground biomass, while only the Australian 
study was used to compare below ground biomass. As Comley and 
McGuinness (2005) used DBH as a predictor of biomass, raw tree data 
measurements from Schile et al. (2017) were used to develop an equa
tion to predict CD from DBH (Table 1 for equation and electronic sup
plement for data extracted from Schile et al., 2017). Analysis of 
Covariance (ANCOVA) was used to test for a difference between 
aboveground biomass and CD in different locations (factor: 3 levels) as 
well as below ground biomass between Qatar and Australia (factor: 2 
levels). Log x + 1 transformations were used to comply with ANCOVA 
test assumptions. 

3. Results 

Stand Characteristics of Qatar Mangroves: Mean ± standard error (s.e. 
m) tree density, crown diameter (CD) and tree height (H) were 2589 ±
267 trees ha− 1, 1.57 ± 0.08 m and 1.92 ± 0.09 m, respectively (Table 2). 
Trees excavated for use in allometric models had mean CD and H of 1.18 
± 0.10 m and 1.03 ± 0.67 m respectively. Site and mangrove zone had 
interactive effects on CD (ANOVA: F4, 691 = 5.03, p < 0.01) and height 
(ANOVA: F4, 691 = 16.02, p < 0.01, p < 0.01). A greater CD was 
generally associated with low tidal zones and the tallest trees were in 
West Al Dhakira. Shorter trees were found in high tidal areas, particu
larly in Al Khor. Tree biomass was fairly low (overall average: 23.93 ±
1.39 Mg ha− 1) and substantially greater below ground (14.54 ± 0.98 Mg 
ha− 1) than aboveground (9.39 ± 0.94 Mg ha− 1), with below ground 
biomass ratio averaging 0.61 ± 0.02. 

Tree Allometry: Crown Diameter (CD) was a better predictor than tree 
height (H) for all tree components. Subsequently, only CD was used as a 
predictor in allometric equations (Table 1). The relationship between 
aboveground biomass and CD varied between global locations. With 
increase in size (CD), Australian trees grew proportionally more 
aboveground and below ground biomass than Qatari trees, however, 
Qatari trees had a steeper above and below ground biomass increase 
with size than Australian trees. ANCOVA confirmed these differences 
between Australia, Qatar and Iran aboveground (ANCOVA: F5,32 =

51.63, p < 0.01, Fig. 2a) and below ground biomass (ANCOVA: F3,25 =

194.7, p < 0.01, Fig. 2b). 
Tree and Soil Carbon stocks: Across all sites, wood biomass contained 

a mean carbon content (C) of 10.18 (±0.82) Mg C ha− 1. Of that, mean 
above and below ground tree C were 4.51 Mg ha− 1 (±0.44) and 5.67 Mg 
ha− 1 (±0.38), respectively. Distance to the seaward edge had a signifi
cant effect on overall tree C (Regression: F1,25 = 7.34, p = 0.01). 
Aboveground C did not vary with distance to the seaward edge 
(Regression: F1, 25 = 2.74, p = 0.11, Fig. 3a). However, below ground 
tree C was inversely related to distance to the seaward edge (Regression: 
F1,25 = 6.85, p = 0.01, Fig. 3b). Across all tidal heights, tree stocks 
accounted for 23.98% of total carbon (CTOT) (Fig. 4). Overall mean total 
stocks were 45.70 ± 3.70 Mg C ha− 1. Soil C50 were 30.48 ± 5.11, 44.39 
± 5.63 and 31.69 ± 3.39 Mg ha− 1 in low, mid and high tidal zones 
respectively. When extrapolated to 1m depth, overall mean soil C100 
stocks were 50.17 ± 6.27 Mg C ha− 1. There was no significant effect of 

Table 1 
Allometric equations developed from tree removal and raw data from Schile 
et al. (2017). B = biomass (kg), CD = crown diameter (m), DBH = diameter at 
breast height (cm). *This equation was developed using raw data from Schile 
et al. (2017).  

Tree component Equation R2 

Aboveground biomass Log (AG) = 2.14 x Log (CD) + 0.20 0.94 
Below ground biomass Log (BG) = 2.67 x Log (CD) − 0.11 0.89 
Leaf biomass Log(B) = 2.41 x Log (CD) - 0.13 0.88 
Branch and stem biomass Log(B) = 2.09 x Log (CD) + 0.15 0.89 
Convert DBH to crown diameter CD = 0.3831 x DBH + 0.6863* 0.53  

Table 2 
Mean ± st. error tree density, mean plot crown diameter (CD), tree height (H), 
below ground and aboveground biomasses (Mg ha− 1) and aboveground to below 
ground biomass ratio in different sites and intertidal depths in Qatar mangroves.  

Intertidal 
depth 

Density 
trees ha− 1 

CD 
(m) 

H (m) BGB Mg 
ha− 1 

AGB Mg 
ha− 1 

BGB 
ratio 

Al Khor 
Low 1433 ±

190.52 
2.04 
± 0.15 

1.98 
± 0.07 

10.55 
± 1.83 

11.99 
± 2.00 

0.47 ±
0.007 

Mid 3500 ±
94.28 

1.32 
± 0.08 

2.02 
± 0.06 

12.84 
± 2.68 

11.59 
± 3.36 

0.54 ±
0.029 

High 2100 ±
374.17 

1.25 
± 0.04 

1.41 
± 0.04 

7.47 ±
2.17 

7.19 ±
2.23 

0.51 ±
0.010 

West Al Dhakira 
Low 1233 ±

118.63 
2.20 
± 0.08 

2.81 
± 0.16 

15.17 
± 2.59 

15.76 
± 2.87 

0.49 ±
0.005 

Mid 4700 ±
1143.10 

1.17 
± 0.09 

1.81 
± 0.05 

16.17 
± 1.65 

13.48 
± 3.68 

0.56 ±
0.066 

High 2767 ±
427.74 

1.39 
± 0.12 

1.65 
± 0.06 

14.68 
± 2.45 

5.80 ±
0.87 

0.72 ±
0.006 

South Al Dhakira 
Low 1567 ±

347.48 
1.95 
± 0.15 

1.88 
± 0.13 

18.96 
± 1.46 

6.92 ±
0.71 

0.73 ±
0.005 

Mid 2933 ±
54.43 

1.47 
± 0.09 

2.07 
± 0.07 

21.21 
± 3.04 

6.89 ±
1.03 

0.76 ±
0.009 

High 3067 ±
625.98 

1.35 
± 0.10 

1.54 
± 0.03 

13.77 
± 1.18 

4.89 ±
0.18 

0.74 ±
0.017  
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distance to the seaward edge on soil C50 (Regression: F1,25 = 0.45, p =
0.51). Carbon density was significantly higher in the fine root layer 
closer to the sediment surface than in the soil below the fine-root layer 
(ANOVA: F1,52 = 27.46, p < 0.01). Mean soil C density across all sites in 
the fine root layer was 11.81 ± 1.49 mg cm− 3, compared to 6.98 ± 0.74 
mg cm− 3 in deeper soil (Table 3). Mean BD was 1.18 ± 0.13 g cm− 3 and 
%C was 1.51 ± 0.35%, as a result, overall mean soil C density was 9.40 
± 0.66 mg cm− 3. Soil C in the mid mangroves were characterised by 
comparatively low BD (0.82 ± 0.07 g cm− 3) and high %C (2.73 ± 0.37), 
whereas, high and low mangroves had higher BD (high = 1.35 ± 0.07 g 
cm− 3; low = 1.36 ± 0.05 g cm− 3) and lower %C (high = 1.19 ± 0.29; 
low = 0.62 ± 0.04). 

4. Discussion 

This study is in agreement with recent findings, which report lower 
overall C stocks for the arid mangroves of the Arabian Peninsula 
compared to global averages. Mangrove C stock extrapolated to 1 m 
depth in Qatar (50.17 ± 6.27 Mg C ha− 1) are comparable to 43–76 Mg C 
ha− 1 in 1 m depth soil reported from the Red Sea to the Gulf (Alma
hasheer et al., 2017; Cusack et al., 2018). However, these results are 
much lower than 728–1363 Mg C ha− 1 reported throughout the tropics 
to comparable depths (Alongi, 2012; Gress et al., 2017; Kauffman et al., 
2011; Murdiyarso et al., 2015). Mean above and below ground tree C 
stocks (CAG = 4.51 ± 0.44 Mg ha− 1 and CBG = 5.67 ± 0.38 Mg ha− 1) and 
tree sizes (CD = 1.57 ± 0.10 and H = 1.86 ± 0.03) were comparable to 
other arid regions in which mangroves occur. Mean tree C stocks of 
27.50 Mg C ha− 1, of A. marina in the Gulf, and 47.5 Mg C ha− 1, in arid 
mangroves of West Africa, have been reported (Kauffman and Bhomia, 
2017; Schile et al., 2017). Across the UAE, Schile et al. (2017) found an 
inverse relationship in mangrove tree C stocks with distance from the 

mouth of the Gulf and attributed this effect to increases in salinity. In the 
UAE tree C stocks ranged from 147.50 Mg C ha− 1 at the entrance of the 
Gulf to 29.46 Mg C ha− 1 at their most western sampling location (Schile 
et al., 2017). These estimates are considerably lower than those reported 
from other tropical humid regions where total tree C stocks have been 
reported up to 10 times greater (Alongi, 2012; Donato et al., 2012; 
Kauffman et al., 2011). A. marina in Qatar were much smaller than 7–10 
m height and 3–6 m CD of the same species in tropical locations 
(Komiyama et al., 2008; Suhardiman et al., 2016). Higher salinities in 
Qatar (34–67) (Al-Maslamani et al., 2013; Perri et al., 2018), compared 
to 4–36 in tropical locations (Chowdhury et al., 2019; Pestana et al., 
2017), could be limiting tree biomass and productivity, subsequently 

Fig. 2. Allometric relationships of a) aboveground and b) below ground 
biomass with crown diameter for A. marina trees of three global locations. 
Australia data were from Connolly and McGuiness (2005), Iran data from 
Parvaresh et al. (2012). Solid and dashed lines represent mean and 95% CI’s 
colour coded for each location. 

Fig. 3. a) aboveground and b) below ground tree C distance to seaward edge in 
the three different mangrove sampling locations. Black solid lines and dashed 
lines represent overall mean and 95% CI’s respectively. 

Fig. 4. Total C across tidal zones in Qatari mangroves. Mean ± SEM above
ground, root and soil carbon stocks across the three mangrove shore heights, at 
three sites in Qatar. 
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reducing locally derived carbon inputs. In coastal wetlands, Osland et al. 
(2018) found strong associations between rainfall, salinity, productivity 
and soil organic matter, where increased precipitation was linked to 
lower salinity, increased productivity and increased soil organic matter. 

The values reported by the current study further support the 
contention that mangroves in low-rainfall, hypersaline areas have a 
limited capacity for carbon storage, as recently suggested (Almahasheer 
et al., 2017; Sanders et al., 2016; Schile et al., 2017). The current study 
found lower BD and %C than tropical humid areas where BD and %C 
range from 0.19 to 0.92 g cm− 3 and 1.74–26.3% respectively, as a result, 
soil C density in Qatar is up to a tenth of soil C densities reported in the 
tropics where they can reach 152 mg C cm− 3 (Rovai et al., 2018). Carbon 
stores in mangrove soils are largely attributed to autochthonous 
mangrove inputs, through tree biomass material being deposited in soils 
(Almahasheer et al., 2017; Saintilan et al., 2013; Xiong et al., 2018). As 
mangrove productivity is reduced in arid settings (Cintron et al., 1978), 
the amount of locally derived mangrove material available for soils is 
also reduced (Saintilan et al., 2013). Low rainfall also restricts riverine 
and runoff input of allochthonous carbon to mangroves (Saintilan et al., 
2013; Xiong et al., 2018). Walton et al. (2014) estimated that 60–80% of 
organic material in sediments at the sites investigated in this study 
(Al-Khor and Al-Dhakira) originated from mangroves, with the balance 
accounted for by inwelling of allochthonous material from seagrass and 
coastal planktonic sources. 

In Qatar, within stand tree distribution differed from tropical humid 
areas, smaller trees were found on the landward edge than the rest of the 
stand (Donato et al., 2011; Kauffman et al., 2011), which may reflect the 
nutrient-poor habitat in which A. marina are found in the Gulf. These 
results provide insight into the nutrient dynamics of arid mangroves and 
are comparable to Western Australia where mangroves nitrogen de
creases in a seaward to landward direction (Adame et al., 2020). Man
groves in humid conditions can be highly productive outwelling 
systems, dependant on their geomorphological setting (Lee, 1995) but 
the relative importance of outwelling and inwelling processes are much 
less well understood in arid mangroves. Emerging research shows inw
elling of material from the sea can be important in arid mangroves 
(Al-Maslamani et al., 2013; Walton et al., 2014). In Qatari mangroves 
seagrass production has been shown to be a contributor to both food 
webs supporting mangrove-resident fauna (Al-Maslamani et al., 2013) 
and soil within mangroves (Al-Maslamani et al., 2013; Walton et al., 

2014), with the greatest input to soils at the mangrove fringe, indicating 
potential higher nutrient availability for seaward as opposed to land
ward trees. 

Differences were found in allometric growth relationships developed 
by the present study and those developed in other areas. Below ground 
biomass of Qatari mangroves had a steeper biomass increase with 
increasing crown diameter (CD) when compared to A. marina from a 
tropical humid area of Australia (Comley and McGuinness, 2005). 
Additionally, the relationship between aboveground biomass and CD in 
A. marina derived from Iran was more like that of Australia. Interest
ingly, the study site used to develop an A. marina allometric equation in 
Iran was on the coast of the Oman Sea, and the location where man
groves were sampled receives freshwater runoff and is considered bio
logically separated from the Gulf (Price et al., 1993). This environmental 
setting may be why the relationship in Iran was more like tropical humid 
Australian mangroves than of the geographically adjacent Qatari man
groves. The below ground biomass ratio recorded here (0.61) is higher 
than that reported anywhere else (0.1–0.55) for Avicennia trees (Alongi 
and Dixon, 2000; Kristensen et al., 2008; Matsui, 1998) and support the 
principle that mangrove trees boost energy allocation to below ground 
biomass when environmental conditions are stressful, for example under 
reduced rainfall or increased salinity (Adame et al., 2020, 2014; 
Asbridge et al., 2015; Duke et al., 2019; Lovelock, 2008; Lovelock et al., 
2016). Relatively high below ground biomass ratios of up to 0.67 and 
0.77 have been recorded for Rhizophora spp. dominated stands, although 
these were estimated from allometric equations that were not 
species-specific (Kauffman et al., 2011; Komiyama et al., 2005). Avi
cennia germinans has shown a similar pattern of increasing below ground 
biomass from tropical to sub-tropical climates (Day et al., 1987; Fromard 
et al., 1998; Smith and Whelan, 2006). This previous work coupled with 
our present results indicate that previous predictive studies of above and 
below ground mangrove tree C stocks need to take into account regional 
differences in growth patterns to reduce uncertainty in their estimates. 
Our findings imply that previous studies may underestimate below 
ground mangrove tree C in arid or extreme environments by using 
equations developed in less harsh environments. For example, Bhomia 
and Kauffman (Kauffman and Bhomia, 2017) and Banerjee et al. (2013) 
found an inverse relationship of biomass with soil salinity and developed 
different allometric equations based on salinity zones in Bangladesh. 

The current study further supports the previous indications that 

Table 3 
Mean ± st. error fine root and deeper soil layer depths (cm), depth to bedrock (cm), bulk density (g cm− 3), carbon content (%), carbon density (mg C cm− 3) and soil 
carbon pools (Mg C50 ha− 1) of sampled plots in Qatari mangroves. * these sampling locations had soil depths deeper than 50 cm, however, all measurements were 
standardised to 50 cm depth.  

Intertidal 
Depth 

Soil 
Interval 

Soil layer depth 
(cm) 

Soil Depth 
(cm) 

Bulk Density g 
cm− 3 

Carbon content 
% 

C density mg 
cm− 3 

Interval soil C Mg 
ha− 1 

Soil C50 Mg 
ha− 1 

Al Khor 
Low Fine-root 8.82 ± 0.50 43.33 ± 3.56 1.36 ± 0.05 0.52 ± 0.05 7.03 ± 0.52 6.23 ± 0.67 24.31 ± 4.26 

Deeper 34.51 ± 3.97  2.00 ± 0.05 0.26 ± 0.04 5.17 ± 0.74 18.08 ± 4  
Mid Fine-root 9.23 ± 0.12 50.00 ± 0.00* 0.43 ± 0.12 2.72 ± 0.65 10.06 ± 1.32 9.31 ± 1.3 39.42 ± 2.79 

Deeper 40.77 ± 0.12  1.44 ± 0.17 0.52 ± 0.04 7.38 ± 0.69 30.1 ± 2.89  
High Fine-root 8.00 ± 0.00 50.00 ± 0.00* 1.15 ± 0.32 0.99 ± 0.29 9.58 ± 0.65 7.66 ± 0.52 30.94 ± 2.76 

Deeper 42.00 ± 0.00  1.88 ± 0.20 0.3 ± 0.04 5.54 ± 0.61 23.28 ± 2.56  
West Dhakira 
Low Fine-root 12.88 ± 2.13 50.00 ± 0.00* 0.94 ± 0.02 1.17 ± 0.01 11.03 ± 0.39 14.2 ± 2.33 46.85 ± 6.29 

Deeper 37.12 ± 2.13  1.30 ± 0.13 0.65 ± 0.09 8.62 ± 1.79 32.65 ± 7.98  
Mid Fine-root 14.49 ± 0.02 49.00 ± 0.82 0.35 ± 0.03 6.9 ± 1.5 23.27 ± 3.52 33.74 ± 5.16 64.72 ± 5.69 

Deeper 34.51 ± 0.98  1.16 ± 0.14 0.79 ± 0.09 8.97 ± 0.29 30.97 ± 1.59  
High Fine-root 11.44 ± 0.87 50.00 ± 0.00* 1.45 ± 0.21 0.75 ± 0.14 10.27 ± 0.24 11.73 ± 0.73 41.29 ± 5.65 

Deeper 38.56 ± 0.87  1.44 ± 0.17 0.52 ± 0.04 7.6 ± 1.48 29.56 ± 6.37  
South Dhakira 
Low Fine-root 15.36 ± 4.20 29.25 ± 10.49 1.13 ± 0.13 0.7 ± 0.09 7.64 ± 0.02 11.72 ± 3.17 20.28 ± 7.14 

Deeper 13.89 ± 6.39  1.46 ± 0.11 0.43 ± 0.04 6.19 ± 0.25 8.56 ± 4.01  
Mid Fine-root 10.64 ± 0.52 38.75 ± 2.50 0.22 ± 0.02 4.97 ± 0.29 10.94 ± 1.88 11.45 ± 1.45 29.03 ± 1.88 

Deeper 28.11 ± 2.63  1.33 ± 0.017 0.47 ± 0.01 6.26 ± 0.08 17.57 ± 1.43  
High Fine-root 8.25 ± 0.73 21.67 ± 2.68 0.76 ± 0.30 4.05 ± 2.74 16.48 ± 4.91 13.76 ± 4.24 22.84 ± 3.60 

Deeper 13.41 ± 3.29  1.44 ± 0.17 0.52 ± 0.12 7.12 ± 0.77 9.08 ± 1.17   
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mangroves in low-rainfall, hypersaline areas have a limited capacity for 
carbon storage (Almahasheer et al., 2017; Sanders et al., 2016; Schile 
et al., 2017). The allometric equations developed here show that man
groves in Qatar have a greater increase in below ground biomass relative 
to tree size than other less extreme environments. The study also found 
mangrove height was lower and crown diameter smaller in Qatar than 
other regions, which accounts for the comparatively low aboveground 
tree C stocks. Within-stand mangrove distribution showed an inverse 
relationship between density and distance to the seaward fringe, which 
contrasts with other regions and suggests differing nutrient dynamics in 
arid mangrove systems. Allometric equations presented here can reduce 
uncertainty in below ground biomass and C estimates for mangroves in 
arid regions and also implies that previous work from these locations 
may have underestimated below ground mangrove C stocks, an impor
tant component of carbon storage in mangroves. These results have 
implications for mangroves in the face of climate change: as mangroves 
are expanding their distribution pole-ward into temperate and 
sub-tropical regions (Osland et al., 2017; Saintilan et al., 2014), 
mangrove ecosystems on the edge of their global distribution are likely 
to become more expansive and widespread. Precipitation regimes across 
the sub-tropics are projected to increase and decrease (Sillmann et al., 
2013). In areas where precipitation declines, carbon storage may be 
significantly reduced. As a result of reduced and less frequent precipi
tation, carbon impoverished arid mangroves are likely to become more 
common in the sub-tropics in the 21st century. 
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