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In predictions of ground-borne vibration from railways, it is generally assumed that the
unevenness profile of the wheel and rail is fully correlated between the two rails and the
two wheels of an axle. This leads to identical contact forces at the two rails and can allow
further simplifications of the vehicle model, the track model and the track/ground in-
terface conditions. In the present paper, the level of correlation of the track loading at the
wheel/rail interface due to rail unevenness and its influence on predictions of ground
vibration is investigated. The extent to which the unevenness of the two rails is correlated
has been estimated from measurements of track geometry obtained with track recording
vehicles for four different tracks. It was found that for wavelengths longer than about 3 m
the unevenness of the two rails can be considered to be strongly correlated and in phase.
To investigate the effect of this on ground vibration, an existing model expressed in the
wavenumber-frequency domain is extended to include separate inputs on the two rails.
The track is modelled as an infinite invariant linear structure resting on an elastic stra-
tified half-space. This is excited by the gravitational loading of a passing train and the
irregularity of the contact surfaces between the wheels and the rails. The railway model is
developed in this work to be versatile so that it can account or discard the effect of load
correlations on the two rails beside the effects of variation of the tractions across the
width of the track-ground interface and the vehicle sprung mass, as well as the roll motion
of the sleepers and the axle. A comparative analysis is carried out on the influence of these
factors on the response predictions using numerical simulations. It is shown that, when
determining the vibration in the free field, it is important to include in the model the
traction variation across the track-ground interface and the non-symmetrical loading at
the two rails that occurs for unevenness wavelengths shorter than about 3 m.
& 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

An important environmental impact of existing and future railway lines occurs due to the ground-borne vibration in-
duced by the trains; this is an issue both for trains running on surface railways and for trains in tunnels. Ground-borne
vibration from railways is generated at the wheel-rail interface due to the passage of individual wheel loads along the track
(quasi-static loading) and due to dynamic interaction forces caused by irregularities of the wheels and tracks (dynamic
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loading) [1]. The vibration generated propagates through the ground to nearby buildings where it may cause annoyance to
people or malfunctioning of sensitive equipment. Inhabitants of the buildings perceive the vibration either directly, due to
motion of floors and walls, or indirectly as re-radiated noise.

Modelling ground-borne vibration from railways is essential for understanding the physics of its generation and pro-
pagation. A good understanding is important in identifying ways to tackle unacceptable levels of vibration from existing as
well as future railway lines. Many different numerical models have been developed for predicting vibration from surface and
underground railways in the last few decades. A comprehensive overview of the state of the art on railway-induced ground
vibration models and the underlying excitation mechanisms can be found in [2].

The models for predicting ground-borne vibration are commonly developed by coupling sub-models for the train, the
track and the ground and all are based to some extent upon simplifying assumptions. These may depend on engineering
insight to replicate the operational conditions of interest, or may be necessary due to a lack of complete data for the
simulation, or limitations in the available computational power. Although essential for the realization of the modelling
effort, these simplifying assumptions introduce inaccuracies and uncertainties into the predictions, which in many cases
remain unquantified.

Since neither the wheel nor the rail running surfaces are entirely smooth, their unevenness causes the wheel and rail to
move vertically relative to one another. Thus, dynamic forces are generated at the wheel/rail contacts by the combined
irregular profile of the rail and wheel running surfaces and these forces can lead to wave propagation in the ground. For the
frequency range 2–80 Hz, typically of interest for the perception of ground vibration and 20–250 Hz for the perception of
ground-borne noise, and a train speed range of 10–100 m/s (36–360 km/h), the corresponding wavelengths of the vertical
unevenness lie within the range 0.04–50 m (or wavenumbers from 0.12 to 160 rad/m). When considering the rail surface, at
wavelengths less than about 1 m this vertical unevenness is most commonly caused by irregular wear or corrugation of the
rail contact surface, whereas at much longer wavelengths it is due to undulations in the track bed. On the wheels, short
wavelength unevenness is again caused by wear whereas discrete wavelengths up to about 3 m are present due to out-of-
roundness. Additionally, dynamic forces are generated as impacts as the wheels traverse switches and crossings or badly
maintained rail joints [3,4].

A simplifying practice commonly used in most models for ground-borne vibration is that the forces generated at the
wheel-rail interface are assumed to be identical (and in phase) for the two rails [e.g. [5–11]]. This assumption implies that
the unevenness of the two rails is identical and thus may be treated as a fully correlated input on the two rails. This seems
reasonable for wavelengths much longer than around 1.2 m, which is twice the typical sleeper or fastener spacing, as the
unevenness in this range corresponds to the track geometry. Consequently, this assumption can allow further simplification
of the track model by using a single beam to represent both rails and considering the wheelset as a single mass [5,7,10,11].
However, at shorter wavelengths, as used in models that predict rolling noise, the excitation on each rail should be treated
as independent and the overall response determined by assuming that the roughness on both rails is uncorrelated. Thus the
mean-square responses, due to separate excitation on the two rails, should be added [1].

Measurements of track geometry that can include very long wavelengths are obtained from track recording coaches
(TRC) and are principally used to determine the need for track maintenance such as tamping of the ballast [12]. These
systems measure the longitudinal profile of both rails, usually under loaded conditions. The minimumwavelength measured
is usually around 1 m. In contrast, hand-held accelerometer-based trolleys and mechanical displacement probes are used to
measure shorter wavelength rail irregularities (“acoustic roughness”) up to wavelengths of about 1 m in unloaded condi-
tions [1]. These measure one rail at a time and therefore do not allow the correlation between the two rails to be de-
termined. To cover the complete wavelength interval required, a combination of measurement methods is needed [13,14].

The aim of this work is to identify the degree of correlation between the unevenness of the two rails and how it affects
the vibration prediction in the free field when it is taken into account in the modelling.

There is little information available about the correlation between the unevenness on two rails of a track or two wheels
of a wheelset apart from a few examples in [15]. In Section 2, some track geometry measurements obtained with TRCs are
therefore shown for different operational railway tracks and the level of correlation between the unevenness of the two rails
is investigated for the wavelength range 0.5–25 m. Moreover, in order to investigate and quantify the effects on the response
predictions of ground-borne vibration caused by the level of correlation between the two rails, a surface railway model is
presented in Section 3 describing the dynamic system of a ballasted (or slab) track on a layered elastic half-space and taking
into account the traction variation across the track-ground interface, similarly to the formulation in [16]. The rotation of the
track and the wheelsets about the axial direction (roll) is included as well as the vertical motion, allowing the introduction
of different unevenness on the two rails. In Section 4, the effect of treating the unevenness of the two rails as fully cor-
related, partially correlated or uncorrelated is illustrated by calculating and comparing the dynamic response predictions in
the free-field for a range of model/excitation parameters.

It should be noted that, in the present work, the wheel irregularities are neglected, so that all irregularities are assumed
to be on the rail surface. Nonetheless, it has been shown in [17] that although the typical wheel irregularities are of a similar
order of magnitude to the rail irregularities at short wavelengths (below 0.1 m; “acoustic roughness”), the magnitude of
wheel irregularities is very much smaller than those of the rail at longer wavelengths and thus can be neglected for ground-
borne vibration generation. This smooth-wheel assumption is a useful starting point for a more realistic input excitation in
comparing the effectiveness of various ground-borne vibration prediction models.



Table 1
Details of the track sections for which measured data is presented.

Track Length (km) Sample spacing (m) Segment length (m)

Mainline ballasted track 10 0.2 204.8
Booted sleeper high speed slab track 7.5 0.2 204.8
Suburban slab track 2.0 0.25 256
Freight line 3.3 0.25 256
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2. Unevenness correlation between the rails

To demonstrate the level of correlation between the unevenness of the two rails, example spectra of measured track
geometry data are presented. The data has been obtained with track recording coaches (TRC) for four operational railway
tracks. Details of these track sections are given in Table 1. The first is a typical mainline ballasted track [14], the second is a
booted sleeper slab track section of a high speed line, the third is a typical suburban slab track in a tunnel and the fourth is a
freight line. In each case, as is standard practice with track geometry recording, the data had been high-pass filtered to
remove wavelengths longer than 35 m. The data were segmented into 1024-point segments (204.8 m long for the first two
tracks, 256 m for the other two) and power spectra and cross spectra estimates were obtained using 50% overlap and
applying a Hamming window on the segments.

Fig. 1 shows the spectra of rail unevenness determined for both rails of each track section. These are expressed in one-
third octave band form for ease of comparison. It can be seen that the rail unevenness level is similar for the two rails in
each case while the high speed slab track in Fig. 1(b) shows lower unevenness levels than the ballasted track for wave-
lengths longer than 1 m. For the suburban slab track in Fig. 1(c) the unevenness level is similar to the mainline ballasted
track for the wavelength range 5–13 m but higher outside this range. As might be expected, the freight track in Fig. 1
(d) seems to be in the poorest condition amongst the four tracks presented here, with levels of unevenness 10 dB higher in
all one-third octave bands.
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Fig. 1. Measured unevenness spectrum in one third octave bands wavelength for (a) standard ballasted track [14], (b) high speed slab track, (c) standard
slab track and (d) freight track: ( − ) left and ( − − − ) right rail.
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Fig. 2. Coherence function for (a) standard ballasted track [14], (b) high speed slab track, (c) standard slab track and (d) freight track.
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Fig. 2 shows the coherence function between the left and right rail profiles. The coherence function between two signals
x and y is a real-valued function that is defined as

( ) ( )
( ) ( )λ

λ

λ λ
=

( )
C

P

P P 1
xy

xy

xx yy

2

where ( )λPxy is the cross-spectral density between x and y, and ( )λPxx and ( )λPyy the auto-spectral densities of x and y
respectively. This provides a spectral quantification of the correlation between the unevenness of the two rails.

The coherence in Fig. 2(a) and (b), for the ballasted track and the high speed slab track, is relatively high at long wa-
velengths, indicating that there is quite a strong correlation between the two rails. This occurs for wavelengths longer than
about 3 m. A rise in the coherence can also be seen at a wavelength of about 0.6 m in each case which corresponds to the
sleeper spacing due to the fact that the TRCs are measuring under loaded conditions. Similar results have been presented in
[15]. The overall coherence for the suburban slab track in Fig. 2(c) is much lower than for the other tracks and is high only at
around 16 m, which is close to the typical length of rails historically used in the UK (18 m). For the case of the freight track in
Fig. 2(d) sharp peaks occur in the coherence function at certain wavelengths (9 m, 6 m, 4.5 m 3.6 m etc.) which correspond
to the existence of rail joints every 18 m, which is a typical distance for UK tracks.

Fig. 3 shows the relative phase between the left and right rail profiles, obtained from the phase of the cross-spectral density. This
gives a reliable estimate of the relative phase only for wavelengths where the coherence is high. In each case, at wavelengths longer
than about 3 m the unevenness of the two rails is in phase, apart from the suburban slab track for which the coherence is low.

In general, from Figs. 2 and 3, it seems reasonable in most cases to assume that unevenness wavelengths longer than
about 3 m can be treated as correlated or partially correlated between the two rails and in phase. These components of low
frequency excitation are relevant to ground-borne vibration and are often important for feelable vibration. Nevertheless,
discrete features such as wheel flats or rail joints are likely to be strongly correlated between the two rails even for quite
short wavelengths. Nonetheless, apart from this, wavelengths shorter than about 3 m should be treated as uncorrelated
between the two rails. For train speeds 36–360 km/h, irregularities shorter than 3 m correspond to excitation frequencies
above 3–30 Hz which are well within the ground-borne vibration frequency range of interest. The influence on the ground
vibration level of the degree of correlation between the unevenness of the two rails will be investigated in Section 4 using
simulated results. To achieve this a suitable model is first developed in the next section.
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Fig. 3. Relative phase between the rails unevenness for (a) standard ballasted track [14], (b) high speed slab track, (c) standard slab track and (d) freight track.
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3. Wavenumber-frequency domain train-track-soil interaction model

To investigate the effects of correlation between the unevenness of the two rails, there is a need to consider the vehicle/
track/soil interaction in more detail than is commonly used in the available frequency domain models. Accordingly, a model
is presented here in which, as well as the vertical motion of the track and the wheelsets, their rotation about the axial
direction is also taken into account by including both rails and both wheels of each axle separately. With this formulation,
which is expressed in the wavenumber-frequency domain, different unevenness can be introduced on the two rails. The
model is an extension of the one developed by Sheng et al. [5] and can include the effects of the moving loads and predict
the vibration level at a fixed point in the free field.

3.1. General formulation for two rails in a moving frame

As in [5], the railway track considered in this paper is a straight ballasted or slab track at the surface of a layered elastic
half-space, as shown in Fig. 4(a). Linear dynamic behaviour is assumed throughout. The track is considered to be invariant in
the longitudinal (x) direction and is modelled as multiple beams supported by vertical springs with consistent mass. The
model is formulated in the wavenumber-frequency domain where the vibration predictions are based on the transfer
function matrices for the ground formulated in [5] in a frame of reference moving with each load with speed v. In the
current work only the vertical dynamics are considered and thus scalar expressions of the vertical response due to vertical
loading are presented. The model is extended here to take into account the traction variation across the track-ground
interface while the track can include the excitation and response of both rails separately.

In the general case when both rails are included in the model, the indices s and p are used when referring to the left

( =s p L, ) or right ( =s p R, ) rail. The notation ( )ω^H x,r ps, is introduced for the response at a point ^ = − −x x a vtl of the p-th rail

due to a unit harmonic load of angular frequency ω acting at = +x a vtl on the s-th rail. Similarly ( )ω^H x y, ,g s, represents the

response at a point (^ )x y, at the ground surface due to a unit harmonic load acting at = +x a vtl on the s-th rail. Then the
displacement of the p-th rail (in the vertical direction and in the fixed frame of reference) due to a sequence of M2 loads of



Fig. 4. (a) The geometry of the track ground system; (b) three-dimensional multiple rigid-body vehicle system.
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amplitude ω̃ ( )Pl s, with = …l M1,2, , and =s L R, is given by

⎡⎣ ⎤⎦( ) ( )( ) ∑ ω ω ω ω= ^ ̃ ( ) + ^ ̃ ( )
( )

ω

=

w x t H x P H x P, , , e
2
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,
1
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i

and the displacement of the ground surface as
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The transfer functions ( )ω^H x y, ,g s, , as functions of the moving Cartesian co-ordinates, are obtained through a two-di-

mensional inverse Fourier transform

( ) ( )∫ ∫ω
π

ω^ = ̃ −
( )−∞

∞

−∞

∞
( ^+ )H x y H k k k v k k, ,

1
4

, , e d d
4

g s g s x y x
k x k y

x y, 2 ,
i x y

where ( )ω̃ −H k k k v, ,g s x y x, is the solution for the ground response in the wavenumber domain ( )k k,x y with respect to the

coordinates (^ )x y, which is derived for a moving frame of reference. This may be implemented using a Fast Fourier transform
(FFT), or through a standard quadrature. In the current work all calculations are achieved using the FFT. Similarly for the rails
a one-dimensional Fourier transform is used:

( ) ∫ ( )ω
π

ω^ = ̃ −
( )−∞

∞
^

H x H k k v k,
1

2
, e d

5
r ps r ps x x

k x
x, ,

i x

These transfer functions are calculated for receiving frequencies π ω= −f k v2 x and denote the displacement for a fixed
point (x,y) at the ground surface due to a unit moving load of angular frequency ω acting at =x al, where the relative motion

between the position = +x a vtl of the l-th axle and the receiver gives rise to a Doppler shift.
Although the load is applied at a single non-zero frequency, or at zero frequency, the ground vibration is a transient

signal with a broad frequency content. In order to calculate the spectrum of the response of the p-th rail Srp or the ground Sg

to the moving loads with a single angular frequency ω, Eqs. (2) and (3) are Fourier transformed with respect to time [5]:
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with ξ = ω π− f
v
2 .

The magnitude of the resulting response spectrum due to harmonic excitation is independent of the value of x. This
reflects the fact that the spectrum represents the result of movement through the observation point of the steady-state wave
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field associated with the load moving along the x-axis from = −∞x to = ∞x . In the next section, stationary random
roughness is assumed that is approximated as a sum of sinusoids. For each discrete harmonic component of this irregularity
a moving harmonic force with a single angular frequency ω is generated at the wheel-rail contact point. For the case of
constant moving loads, the relations in Eqs. (2) and (3) can give the quasi-static response due to the moving axle loads of a
train by setting the excitation frequency ω = 0. For the simplified case where only a single rail and a single degree of
freedom for each wheelset is considered in the model, the indices s and p can be omitted and only one term inside the
brackets in Eqs. (2), (3), (6) and (7) is taken into account.

3.2. The coupled train-track system

For ground-borne vibration, where the frequency range of interest is usually between 2 and 250 Hz, the train is modelled
as a linear multiple rigid-body system (see Fig. 4(b)). In practice, due to the vehicle suspension, at frequencies above 10 Hz
usually only the unsprung mass of the wheelsets is important. Consequently it is acceptable to neglect flexible modes of the
car body. Only vertical interaction forces are considered and only the vertical dynamics of the sprung masses of the train are
included. Since, as shown in Section 2, non-symmetric loading at the wheel/rail contact points occurs at relatively short
wavelengths (high frequencies; usually above 10 Hz) the rolling modes of the car body and the bogie are not excited and
thus each car body and bogie therefore can be further simplified by having only two degrees of freedom (DOFs), i.e., the
vertical displacement of its mass centre and its pitch motion. Similarly, each wheel has only one DOF, i.e. its vertical dis-
placement. In general, each train can have Nw wheels, Nb bogies and Nc car bodies resulting in = + +N N N N2 2w b c DOFs.
When both wheels of each wheelset (and both rails) are considered separately =N M2w , whereas for symmetric excitation
the motion of each wheel and rail can be reduced to a single DOF and =N Mw . The coupling between vehicles is neglected.

In practice, the vehicle suspensions may have non-linear behaviour. However, to enable analysis in the frequency do-
main, here, each non-linear suspension is linearized, which is valid for small motion amplitudes. As a result, the equation of
motion for the train is linear with constant coefficients and is specified by a mass matrix M and a stiffness matrix K. Viscous
or viscoelastic damping can be introduced and included in the stiffness matrix, thus the elements of the stiffness matrix are
complex and may be frequency dependent. The mass and stiffness matrices of several typical vehicles can be found in [18].

The vertical forces between the wheelsets and the rails, from the first to the last wheelset of the train, are denoted by

{ }( ) ( ) ( ) ( )= …P t P t P t P t, , ,s s M s1, 2, ,
T
, where Mis the number of the wheelsets, =s L R, denotes the left and right rail as already

used in Eqs. (2)–(7) and the superscript T denotes the matrix transpose. The longitudinal co-ordinates of these forces are
denoted by …a a a, , , M1 2 . Each wheel-rail force can be divided into two components: one is the moving “quasi-static” load, i.e.,
the moving constant axle load, and the other is a moving dynamic load. The responses to the axle loads are independent of
the vehicle dynamics. Only the dynamic wheel-rail forces are considered here; in the following, ( )P t refers to these dynamic
forces. The response to the quasi-static loads is also calculated but does not involve the dynamic wheel-rail interaction.

Assuming harmonic motion and setting ( ) ω= ̃( ) ωP Pt e ti , and ( ) ω= ̃ ( ) ωw wt et t
ti for the vector of displacements and rota-

tions of the train, the equation of motion of the whole train is given by

ω ω ω ω− ̃ ( ) + ̃ ̃ ( ) = − ̃( ) ( )w w PM K L 8t t
2

where K̃ denotes the dynamic stiffness matrix which may be frequency-dependent and ∈ ×L N Nw is a matrix consisting of
zeros and ones that maps the Nw excited DOFs of the wheels to the N DOFs of the train. The minus sign before ̃P indicates
that the positive wheel-rail forces correspond to compression of the contact spring whereas positive displacements are
downwards.

Denoting ( )ω ω( ) = −
−

R K M Lt
2 1

, the ×N Nw complex matrix of receptances of the train DOFs due to forces at the wheels,
Eq. (8) yields

ω ω ω̃ ( ) = − ( ) ̃( ) ( )w PR 9t t

The displacement vector of the Nw wheels produced by the wheel-rail forces is given by

ω ω ω̃ ( ) = − ( ) ̃( ) ( )w PR 10w w

where ω( )Rw is the ×N Nw w complex receptance matrix at the wheels of the train given by

( )ω ω( ) = − ( )
−

R L K M L 11w
T 2 1

Similarly by denoting the rail receptance matrix of the track-ground system at the wheel-rail contact points in a moving
frame of reference as ω( )Rr , the displacement vector at the wheel-rail contact points on the rails at frequency ω is given by

ω ω ω̃ ( ) = ( ) ̃( ) ( )w PR 12r r

Assuming that the wheel is always in contact with the rail, a linearized Hertzian contact spring with stiffness kH lp, can be

inserted between the l-th wheelset and the p rail, although for the frequency range of ground-borne vibration, inclusion of



Fig. 5. Coupling of a wheel with the track (rail, pad, sleeper, ballast) and the ground.
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the contact spring does not influence the total response significantly. The wheel/rail coupling is illustrated in Fig. 5 for a
model of a ballasted track, where ω̃ ( )ww lp, denotes the displacement of the wheel and ω̃ ( )rlp denotes the complex amplitude

of the vertical profile of the p rail (rail irregularity) at the respective contact point. The vertical profile of the rail may be

decomposed into a spectrum of discrete harmonic components. A single harmonic component is denoted by ( )( ) = π λr x Ae xi 2 /

where λ denotes the wavelength and A the amplitude which may be complex (strictly the profile of the rail is the real part of
( )r x ). The relation between the angular frequency of the dynamic loading and the wavelength of the rail irregularity is

ω π λ= v2 / , where v is the velocity of the train.
If the wheels on the p rail are all excited by the same unevenness then ̃rlpis the same for each l except for a time lag:

( ) ( ) ( ) ( )= = ( )π λ π λ λ( + )r t A Ae e e 13lp p
a vt

p
a v ti 2 / i 2 / i /l l

and thus the complex amplitude of the vertical profile is given as

( ) ( )ω̃ ( ) = = ( )π λ ωr A Ae e 14lp p
a

p
v ai 2 / i /l l

If both rails and both wheels of each wheelset ( =p L R, ) are considered separately, the coupling at the ( )l p, contact point
is expressed by the relation

ω ω ω ω̃ ( ) = ̃ ( ) + ̃ ( ) + ̃ ( ) ( )w w r P k/ 15w lp r lp lp l p H lp, , , ,

where ω̃ ( )ww lp, is the ( )l p, element of the vector ω̃ ( )ww in Eq. (10) and ω̃ ( )wr lp, is the ( )l p, element of vector ω̃ ( )wr re-
spectively given in Eq. (12). Inserting these two equations into Eq. (15) yields

⎡⎣ ⎤⎦ω ω ω ω( ) + ( ) + ̃( ) = − ̃( ) ( )P rR R R 16w r H

where ω̃( )r is the vector that collects the vertical rail irregularity at all contact points ( )l p, and =R diagH { }k
1

H lp,
with

( = … =l M p L R1,2, , ; , ) is the matrix of contact spring receptances.

Eq. (16) is a set of linear algebraic equations with the dynamic wheel-rail forces ω̃ ( )P as unknowns. Its solution will be
used as an input for the coupled track-soil model to give the response of the rail (Eq. (6)) and of the ground in the free field
(Eq. (7)).

3.3. Lateral discretization of the track-ground interface

The soil is modelled semi-analytically as a multi-layered half-space using the Fourier transform over wavenumber ( )k k,x y
with respect to the coordinates ( )x y, [5]. The railway track is aligned in the x direction, with a geometry that is assumed
invariant in the longitudinal direction, having a contact width b2 with the ground (see Fig. 4(a)). Different railway structures
including ballasted or slab track may be represented by different models having the same general form.



Fig. 6. (a) Lateral view of multibody model of the track; (b) discretization of the stress field across the track-ground interface.
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In the longitudinal direction, the two rails are represented as Euler-Bernoulli beams with mass and bending stiffness mr

and E Ir r per unit length of track respectively. The rail pads are modelled as distributed vertical stiffness kp per unit length for

each rail (see Figs. 5 and 6(a)). The sleepers are modelled as a continuous mass per unit length of the track ms, i.e. neglecting

bending, and the ballast is modelled as continuous distributed vertical spring stiffness kb with consistent mass mb. An
embankment, if present, can be modelled in the same way as the ballast. A similar model can be used for the case of a slab
track by introducing an infinite Euler-Bernoulli beam with constant bending stiffness representing the slab and replacing
the sleepers.

The track exerts a distributed load on the half-space. To represent this, a contact force per unit length Fg between track

and soil is introduced. In order to allow for an arbitrary load distribution across the width of the track, the interface con-
ditions are discretised. The discretisation will introduce a finite sum of the normal tractions at the track/ground interface.
The principle is shown in Fig. 6(b). Across the interface, discrete values yj of the coordinate y are selected, positioned at the

middle of a strip of width Δ. There are Ns such strips; within each strip j the stresses are assumed to be constant. Dis-

placement compatibility is required along the lines =y yj. The coordinate yj is defined as ( )Δ= − + −y b j2 1 /2j where

≤ ≤j N1 s with Δ=N b2 /s . For =N 1s a homogeneous stress distribution ensues, with displacement compatibility required
along the centreline.

The displacement of a point on the ground within the j-th strip at wavenumber kx can be calculated, using the Green's
function for the layered half-space in a moving frame of reference, as the superposition of the displacements of that point
due to the excitation at each strip, as follows

( ) ( )∑ω ω̃ ^ = ̃ ^ ̃
( )=

w k y H k y F, , , ,
17

g x j
i

N

g x ij gi
1

s

where ( )ω̃ ^H k y, ,g x ij is the response of a point at strip j, due to a unit harmonic excitation of frequency ω ω^ = −k vx at strip i,

where = −y y yij i j is the distance between strips i and j.

The transfer functions of the layered half-space are first calculated in the wavenumber domain, ( )ω̃ ^H k k, ,g x y ; these are

the Green's functions for a layered half-space due a unit load acting downwards at =y 0 and moving with speed v [5]. To

calculate ( )ω̃ ^H k y, ,g x ij , therefore, the inverse Fourier transform from the ky domain to the y domain should be calculated as

( )( ) ∫ω
π

ω̃ ^ = ̃ ^
( )−∞

∞
H k y H k k k, ,

1
2

, , e d 18g x g x y
k y

y
i y
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The transfer function of the ground due to a strip load of width Δ and constant magnitude Δ1/ per unit width, distributed

symmetrically about =y 0, can be calculated by weighting ( )ω̃ ^H k k, ,g x y by the factor ( )Δ

Δ

ksin

/ 2
y corresponding to the trans-

formation of the strip load to the wavenumber domain. Applying this to the j-th strip, and due to symmetry in the ky

domain, results in

( ) ( )( ) ( )∫ω
π

ω
Δ

Δ
̃ ^ = ̃ ^

( )

∞
H k y H k k

k
k y k, ,

1
2

, ,
sin

/2
cos d

19g x ij g x y
y

y ij y
0

The integral in Eq. (19) can be calculated using a standard quadrature for each strip. The resulting system of equations for
all strips in Eq. (17), dropping kx and ω̂ for brevity, can be written in matrix form as

̃ = ̃ ̃ ( )w FH 20g g g

where the vectors w̃g and ̃Fg contain the displacements and forces respectively for all strips and H̃g is an ×N Ns s matrix of the
form

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

Δ Δ

Δ Δ

Δ Δ

̃ =

̃ ̃ ⋯ ̃ ( − )
̃ ̃ ⋯ ̃ ( − )
⋮ ⋮ ⋱ ⋮

̃ ( − ) ̃ ( − ) ⋯ ̃ ( )

H H H N

H H H N

H N H N H

H

0 1

0 2

1 2 0 21

g

g g g

g g g

g g g

3.4. The coupled track-ground system

By allowing the roll motion around the x axis (along the track centreline, Fig. 6) for a rigid sleeper with polar moment of
inertia Js, the displacement of the sleeper can be written as a function of y as

( ) ( ) ( )θ̃ = ̃ − ̃ ( )w k y w k y k, 22s x s x s x

where ( )w̃ ks x is the displacement of the centre of mass (at =y 0) of the sleeper and ( )θ ̃ ks x is the angle of rotation around the x
axis of the sleeper.

By considering discretised track-ground interface conditions of Ns strips, for the j-th strip the mutual force at the track/
ground interface can be expressed, in the wavenumber-frequency domain, as

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )θ ω θ̃ = ̅ ̃ − ̃ − ̃ + ^ ̅ ̃ − ̃ + ̃
( )F k y k w k y k w k y

m
w k y k w k y, ,

6
2 , 23g x j b s x s x gj x j

b
s x s x gj x j

2

where and ̅ =k k N/b b s and ̅ =m m N/b b s are the stiffness and magnitude respectively of the ballast for any one strip when kb and
mb are given as stiffness and mass per unit length of the track.

The above formulation allows the two rails to be included in the model separately. The force applied by each rail through
the rail pad of stiffness kp to the sleeper can be written as

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

θ

θ

̃ = ̃ + ̃ − ̃

̃ = ̃ − ̃ − ̃ ( )

F k k w k b k w k

F k k w k b k w k 24

r L x p s x r s x r L x

r R x p s x r s x r R x

, ,

, ,

where br is half the track gauge and ( )w̃ kr L x, , ( )w̃ kr R x, are the displacement of the left and the right rail respectively in the
wavenumber domain.

Assembling the equations for the coupled track/ground system, assuming steady state harmonic solutions at circular
frequency ω, gives a system of +N 4s algebraic equations

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎦
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where PL, PR are the loading on the left and right rail respectively; ⎡⎣ ⎤⎦= …y yy , ,N N1

T

s s
is the vector that collects the Ns lateral

discrete coordinates yj of each strip; 0Ns
, 1Ns

are vectors of Ns elements formed of zeros and ones respectively and INs
is the

identity matrix of size ×N Ns s. The quantitiesK1, K2, K3, K4 and K5 are given as
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Fig. 7. Response in the free field due to unit forces acting on both rails (a) at 8 m for soft soil; (b) at 8 m for stiff soil; (c) at 16 m for soft soil and (d) at 16 m
for stiff soil: (−) ϕ = 0; (− − −) ϕ π= ; (−∙ − ∙) ϕ = π
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Either hysteretic or viscous damping may be accounted for in the rail pad and the ballast by making the stiffness complex

using a loss factor or a viscous damping constant in each case. The minus sign in the term ( )− ̃F kg x on the right-hand side in

Eq. (25) indicates that the force exerted at the bottom of the track structure by the ground is upward.
Substituting Eq. (20) into Eq. (25), ( )w̃ kr L x, , ( )w̃ kr R x, , ( )w̃ ks x , ( )θ ̃ ks x and ( )̃F kg x can be obtained for each wavenumber kx. Once

the contact force profile ( )̃F kg x has been calculated, it can be used as the excitation to the ground model in order to calculate

the ground response ̃ ( )w k y,gj x at a distance y from the origin. The total response at this point is then a superposition of its

responses due to excitations at all the strips. The distance from the point to the j-th strip is −y yj.

In terms of computational effort, the discretization of the track/ground interface involves the numerical calculation of the
integral in Eq. (19) and the addition of one equation for each interface strip in the system of equations given in (25). This
extra computational effort is significantly lower than that needed for the calculation of the transfer functions in the ground

in the wavenumber domain ( )ω̃ ^H k k, ,g s x y, . Moreover, the effect of the discretized interface in the ground response is directly

related with the width of the interface strips and the wavelength of the Rayleigh waves in the ground. Consequently a
limited number of strips is sufficient for the frequency range of interest of ground-borne vibration.



Table 2
The parameters used for different types of ground.

Parameters of ground Ground 1 (soft ground) Ground 2 (stiff ground)

Upper layer Half-space Upper layer Half-space

P-wave speed (m/s) 240 700 500 700
S-wave speed (m/s) 120 350 250 350

Density (kg/m3) 1800 2000 1800 2000

Young’s Modulus (MPa) 69.12 653.3 300.0 653.3
Shear Modulus (MPa) 25.92 245.0 112.5 245.0
Poisson’s ratio 0.333 0.333 0.333 0.333
Damping loss factor 0.1 0.1 0.1 0.1
Layer depth (m) 3.0 Infinite 3.0 Infinite

Table 3
Parameters used to represent the track.

Rail Bending stiffness per rail =E I 6.4 MNmr r
2

Mass per unit length per rail =m 60 kg/mr

Damping loss factor η = 0.01r
Track gauge =b 1.435 mr

Rail pad Stiffness per rail per unit length =k 500 MN/mp
2

Damping loss factor η = 0.1p

Sleeper Mass per unit length =m 542 kg/ms

Sleeper spacing α = 0.6 m
Pitching moment of inertia around x
per unit length

=J 307 kg ms

Ballast Mass per unit length =m 1740 kg/mb

Stiffness per unit length =k 4640 MN/mb
2

Damping loss factor η = 0.04b

Ballast/ground interaction width =b2 3.2 m
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3.5. Results for non-symmetrical inputs on the two rails

In order to show the effect of phase differences between the loads on the two rails, Fig. 7 shows the mobility in the free
field for a railway system with a ballasted track on two different types of layered ground (Ground 1 and Ground 2) listed in
Table 2 due to moving unit loads on both rails with different relative phase. These two layered half-space ground models
have been used in [9] and although not based on actual sites, they are chosen as typical examples of what is likely to occur in
practice. Both have a softer layer of depth 3 m overlying a stiffer half-space, the half-space being the same in the two cases
for convenience. The track used for the simulations is a ballasted track largely based on the track used in [19]. The width of
the track/ground interaction strip is b2 ¼3.2 m and the corresponding track parameters are listed in Table 3.

The transfer mobilities in Fig. 7 are calculated with =N 8s strips at the track/ground loading interface. Three loading cases

are considered: in the first case, the loads on the two rails are in phase (ϕ = 0); in the second case, they are in antiphase

(ϕ π= ); and in the third case their phase difference is ϕ π= /2. For all three cases the speed of the load v is 250 km/h (69.44
m/s) and the response is shown at 8 m and 16 m from the track centreline.

For the case of symmetrical inputs (in phase, ϕ = 0) and the softer soil a broad peak occurs in the transfer mobility at
about 12 Hz. This corresponds to the cut-on frequency of the layered ground, above which waves propagate in the upper
layer with little influence of the underlying half-space [1]. For the stiffer ground this cut-on frequency is at about 35 Hz. for
the case of out-of-phase loading, the vibration level is much reduced compared with in-phase loading. The difference
between these two loading cases is similar for the two grounds and is greater at lower frequencies, gradually reducing above
40 Hz. For the case of π/2 phase difference in the loading, the response is about 3 dB lower than for the in-phase loading.
This difference is found for all frequencies up to 60 Hz, for both distances and both types of ground.

Comparing Figs. 7(a) and (c) for the soft ground with 7(b) and 7(d) for the stiff ground the mobilities are equal at low
frequencies, where the transmission is dominated by the underlying half-space, this being identical for both grounds. The
results start to differ at higher frequency, with the soft soil having higher mobility above 6 Hz where waves start to cut on in
the upper layer of the soft soil.
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3.6. Response spectrum due to track unevenness

In [18], by treating the rail unevenness as a random process, the formulation of the power spectrum of the ground
surface response due to the rail irregularity is given for a point that is stationary as the train moves past it. In this approach
the motion of the train is included, which means that the response at a given frequency is a combination of responses
induced by different excitation frequencies due to the Doppler effect in the ground. The expressions given in [18] are
extended here to include the unevenness of both rails separately as well as the correlation between the two.

The vertical displacement spectrum of a point ( )x y, on the ground surface due to a unit amplitude rail irregularity of

wavelength λ, ( ) = π λ( )w x e xi 2 / on the s-th rail, is denoted by ( )ωS x y f;, ,s
0 ; where f is the frequency at which the spectrum is

evaluated and ω is the excitation angular frequency determined by ω π λ= v2 / .
At time t , the l-th wheelset is at = +x a vtl , and the displacement input at the ( )l p, -th wheel-rail contact point is given by

Eq. (13). Thus, the vector of dynamic wheel-rail forces ω̃ ( )P in Eq. (16) due to the unit amplitude rail irregularity at all
contact points ω̃ ( )rlp can be calculated using Eq. (14) with =A 1p . The elements of the receptance matrix ω( )Rr in Eq. (16) are

calculated using Eq. (2) by applying a single unit amplitude load ω( ) =P 1l s, . Subsequently, ( )ωS x y f;, ,s
0 is obtained from

Eq. (7) using the vector of forces ω̃ ( )P that is calculated due to the unit amplitude rail irregularity.
By assuming that a complete vertical rail profile can be represented by a large number of discrete wavenumber com-

ponents kn and that each harmonic component of the rail vertical profile is independent of the others, the double-sided
power spectrum of the displacement at a fixed observation point in the free field can be calculated by

⎡
⎣⎢

⎤
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( ) ( )
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In the above expression the x coordinate is omitted since the response spectrum is independent of the value of x as

shown in Section 3.1. The term ( )S y f;2 , 0
2
is the power spectrum generated by the quasi-static loads and is given by

Eq. (7) using half the axle loads as the loads ̃ ( )P 0l L, and ̃ ( )P 0l R, for all M wheelsets. The term

⎧
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ω
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is a vector that collects the vertical displacement spectrum on the ground surface due to a unit amplitude irregularity of the
left (L) and right (R) rail of wavelength λ π ω= v2 /n n. Consequently, because of the symmetry about the track centreline

( ) ( )ω ω= −S y f; S y f;, ,R n L n
0 0 .
In Eq. (27) the matrix

⎡
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k k
P
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n n

n n
in

LL LR

RL RR

is the PSD matrix of the track vertical profile consisting of the auto-PSD (diagonal) and cross-PSD (non-diagonal)
functions of the vertical profiles of the two rails where = Δk n kn and Δk denotes the spacing of the discrete wavenumbers.
When the rail unevenness profiles of the two rails are considered to be fully correlated (the rails have the same vertical
profile) all four elements of Pin are equal for each wavenumber. When the unevenness of the two rails is considered un-
correlated then the cross-PSD elements are zero.

The velocity power spectrum ( )̇P x y f, ,g , is then given by

( ) ( )π̇ = ( ) ( )P x y f f P x y f, , 2 , , 30g g
2

When divided by the time taken for the whole train to pass a fixed point, Eq. (27) and Eq. (30) give an estimate of the
power spectrum of vibration displacement and velocity respectively at point ( )x y, close to the track on the ground surface
during the stationary part of the response [18].
4. Train pass-by response predictions

In this section, the model introduced in Section 3 is applied to investigate the effects of different loading conditions at the
track and different interface conditions between the track and the ground. In particular, results are compared between the
response that is calculated by assuming a fully correlated and in-phase unevenness applied on both rails and the response



Fig. 8. A vehicle model with primary and secondary suspensions.

Table 4
Vehicle parameters used [20].

Car body Mass =m 40000 kgc

Pitching moment of inertia = ⋅ ⋅J 2 10 kg mc
6 2

Overall vehicle length =l 26.6 mv

Bogie Mass =m 5000 kgb

Pitching moment of inertia = ⋅J 6000 kg mb
2

Half distance between bo-
gie centres

=l 9.5 mb

Wheelset Mass =m 1800 kgw

Roll moment of inertia = ⋅J 600 kg mw
2

Half distance between
axles

=l 1.35 mw

Contact stiffness (per
wheel)

=k 1.46 GN/mH

Total axle load =P 140.1 kN
Primary suspension Vertical stiffness per axle ′ =k 2.4 MN/mp

Vertical viscous damping
per axle

= ⋅c s30 kN /mp

Lateral half distance be-
tween springs

=l 0.8 mp

Secondary suspension Vertical stiffness per bogie ′ =k 0.6 MN/ms

Vertical viscous damping
per bogie

= ⋅c s20 kN /ms
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obtained by assuming that the unevenness on the two rails is uncorrelated. The results of those two assumptions are
compared with the case in which the actual rail unevenness as measured by a TRC is used as input for the model.

The response is calculated for the full pass-by of a train at 250 km/h (69.44 m/s). The train is modelled as a number of
linear multibody systems that represent the vehicles as described in Section 3.2 and shown in Fig. 8. When the loading due
to the rail unevenness is applied separately on each rail and the two rails have different responses, the rotational properties
of the track and wheelset are included by considering the moment of inertia of the sleeper Js and the wheelset Jw around the
x axis.

The ballasted track with properties given in Table 3 is used for all simulations; two different types of layered ground are
considered with the properties listed in Table 2. The train parameters used correspond to those used in [20]. Unlike [20] a
four-car train consisting of identical vehicles is used with a total length of 106.4 m. The parameters are listed in Table 4, see
also Fig. 8. The values of the dynamic stiffness due to viscous damping for primary and secondary suspensions are

ω= ′ +k k i cp p p and ω= ′ +k k i cs s s respectively.
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Fig. 9. Track point receptance magnitude and phase: (−) on soft soil; (− − −) on stiff soil and wheel point receptance magnitude and phase: (a)-(b): track
and wheelset excited symmetrically (load of 0.5 N on both rails/wheels), (−∙ − ∙) full vehicle; (∙∙∙∙) unsprung mass only. (c)-(d) excitation on one rail and

wheel, (−∙ − ∙) =J m b /4w w r
2 ; (∙∙∙∙) =J 600w Kgm2.
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4.1. Track and wheel receptances

Prior to showing response predictions it is instructive to consider the receptances of the wheel and track that are
combined with the unevenness to give the interaction forces, as shown in Eq. (16). Fig. 9 shows the magnitude and the
phase of the track receptance in a moving frame of reference at the speed of 250 km/h. Corresponding results for the wheel
receptance are also shown. In each case, the track is coupled to the ground via =N 8s strips across the whole width of the
track. The results in Fig. 9(a) and (b) correspond to a symmetrical loading case where identical loads of amplitude 0.5 N are
applied to both rails (and both wheels). This results in only translational motion of the sleeper and thus the two rails have
identical response. For this case the track model can be simplified to a single combined rail/railpad with the sleepers
represented only by their mass. For comparison, results are given in Fig. 9(c) and (d) in which a unit load is applied to one of
the two rails. The sleeper and the wheelset are now free to rotate. The receptance shown corresponds to the rail (and wheel)
that are excited.

Although the two layered grounds show different track receptances (by up to 12 dB) at lower frequencies, above 30 Hz
the track stiffness dominates the response and the receptance values have the same level of magnitude. Comparing the
results in Fig. 9(a) and (c) the track receptances are similar at low frequencies but above approximately 40 Hz the receptance
of the single rail becomes larger than that when both rails are excited, with the difference increasing to about 5 dB by
100 Hz. At frequencies where the beam response dominates, the difference between a single rail and composite beam
representing two rails is expected to be 6 dB.

The wheel receptance magnitude and phase are also shown for comparison in Fig. 9. In the results shown in Fig. 9(a)-(b),
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only the vertical dynamics of the wheelsets are taken into account. Due to the symmetry of the loading, both wheels have
the same displacement and no rotation of the wheelset is included, resulting in a vehicle model with 10 DOFs. For com-
parison, in Fig. 9(a)-(b), a second model is shown consisting only of the unsprung masses; thus the whole vehicle is
modelled with only four independent DOFs. In the latter case the wheel receptance matrix Rw in Eq. (11) is a diagonal matrix

with elements ( )ω ω( ) = −r m1/kk
w

w
2 .

The wheel receptance values shown in Fig. 9(c)-(d) are from the same model when the rotation of the wheelsets is taken
into account, resulting in a vehicle model with 14 DOFs. Two cases are shown. In the first, the value of the roll moment of

inertia of the wheelset is selected to be = =J m b 927kg mw w r
1
4

2 2, where mw is the mass of the wheelset (see Table 4) and br is

the track half-gauge (see Table 2). For this value of the moment of inertia, if the free wheelset was excited at one wheel the
other wheel would have no motion. Nevertheless, due to connection via the suspension to the bogie, which is constrained
not to roll, there is still some coupling between the two sides. The second case in Fig. 9(c)-(d), has a smaller moment of

inertia =J 600kg mw
2 as given in Table 4.

In Fig. 9(a), as expected, the results for the 10 DOF model are identical to those for the unsprung mass above 10 Hz
whereas at lower frequencies the effects of the vehicle bouncing and pitching resonances can be seen. This resonant be-
haviour is modified by inclusion of the roll motion of the wheelset as seen in Fig. 9(c). For low frequencies up to 2 Hz the
results are unaffected but in the frequency range 2–10 Hz the receptances from the various models show differences due to
the influence of the inertia of the wheelsets and the interaction with the vehicle’s sprung mass through the primary sus-
pension. For frequencies above 10 Hz, the wheel receptance of the two 14 DOF models is 6 dB or 8 dB higher than the 10 DOF
model due to the added flexibility introduced by the roll motion of the wheelsets. As expected, the model with the lower roll
moment of inertia has a 2 dB higher receptance for all frequencies above 10 Hz.

For symmetric loading, as in Fig. 9(a), the frequency at which the receptances of the wheelset and the track have equal
magnitude is referred to as the unsprung-mass-on-track-stiffness resonance [1]. At this resonance frequency the wheelset
and the rails are moving vertically and in-phase on the track stiffness and the interaction force has a maximum. This
resonance frequency can be identified in Fig. 9(a) at around 120 Hz for the soft ground and slightly lower at 108 Hz for the
stiff ground. In Fig. 9(c), the corresponding frequency where the receptances of the wheel and the track on soft ground are

equal occurs at around 120 Hz for the case of the vehicle with =J 927kg mw
2 and around 138 Hz for the case of the vehicle

with =J 600kg mw
2. For the stiff ground the corresponding frequencies are 115 Hz and 130 Hz respectively.

4.2. Ground vibration due to the passage of the train

The unevenness PSD that is used as an input for all train pass-by simulations in this section is from the ballasted track
reported in [14] and shown in Fig. 10. Both rail profiles were acquired with a track recording coach that measured the loaded
profile of the track. Fig. 10 shows the auto-PSD of the unevenness of the two rails; that is the diagonal elements of matrix Pin
in Eq. (29). Analysis parameters are listed in Table 1. The values are given with respect to wavenumber and to frequency for
train speed of 250 km/h. The corresponding spectra of rail unevenness expressed in one-third octave band form are given in
Fig. 1(a).

For completeness, Fig. 11(a) shows the ratios of the cross-PSD to the auto-PSDs of the unevenness of the two rails; that is
the ratio of the off-diagonal elements of matrix Pin in Eq. (29) to the diagonal elements. Fig. 11(b) shows the relative (cross-
PSD) phase between the left and right rail profiles. The values are given with respect to wavenumber and to frequency for
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Fig. 12. Dynamic wheel/rail contact force (per wheel) in one-third octave bands for the (a) soft ground and (b) the stiff ground: (−) leading wheelset and
(− − −) trailing wheelset of the leading bogie.
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train speed of 250 km/h. It can be seen in Fig. 11 that at wavelengths longer than 4 m (or at frequencies lower than 20 Hz)
the ratios of the PSDs is close to 1 and the phase is close to zero, indicating that there is strong correlation between the two
rails.

This unevenness spectrum is introduced into the model described in Section 3, first assuming symmetric loading of the
two rails based on the average spectrum of the two rails shown in Fig. 10. The predicted contact force spectrum of the
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Fig. 13. Total (black lines) and dynamic (red lines) ground response level in one-third octave bands of (a) soft soil and (b) stiff soil: (−) 8 m; (− − −) 16 m
from the track for fully correlated inputs at the two rails.
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leading and the trailing wheelsets of the first bogie due to excitation by track unevenness is shown in one-third octave form
in Fig. 12 for the two ground types. These are calculated using Eq. (16) and are shown as the force per wheel. At low
frequency, where the vehicle receptance is much greater than that of the track (see Fig. 9(a)), the contact force is in-
dependent of the track receptance and thus the results for the two grounds are identical. At higher frequency this no longer
holds. Here, the vehicle receptance is mass-controlled while the track receptance is stiffness-controlled. As noted in Fig. 9(a),
these have equal magnitude at around 110–120 Hz, which is identified as the coupled vehicle-track resonance and corre-
sponds to a peak in the contact force. The results for the trailing wheelset can be seen to be higher than for the leading
wheelset between 2.5 and 8 Hz.

The vertical vibration velocity level at the ground surface due to the passage of the train is shown in Fig. 13. The results
are calculated using the method described in Section 3.6 and are expressed as the average one-third octave band spectrum
at certain distances from the track centreline during the train pass-by. The vibration due to both the moving quasi-static
load and the dynamic load is calculated; the graphs show the total vibration level and that due to the dynamic excitation.
Results are shown at 8 m and 16 m from the track. The response is calculated using symmetric loading. For this case the
unevenness profile is identical for the two rails and thus it can be considered as fully correlated inputs. The results are based
on the case where the track/ground interface is split into =N 8s strips.

Comparing the total vibration response for both ground types with the dynamic vibration response in Fig. 13, it can be
seen that the dynamic component dominates the response at frequencies above 4 Hz. Below 4 Hz, where the quasi-static
100 101 102

Frequency, Hz

-5
-4
-3
-2
-1
0
1
2
3
4
5

Lo
ad

 le
ve

l d
iff

er
en

ce
, d

B
 (r

e:
 1

)

100 101 102

Frequency, Hz

-5
-4
-3
-2
-1
0
1
2
3
4
5

V
ib

ra
tio

n 
le

ve
l d

iff
er

en
ce

, d
B

 (r
e:

 1
)

(a) (b)

Fig. 14. One-third octave spectra level difference between the nominal model and the model with =N 1s strip for (a) wheel/rail contact force of the leading
axle: (−) soft ground; (− − −) stiff ground and (b) ground vibration level: (−) soft ground 8 m; (− − −) soft ground 16 m; (−∙ − ∙) stiff ground 8 m; (∙∙∙∙) stiff
ground 16 m from the track.
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Fig. 15. One-third octave spectra level difference between the nominal model and the model with =N 8s strips and unsprung mass only for (a) wheel/rail
contact force of the leading axle: (−) soft ground; (− − −) stiff ground and (b) ground vibration level: (−) soft ground 8 m; (− − −) soft ground 16 m; (−∙ − ∙)
stiff ground 8 m; (∙∙∙∙) stiff ground 16 m from the track.
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response is significant, the response is similar for the two ground types. Above 4 Hz the responses calculated for the two
ground types start to differ, with the soft ground showing higher levels of vibration, and this difference is more prominent at
6 Hz and above. This is consistent with Fig. 7 which shows that the mobilities are equal for the two ground types at low
frequencies, where the transmission is dominated by the underlying half-space. Above 6 Hz the soft ground shows higher
vibration levels (up to 20 dB at 16 Hz, close to the cut-on frequency of the soft ground, see Fig. 7). At higher frequency, above
50 Hz for 8 m and 35 Hz for 16 m, the soft ground shows lower vibration levels due to a greater influence of damping since
the wavelengths in the soil are shorter.

4.3. Comparison for different vehicle-track-ground loading conditions

Fig. 14 and Fig. 15 show the effect of various assumptions on the vertical wheel/rail contact force of the leading axle
(leading bogie) and the ground vertical vibration level respectively. The results for the contact force are shown as the level
difference in dB relative to the contact force shown in Fig. 12 for both the soft and the stiff ground. The results for the ground
vibration level are shown as the level difference in dB relative to the vibration level shown in Fig. 13 for both the soft and the
stiff ground at 8 m and 16 m from the track.

Fig. 14, shows the effect of the number of strips considered between the track and the ground. Results for a single strip
( =N 1s ) are compared with the nominal case of =N 8s strips. Fig. 14(a) shows that the contact force is almost independent of
the number of strips used for the track/ground loading ( =N 1s and =N 8s ) for both ground types. In Fig. 14(b) it can be seen
that, for the soft ground, using a uniform track/ground loading distribution underestimates the predicted vibration level
compared with the nominal case by up to about 3 dB at 40 Hz for a distance of 8 m and at 31.5 Hz for 16 m from the track.
For the stiff ground the difference between the two predictions occurs at a higher frequency, with the maximum under-
estimation of 5 dB at 80 Hz for 8 m from the track.

Fig. 15(a) shows the changes in the contact force and Fig. 15(b) shows the changes in the ground response that occur
when only the unsprung mass of the vehicle is considered compared with the nominal model based on the 10 DOF vehicle
model. As expected from the wheel receptances shown in Fig. 9(a), the differences between the two models occur mainly in
the frequency range below 10 Hz where the dynamics of the sprung mass and the suspension contribute to the wheelset
response. For both cases Fig. 15 show differences of up to around 8 dB. In Fig. 15(b), below 2–3 Hz the total response is
dominated by the quasi-static excitation which is independent of the dynamic properties of the vehicle.

4.4. Comparison for different level of unevenness correlation between the rails

Finally, the difference in model predictions is shown between the nominal fully correlated (symmetric) model and the
models in which: (i) the rail unevenness is considered to be uncorrelated on the two rails and (ii) the rail unevenness is
considered to be partially correlated as measured. In both these cases, the track is modelled using both rails with the sleeper
and wheelsets allowed to rotate around the axial direction. In each case results are shown for the two values of wheelset roll
moment of inertia =J 927kg mw

2 and =J 600w Kg m2 as discussed in Section 4.1. The same unevenness spectrum shown in
Fig. 10 is used in each case.
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Fig. 16. One-third octave spectra level difference of wheel/rail contact force of the leading axle for (a) the soft ground and (b) the stiff ground. Differences

are shown between the nominal model and models with (−) uncorrelated unevenness and =J 927 kg mw
2; (− − −) uncorrelated unevenness and

=J 600w Kg m2; (−∙ − ∙) partially correlated unevenness and =J 927 kgmw
2 and (∙∙∙∙) partially correlated unevenness and =J 600w Kg m2.
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In Fig. 16, the difference in force spectra is shown. Since the measured rail unevenness is different between the two rails,
the level difference shown in Fig. 16 is calculated using the average force spectrum predicted for the two contact points of
the leading wheelset. Nevertheless, the difference in the contact force between the two wheels of each axle is small.

In Fig. 16 the models with uncorrelated unevenness show much lower force levels in the frequency range 3–12 Hz, with a
maximum difference of 8 dB at 3 Hz. These large differences are due to the rotational motion of the wheelsets, as seen in the
wheel mobilities in Fig. 9. However, these differences should not affect the predicted total ground response since at the
lower frequencies this is dominated by the quasi-static excitation. In the frequency bands 12.5–50 Hz the model with

=J 927kg mw
2 shows similar force level to the fully correlated model. Above 50 Hz this model starts to show higher contact

forces, with a maximum at 100 Hz due to the resonance of the wheelset rotation on the track stiffness. The model with
=J 600w Kg m2 shows a similar trend but it is about 2 dB lower the peak occurs at a higher frequency.
The models with partially correlated unevenness according to the measurements show similar force levels with the fully

correlated model for frequencies below 50 Hz. Above 50 Hz for the model with =J 927kg mw
2 (and 80 Hz for the model with

=J 600w Kg m2) the force shows similar trends with the uncorrelated cases.
Fig. 17 shows the effect of the different model assumptions described above on the predicted vertical velocity levels. The

results are shown as the level difference in dB relative to the total ground response shown in Fig. 13. In each case, results are
shown for both the soft and the stiff ground at 8 m and 16 m from the track. Similar to the contact force results shown in
Fig. 16, in both these cases, the track is modelled using both rails with the sleeper and wheelsets allowed to rotate around
axial direction. For consistency, in both models the track/ground coupling is based on =N 8s strips. Results are given for two
values of the wheelset roll moment of inertia, as discussed in Section 4.1.

Below 4 Hz the response is dominated by the quasi-static excitation so the correlation of the dynamic loads does not
affect the response.

For the cases where uncorrelated excitation is assumed on the two rails, above 4 Hz and up to 63 Hz for the model with

=J 927 kg mw
2 (and 80 Hz for the model with =J 600w Kg m2) the response predicted in one-third octave bands is a

constant value of 3 dB lower than the case of the symmetric (fully correlated) loading. This difference is to be expected if one
considers that the PSD matrix Pin in Eq. (29) for the fully correlated case consists of non-zero and equal elements while for

the uncorrelated case the non-diagonal elements are zero. Accordingly, the total power spectrum ( )P y f,g in Eq. (27) for the

fully correlated case should have double magnitude than for the uncorrelated inputs case. This ratio of 2 in the predicted
power spectrum corresponds to a difference of 3 dB in the one-third octave band vibration levels.

For the cases with correlated but not symmetric unevenness the predictions show that the response has similar levels
with the fully correlated case for frequencies below 20 Hz which for train speed of 250 km/h correspond to excitation due to
unevenness wavelengths that are longer than about 4 m (see Fig. 11). Above 20 Hz the vibration levels decrease and tend to
the -3 dB value of the uncorrelated case. These results are consistent with the cross-PSD ratio magnitude given in Fig. 11
(a) and show that the weaker correlation between the rail unevenness of the two rails that appears for wavelengths longer
than about 4 m leads to lower vibration levels in the free field that can be up to 3 dB.

At high frequency the response increases notably for all the non-symmetric loading cases. Similarly with the increase in
the force level shown in Fig. 16, the increase in the ground vibration can be attributed to the effect that the additional
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Fig. 17. Ground vibration level difference in one-third octave bands (a) at 8 m from the track for soft ground, (b) at 8 m from the track for stiff ground, (c) at
16 m from the track for soft ground and (d) at 16 m from the track for stiff ground. Differences are shown between the nominal model and (a) ( − )

uncorrelated unevenness and =J 927 kg mw
2; (− − −) uncorrelated unevenness and =J 600w Kg m2; (−∙ − ∙) partially correlated unevenness and

=J 927 kg mw
2 and (∙∙∙∙) partially correlated unevenness and =J 600w Kg m2.
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rotational modes of the wheelset on the track stiffness are excited. For symmetric loading these rotational modes of the
wheelset are not excited and thus the predicted ground response is lower than when the rail unevenness on the two rails is
treated as uncorrelated. Similar results are shown when a different value of wheelset moment of inertia is used, the main
differences being above 80 Hz.
5. Conclusions

A model has been established for the vibration due to surface railways that operates in the wavenumber-frequency
domain and takes into account the traction variation across the track-ground interface and includes rotation of the sleepers
and wheelsets about the axial direction. This allows investigations of the effect of the level of correlation between the
unevenness on the two rails.

The extent to which the unevenness of the two rails is correlated has been estimated from measurements of track
geometry obtained with track recording vehicles for four tracks of different types and operational standards. The results
showed that for unevenness wavelengths longer than about 3 m the unevenness of the two rails can be considered to be
strongly correlated (and in phase). At shorter wavelengths the unevenness of the two rails should be treated as uncorrelated
inputs.
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It is shown that it is important to include the traction variation across the track-ground interface in the model when
determining the vibration in the free field, even for symmetric loading. This is due to the fact that, for certain excitation
frequencies, the width of the track is equal to the wavelength of Rayleigh waves in the surface layer resulting in an un-
derestimation of the response if a constant traction is assumed.

Train pass-by simulations from the developed model showed that when the unevenness of the two rails is treated as
uncorrelated the dynamic component of the ground response is 3 dB lower than when the unevenness is assumed identical
on the two rails for frequencies up to 50 Hz. Moreover, when the unevenness of the two rails is not symmetrical the
rotational modes of the wheelset on the track stiffness are excited and the predicted response level of the vibration in the
free field can be notably greater in the frequency bands around 100 Hz than when the unevenness is assumed identical on
the two rails.
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