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ABSTRACT 

AHMED,SAMAH,I, Masters : January : 2021, Master of Science in Applied Statistics 

Title: Goodness of Fit Testing for the Log-Logistic distribution Based on Type I 

Censored Data 

Supervisor of Thesis: Prof. Ayman, S, Bakleezi. 

The main aim of this thesis is to investigate the problem of the goodness of fit 

test for Log-Logistic distribution based on empirical distribution function under Type 

I censored data. The maximum likelihood estimation method is used to estimate the 

unknown parameters of Log-Logistic distribution. A Monte Carol power studies are 

conducted to evaluate and compare the performance of the proposed method which is 

an extension to the test procedure by Pakyari and Balakrishnan (2017) with the 

existing classical method for several alternative distributions. The proposed method 

exhibits higher power compared to classical method. Additionally, applications on 

Type I censored real datasets for the proposed and classical methods are considered 

for illustrative purposes. As result from the real data it was found that the Log-Logistic 

model has good fit for the data. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview  

Survival time is well known as event time, lifetime, and failure time. It is 

denoted by the variable 𝑇 which is a non-negative continuous random variable. Its 

actual time represent the waiting time until the occurrence of a well-defined event, 

that is, the time from starting point to the endpoint of a concerning event for a subject 

(Klein and Moeschberger, 2006). For example, the time to event can be the duration 

of stay in a job, interval until recurrences of the symptoms, and unemployment time 

length. The time can be in form of years, months, days, hours, or even fractions of a 

second. 

Survival analysis is the field of statistics that study and analyze the survival time 

data, which, mainly focuses on describing the distribution of survival time 𝑇. 

Furthermore, there are three methods to model the survival time 𝑇, which are 

parametric, non-parametric and semi-parametric. Survival models in which a specific 

probability distribution is assumed for the 𝑇 are known as a parametric model. Klein 

and Moeschberger (2006) mentioned that two quantitative terms are usually measured 

in any survival analysis i.e. the survival function and the hazard function. The survival 

function is a non-increasing function and known as the probability of a subject 

surviving longer than some specified time, as shown below, 

𝑆 (𝑡) =  𝑃 (𝑇 >  𝑡) =  1 − 𝐹(𝑡), (1) 

 

where 𝐹(𝑡) = 𝑃 (𝑇 ≤  𝑡) is the cumulative distribution function of 𝑇.  

The hazard function (instantaneous failure rate) is defined as the probability of 

an individual failing in a very short interval, given that the subject has survived to the 

time 𝑡 (Lee and Wang, 2003). 
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ℎ(𝑡) = lim
𝛿𝑡→0

{
𝑝(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 ≥ 𝑡)

𝛿𝑡
} 

= lim
𝛿𝑡→0

{

𝑝(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡)
𝑃(𝑇 ≥ 𝑡)

𝛿𝑡
} 

= lim
𝛿𝑡→0

{

𝐹(𝑡 + 𝛿𝑡) − 𝐹(𝑡)
𝑆(𝑡)

𝛿𝑡
} 

 

 

= lim
𝛿𝑡→0

{
𝐹(𝑡 + 𝛿𝑡) − 𝐹(𝑡)

𝛿𝑡
}
1

𝛿(𝑡)
=
𝑓(𝑡)

𝑠(𝑡)
. 

(2) 

 

In survival analysis, many parametric distributions are used to model the 

outcome variable 𝑇 such as Exponential, Weibull, Gamma and Gompertz 

distributions. The main important feature that differentiates the survival analysis from 

any other statistical analysis is the presence of censorship in its data. Censoring occurs 

when having partial information about an individual survival time (Kleinbaum and 

Klein, 2010). 

 

1.2 Censoring  

Censoring can occur due to different reasons, it can be unexpected as when a 

person is lost to follow up in a prospective study because they move away from the 

area where the study takes place, or it can be predetermined as when a decision is 

made to terminate a life test before all items have failed (Lawless, 2011). There are 

many kinds of censoring, such as interval censoring, left censoring and right censoring 

(Klein and Moeschberger, 2006). 
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Interval Censoring: the survival analysis can be interval censored when the 

survival time of a subject is true but unknown within a specific time interval. In this 

case, the true survival time of individual occures after time t1 and before time t2. 

Hence, it is interval censored in time interval lie between(𝑡1, 𝑡2). Right censoring and 

left censoring are special cases of interval censoring (Klein and Moeschberger, 2006). 

Left Censoring: the survival time is censored to the left when the actual survival 

time is less than or equal to the observed survival time (Klein and Moeschberger, 

2006). 

Right Censoring: is the most common type of censoring and it is occurs when 

the survival time is incomplete at the right side of the follow up period. For example, 

when a person leaves, the study before the event of interest has occurred or the study 

end before any event of interest has occurred. This type of censoring is very popular 

in real life application (Klein and Moeschberger, 2006). In addition, the most well-

known kinds of right censoring are Type I, Type II and random censoring (Lawless, 

2011).  

In Type I censoring, the censoring time 𝑐 is assumed to be fixed, this type of 

censoring occurs when a study end and no event have happened. The event is observed 

only if it is occurred before pre-specified time (Lee and Wang, 2003). While, in Type 

II censoring, when a fixed number of events between the subject has occurred the 

study ends. Usually this type of censoring (Type II) is used in experiments that 

involved in the testing equipment of lifetime. Let 𝑟 represent the pre-determined 

integer of the failure of individuals, therefore, the study continues until the first 𝑟 

failure of individuals have occurred (𝑟 < 𝑛). All equipment are put at the same time 

for the test and it is terminated when 𝑟 items out of 𝑛 have failed. These experiments 

are useful in saving time and money since it takes a long time in order to wait for all 
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items to fail (Klein and Moeschberger, 2006). 

Random censoring: is a more general scheme, each unit is associated with a 

potential censoring time, say 𝑐𝑖 and a potential lifetime say 𝑇𝑖. These are assumed to 

be independent random variables (Lawless, 2011). 

 

1.3 The Likelihood function under Type I censoring  

The likelihood function is the most significant concept in statistics that plays a 

key role in almost all areas of statistics. The inferential procedures derived from it are 

known to have optimal properties asymptotically under very general regularity 

conditions (Lehmann and Casella, 2006). 

Assume that 𝑡𝑖 , (𝑖 = 1,… , 𝑛) is a random sample from a parametric model with 

probability density function given by 𝑓(𝑡𝑖 , 𝜃) and survival function is given by 

𝑆(𝑡𝑖 , 𝜃), where 𝜃 = (𝜃1, … , 𝜃𝑘)
′is a parameter vector, 𝑐 is a censoring constant. Based 

on Lawless (2011) the observed Type I censored sample is given in the form 

(𝑦𝑖, 𝛿𝑖), 𝑖 = 1,… , 𝑛, where 

 

𝑦𝑖 = min(𝑡𝑖, c) = {
𝑡𝑖 , 𝑡𝑖  ≤ c, subject is complete 
c,           𝑡𝑖 > c , subject is right censored

 (3) 

𝛿𝑖 = {
1, 𝑡𝑖  ≤ c,      subject  is complete
0,             𝑡𝑖 > c, subject is right censored

 
(4) 

 

Moreover, 𝛿𝑖 is the event indicator. 

 

The likelihood function under Type I censored data is given by (Lawless, 2011): 

𝐿(𝑦𝑖 , 𝜃) =∏𝑓(𝑦𝑖, 𝜃)
𝛿𝑖
 𝑆(𝑦𝑖 , 𝜃)

1−𝛿𝑖

𝑛

𝑖=1

. (5) 
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1.4 The Log-Logistic distribution 

 

The Log-Logistic distribution is an important survival parametric model that is 

used the field of science, actuarial, hydrology, survival analysis, reliability, and 

economics (Al-Shomrani, Shawky et al. 2016). 

Suppose that 𝑇 is a Log-Logistic random variable with the cumulative 

probability function (cdf) given by (Lawless, 2011) as: 

𝐹(𝑡, 𝛼, 𝛽) =
(𝑡 𝛼⁄ )

𝛽

1+(𝑡 𝛼⁄ )
𝛽 ,   𝑡 > 0, 𝛼 > 0, 𝛽 > 0. (6) 

 

Differentiating equation (6) with respect to 𝑡 to obtain the probability density function 

(pdf) of the Log- Logistic distribution is obtained and given as:  

𝑓(𝑡, 𝛼, 𝛽) =

𝛽
𝛼⁄ (𝑡 𝛼⁄ )𝛽−1

(1 + (𝑡 𝛼⁄ )
𝛽
)
2  , 𝑡 > 0, (7) 

 

 

where, 𝛼 > 0 is the scale parameter, 𝛽 > 0  is the shape parameter, which controls 

the shape of the distribution as illustrated in Figure 1.  
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Figure 1. Plot of the pdf of the log-Logistic distribution with 𝛼 = 2 and various values 

of 𝛽. 

Figure 1 shows that the Log-Logistic distribution has different shapes; it can be 

unimodal, right skewed, or decreasing. It is clear that from Figure 1, as 𝛽 increases the 

shape of the distribution is closer to be symmetric.  

 

The survival function of Log-Logistic distribution is given by (Lawless, 2011) as: 

 

𝑆(𝑡) =
1

1 + (𝑡 𝛼⁄ )
𝛽
 , 𝑡 > 0. (8) 

 Figure 2 illustrates the survival function of Log-Logistic distribution. 
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Figure 2. Plot of the survival function of the Log-Logistic distribution with α=2 and 

various values of β. 

 

 

The survival function of the Log-Logistic distribution is a non-increasing 

function, which is shown in Figure 2 the hazard function of Log-Logistic distribution 

is obtained by taking the ratio of the pdf in equation (7) and the survival function in 

equation (8). 

 

ℎ(𝑡) =
𝑓(𝑡)

𝑠(𝑡)
=

𝛽
𝛼⁄ (𝑡 𝛼⁄ )𝛽−1

1 + (𝑡 𝛼⁄ )
𝛽

 

 

(9) 

 

Figure 3 illustrates the hazard function of Log-Logistic distribution. 
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 Figure 3. Plot of the hazard function of the Log-Logistic distribution with α=2 and 

various values of β. 

 

Figure 3 shows that the hazard function of the Log-Logistic distribution can 

have different shapes for instance, it can be increasing, decreasing, and a hump shape. 

Thus, the Log-Logistic distribution can be used quite effectively in analyzing lifetime 

data. 

 

1.5 Goodness of fit test based on EDF 

 

The goodness of fit (GOF) test is a formal method to test the significance of 

difference between an empirical distribution function 𝐹𝑛(𝑥) and theoretical distribution 

function 𝐹(𝑥). Suppose that 𝐹(𝑥) is a continues cumulative distribution function, the 

hypothesis under the test is 𝐻0: 𝐹(𝑥, 𝜃) = 𝐹0(𝑥, 𝜃) verses 𝐻1: 𝐹(𝑥, 𝜃) ≠ 𝐹0(𝑥, 𝜃). The 

most commonly used goodness of fit tests based on empirical distribution function 

statistics is Kolmogorov Smirnov, Cramer von Mises and Anderson Darling tests 

(D’Agostino and Stephens, 1986). 
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The empirical distribution function for any value of 𝑥 is a function of the 

observations less than or equal to 𝑥 which gives the probability that an observation is 

less than 𝑥. Thus, the empirical distribution function of a sample is defined as follows: 

 

𝐹𝑛(𝑥) =

{
 

 
0                                                     𝑥 < 𝑥(1)   

𝑖

𝑛
;      𝑥(𝑖) ≤ 𝑥 < 𝑥(𝑖+1)   𝑖 = 1,2,… , 𝑛 − 1,

1                                                       𝑥 ≥ 𝑥(𝑛)

 (10) 

 

Kolmogorov proposed a test based on the discrepancy: 

𝑧𝑛(𝑥) = 𝐹𝑛(𝑥) − 𝐹(𝑥), (11) 

 

 

where 𝐹𝑛(𝑥) is the empirical function and 𝐹(𝑥) is the theoretical distribution function.  

The Kolmogorov and Smirnov proposed a test called Kolmogorov-Smirnov test and it 

is given as follows (Stephens, 1986); 

𝐷 = max(𝐷+, 𝐷−), (12) 

 

where 𝐷+ = 𝑠𝑢𝑝𝑥{𝑧𝑛(𝑥)}; 𝐷
− = 𝑠𝑢𝑝𝑥{−𝑧𝑛(𝑥)}. 

 

The Cramer-von Mises considered a family of tests statistics which is based on 

the integral of 𝑧𝑛(𝑥). The Cramer-von Mises family of statistics is given as: 

 

𝐶 = 𝑛∫ {𝑧𝑛(𝑥)}
2𝜓(𝑥) 𝑑𝐹(𝑥

∞

−∞

), (13) 

 

where 𝜓(𝑥) is a weight function, when 𝜓(𝑥) = 1 the Cramer-von Mises statistics is 

obtained, and when 𝜓(𝑥) = {𝐹(𝑥)[1 − 𝐹(𝑥)]}−1, the Anderson-Darling statistics is 

provided.  
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To simplify the computation, the three tests can be re-written as (Stephens, 1986): 

Kolmogorov-Smirnov (KS);  

𝐷 = max (𝐷+, 𝐷−), (14) 

 

where 𝐷+ = max [ 𝓏(𝑖) −
(𝑖−1)

𝑛
] and 𝐷− = max [ 𝓏(𝑖) −

(𝑖−1)

𝑛
] 

Cramer-von Mises (W);  

𝑊2 =
1

12𝑛
+∑{

𝑖

𝓏(𝑖) −
2𝑖 − 1

2𝑛
}2, (15) 

 

Anderson-Darling (AD);  

𝐴2 = −𝑛 −
1

𝑛
𝑐𝓏(𝑖) + log (1 − 𝓏(𝑛+1−𝑖))], (16) 

,where 𝓏(𝑖) = 𝐹0(𝑥(𝑖), 𝜃) is the theoretical cdf of the interest model. 

 

 

 

1.6 Literature reviews  

 

The purpose of the literature review is to gain an understanding of the current 

research relevant to a certain topic or study. Over the years, many researchers have 

considered the goodness of fit test problem. The main goal of these tests is to check 

whether a certain sample comes from a specific distribution by using different 

techniques. 

 1.6.1 Goodness of fit test based on empirical distribution function 

 

Davis and Stephens (1989) applied the EDF tests on normal and Exponential 

distribution; they have obtained an approximate significance level for Cramer-von 

Mises, Anderson Darling test statistics, and Watson statistics. The Anderson–Darling 

statistics test was more appropriate and powerful in testing goodness of fit for the 

Normal and Exponential distribution. Some authors have worked on developing the 
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EDF efficiency, Al-Subh et al. (2009) improved the efficiency of EDF tests using 

ranked set sampling (RSS), which gives more information about the population of 

interest than simple random sampling (SRS). These tests were applied to the Logistic 

distribution and the results showed that the EDF tests were more efficient under the 

RSS compared to the SRS technique. Likewise, Ibrahim et al. (2009) studied the 

power of a set of modified empirical distribution function tests under SRS and extreme 

ranked set sampling (ERSS), which is a modification of RSS. They have shown that 

the power of set modified EDF tests was improved if the sample was collected via 

ERSS compared to SRS. 

 

1.6.2 Goodness of fit test for Logistic distribution   

It is well known that the Log-Logistic and Logistic are equivalent statistical 

models, any statistical technique developed for one distribution can be applied for the 

other distribution. Based on the available literature, there is no study considered the 

problem of goodness of fit test for Log-Logistic distribution. However, there are 

several studies focused on the goodness of fit tests (GOF) for the Logistic distribution 

using different methods.  

Meintanis (2004) investigated the GOF test for the Logistic distribution based 

on weighted integrals involving two methods of empirical transformations, the first 

method was utilized by the empirical characteristic function (ECF), while the second 

utilized by the empirical moment generating function (EMGF). Gulati and Shapiro 

(2009) proposed a new GOF test for Logistic distribution, the proposed test was based 

on higher order spacing (m-step spacings) and it was a modification of the Greenwood 

statistics. In order to compute the test statistic, the parameters of the Logistics 

distribution were estimated by the maximum likelihood estimation and the method of 

moments. Hence, a power comparison for two methods of estimation was 



  

12 

 

investigated. The results of the Monte Carlo simulation showed that the method of 

moments established higher power than the maximum likelihood estimation. Al-Subh 

et al. (2011) developed the GOF test for Logistic distribution based on Kullback-

Leibler information, the Logistic parameters were estimated using several methods 

such as maximum likelihood estimation, order statistic, method of moments, L-

moments and LQ-moments. In addition, the performance of the Kullback-Leibler 

information under a SRS was investigated. The test statistic based on estimators found 

by the method of moment and LQ-moment established the highest power in most of 

the cases. Alizadeh Noughabi (2015) worked on the GOF test for the Logistic model 

based on the empirical likelihood ratio (ELR), the location and scale parameters of 

the Logistics distribution were estimated using the maximum likelihood estimation 

method. A comparison of the power for the proposed and the classical tests based on 

EDF was carried out.The results of Monte Carol simulation revealed that the proposed 

test based on ELR outperformed in most of the cases. Alizadeh Noughabi (2017) 

studied the GOF for the Logistic distribution based on the Gini Index estimator, the 

approximate maximum likelihood estimator (AMLEs) was used to estimate the 

parameters of interest model. From the simulation results, the proposed test was more 

powerful compared to the EDF tests. 

 

1.6.3 Goodness of fit test under for Type I censored sample    

 

In addition, some authors investigated the problem of the GOF under Type I 

censoring. Bispo et al. (2012) studied the GOF test based on EDF under Type I right 

censored samples for various null and alternative lifetime models such as Weibull, 

Log-Normal, Exponential, and Log-Logistic distributions. The statistical power of 

Kolmogorov Simonov, Anderson Darling, and Cramer- von Mises statistics were 

evaluated using different sizes of a sample, significance level and various censoring 
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proportion, whereas Pakyari and Balakrishnan (2013) developed the GOF test using 

Exponential model under Type I censored sample. The proposed method was based 

on considering the Type I censored sample as order statistics from a complete sample 

of size 𝑑 from Exponential distribution with right truncation, and then the classical 

GOF test for the complete sample was obtained. A comparison between the classical 

test and the proposed test were performed. The analysis of the power for several 

alternative distributions such as Weibull, Log-Normal, Lomax, and Gamma 

distribution was obtained. The authors concluded that the proposed test was more 

powerful than the classical test under Type I censoring. Further, Pakyari and Nia 

(2017) extended the method of Pakyari and Balakrishnan (2013) from the simple 

Exponential distribution to Log-Normal and Weibull distributions, they have 

concluded that this method is powerful for shape scale and location-scale models. 

Pakgohar et al. (2019) have studied the GOF for Normal and Exponential models 

under Type I censoring using two methods, the Lin-Wong divergences (LW) and the 

EDF. They have compared the performance of the two methods and concluded that 

when LW divergence measure was used to evaluate the distance, the results exhibited 

more powerful than the EDF under Type I censoring in measuring the difference 

between two distributions pattern.  

 

Overall, most of the available literature reviews have studied the GOF test either 

for Logistics distribution with different techniques or various distributions under Type 

I censoring. Additionally, it was noticed that the problem of the GOF test for Log-

Logistics based on EDF under type I censoring was insufficiently explored. 
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1.7 Problem statement  

 

The Log-Logistic model is a continuous probability model with a non-negative 

random variable. In the survival analysis, it is used as a parametric distribution for 

modeling time to event to occur. The hazard function of the Log-Logistic model can 

have different shapes for instance; it can be increasing, decreasing, and a hump shape. 

Thus, Log-Logistic distribution can be used effectively in analyzing lifetime data. 

Type I censoring is common in survival analysis, the event is observed only if it is 

occurred before pre-specified time. This kind of censoring is found in many areas, 

such as medicine, biomedical sciences, and engineering. 

The goodness of fit test procedure is important in the statistical analysis of 

lifetime data. It is used to verify the assumed distribution, which adequately fits the 

data. Previous studies have investigated the problem of the goodness of fit using the 

empirical distribution function for Type I censoring and for different lifetime models 

for example Weibull, Exponential, Log-Normal etc. Bispo et al. (2012) suggested to 

use of the empirical distribution function statistics in presence of Type-I censoring for 

some lifetime distribution including the Log-Logistic model. Pakyari and 

Balakrishnan (2013) developed a GOF test using the Exponential model under Type 

I censored sample. The proposed method was based on considering the type I sample 

as order statistics from Exponential distribution with the right truncation and by 

treating this sample as a complete sample, then obtaining the classical tests for the 

complete sample. Pakyari and Nia (2017) extended the method of Pakyari and 

Balakrishnan (2013) from simple Exponential distribution to Log-Normal and 

Weibull distribution.  

However, there is no prior study investigates the problem of the goodness of fit 

tests for log-Logistic distributions under Type I censored sample. Thus, due to work 
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limitation on the goodness of fit test for the Log-Logistic distribution, this study aims 

to consider the problem of the goodness of fit test based on the empirical distribution 

function for the Log-Logistic distribution when the available data is in the form of 

Type I censoring. In this study, A test procedure proposed by Pakyari and Nia (2017) 

will be applied and a Monte Carlo power study will be conducted to assess the 

performance of the proposed test with the aim to exhibit higher power as compared to 

the existing classical method. For this purpose, several alternative models such as, 

Log-normal, Weibull, Exponential, Gamma, and Lomax distributions will be 

considered. Over the past few years, the Log-Logistic distribution has been widely 

used in analyzing lifetime data, owing to its flexibility. Type I censoring is very 

common in survival analysis. According to Bispo et al. (2012) suggested the use of 

EDF statistics in presence of Type-I censoring for some lifetime distribution including 

Log-Logistic model. Pakyari and Balakrishnan (2013) and Pakyari and Nia (2017) 

used a new methodology for conducting goodness of fit test under Type-I censoring 

scheme. Therefore, due literatures reviews and work limitation on goodness of fit test, 

this study aims to investigate the problem of the goodness of fit test of Log-Logistic 

distribution under Type I censored sample. A test procedure proposed by Pakyari and 

Balakrishnan (2013) will be used to compare the power with the existing classical 

method, as well as, the power analysis of the proposed test will be evaluated for 

different alternative models using Monte carlo studies and real data application.  
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1.8 Research objective and Significant of the study 

 

The main objective is to derive the maximum likelihood estimator for the scale 

and shape parameters of the Log-Logistic model under Type I censoring, which will 

be used to compute the proposed and classical goodness of fit tests. Furthermore, a 

power comparison for the proposed and classical tests with several alternative models 

such as Gompertz, Weibull, BurrX, and Exponential will be considered. The results 

of the power analysis for the Log-Logistic model under Type I censored data based 

on empirical distribution function will illustrate the flexibility and significant of the 

Log-Logistic distribution in the field of survival analysis. 

 

1.8.1 Research Specific Objectives  

 

This study aims to investigate the following specific objectives: 

1. Obtain the maximum likelihood estimator for the unknown parameters for the 

Log-Logistics distribution under Type I censored data. 

2. Compute the proposed goodness of tests (GOF) based on the empirical 

distribution function (EDF) for the Log-Logistic distribution. 

3. Compute the classical goodness of tests (GOF) based on the empirical 

distribution function (EDF) for the Log-Logistic distribution. 

4. Calculate the critical points for the proposed and classical tests. 

5. Conduct a Monte Carlo power studies to compare the performance of the 

classical and proposed tests for the Log-Logistic distribution. 
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1.9 Scope of Study  

 

As mentioned above, the work in this thesis is involved with the goodness of fit 

technique for testing Log-Logistic model under Type I censored sample based on the 

EDF. Some fundamental concepts in the survival analysis field, such as survival 

function, hazard function, censoring schemes, and background of the Log-Logistic 

parametric model are introduced in Chapter 1. As well as, overview of the goodness of 

fit test based on an empirical distribution function and reviews of the literature related 

to GOF tests also delivered in Chapter 1. While in Chapter 2 computations of the 

goodness of fit test and the maximum likelihood estimator for Log-Logistic model 

under Type I censored sample will be considered. Furthermore, the proposed test and 

the classical test based on the EDF will be introduced in Chapter 2. A Monte Carlo 

power study and discussion of the results will be investigated in Chapter 3. While in 

Chapter 4 real data applications under Type I censoring will be explored. Lastly, 

Summary, conclusion, and suggestion for further studies will be given in Chapter 5. 
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CHAPTER 2: GOODNESS OF FIT TEST TECHNIQUE 

 The goodness of fit test technique is important in the statistical analysis of 

lifetime data. It is used to verify the assumed distribution, which adequately fits the 

data. The most common method is the empirical distribution function (EDF) test 

statistics, which compare the theoretical continuous distribution function with the 

empirical distribution function (Huber-Carol, Balakrishnan et al. 2012). 

 

2.1 Goodness of fit test for testing the Log Logistic distribution under Type I 

censored sample. 

 

This section discusses the procedure of goodness of fit test for testing the Log-

Logistic distribution under Type I censored sample based on the empirical distribution 

function. It is known that Log-Logistic and Logistic are equivalent statistical models. 

For example, any statistical technique developed for one distribution can be easily 

applied for the other distribution. However, since the Logistic model is the location-

scale distribution, the distribution of the empirical distribution function statistics will 

not depend on the true values of the unknown parameters, while the Log-Logistic 

model is the scale-shape distribution and hence does not have this useful property. If 

the random variable 𝑋 follow Log-Logistic distribution, then 𝑌 = 𝑙𝑜𝑔(𝑋) is the 

Logistic random variable with pdf given as; 

 

𝑓(𝑦, 𝜇, 𝜎) =  
 𝑒𝑥𝑝 (

𝑦 − 𝜇
𝜎 )

𝜎 [1 +  𝑒𝑥𝑝 (
𝑦 − 𝜇
𝜎 )]

2 , −∞ <   𝑦 < ∞,−∞ <  𝜇 < ∞, 𝜎 > 0, (17) 

 

where 𝜇 = 𝑙𝑜𝑔(𝛼) and 𝜎 =
1

𝛽
  (Lawless, 2011). 
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Integrating equation (17) with respect to variable y then, the cumulative probability 

function (cdf) of the Logistic distribution is obtained and given as follows:  

F(𝑦, 𝛼, 𝛽) =
1

1 +  𝑒𝑥𝑝 (−
𝑦 − 𝜇
𝜎

)
,      − ∞ <   𝑦 < ∞ . (18) 

 

Suppose 𝑋1, … , 𝑋𝑛 is a random sample of Type-I censored from a probability 

distribution function  F and let 𝑐 > 0 is a pre-fixed censored time for the life testing 

experiment. In this study, Type I censored sample is treated as order statistics from a 

complete sample of size 𝑑 and right truncated at c . In other words, only subjects with 

observed time less than or equal the censoring time will be considered, which is the 

complete failure subjects of Type I censored samples,  𝑋1, … , 𝑋𝑑  of size 𝑑 ≤ 𝑛. 

Therefore, we are interested in testing that 𝑋1, … , 𝑋𝑑 follow a Log-Logistic 

distribution or equivalently we are interested in testing that the log transformed data 

𝑌𝑖  = 𝑙𝑜𝑔( 𝑋𝑖) , 𝑖 = (1,… , 𝑑) follow Logistic model with mean 𝜇 = 𝑙𝑜𝑔(𝛼) and 

standard deviation 𝜎 =
1

𝛽
  . 

Thus, we are interested in testing the goodness of fit test hypothesis that: 

𝐻0: 𝐹(𝑦, 𝜇, 𝜎) =
1

1 + 𝑒𝑥𝑝 (−
𝑦 − 𝜇
𝜎 )

 

(19) 

𝐻1: 𝐹(𝑦, 𝜇, 𝜎) ≠
1

1+𝑒𝑥𝑝(−
𝑦−𝜇

𝜎
)
 ,   −∞ ≤  𝑦 ≤ ∞ , −∞ ≤  𝜇 ≤ ∞.  𝜎 ≥ 0. 

To test the null hypothesis in (19) the MLE’s of the Logistic distribution is required. 

 

2.2 Maximum Likelihood Estimator for Log-Logistic and Logistic distributions 

 

Suppose 𝑌𝑖 , (𝑖 = 1,… , 𝑛) is a Type I random sample from Logistic model. Then 

𝑋𝑖  = 𝑒𝑥𝑝(𝑌𝑖) , (𝑖 = 1, … , 𝑛) is a Type I censored lifetime from Log-Logistic 

distribution. Based on Lawless (2011) the likelihood function for Log-Logistic 

distribution under Type I censored lifetime is given as, 
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𝐿(𝑥𝑖, 𝛼, 𝛽) =∏𝑓(𝑥𝑖, 𝛼, 𝛽)
𝛿𝑖  𝑆(𝑥𝑖, 𝛼, 𝛽)

1−𝛿𝑖

𝑛

𝑖=1

. (20) 

 

and, the log-likelihood function of Log-Logistic distribution under Type I censored 

lifetime is given as, 

𝐿𝑜𝑔(𝐿) =∑𝛿𝑖  

𝑛

𝑖=1

𝑙𝑜𝑔 (
𝛽
𝛼⁄ )+(𝛽 − 1)∑𝛿𝑖  

𝑛

𝑖=1

𝑙𝑜𝑔 (
𝑥𝑖
𝛼
) − 2∑𝛿𝑖  

𝑛

𝑖=1

𝑙𝑜𝑔 (1 + (
𝑥𝑖
𝛼
)
𝛽

) 

−∑(1 − 𝛿𝑖  )log (1 + (
𝑥𝑖
𝛼
)
𝛽

)

𝑛

𝑖=1

. 

(21) 

  

The first partial derivative of the log-likelihood function with respect to the parameters 

(𝛼, 𝛽) in equation (21) and by equating the derivative to zero, obtain the following: 

𝜕 𝑙𝑜𝑔(𝐿)

𝜕𝛼
= ∑(1 − 𝛿𝑖) [

𝛽𝑥𝑖 (
𝑥𝑖
𝛼 )

𝛽−1

𝛼2 ( 1 + (
𝑥𝑖
𝛼 )

𝛽

)

] 

𝑛

𝑖 = 1

−∑
𝛿𝑖
𝛼

𝑛

𝑖 = 1

− (𝛽 − 1)∑
𝛿𝑖
𝛼

𝑛

𝑖 = 1

+ 2∑ 𝛿𝑖 [
𝛽𝑥𝑖 (

𝑥𝑖
𝛼 )

𝛽−1

𝛼2 ( 1 + (
𝑥𝑖
𝛼 )

𝛽

)

] 

𝑛

𝑖 = 1

= 0 . 

 

 

 

(22) 

 

𝜕 𝑙𝑜𝑔(𝐿)

𝜕𝛽
= −∑(1 − 𝛿𝑖) [

𝑙𝑜𝑔 (
𝑥𝑖
𝛼  ) (

𝑥𝑖
𝛼 )

𝛽

1 + (
𝑥𝑖
𝛼 )

𝛽
] 

𝑛

𝑖 = 1

+∑
𝛿𝑖
𝛽

𝑛

𝑖 = 1

+∑ 𝛿𝑖

𝑛

𝑖 = 1

𝑙𝑜𝑔 (
𝑥𝑖
𝛼
 ) 

−2∑ 𝛿𝑖 [
𝑙𝑜𝑔 (

𝑥𝑖
𝛼  ) (

𝑥𝑖
𝛼 )

𝛽

1 + (
𝑥𝑖
𝛼 )

𝛽
] 

𝑛

𝑖 = 1

= 0 . 

 

 

 

(23) 

 

The root of these equations (22 and 23) is maximum likelihood estimator (𝛼̂ and 𝛽̂) 

of the Log-Logistic distribution. These equations will be solved simultaneously using 

Newton-Raphson iterative method, as these equations cannot be solved analytically. 
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Using the invariant property of the maximum likelihood estimator the MLE’s (μ̂, σ̂) 

of the Logistic distribution is obtained Lawless (2011) and given as the following; 

𝜇̂ = 𝑙𝑜𝑔(𝛼̂)  and 𝜎̂ =
1

𝛽̂
 . 

(24) 

where  𝛼̂ and 𝛽̂ are the MLE’s of Log-Logistic parameters. 

 

2.3 Compute GOF tests based on EDF statistics 

 

In this section, the GOF tests based on EDF statistics will be presented for 

proposed and the classical methods. The Kolmogorov-Smirnov (KS), Cramer-von 

Mises (W) and Anderson-Darling (AD) tests are the most commonly used EDF 

statistics of GOF tests. These tests compare the theoretical continuous distribution 

function to the empirical distribution function of the samples (Stephens, 1974). 

2.3.1 Proposed method  

 

Transform the Type I sample of the Logistic model 𝑌1, … , 𝑌𝑑   to uniformity 

order statistic from the uniform distribution by using the transformation, 

𝑢𝑖 =
1

1 + 𝑒𝑥𝑝 (−
𝑦𝑖 − 𝜇̂
𝜎̂

)

1

1 + 𝑒𝑥𝑝 (−
𝑐 − 𝜇̂
𝜎̂

)
⁄    , 𝑖 = (1,… , 𝑑) 

(25) 

𝑢𝑖 is calculated based on the ratio of cdf of the Logistic distribution evaluated at 𝑦𝑖 

and censoring time c where (μ̂, σ̂) are the MLE’s of the Logistic distribution obtained 

in (2.2). 

The order statistic 𝑢1, 𝑢2, . . . , 𝑢𝑑 will be treated as a complete sample of size 

𝑑 and any usual goodness of fit test technique available for complete data can be 

applied from (Pakyari and Balakrishnan, 2013). The proposed EDF tests calculated as 

follows:  
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Kolmogorov-Smirnov statistics; 

 𝐷𝑑 = 𝑚𝑎𝑥1≤𝑖≤𝑑 [𝑚𝑎𝑥 {
𝑖

𝑑
− 𝑢𝑖, 𝑢𝑖 −

𝑖 − 1

𝑑
}], (26) 

Cramer-von Mises statistics; 

 𝑊𝑑
2 =∑(

𝑑

𝑖=1

𝑢𝑖 −
2𝑖 − 1

2𝑑
)2 +

1

12𝑑 
, (27) 

Anderson-Darling statistics; 

 𝐴𝑑
2 = −𝑑 −

1

𝑑
∑(2𝑖 − 1){𝑙𝑜𝑔(𝑢𝑖) + 𝑙𝑜𝑔(1 − 𝑢𝑑+1−𝑖)},

𝑑

𝑖=1

 (28) 

 

EDF tests in equations (26, 27, and 28) are calculated based on 𝑢𝑖 that obtained in 

equation (25).  

2.3.2. Classical method  

 

For the Type I sample of Logistic model  𝑌1, … , 𝑌𝑑 𝑢𝑖 is calculated as,   

 𝑢𝑖 =
1

1+𝑒𝑥𝑝(−
𝑦𝑖−𝜇̂

𝜎̂
)
, 𝑖 = (1,… , 𝑑). (29) 

  

𝑢𝑖 is calculated based on the cdf of the Logistic distribution evaluated at 𝑦𝑖 where 

(μ̂, σ̂) are the MLE’s of the Logistic distribution obtained in (2.2).  

Considering the order statistics, 𝑢1, 𝑢2, . . . , 𝑢𝑑 the classical EDF tests are calculated as 

follows:  

Kolmogorov-Smirnov statistics is proposed by D’Agostino and Stephens 

(1986); 

 𝐷𝑛,𝑝=𝑚𝑎𝑥1≤𝑖≤𝑑 [𝑚𝑎𝑥 {
𝑖

𝑛
− 𝑢𝑖,𝑢𝑖 −

𝑖−1

𝑛
}]. (30) 

Cramer-von Mises statistics is proposed by Pettitt and Stephens (1976); 

 

𝑊𝑛,𝑝
2 =∑(

𝑑

𝑖=1

𝑢𝑖 −
2𝑖 − 1

2𝑛
)2 −

𝑑(4𝑑 − 1)

12𝑛2
+ 𝑛 𝑢𝑑 (

𝑑2

𝑛2
− 𝑢𝑑

𝑑

𝑛
+
1

3
𝑢𝑑

2) (31) 
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Anderson–Darling statistics is proposed by Pettitt and Stephens (1976); 

𝐴𝑛,𝑝
2 =∑(

2𝑖 − 1

𝑛
) [𝑙𝑜𝑔(1 − 𝑢𝑖) − 𝑙𝑜𝑔(𝑢𝑖)] − 2

𝑑

𝑖=1

∑𝑙𝑜𝑔(1 − 𝑢𝑖)

𝑑

𝑖=1

+ 𝑛 [
2𝑑

𝑛
− (

𝑑

𝑛
)
2

− 1] 𝑙𝑜𝑔(1 − 𝑢𝑑) +
𝑑2

𝑛
𝑙𝑜𝑔(𝑢𝑑) − 𝑛 𝑢𝑑 

(32) 

 

where 𝑛 is the size of  Type I censored sample,  while 𝑑 is size of complete failure 

subjects of Type I censored and 𝑢𝑑 is the value of the cdf of Logistic distribution 

evaluated at 𝑐 and 𝑢𝑖 is the value of the cdf of Logistic distribution evaluated at  𝑦𝑖  

which is found it in equation (29). 

 

2.4 Critical points and Empirical significant levels 

 

2.4.1 Critical points 

 

The critical values are required for testing the Log-Logistic model which 

statistically equivalent for testing the hypothesis in equation (19). The steps of finding 

the critical values for the proposed and the classical methods will be as follows: 

 

Step1: Choose c from a standard Logistic distribution with different proportions of 

failure, 𝐹(𝑐 ) =
1

1+𝑒𝑥𝑝(−
𝑐−𝜇

𝜎
)
 which is based on the cdf of Logistic distribution 

evaluated at c.  
 

Step 2: Generate a Type I sample,  𝑌1, … , 𝑌𝑛with a chosen sample size n  from a 

standard Logistic distribution (𝑖. 𝑒. 𝜇 =  0 𝑎𝑛𝑑 𝜎 = 1). For more details, see 

appendix A.  

Step 3: Calculate 𝑋𝑖=𝑒𝑥𝑝(𝑌𝑖  ) , 𝑖 = (1,… , 𝑛), the distribution of  𝑥𝑖’s will be Log-

Logistic distribution with parameters 𝛼 = 𝑒𝑥𝑝(𝜇) and 𝛽 =
1

𝜎
,  𝑥𝑖, 𝛼, 𝛽 ≥ 0.  
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Step 4: From the data that are obtained in step 3, calculate the MLE’s (𝛼̂, 𝛽̂) for the 

parameters of Log-Logistic distribution then, by applying the invariant property of the 

MLE’s (𝜇̂, 𝜎̂) of the Logistic distribution are obtained as follows 𝜇̂ = 𝑙𝑜𝑔(𝛼̂)  and 𝜎̂ =

1

𝛽̂
 . 

Step 5: From the data that are obtained in step 2, 𝑌1, … , 𝑌𝑛 only the complete failure 

subjects with observed time less than or equal the censoring time will be considered, 

𝑌1, … , 𝑌𝑑 and the sample will be of size 𝑑. 

 

Step 6: Using the data obtained in step 5, the values of  𝑢𝑖 is calculated as follows: 

For the proposed method using equation (25), which is based on the ratio of the cdf 

of the Logistic distribution evaluated at the values 𝑦𝑖  and c. For the Classical method  

𝑢𝑖  is calculated as equation (29), which is based on the cdf of the Logistic distribution 

evaluated at 𝑦𝑖.  

 

Step 7: Using the order statistics of 𝑢𝑖 and calculate the EDF statistics for the proposed 

method use equations (26, 27, and 28) and for the classical method use equations (30, 

31, and 32). 

 

Step 8: Repeat Steps 1–7 many times and calculate the (1 –  𝛼)th quantile of the 

proposed and the classical EDF tests statistic as the required critical values with the 

significant levels 𝛼 = 5% 𝑎𝑛𝑑 10%. 
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2.4.2 Empirical significant level 

 

To check the validity of the critical points in 2.4.1 the empirical significant level 

is needed. The significant level is defined as the probability of rejecting the 

distribution under the null given that the null hypothesis is assumed to be true. 

 

The steps of calculating the empirical significant level will be as follows: 

1. Calculate the same steps 1-7 of the critical points in section 2.4.1.  

 

2. Repeat Steps 1–7 many times and calculate the empirical significant level of 

the proposed and classical EDF tests as the proportion of replications in which 

the test statistic exceeded its corresponding critical value obtained in section 

2.4.1. 

3. The empirical significant levels are obtained at two nominal levels  𝛼 =

5% and 10%. 

 

 

 

2.5 Power Analysis  

 

Power of the tests is the probability of rejecting the null hypothesis when the 

alternative hypothesis is true and can be obtained as follows: 

𝑃𝑜𝑤𝑒𝑟 = 𝑝(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 | 𝐻1𝑡𝑟𝑢𝑒). 

Power analysis is conducted to evaluate the behavior of the proposed tests and 

classical EDF statistics by comparing their power, several alternative models such as 

Gompertz, Weibull, BurrX, and Exponential distributions are considered. The 

probability density function for the alternative models are as follows: 

 

The Gompertz distribution (Wu et al., 2003); 

 
𝑓(𝑡, 𝑝, 𝑑) = 𝑑  𝑒𝑝𝑡𝑒

[
𝑑

𝑝
(1−𝑒𝑝𝑡)]

,   𝑡 > 0 , 𝑝 > 0, 𝑑 > 0. (33) 

The Weibull distribution (Collett, 2015); 

 𝑓(𝑡, 𝑏, 𝑎) = 𝑎𝑏𝑡𝑏−1 𝑒−𝑎𝑡
𝑏
,   𝑡 > 0 , 𝑏 > 0 𝑎 > 0. (34) 
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The Burr X distribution (Al-Nasser and Baklizi, 2004); 

 
𝑓(𝑡, 𝜈, 𝜃) =

2𝜈𝑡

𝜃2
( 𝑒−(

𝑡

𝜃
)
2

) (1 −  𝑒−(
𝑡

𝜃
)
2

 )
𝜈−1

,   𝑡 > 0 , 𝜈, 𝜃 > 0. (35) 

The Exponential distribution (Choi et al., 2004); 

 𝑓(𝑡, 𝜆) = 𝜆 𝑒−𝜆𝑡,   𝑡 > 0 , 𝜆 > 0. (36) 

 

2.5.1 Empirical power of the tests 

 

This section provides an explanation about conducting the power analysis and 

calculating the Empirical power for testing the log-Logistic distribution. The steps of 

calculating the power of EDF tests for the proposed and classical methods as the 

following: 

Step 1: Choose c from the alternative distributions with different proportions of 

failure, 𝐹(𝑐) that based on the cdf of alternative distributions evaluated at c. 

 

Step 2: Generate a Type I censored sample, 𝑌1, … , 𝑌𝑛with a chosen sample size 𝑛 from 

the alternative distributions. 

 

Step 3: Using the data obtained in step 2, calculate the MLE’s (𝛼̂, 𝛽̂) for the parameters 

of Log-Logistic distribution then, by applying the invariant property of the MLE’s 

(𝜇̂, 𝜎̂) of the Logistic distribution are obtained as follows 𝜇̂ = 𝑙𝑜𝑔(𝛼̂)  and 𝜎̂ =
1

𝛽̂
 . 

 

Step 4: From the data that are obtained in step 2, 𝑌1, … , 𝑌𝑛 only the complete failure 

subjects with observed time less than or equal the censoring time will be considered, 

𝑌1, … , 𝑌𝑑 and the sample will be of size 𝑑. 

 

Step 5: Using the data that are obtained in step 4, the values of  𝑢𝑖  is calculated as 

follows:  
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For the proposed method using equation (25), which is based on the ratio of the cdf 

of the Logistic distribution evaluated at 𝑙𝑜𝑔(𝑐) and l𝑜𝑔(𝑦𝑖) where c and 𝑦𝑖found in 

step (1 and 2). For the classical method  𝑢𝑖 is calculated as equation (29), which is 

based on the cdf of the Logistic distribution evaluated at l𝑜𝑔(𝑦𝑖) where 𝑦𝑖 is found in 

step 2. 

Step 6: Using the order statistics of 𝑢𝑖  and calculate the EDF statistics for the proposed 

method use equations (26, 27, and 28) and for the classical method use equations (30, 

31, and 32). 

 

Step 7: Repeat Steps 1–6 many times and calculate the power of the proposed and 

classical EDF tests as the proportion of replications in which the test statistic exceeded 

its corresponding critical value obtained in section 2.4.1 
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CHAPTER 3: FORMATTING OR MODIFYING HEADINGS IN A MANUSCRIPT 

The importance of simulation studies that they are used in obtaining empirical 

results to evaluate the efficiency of statistical methods in certain scenarios, since it 

can understand the behavior of statistical methods. This assists the researchers to 

consider several properties of statistical methods. In addition, Monte carlo studies are  

statistical procedures that obtain numerical results depending on repeated random 

sampling  (Morris et al., 2019). 

 

3.1 Monte Carlo simulation studies 

 

In this section, Monte Carlo simulation studies are considered for testing the 

Log-Logistic model under Type I censored data. Power analysis is carried out to assess 

the performance of the Kolmogorov Smirnov (KS), Cramer von Mises (W), the 

Anderson Darling (AD) tests for the proposed and classical methods. Several 

alternative distributions with different shape parameter values are considered for 

power analysis such as Gompertz, Weibull, Burr X, and Exponential distributions. 

Moreover, the critical points for both methods are calculated to obtain empirical 

power while the empirical significance level (α) is calculated to check the validity of 

the critical points. Hence, the critical points and the empirical significance level are 

computed at two significant levels (𝛼=0.10 and 0.05). 10,000 iterations with a chosen 

sample size (𝑛=35, 60, 90) and observed proportions of failures F(c) =0.40 (small), 

F(c) =0.60 (moderate), F(c) =0.80 (heavy) are used to obtain the critical points, the 

empirical significance levels, and the power analysis. All the simulation studies are 

implemented using the R program. Figures 4 - 6 display the plots of the densities for 

the Log-Logistic verse the alternative distributions with different parameters values. 
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Figure 4. The plots of densities for the Log-Logistics (dashed lines) verse 

Gompertz (solid line). 
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Figure 5. The plots of densities for the Log-Logistics (dashed lines) verse 

Weibull (solid line). 

 

 

Figure 6. The plots of densities for the Log-Logistics (dashed lines) verse 

BurrX (solid line). 
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Figure 7. The plots of densities for the Log-Logistics (dashed lines) verse 

Exponential (solid line). 

 

 

3.2 Results and Comparison   

 

Table 1 presents the critical points for EDF tests at nominal levels α = 0.10 and 

0.05 for different choices of 𝑛 and observed proportions of failures F(c). The 

following proportions of failures F(c ) = 0.40, F(c ) = 0.60  and F(c ) = 0.80 are 

calculated by substituting the following values of censoring time c = −0.40 , c =

0.41 and c = 1.41 respectively in the cdf of Logistic distribution with 𝜇 = 0 and 𝜎 =

1. For more details about the critical points, see section 2.4.1. 
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Table 1. Critical points for EDF tests at nominal level α = 0.05 and 0.10 for different 

sample size 𝑛 and different proportion of failures F(c). 

 
   F(c) =

1

1+exp(−
𝑐−𝜇

𝜎
)
   

α 𝑛 Methods Test statistics 0.40 0.60 0.80 

       

0.05 35 Proposed KS 0.28990 0.23291 0.19113 

  W 0.21999 0.21537 0.18675 

   AD 1.28454 1.28056 1.14355 

  Classical KS 0.10113 0.11629 1.14355 

   W 0.06529 0.09213 0.05538 

   AD 0.22037 0.33514 0.46526 

       

 60 Proposed KS 0.22139 0.17817 0.14736 

   W 0.21930 0.21103 0.18699 

   AD 1.31015 1.25761 1.15640 

  Classical KS 0.07867 0.08960 0.09703 

   W 0.11482 0.15377 0.08725 

   AD 0.21723 0.32549 0.45741 

       

 90 Proposed KS 0.18160 0.14548 0.12170 

   W 0.22247 0.21390 0.19153 

   AD 1.32615 1.27203 1.16713 

  Classical KS 0.06404 0.07363 0.07980 

   W 0.17127 0.23742 0.12450 

   AD 0.21509 0.32834 0.46155 

       

0.10 35 Proposed KS 0.26351 0.21062 0.17366 

   W 0.17617 0.17084 0.14931 

   AD 1.04411 1.03227 0.93222 

  Classical KS 0.09202 0.10675 0.11585 

   W 0.09202 0.06569 0.03486 

   AD 0.18085 0.27574 0.39087 

       

 60 Proposed KS 0.19980 0.16081 0.13349 

   W 0.17503 0.16883 0.14851 

   AD 1.05352 1.02113 0.93303 

  Classical KS 0.07158 0.08264 0.08971 

   W 0.08131 0.11165 0.05589 

   AD 0.17831 0.27314 0.38264 

       

 90 Proposed KS 0.16292 0.13110 0.10985 

   W 0.17554 0.16857 0.15021 

   AD 1.04992 1.02576 0.94012 

  Classical KS 0.05830 0.06783 0.07366 

   W 0.12018 0.16806 0.08595 

   AD 0.17789 0.27428 0.38694 
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Table 2. Estimated Empirical level for EDF tests at nominal level α = 0.05 and 0.10 

for different sample size 𝑛 and different proportion of failures F(c). 

 
   F(c) =

1

1+exp(−
𝑐−𝜇

𝜎
)
   

α n Methods Test statistics 0.40 0.60 0.80 

       

0.05 35 Proposed KS 0.054 0.051 0.050 

  W 0.049 0.045 0.052 

   AD 0.047 0.046 0.050 

  Classical KS 0.047 0.045 0.046 

   W 0.047 0.047 0.048 

   AD 0.048 0.045 0.050 

       

 60 Proposed KS 0.047 0.046 0.050 

   W 0.048 0.050 0.052 

   AD 0.046 0.053 0.049 

  Classical KS 0.045 0.045 0.047 

   W 0.046 0.054 0.051 

   AD 0.046 0.048 0.051 

       

 90 Proposed KS 0.050 0.048 0.048 

   W 0.052 0.050 0.048 

   AD 0.049 0.052 0.050 

  Classical KS 0.050 0.051 0.050 

   W 0.046 0.054 0.048 

   AD 0.051 0.049 0.052 

       

0.10 35 Proposed KS 0.098 0.097 0.101 

   W 0.096 0.093 0.099 

   AD 0.097 0.091 0.102 

  Classical KS 0.096 0.095 0.097 

   W 0.093 0.093 0.101 

   AD 0.097 0.093 0.099 

       

 60 Proposed KS 0.095 0.095 0.099 

   W 0.096 0.098 0.103 

   AD 0.093 0.103 0.102 

  Classical KS 0.094 0.093 0.094 

   W 0.089 0.099 0.103 

   AD 0.098 0.095 0.104 

       

 90 Proposed KS 0.102 0.103 0.098 

   W 0.096 0.100 0.099 

   AD 0.097 0.101 0.103 

  Classical KS 0.099 0.100 0.101 

   W 0.098 0.105 0.092 

   AD 0.100 0.095 0.098 
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Tables 2 shows the estimated empirical levels for EDF tests at nominal levels α 

= 0.05 and 0.10 for different choices of n and observed proportion of failures F(c). 

From Tables 2 it is observed that the estimated empirical levels are close to the 

nominal levels α = 0.05 and 0.10 for both proposed and classical methods, this gives 

a good indication about the validity of the critical points in Tables 1. In addition, from 

Table 2 it observed that the estimated significance levels of the proposed method are 

closer to the nominal level than the classical method in most of the cases. Furthermore, 

Tables 3-6 present the estimated power for testing the Log-Logistic against several 

alternatives at nominal level α = 0.05 and Tables 7-10 present the estimated power for 

testing the Log-Logistic against several alternatives at nominal level α = 0.10. 

 

 

Table 3. Estimated power for Gompertz distribution with different sizes and 

proportion of failures F(c) at nominal level 0.05. 

    𝐹(𝑐, 𝑝, 𝑑) = 1 − 𝑒
[
𝑑
𝑝
(1−𝑒𝑝𝑐)]

 

n Alternative Model Methods Test statistics 0.40 0.60 0.80 

       

35 Gompertz (0.5, 1) Proposed KS 0.056 0.090 0.235 

   W 0.063 0.112 0.291 

   AD 0.076 0.132 0.312 

  Classical KS 0.059 0.083 0.144 

   W 0.066 0.094 0.134 

   AD 0.067 0.097 0.186 

       

60  Proposed KS 0.068 0.133 0.372 

   W 0.079 0.182 0.462 

   AD 0.089   0.201 0.467 

  Classical KS 0.062 0.114 0.220 

   W 0.079 0.177 0.341 

   AD 0.078 0.146 0.301 

       

90  Proposed KS 0.075 0.195 0.518 

   W 0.090 0.240 0.615 

   AD 0.098 0.258 0.628 

  Classical KS 0.078 0.151 0.322 

   W 0.094 0.242 0.587 



  

35 

 

n Alternative Model Methods Test statistics 0.40 0.60 0.80 

   AD 0.088 0.185 0.427 

       

35 Gompertz (1, 1) Proposed KS 0.059 0.112 0.301 

   W 0.072   0.140 0.368 

   AD 0.087 0.164 0.394 

  Classical KS 0.068   0.097 0.180 

   W 0.077 0.123 0.197 

   AD 0.077 0.117 0.230 

       

60  Proposed KS 0.076 0.178 0.474 

   W 0.097 0.235 0.572 

   AD 0.109 0.254 0.577 

  Classical KS 0.073 0.141 0.285 

   W 0.099 0.233 0.475 

   AD 0.094 0.185 0.384 

       

90  Proposed KS 0.089 0.260 0.645 

   W 0.116   0.319 0.740 

   AD 0.127 0.339 0.745 

  Classical KS 0.096 0.192 0.420 

   W 0.124 0.329 0.738 

   AD 0.113 0.242 0.534 

       

 

 

Table 3 presents the power for testing the Log-Logistic when the Gompertz 

distribution is an alternative at a nominal level of 0.05. For n=35, with Gompertz (0.5, 

1) and Gompertz (1, 1) it is observed that at high proportions of failure (F(c)=0.60 and 

0.80) the proposed tests (KS, W, AD) perform better than the classical in terms of 

power, while at F(c)=0.40 for Gompertz (0.5, 1) the classical KS and W tests 

outperform the proposed tests, where for Gompertz (1, 1) only the classical W test is 

better. In n=60, with Gompertz (0.5, 1) the proposed tests outperform the classical 

tests at all F(c). However, for Gompertz (1, 1) the proposed KS and AD tests provide 

a higher power than the classical at small F(c) =0.40, while at F(c) =0.60 and 0.80 the 

proposed tests are better than the classical. At n=90, for both Gompertz (0.5, 1) and 

Gompertz (1, 1) at F(c) =0.40, the classical KS and W tests perform better than the 

proposed tests while at F(c) =0.60 the proposed KS and AD tests are better than the 
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classical tests but at F(c) =0.80 all proposed tests perform better than the classical. 

Table 4. Estimated power for Weibull distribution with different sizes and proportion 

of failures F(c) at nominal level 0.05. 

    𝐹(𝑐, 𝑏, 𝑎) = 1 − 𝑒−𝑎𝑐
𝑏
 

n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

       

35 Weibull (1, 0.5) Proposed KS 0.051 0.063 0.141 

   W 0.055 0.077 0.174 

   AD 0.063 0.092 0.192 

  Classical KS 0.055 0.069 0.095 

   W 0.059 0.063 0.068 

   AD 0.060 0.077 0.117 

       

60  Proposed KS 0.058 0.087 0.208 

   W 0.064 0.114 0.271 

   AD 0.070 0.127 0.276 

  Classical KS 0.055 0.084 0.130 

   W 0.065 0.106 0.169 

   AD 0.065 0.103 0.175 

       

90  Proposed KS 0.058 0.110 0.290 

   W 0.071 0.144 0.365 

   AD 0.077 0.155 0.375 

  Classical KS 0.065 0.102 0.179 

   W 0.076 0.141 0.312 

   AD 0.071 0.125 0.242 

       

35 Weibull (1, 1) Proposed KS 0.051 0.064 0.140 

   W 0.055 0.076 0.174 

   AD 0.063 0.090 0.191 

  Classical KS 0.055 0.067 0.096 

   W 0.058 0.063 0.064 

   AD 0.060 0.072 0.121 

       

60  Proposed KS 0.057 0.089 0.205 

   W 0.064 0.112 0.272 

   AD 0.070 0.127 0.277 

  Classical KS 0.056 0.082 0.132 

   W 0.066 0.106 0.165 

   AD 0.065 0.097 0.180 

       

90  Proposed KS 0.058 0.111 0.289 

   W 0.072 0.141 0.367 

   AD 0.078 0.154 0.379 

  Classical KS 0.066 0.096 0.182 

   W 0.076 0.142 0.306 

   AD 0.071 0.117 0.248 
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When Weibull distribution is considered as an alternative as an alternative. The 

results in Table 4 show that at n=35, with F(c) =0.40 for Weibull (0.5, 1) only the 

classical W presents slightly higher power than the corresponding proposed W test, 

however for Weibull (1,1) two classical tests KS and W present higher power than the 

proposed tests. While, for Weibull (0.5, 1) and Weibull (1, 1) at failure 0.60, the 

proposed W and AD perform better power and at F(c) = 0.80 all proposed tests show 

higher power than the classical. Similarly, at n=60 for both Weibull (0.5, 1) and 

Weibull (1, 1) it is observed that the proposed tests perform better than the classical 

at higher proportions of failure (F(c) =0.60 and 0.80). Whereas, at F(c) =0.40 the 

proposed KS and AD tests outperform the classical tests. At the largest sample size 

n=90, for Weibull (0.5, 1) all proposed tests perform better than the classical at higher 

proportions of failure but at F(c) =0.40 the proposed W and AD tests are better than 

the classical. For Weibull (1, 1) at F(c) =0.40 the classical KS and W tests are better, 

while at F(c) =0.60 the proposed KS and AD tests are better but at F(c) =0.80 all the 

proposed test outperforms the classical. 

 

 

Table 5. Estimated power for Burr X distribution with different sizes and proportion 

of failures F(c) at nominal level 0.05. 

    𝐹(𝑐, 𝜈, 𝜃) = (1 −  𝑒−(
𝑐
𝜃
)
2

 )
𝜈

 

n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

       

35 Burr (0.7, 0.4) Proposed KS 0.062 0.113 0.310 

   W 0.073 0.154 0.386 

   AD 0.090 0.177 0.404 

  Classical KS 0.064 0.106 0.193 

   W 0.077 0.132 0.186 
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n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

   AD 0.077 0.129 0.249 

       

60  Proposed KS 0.080 0.185 0.494 

   W 0.096 0.256 0.599 

   AD 0.108 0.279 0.604 

  Classical KS 0.070 0.152 0.311 

   W 0.094 0.254 0.472 

   AD 0.090 0.206 0.420 

       

90  Proposed KS 0.091 0.274 0.666 

   W 0.116 0.349 0.764 

   AD 0.130 0.370 0.770 

  Classical KS 0.093 0.211 0.770 

   W 0.120 0.362 0.745 

   AD 0.110 0.270 0.578 

       

35 Burr (1, 0.4) Proposed KS 0.061 0.114 0.309 

   W 0.074 0.150 0.381 

   AD 0.090 0.174 0.408 

  Classical KS 0.065 0.104 0.189 

   W 0.078 0.129 0.198 

   AD 0.078 0.124 0.241 

       

60  Proposed KS 0.079 0.186 0.490 

   W 0.098 0.252 0.588 

   AD 0.112 0.273 0.593 

  Classical KS 0.072 0.149 0.300 

   W 0.097 0.251 0.482 

   AD 0.093 0.200 0.406 

       

90  Proposed KS 0.092 0.274 0.662 

   W 0.116 0.342 0.756 

   AD 0.130 0.361 0.761 

  Classical KS 0.094 0.206 0.441 

   W 0.123 0.349 0.749 

   AD 0.112 0.263 0.560 

       

 

 

When Burr X distribution is considered as an alternative, the results in Table 5 

indicate that at n=35, for both Burr (0.7, 0.4) and Burr (1,0.4) at F(c) =0.40 the 

classical KS and W tests establish higher power the proposed tests but at the high 

proportion of failure it is observed that the proposed tests are more powerful than 
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classical tests. Moreover, when the sample size is increase from n=35 to n=60 the 

proposed tests are more powerful compared to the classical tests for Burr (0.7,0.4) and 

Burr (1,0.4). However, at n=90, for Burr (0.7,0.4) the classical KS and W tests perform 

better than the proposed tests at F(c)=0.40 and at F(c)=0.60 all the proposed tests 

perform better than the classical but at F(c)=0.80 the proposed W and AD tests are 

better. For Burr (1,0.4) the classical KS test outperforms at F(c)=0.40 while at 

F(c)=0.60 and 0.80 the proposed tests display higher power the classical tests. 

 

 

Table 6. Estimated power for Exponential distribution with different sizes and 

proportion of failures F(c) at nominal level 0.05 

    𝐹(𝑐, 𝜆) = 1 − 𝑒−𝜆𝑐  

n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

       

35 Exponential (0.6) Proposed KS 0.052 0.064 0.141 

   W 0.055 0.076 0.175 

   AD 0.065 0.092 0.192 

  Classical KS 0.054 0.068 0.095 

   W 0.058 0.062 0.066 

   AD 0.060 0.076 0.119 

       

60  Proposed KS 0.057 0.087 0.207 

   W 0.064 0.114 0.275 

   AD 0.070 0.128 0.282 

  Classical KS 0.053 0.086 0.135 

   W 0.063 0.106 0.158 

   AD 0.063 0.104 0.186 

       

90  Proposed KS 0.060 0.110 0.290 

   W 0.069 0.146 0.374 

   AD 0.074 0.156 0.385 

  Classical KS 0.064 0.102 0.187 

   W 0.072 0.141 0.296 

   AD 0.069 0.125 0.256 

       

35 Exponential (2) Proposed KS 0.051 0.064 0.141 

   W 0.055 0.076 0.175 

   AD 0.063 0.090 0.192 

  Classical KS 0.055 0.067 0.095 
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n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

   W 0.058 0.063 0.066 

   AD 0.060 0.072 0.119 

       

60  Proposed KS 0.057 0.089 0.206 

   W 0.064 0.112 0.271 

   AD 0.070 0.127 0.278 

  Classical KS 0.056 0.082 0.130 

   W 0.066 0.106 0.167 

   AD 0.065 0.097 0.177 

       

90  Proposed KS 0.058 0.111 0.290 

   W 0.072 0.141 0.366 

   AD 0.078 0.154 0.376 

  Classical KS 0.066 0.096 0.180 

   W 0.076 0.142 0.309 

   AD 0.071 0.117 0.244 

       

 

 

Table 6 presents the Exponential model when it is considered as an alternative, 

the results show that at n=35, for Exponential (0.6) and Exponential (2) the classical 

KS and W are better than the proposed with F(c)=0.40 but at F(c)=0.60 the proposed 

W and AD tests establish higher power than the classical and at failure 0.80 all the 

proposed tests outperform the classical tests. For n=60, with Exponential (0.60) the 

proposed tests seem to exhibit higher power at all F(c) this is also noticeable with 

Exponential (2) but at higher proportions of failure while at F(c)=0.40 the proposed 

Kolmogorov and Anderson Darling tests are better than the classical test. Moreover, 

for n=90, both Exponential (0.6) and Exponential (2) the classical Kolmogorov 

Kolmogorov–Smirnov and Cramer-von tests perform well than the proposed tests at 

F(c)=0.40. While for Exponential(0.6) all the proposed tests possess better power than 

the classical tests at higher proportions of failure but for Exponential(2) the proposed 

KS and AD tests are better than the classical tests at F(c)=0.60 and at F(c)=0.80 all 

proposed tests perform better than the classical. 
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 Table 7. Estimated power for Gompertz distribution with different sizes and 

proportion of failures F(c) at nominal level 0.10 

    𝐹(𝑐, 𝑝, 𝑑) = 1 − 𝑒
[
𝑑
𝑝
(1−𝑒𝑝𝑐)]

 

n Alternative Model Methods Test statistics 0.40 0.60 0.80 

       

35 Gompertz (0.5, 1) Proposed KS 0.103 0.156 0.342 

   W 0.113 0.180 0.393 

   AD 0.127 0.203 0.418   

  Classical KS 0.115 0.149 0.234 

   W 0.119 0.165 0.272 

   AD 0.119 0.166 0.275 

       

60  Proposed KS 0.121 0.222 0.500 

   W 0.134 0.262 0.572 

   AD 0.146 0.281 0.579 

  Classical KS 0.118 0.183 0.326 

   W 0.133 0.259 0.531 

   AD 0.140 0.224 0.419 

       

90  Proposed KS 0.137 0.297 0.653 

   W 0.150 0.336 0.722 

   AD 0.167 0.355 0.727 

  Classical KS 0.138 0.232 0.450 

   W 0.159 0.348 0.727 

   AD 0.153 0.275 0.544 

       

35 Gompertz (1, 1) Proposed KS 0.106 0.187 0.418 

   W 0.123 0.218 0.475 

   AD 0.142 0.243   0.494 

  Classical KS 0.123 0.168 0.278 

   W 0.131 0.202 0.356 

   AD 0.130 0.191 0.328 

       

60  Proposed KS 0.133 0.280 0.609 

   W 0.156   0.322 0.676   

   AD 0.172 0.345 0.679   

  Classical KS 0.134 0.219 0.407 

   W 0.154 0.328 0.660 

   AD 0.160 0.271 0.506 

       

90  Proposed KS 0.157   0.374 0.762 

   W 0.182 0.425 0.818 

   AD 0.201 0.444 0.824 

  Classical KS 0.162 0.282 0.549 

   W 0.200 0.439 0.842 

   AD 0.187 0.344 0.648 
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Table 7 presents the estimated power when the Gompertz distribution is an 

alternative at a nominal level of 0.10. The results show that at a small sample size  

n=35, with F(c) =0.40 (a small failure which is heavy censoring) for Gompertz (0.5, 

1) the classical KS and W tests performs better than the proposed tests while for 

Gompertz (1, 1) only the classical KS test is better. But, when increasing the 

proportions of failure (F(c) =0.60 and 0.80) with Gompertz (0.5, 1) and Gompertz (1, 

1) the proposed tests (KS, W, AD) possesses better power than the classical tests. 

Furthermore, at n=60 Gompertz (0.5, 1) is shown that the proposed tests are powerful 

as compared to classical tests at all proportions of failure while with Gompertz (1, 1) 

at higher proportions of failure (F(c) =0.60 and 0.80) the proposed tests perform better 

than the classical but at F(c) =0.40 the classical KS test slightly better than the 

proposed KS test. Whereas, at n=90 for Gompertz (0.5, 1) and Gompertz (1, 1) 

alternatives, at F(c) =0.40 the classical KS and W tests possesses a better power than 

the proposed tests, while at higher proportions of failure (F(c) =0.60 and 0.80) it is 

observed the proposed KS and AD tests reveal higher power than the classical tests.   

 

 

Table 8. Estimated power for Weibull distribution with different sizes and proportion 

of failures F(c) at nominal level 0.10 

    𝐹(𝑐, 𝑏, 𝑎) = 1 − 𝑒−𝑎𝑐
𝑏
  

n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

       

35 Weibull (1, 0.5) Proposed KS 0.094 0.121 0.228 

   W 0.100 0.134 0.258 

   AD 0.113 0.152 0.275 

  Classical KS 0.108 0.127 0.168 

   W 0.108 0.122 0.162 

   AD 0.110 0.139 0.191 
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n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

60  Proposed KS 0.107 0.157 0.317 

   W 0.116 0.181 0.370 

   AD 0.125 0.196 0.383 

  Classical KS 0.107 0.146 0.216 

   W 0.114 0.180 0.316 

   AD 0.122 0.169 0.268 

       

90  Proposed KS 0.114 0.201 0.423 

   W 0.125 0.224 0.483 

   AD 0.136 0.236 0.488 

  Classical KS 0.123 0.175 0.279 

   W 0.130 0.228 0.461 

   AD 0.127 0.196 0.351 

       

35 Weibull (1, 1) Proposed KS 0.094 0.125 0.227 

   W 0.101 0.133 0.260 

   AD 0.114 0.150 0.275 

  Classical KS 0.109 0.123 0.170 

   W 0.108 0.122 0.157 

   AD 0.110 0.133 0.196 

       

60  Proposed KS 0.107 0.160 0.318 

   W 0.116 0.179 0.372 

   AD 0.127 0.194 0.384 

  Classical KS 0.107 0.141 0.218 

   W 0.115 0.175 0.307 

   AD 0.123 0.160 0.275 

       

90  Proposed KS 0.114 0.202 0.426 

   W 0.125 0.220 0.487 

   AD 0.136 0.234 0.492 

  Classical KS 0.124 0.168 0.284 

   W 0.130 0.224 0.453 

   AD 0.128 0.187 0.359 

       

 

 

By considering Weibull distribution as an alternative, the results in Table 8 

show that at small sample size n=35, and F(c) =0.40 for Weibull(0.5, 1) and 

Weibull(1, 1)  the classical KS and W tests are better than the proposed tests  but when 

increasing the proportions of failure to F(c) =0.60 and =0.80 the proposed tests 

perform better than the classical tests. And, for n=60 with Weibull (0.5, 1) and Weibull 
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(1, 1) the proposed tests outperform the classical at all proportions of failure. 

Additionally, at large sample size n=90 and F(c)=0.40 for Weibull (0.5, 1) and 

Weibull (1, 1) the classical KS and W tests display higher power than the proposed 

tests, while at F(c)=0.60 the proposed KS and AD tests are more powerful than the 

classical and at F(c)=0.80 all the proposed tests outperform the classical tests. 

 

 

Table 9. Estimated power for Burr X distribution with different sizes and proportion 

of failures F(c) at nominal level 0.10 

    𝐹(𝑐, 𝜈, 𝜃) = (1 −  𝑒−(
𝑐
𝜃
)
2

 )
𝜈

 

n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

       

35 Burr (0.7, 0.4) Proposed KS 0.111 0.194 0.429 

   W 0.124 0.231 0.492 

   AD 0.124 0.257 0.516 

  Classical KS 0.121 0.180 0.296 

   W 0.129 0.213 0.349 

   AD 0.128 0.208 0.355 

       

60  Proposed KS 0.139 0.290 0.626 

   W 0.155 0.346 0.696 

   AD 0.168 0.369 0.703 

  Classical KS 0.133 0.237 0.434 

   W 0.152 0.346 0.663 

   AD 0.155 0.295 0.543 

       

90  Proposed KS 0.166 0.392 0.781 

   W 0.185 0.458 0.842 

   AD 0.206 0.474 0.845 

  Classical KS 0.161 0.308 0.582 

   W 0.196 0.473 0.850 

   AD 0.184 0.377 0.688 

       

35 Burr (1, 0.4) Proposed KS 0.110 0.191 0.428 

   W 0.125 0.228 0.490 

   AD 0.142 0.254 0.508 

  Classical KS 0.122 0.176 0.290 

   W 0.131 0.214 0.362 

   AD 0.129 0.202 0.345 
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n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

60  Proposed KS 0.139 0.290 0.623 

   W 0.158 0.339 0.691 

   AD 0.173 0.362 0.693 

  Classical KS 0.135 0.233 0.423 

   W 0.156 0.340 0.669 

   AD 0.157 0.287 0.529 

       

90  Proposed KS 0.165 0.392 0.776 

   W 0.185 0.451 0.835 

   AD 0.208 0.470 0.840 

  Classical KS 0.164 0.299 0.569 

   W 0.200 0.469 0.853 

   AD 0.186 0.368 0.672 

       

 

 

When Burr X distribution is considered as an alternative, the results in Table 9  

display that at n=35 and small failure proportion F(c)=0.40 for Burr(0.7,0.4) all the 

classical tests perform better than the proposed tests in teams of power, the same result 

is obtained for Burr (1,0.4) except that the proposed AD test is better than the 

corresponding classical test. But, at higher proportions of failure, the proposed tests 

outperform the classical tests for the two alternatives Burr (0.7,0.4) and Burr (1,0.4). 

Moreover, when increasing the sample size from n=35 to n=60 with Burr (0.7, 0.4) 

the performance of the proposed tests is better than the classical tests in terms of power 

at all proportion of failure. But, for Burr (1,0.4) the performance of the proposed tests 

is better than the classical at proportions of failure F(c)=0.40 and 0.80, while at 

F(c)=0.60 the proposed KS and AD tests are better. Furthermore, at n=90 for both 

Burr (0.7,0.4) and Burr (1,0.4), the results show that the classical W test possesses 

better power at all F(c). Although, it seems that the proposed KS and AD tests display 

higher power all proportions of failure. 
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Table 10. Estimated power for Exponential distribution with different sizes and 

proportion of failures F(c) at nominal level 0.10 

    𝐹(𝑐, 𝜆) = 1 − 𝑒−𝜆𝑐  

n 
Alternative 

Model 
Methods Test statistics 0.40 0.60 0.80 

       

35 Exponential (0.6) Proposed KS 0.097 0.121 0.227 

   W 0.101 0.133 0.257 

   AD 0.114 0.153 0.275 

  Classical KS 0.107 0.127 0.170 

   W 0.106 0.121 0.160 

   AD 0.108 0.138 0.193 

       

60  Proposed KS 0.109 0.157 0.318 

   W 0.114 0.180 0.377 

   AD 0.123 0.196 0.387 

  Classical KS 0.105 0.147 0.221 

   W 0.110 0.178 0.298 

   AD 0.119 0.170 0.282 

       

90  Proposed KS 0.117 0.201 0.426 

   W 0.123 0.224 0.494 

   AD 0.138 0.238 0.503 

  Classical KS 0.119 0.176 0.290 

   W 0.125 0.176 0.453 

   AD 0.123 0.197 0.368 

       

35 Exponential (2) Proposed KS 0.094 0.125 0.227 

   W 0.101 0.133 0.257 

   AD 0.114 0.150 0.275 

  Classical KS 0.109 0.123 0.170 

   W 0.108 0.122 0.160 

   AD 0.110 0.133 0.193 

       

60  Proposed KS 0.107 0.160 0.318 

   W 0.116 0.179 0.372 

   AD 0.127 0.194 0.385 

  Classical KS 0.107 0.141 0.217 

   W 0.115 0.175 0.313 

   AD 0.123 0.160 0.272 

       

90  Proposed KS 0.114 0.202 0.424 

   W 0.125 0.220 0.485 

   AD 0.136 0.234 0.491 

  Classical KS 0.124 0.168 0.281 

   W 0.130 0.224 0.460 

   AD 0.128 0.187 0.355 
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Table 10 presents the Exponential distribution when it is considered as an 

alternative, the results show that at n=35, and F(c)=0.40 both Exponential (0.6) and 

Exponential (2) the classical KS and W tests perform better than the proposed tests. 

While, for Exponential (0.6) at F(c)=0.60 the proposed W and AD tests exhibit higher 

power than the classical tests where at F(c)=0.80 the proposed tests perform better 

power than classical tests. But, for Exponential (2) with high failure proportions all 

the proposed tests possess better power than the classical tests. However, at n=60 with 

Exponential (0.6) and Exponential (2) the proposed tests perform better the classical 

tests at all F(c). Moreover, at n=90 with Exponential (0.6) and Exponential (2) the 

classical KS and W tests seems to perform better than the proposed tests at F(c)=0.40. 

But, with Exponential (0.6) at F(c)=0.60 and 0.80 all the proposed tests show higher 

power than the classical tests, while with Exponential(2) the proposed KS and AD 

tests are better at F(c)=0.60, and at F(c)=0.80 all proposed tests display higher power 

than the classical tests. 

 

Overall, from Tables 3-10 the results show that the power values of the proposed 

and classical tests increase when the sample size and the proportion of failure 

increases. It is observed that in most of the cases the proposed tests outperform the 

classical tests. However, in some cases the classical KS and W tests have shown 

slightly higher power than the corresponding proposed tests at small and moderate 

proportions of failure. This suggests that the proposed KS and W test appears to lose 

in power due to the transformation performed in the samples. Moreover, by increasing 

the significance level to 0.10 the results display that, the power levels increase in all 

the proposed and classical tests for all the alternative models and sample sizes 

compared to the 0.05 significance level. In addition, the results show that under 
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different censoring conditions, the Anderson–Darling and Cramer–von Mises 

statistics for both proposed and classical methods show higher power levels than the 

Kolmogorov–Smirnov test. Thus, it seems advisable to use these two statistics when 

working with Type-I right-censored data.  
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CHAPTER 4: REAL DATA ANALYSIS 

In this chapter, real data applications under Type I censored sample are 

considered. In order to see whether a given sample follows a Log-Logistic distribution 

by applying the proposed and classical methods. Therefore, two data sets are analyzed, 

the first data set have been taken from (Nelson, 2003, Table 1.1, page 105) and 

represents the times of breakdown of insulation fluid samples (in minutes) tested at 

32 kV. While, the second data set is found originally by Schmee and Nelson (1977) 

and it has been analyzed by (Dube et al., 2011). This data set shows the number of 

thousand miles at different locomotive controls failed in a life test involving 96 

controls. 

 

 4.1 Times of breakdown of insulation fluid 

 

Table 11 presents the data of the times to breakdown of an insulating fluid (in 

minutes) tested at 32 kV that contains 15 observations. Suppose a decision is made to 

terminate life testing after 27 min. Then, sex observations are censored, an asterisk is 

used to mark the censored observations. This data has n=15, d=9 (complete failure 

observations) with 0.60 proportion of failure and censoring time or termination time 

c=27. 

 

 

Table 11. Times to breakdown in minutes of an insulating fluid at 32 kV voltage level 

0.27 0.40 0.69 0.79 2.75 3.91 9.88 13.95 15.93 27.80* 

53.24* 82.85* 89.29* 100.58* 215.10*      
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As mentioned above, we are interested to test whether the times to breakdown 

follow Log-Logistic distribution. To carry through, the parameters of the Log-Logistic 

are estimated using the MLE (𝛼̂ = 11.957943, 𝛽̂ = 0.642404), then the MLE’s of 

Logistic distribution parameters are obtained (𝜇̂ = 2.481396, 𝜎̂ =1.556653) as given 

in equation (24), these MLE’s (𝜇̂, 𝜎̂)are used to calculate the value 𝑢𝑖:𝑑 for the 

proposed as equation (25) and for the classical as in equation (29) which are used to 

calculate the EDF statistics (KS,W, AD) for the proposed method follow equations 

(26,27, and 28) and for the classical method follow equations (30,3, and 31).After 

finding the observed tests statistics for the sample, the p-value of the test is calculated 

by generating 10,000 samples from the distribution under the null hypothesis and then 

obtaining the EDF statistics for these samples. Thus, the proportion of samples that 

exceed the corresponding observed EDF tests is the p-value and the calculation of the 

critical points follows the procedure that is explained in section 2.5. Table 12 presents 

the EDF statistics with corresponding p-values and critical points for times to 

breakdown of an insulating fluid.  

 

 

Table 12. EDF statistics with corresponding p-values and critical points for times to 

breakdown of an insulating fluid. 

 
Proposed method Classical method 

 KS W AD KS W AD 

Test 

Statistics 
0.20775 0.05822 0.38320 0.11805 0.01045 0.14295 

Critical 

points 
0.35577 0.20946 1.24055 0.17115 0.03885 0.34339 

P-value 0.5628 0.6387 0.6479 0.4601 0.3875 0.4733 

 



  

51 

 

 

 From Table 12 by comparing the proposed and classical tests statistics with the 

corresponding critical points, it is appeared that all values of the proposed and 

classical tests statistics less than the corresponding critical points. As well as, all the 

proposed and classical p-values are greater than the significant level 𝛼 = 0.05. This 

implies that, the Log-Logistic distribution have a good fit for the data and hence the 

sample follows the Log-Logistic model.  

 

4.2 Locomotive controls  

 

Table 13 presents the number of thousand miles which different locomotive 

controls failed in life test. The data contains 96 observations and the test was 

terminated after 135,000 miles. Hence, 59 observations are censored. This data has 

𝑛 = 96, 𝑑 = 37 (complete failure observations) with 0.40 proportion of failure and 

censoring time or termination time 𝑐 = 135. Table 3 display only the 37 failed units 

while the other 59 censored units all are equal to 135. 

 

 

Table 13. The failed units of locomotive controls  

22.5 37.5 46.0 38.5 51.5 53.0 57.5 66.5 68.0 69.5 

76.5 77.0 78.5 80.0 81.5 83.0 84.0 91.5 93.5 102.5 

107.0 108.5 112.5 113.5 116.0 117.0 118.5 119.0 129.0 120.0 

122.5 123.0 127.5 131.0 132.5 132.5 134.0    

 

 

To tests weather the locomotive controls failed data follow Log-Logistic 

distribution. The parameters of the Log-Logistic given the observed Type I censored 

data set are estimated using the MLE (𝛼̂ = 161.2482, 𝛽̂ = 2.60637), then the MLE’s 
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of Logistic distribution parameters are obtained (𝜇̂ = 5.082945 𝜎̂ = 0.3836754). Thus, 

the EDF statistics (KS, W, AD) for the proposed and classical methods which are 

obtained followed equations (25, 26,27,30,31 and 32) respectively. Table 14 presents 

the EDF statistics with corresponding p-values and critical points for the locomotive 

controls failed in life test. 

 

 

Table 14. EDF statistics with corresponding p-values and critical points for the failed 

units of locomotive controls 

 

Proposed method Classical method 

 KS W AD KS W AD 

Test 

Statistics 
0.11350 0.05577 0.29511 0.04341 0.00095 0.066113 

Critical 

points 
0.17503 0.22122 1.32546 0.06170 0.17967 0.21770 

P-value 0.4576 0.6678 0.8310 0.4059 0.9071 0.7090 

 

 

Table 14 shows that all the proposed and classical tests statistics are less than 

the critical points and all the p-values are more the significant level 𝛼 = 0.05. This 

indicates that the proposed and classical tests (KS, W, AD) are supporting the null 

hypothesis and conclude that the locomotive controls failed data set follows Log-

Logistic distribution.  
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CHAPTER 5: SUMMARY, CONCLUSION AND SUGGESTIONS FOR FURTHER 

STUDY 

5.1 Summary  

 

This thesis focuses on survival analysis application for Log-Logistic 

distribution. The hazard function of Log-Logistic distribution can have different forms 

such as increasing, decreasing and hump shape. Hence, this model can be used quite 

effectively in analyzing real lifetime data. Mainly, this thesis investigated the problem 

of the goodness of fit test for Log-Logistic distribution under Type I censored sample 

based on the EDF statistics for the proposed and classical methods. The maximum 

likelihood estimation method was used to estimate the unknown parameters of Log-

Logistic distribution. Therefore, Newton-Raphson was used to obtain an approximate 

solution since the MLE cannot be obtained in close form. The MLE’s were used in 

calculating the proposed and the classical tests as explained in chapter 2. In addition, 

the proposed method used in this thesis was developed by Pakyari and Balakrishnan 

(2017) while the classical method was developed by Pettitt and Stephens (1976). 

On other hand, in order to compare the performance of the EDF statistics; the 

Kolmogorov Smirnov (KS), Cramer von Mises (W) and the Anderson Darling (AD) 

tests for the proposed and classical methods, Monte Carlo power studies were carried 

out for 10000 replications with various values of sample sizes n and different observed 

proportions of failures F(c). Also, several alternative distributions with different shape 

parameter values were considered for power analysis such as Gompertz, Weibull, Burr 

X, and Exponential distributions. Additionally, a simulation study was also conducted 

to calculate the critical points and the empirical significance level (𝛼=0.05 and 0.10) 

for both methods. Whereas, the selection of these significance levels were based on 

these two literatures Bispo et al. (2012) and Pakyari and Nia (2017). The critical points 
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helped to derive conclusions about the EDF tests while; the empirical power was 

easily calculated for the proposed and classical EDF tests, as the proportion of 

replications in which the test statistic exceeded its corresponding critical value. While 

the empirical significance level (α) assisted to check the validity of the critical points. 

However, the critical points and the empirical significance level were both computed 

at two significant levels (α=0.10 and 0.05). Finally, applications on some real data 

sets (Type I right censored) were applied to illustrate the testing procedure of Log-

Logistic under Type I censored data for the classical and the proposed methods. 

 

5.2 Conclusion   

 

From Monte Carlo power studies, the results revealed that the proposed method 

outperforms the classical method in most of the cases also the power values of the two 

methods increased when the sample size and the proportion of failure increased. 

Moreover, under various censoring conditions the AD and W statistics for both 

proposed and classical methods displayed higher power than the KS test. Hence, AD 

and W statistics are recommended when working with Type I censored data.  

Furthermore, from the two real datasets with Type I censored and different proportion 

of failures the results of the critical points and p-values for the proposed and classical 

methods showed that the two data sets followed the Log-Logistic distribution.  

 

5.3 Suggestions for Further Study 

 

The work in this thesis involved the procedure of goodness of fit test for testing 

the Log-Logistic distribution under Type I censored sample based on the empirical 

distribution function statistics the Kolmogorov Smirnov (KS), Cramer von Mises (W) 

and the Anderson Darling (AD) for the classical and the proposed methods. Future 

researchers could use the same test procedures applied in this thesis and can be applied 
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on other lifetime distributions such as Gamma and Gumbel distributions. They could 

also use other tests statistics of the EDF such as the Kuiper Statistics and Watson 

Statistics. Future work can also study the procedure of goodness of fit test under other 

censoring schemes such as Type II censored samples and progressive Type II 

censoring samples. Moreover, future researchers can also consider other classical 

methods of parameter estimation with censored data, such as the least square and the 

method of moment.  
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APPENDIX A:THE INVERSE TRANSFORMATION TECHNIQUE 

For generating a random sample from log-logistic distribution under Type I 

censored data. Let 𝑚 be a uniform (0, 1) random variable.  To obtain random numbers 

such  (𝑡) from Logistic distribution we need to solve this equation  𝑚 =  𝐹(𝑡). 

Where 𝐹(𝑡) the cumulative distribution function of Logistic distribution followed 

equation (18). 

𝑚 =
1

1 + exp (−
𝑡 − 𝜇
𝜎 )

 

1 + exp (−
𝑡 − 𝜇

𝜎
) =

1

𝑚
 

exp (−
𝑡 − 𝜇

𝜎
) =

1

𝑚
− 1 

By taking the Log for both sides, 

log (exp (−
𝑡 − 𝜇

𝜎
)) = log (

1

𝑚
− 1) 

−
𝑡 − 𝜇

𝜎
= log (

1

𝑚
− 1) 

𝑡 = −𝜎 log (
1

𝑚
− 1) + 𝜇 

 

Then, this formula (𝑡) is used to generate data from logistic model. 

Let c is censoring constant chosen from logistic. The Type I data from logistic 

distribution is obtained as follows: 

𝑌𝑖 = min(𝑡𝑖, c) 

 Then  𝑇𝑖 = exp(𝑌𝑖) is a Type I censored sample from Log-Logistic distribution. 
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APPENDIX B: MONTE CARLO SIMULATION STUDIES  

#Proportion Logistic distribution  

#at C=-0.40  F(C)=0.40   

#at C=0.41   F(C)=0.60 

#at C=1.40   F(C)=0.80 

library("nlme") 

library(matrixStats) 

set.seed(2020) 

N=10000;n=90;C=1.40;C1=1.27; 

#g=0.5;l=1;              #Gompoz 

#th=0.70;v1=0.40;       #Burr 

#a1=1;b1=2;              #Weibull(a1,b1)  

#la=0.5;                 #EXP(la)  

#--------------------------------------------------------------- 

mu=0;sigma=1;# True Parameters Values of Logistic distribution 

a=exp(mu);B=(1/sigma)    #Log-Logistic distribution 

yi<-vector("double")     

dq<-vector("double")    

y1<-list()      # Data from Logistic distribution 

y2<-list()  

T1<-list()      # Data from Log-Logistic distribution 

ind<-list()     #indicator        

ind1<-list()  

#MLE's 

a.h<-c()  
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B.h<-c() 

mu.h<-c()           

sigma.h<-c()      

# EDF of Proposed 

L<-list()     #length of data of size d      

Ewf=list()    #EDF 

Ewf.1=list() 

Ewf.2=list() 

Ewf.3=list() 

Cum=list()#  CDF at y1 

Cum.C=c() #  CDF at C 

#Transformed sample for the Proposed 

wi=list()    #CDF(y1)/CDF(C)  

wd=list()    #wi(d+1-i)/revs wi 

## Proposed Tests 

# ks test 

D.pw<-list() #Dn.plus 

D.mw<-list() #D.minus 

D.Bind<-list() # Combined (D.pulus,D.minus) 

Max1<-list()   # max of row for (D.plus,D.minus) 

# Proposed Tests 

test.d<-c()  

test.w<-c() 

test.ad<-c() 

#Classical Tests 
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# EDf of  classical 

EWf=list() 

EWf.1=list() 

EWf.2=list() 

EWf.3=list() 

EWf.4=list() 

EWf.5=list() 

# CDF  

Wi=list()       #CDF(y1) 

# CDF for logistic distribution  at  C 

Wd=c()       #CDF(C) 

D1.W<-list() # Dn.plus 

D2.W<-list() # Dn.minus 

D.bind<-list()  # Combined (D1,D2) 

max1<-list()   # max of row(D1,D2) 

# Classical Tests 

test.D<-c()  

test.W<-c() 

test.AD<-c() 

#---------------------------- critical Points----------------------------- 

# Frist loop for critical Points 

for (i in 1:N){ 

  q=sort(runif(n,0,1)) 

  qi=(-sigma*log((1/(q))-1))+mu   

  yi=pmin(qi,C)                    
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  dq=as.numeric(qi<=C)  

  y2[[i]]<-yi 

  ind1[[i]]=dq 

  y1[[i]]<-yi[yi<C]  

  ind[[i]]<-dq[dq==1]             

  L[[i]]<-length(y1[[i]])   #length of y1 data /d      

  T1[[i]]<-exp(y2[[i]])          

  L1<-function(p){-(sum((ind1[[i]])*log(p[2]/p[1]))+(p[2]-

1)*sum((ind1[[i]])*log((T1[[i]])/p[1]))-

2*sum((ind1[[i]])*log(1+((T1[[i]])/p[1])^p[2]))-sum((1-

(ind1[[i]]))*log(1+((T1[[i]])/p[1])^p[2])))} 

  result1=nlm(L1,p<-c(a,B),hessian = T) 

  a.h[i]=result1$estimate[1] 

  B.h[i]=result1$estimate[2] 

  #MLEs for Logistic  

  mu.h[i]=log(a.h[i]) 

  sigma.h[i]=(1/(B.h[i])) 

  #Proposed method 

  Cum[[i]]=(1/(1+exp(-(y1[[i]]-mu.h[i])/sigma.h[i]))) 

  Cum.C[i]=(1/(1+exp(-(C-mu.h[i])/sigma.h[i]))) 

  # Transformed data 

  wi[[i]]=(Cum[[i]]/Cum.C[i]) #Proposed method 

  wd[[i]]= rev(wi[[i]]) #reverse order of wi 

  # EDF for porposed 

  Ewf[[i]]=(1:L[[i]])/L[[i]]#(i/d)   
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  Ewf.1[[i]]=((1:L[[i]])-1)/L[[i]]#(i-1/d) 

  Ewf.2[[i]]=(2*(1:L[[i]])-1)/(2*L[[i]])#(2*i-1/2d)  

  Ewf.3[[i]]=(2*(1:L[[i]])-1)/(L[[i]]) #(2*i-1/d)  

  D.pw[[i]]=(Ewf[[i]]-wi[[i]])   

  D.mw[[i]]=(wi[[i]]-Ewf.1[[i]]) 

  D.Bind[[i]]=cbind(D.pw[[i]],D.mw[[i]]) 

  Max1[[i]]=rowMaxs(D.Bind[[i]]) 

  #Proposed Tests 

  #test.D 

  test.d[i]=(max(Max1[[i]])) 

  # test.Wst 

  test.w[i]=sum((wi[[i]]-Ewf.2[[i]])^2)+(1/(12*L[[i]])) 

  #test.ad 

  test.ad[i]=(-L[[i]])-sum((Ewf.3[[i]])*(log(wi[[i]])+log(1-wd[[i]])))    

  #classical Tests 

  # CDF for logistic distrbution  at y1  & C 

  Wi[[i]]=((1/(1+exp(-(y1[[i]]-mu.h[i])/sigma.h[i])))) # 

  Wd[i]=(1/(1+exp(-(C-mu.h[i])/sigma.h[i]))) 

  # EDF classical 

  EWf[[i]]=(1:L[[i]])/(n) #(i/n) 

  EWf.1[[i]]=((1:L[[i]])-1)/(n) #(i-1/n) 

  EWf.2[[i]]=(2*(1:L[[i]])-1)/(n) #(2*i-1/n)  

  EWf.3[[i]]=((1:L[[i]])-0.5)/(n)#(*i-0.5)/n  

  EWf.4[[i]]=((L[[i]])*(4*L[[i]]^2-1))/(12*(n^2)) 

  EWf.5[[i]]=(2*(1:L[[i]])-1)/(2*n) #(2*i-1/2n)  
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  D1.W[[i]]=(EWf[[i]]-Wi[[i]]) 

  D2.W[[i]]=(Wi[[i]]-EWf.1[[i]]) 

  D.bind[[i]]=cbind(D1.W[[i]],D2.W[[i]]) 

  max1[[i]]=rowMaxs(D.bind[[i]]) 

  #classical Tests 

  test.D[i]=(max(max1[[i]])) 

  test.W[i]=sum(Wi[[i]]-EWf.5[[i]])^2-EWf.4[[i]]+(n*Wd[i])*((L[[i]]^2/n^2)-

(Wd[i]*((L[[i]]/n)))+((1/3)*(Wd[i])^2))# steveen w 

  test.AD[i]=sum(EWf.2[[i]]*(log(1-Wi[[i]])-log(Wi[[i]])))-2*sum(log(1-

Wi[[i]]))+n*((2*L[[i]]/n)-((L[[i]]/n)^2)-1)*(log(1-Wd[i]))+((L[[i]])^2/n)*log(Wd[i])-

(n*Wd[i])# ad test.AD[i]=sum((EWf.2[[i]])*(log.1.Wi[[i]]-log.Wi[[i]]))-

(2*sum(log.1.Wi[[i]]))+n*((2*L[[i]]/n)-((L[[i]]/n)^2)-

1)*(log.1.Wd[i])+((L[[i]])^2/n)*(log.Wd[i])-(n* Wd[i])# ad   

} 

#Proposed Method 

(C.V1=quantile((test.d),.95,na.rm=TRUE))  

(C.V2=quantile((test.w),.95,na.rm=TRUE)) 

(C.V3=quantile((test.ad),.95,na.rm=TRUE)) 

#Classical Method 

(C.V4=quantile((test.D),.95,na.rm=TRUE))  

(C.V5=quantile((test.W),.95,na.rm=TRUE)) 

(C.V6=quantile((test.AD),.95,na.rm=TRUE)) 

R.1=round(C.V1,5) 

R.2=round(C.V2,5) 

R.3=round(C.V3,5) 
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R.4=round(C.V4,5) 

R.5=round(C.V5,5) 

R.6=round(C.V6,5) 

Result.CV=matrix(c(R.1,R.2,R.3,R.4,R.5,R.6), nrow = 3, ncol = 2) 

colnames(Result.CV) <- c("10% Crtical Proposed ","10% Crtical Classical ") 

rownames(Result.CV)<-c("CV1.KS","CV2.W","CV3.AD") 

#---------------------------- Emprical alpha ------------------------------ 

mu.=0;sigma.=1; 

a.=exp(mu.);B.=(1/sigma.)     

yj<-vector("double")     

dqq<-vector("double") 

y11<-list()               

y22<-list()   

T11<-list()               

Ind<-list()    #Indicator d         

Ind1<-list() 

a.hh<-c()  

B.hh<-c() 

mu.hh<-c()           

sigma.hh<-c()      

# EDF- porposed 

Lq<-list()   #d         

EwF=list()  

EwF.1=list() 

EwF.2=list() 
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EwF.3=list() 

CUM=list() 

CUM.C=c() 

wii=list()  # proposed method 

log.wii=list() 

wdd=list()#w(d+1-i) 

log.1.wdd=list() #log(1-w(d+1-i)) 

D.wp<-list() #Dn.plus 

D.wm<-list() #D.minus 

D11.Bind<-list() 

Max11<-list() 

# Proposed test 

Test.d<-c()  

Test.w<-c() 

Test.ad<-c() 

# EDF classical 

EWF=list() 

EWF.1=list() 

EWF.2=list() 

EWF.3=list() 

EWF.4=list() 

EWF.5=list() 

# CDF for logistic distrbution  at y11 & C 

Wii=list() #CDF(y11) 

# CDF for logistic distrbution  at  C 
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Wdd=c()#W(d+1)  

D11<-list() # Dn.plus 

D22<-list() # Dn.minus 

D11.bind<-list() 

Max.11<-list() 

# Classical Tests 

Test.D<-c()  

Test.W<-c() 

Test.AD<-c() 

# Second loop for emprical alpha 

for (j in 1:N){ 

  qq=sort(runif(n,0,1)) 

  qj=(-sigma.*log((1/(qq))-1))+mu. 

  yj=pmin(qj,C)                    

  dqq=as.numeric(qj<=C)  

  y22[[j]]<-yj 

  y11[[j]]<-yj[yj<C]    

  Ind1[[j]]<-dqq 

  Ind[[j]]<-dqq[dqq==1]             

  Lq[[j]]<-length(y11[[j]])   # length of y11 data/d      

  T11[[j]]<-exp(y22[[j]])          

  L2<-function(P){-(sum((Ind1[[j]])*log(P[2]/P[1]))+(P[2]-

1)*sum((Ind1[[j]])*log((T11[[j]])/P[1]))-

2*sum((Ind1[[j]])*log(1+((T11[[j]])/P[1])^P[2]))-sum((1-

(Ind1[[j]]))*log(1+((T11[[j]])/P[1])^P[2])))} 
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  result2=nlm(L2,P<-c(a.,B.),hessian = T) 

  a.hh[j]=result2$estimate[1] 

  B.hh[j]=result2$estimate[2] 

  #MLEs for Logistic  

  mu.hh[j]=log(a.hh[j]) 

  sigma.hh[j]=(1/(B.hh[j])) 

  #Proposed method 

  CUM[[j]]=(1/(1+exp(-(y11[[j]]-mu.hh[j])/sigma.hh[j]))) 

  CUM.C[j]=(1/(1+exp(-(C-mu.hh[j])/sigma.hh[j]))) 

  wii[[j]]=(CUM[[j]]/CUM.C[j]) #Proposed method 

  wdd[[j]]= rev(wii[[j]]) #reverse order of wii 

  # EDf - proposed 

  EwF[[j]]=(1:Lq[[j]])/Lq[[j]]#(i/d) 

  EwF.1[[j]]=((1:Lq[[j]])-1)/Lq[[j]]#(j-1/d) 

  EwF.2[[j]]=(2*(1:Lq[[j]])-1)/(2*Lq[[j]])#(2*j-1/d)  

  EwF.3[[j]]=(2*(1:Lq[[j]])-1)/(Lq[[j]]) #(2*j-1/d)  

  D.wp[[j]]=(EwF[[j]]-wii[[j]]) 

  D.wm[[j]]=(wii[[j]]-EwF.1[[j]]) 

  D11.bind[[j]]=cbind(D.wp[[j]],D.wm[[j]]) 

  Max.11[[j]]=rowMaxs(D11.bind[[j]]) 

  # Propsoed Tests 

  Test.d[j]=(max(Max.11[[j]])) 

  Test.w[j]=sum((wii[[j]]-EwF.2[[j]])^2)+(1/(12*Lq[[j]])) 

  Test.ad[j]=(-Lq[[j]])-sum((EwF.3[[j]])*(log(wii[[j]])+log(1-wdd[[j]])))    

  #Classical method 



  

71 

 

  # CDF for logistic distrbution  at y11 & C 

  Wii[[j]]=((1/(1+exp(-(y11[[j]]-mu.hh[j])/sigma.hh[j]))))  

  Wdd[j]=(1/(1+exp(-(C-mu.hh[j])/sigma.hh[j]))) 

  # EDf classical 

  EWF[[j]]=(1:Lq[[j]])/(n) #(i/n) 

  EWF.1[[j]]=((1:Lq[[j]])-1)/(n) #(i-1/n) 

  EWF.2[[j]]=(2*(1:Lq[[j]])-1)/(n) #(2*i-1/n)  

  EWF.3[[j]]=((1:Lq[[j]])-0.5)/(n) #(i-0.5/n) 

  EWF.4[[j]]=((Lq[[j]])*(4*Lq[[j]]^2-1))/(12*(n^2)) 

  EWF.5[[j]]=(2*(1:Lq[[j]])-1)/(2*n) #(2*i-1/2n)  

  D11[[j]]=(EWF[[j]]-Wii[[j]]) 

  D22[[j]]=(Wii[[j]]-EWF.1[[j]]) 

  D11.Bind[[j]]=cbind(D11[[j]],D22[[j]]) 

  Max11[[j]]=rowMaxs(D11.Bind[[j]]) 

  #Classical 

  Test.D[j]=(max(D11.Bind[[j]])) 

  Test.W[j]=sum(Wii[[j]]-EWF.5[[j]])^2-EWF.4[[j]]+(n*Wdd[j])*((Lq[[j]]^2/n^2)-

(Wdd[j]*((Lq[[j]]/n)))+((1/3)*(Wdd[j])^2))# steveen  

  Test.AD[j]=sum(EWF.2[[j]]*(log(1-Wii[[j]])-log(Wii[[j]])))-2*sum(log(1-

Wii[[j]]))+n*((2*Lq[[j]]/n)-((Lq[[j]]/n)^2)-1)*(log(1-

Wdd[j]))+((Lq[[j]])^2/n)*log(Wdd[j])-(n*Wdd[j]) 

} 

a=0;b=0;c=0;d=0;e=0;f=0; 

for(j in 1:N){ 

  # proposed 
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  if(Test.d[j]>C.V1) {a=a+1} 

  if(Test.w[j]>C.V2){b=b+1} 

  if(Test.ad[j]>C.V3) {c=c+1} 

  # classical 

  if( Test.D[j]>C.V4) {d=d+1} 

  if( Test.W[j]>C.V5){e=e+1} 

  if( Test.AD[j]>C.V6) {f=f+1} 

}  

#Proposed 

a/N 

b/N 

c/N 

# classical 

d/N 

e/N 

f/N 

R.11=round(a/N,3) 

R.22=round(b/N,3) 

R.33=round(c/N,3) 

R.44=round(d/N,3) 

R.55=round(e/N,3) 

R.66=round(f/N,3) 

#Emaprical alpha of classical 

Emprical=matrix(c(R.11,R.22,R.33,R.44,R.55,R.66), nrow = 3, ncol = 2) 

colnames(Emprical) <- c("10% Emprical Proposed ","10% Emprcial Classical ") 
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rownames(Emprical)<-c("Emp.KS","Emp.W","Emp.AD") 

#print(Emprical) 

print(list("Crtical points"=Result.CV," 10% Emprical alpha"=Emprical)) # for 10%  

#---------------------------- Power of tests ------------------------------ 

muu=0;sigmaa=1;#C1=0.882;   # C1: based on CDF of altenative models       

aa=exp(muu);BB=(1/sigmaa)   

#True parameters of Alternative models 

Yi<-vector("double")  

di<-vector("double") 

Y1<-list()   

Y2<-list()  

dd2<-list() 

dd1<-list()       

ahat<-c()  

Bhat<-c() 

muhat<-c()           

sigmahat<-c()     

#Proposed method  

# EDF 

d<-list()            

EDF=list() 

EDF.1=list() 

EDF.2=list() 

EDF.3=list() 

# CDF based on logistic distrbution  
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CDF=list() 

CDF.C=c() 

# Transformed data for the Proposed Method CDF  

ui=list() 

ud=list()#u(d+1-i) 

Dn.P<-list() #Dn.plus 

Dn.M<-list() #Dn.minus 

Dn.Bind<-list() 

Max2.D<-list() 

# Proposed Tests ui 

D.test<-c()  

W.test<-c() 

AD.test<-c() 

#Classical Method 

UI=list() 

Ud=c()#u(d+1) is CDF(C) 

D1<-list() # Dn.plus 

D2<-list() # Dn.minus 

Dn.bind<-list() 

Max2.d<-list() 

D.testc<-c()  

W.testc<-c() 

AD.testc<-c() 

EDFc=list() 

EDFc.1=list() 
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EDFc.2=list() 

EDFc.3=list() 

EDFc.4=list() 

EDFc.5=list() 

# Third loop for finding the power 

for (r in 1:N){ 

  m=sort(runif(n,0,1)) 

  #ti=(1/g)*(log(1-((g/l)*log(1-m))))   #Compozt dist (g,l)  

  #ti=(-(th)^2*log(1-(m)^(1/v1)))^0.50  #Burr dist(th,v1) 

  #ti=((-1/a1) *log(1-m))^(1/b1)        #Weibull (a1,b1) 

  #ti=(-1/la)*log(1-m)                    #EXP(la)  

  Yi=pmin(ti,C1)              

  di=as.numeric(ti<=C1)  

  Y2[[r]]<-Yi 

  Y1[[r]]<-Yi[Yi<C1]   

  dd2[[r]]<-di 

  dd1[[r]]<-di[di==1]            

  d[[r]]<-length(Y1[[r]])        

  L3<-function(p3){-(sum((dd2[[r]])*log(p3[2]/p3[1]))+(p3[2]-

1)*sum((dd2[[r]])*log((Y2[[r]])/p3[1]))-

2*sum((dd2[[r]])*log(1+((Y2[[r]])/p3[1])^p3[2]))-sum((1-

(dd2[[r]]))*log(1+((Y2[[r]])/p3[1])^p3[2])))} 

  result3=nlm(L3,p3<-c(aa,BB),hessian = T) 

  ahat[r]=result3$estimate[1] 

  Bhat[r]=result3$estimate[2] 
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  #MLEs for Logistic distribution 

  muhat[r]=log(ahat[r]) 

  sigmahat[r]=(1/(Bhat[r])) 

  #Proposed Method 

  CDF[[r]]=(1/(1+exp(-(log(Y1[[r]])-muhat[r])/sigmahat[r])))  

  CDF.C[r]=(1/(1+exp(-(log(C1)-muhat[r])/sigmahat[r]))) 

  ui[[r]]=sort(CDF[[r]]/CDF.C[r]) #Proposed method 

  ud[[r]]= rev(ui[[r]]) #reverse order of ui 

  # EDF- proposed 

  EDF[[r]]=(1:d[[r]])/d[[r]]#(r/d) 

  EDF.1[[r]]=((1:d[[r]])-1)/d[[r]]#(r-1/d) 

  EDF.2[[r]]=(2*(1:d[[r]])-1)/(2*d[[r]])#(2*r-1/2d)  

  EDF.3[[r]]=(2*(1:d[[r]])-1)/(d[[r]]) #(2*r-1/d)  

  Dn.P[[r]]=(EDF[[r]]-ui[[r]]) 

  Dn.M[[r]]=(ui[[r]]-EDF.1[[r]]) 

  Dn.Bind[[r]]=cbind(Dn.P[[r]],Dn.M[[r]]) 

  Max2.D[[r]]=rowMaxs(Dn.Bind[[r]]) 

  # Propsoed tests  

  #D.test 

  D.test[r]=(max(Max2.D[[r]])) 

  # W.test 

  W.test[r]=sum((ui[[r]]-EDF.2[[r]] )^2)+(1/(12*d[[r]])) 

  #AD.test 

  AD.test[r]=(-d[[r]])-(sum((EDF.3[[r]])*(log(ui[[r]])+log(1-ud[[r]]))))    

  #Classical Method 
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  UI[[r]]=((1/(1+exp(-(log(Y1[[r]])-muhat[r])/sigmahat[r]))))  

  Ud[r]=(1/(1+exp(-(log(C1)-muhat[r])/sigmahat[r]))) 

  # EDF -Classical 

  EDFc[[r]]=(1:d[[r]])/(n) #(r/n) 

  EDFc.1[[r]]=((1:d[[r]])-1)/(n) #(r-1/n) 

  EDFc.2[[r]]=(2*(1:d[[r]])-1)/(n) #(2*r-1/n)  

  EDFc.3[[r]]=((1:d[[r]])-0.5)/(n) #(r-0.5/n)  

  EDFc.4[[r]]=((d[[r]])*(4*d[[r]]^2-1))/(12*(n^2)) 

  EDFc.5[[r]]=(2*(1:d[[r]])-1)/(2*n) #(2*i-1/2n)  

  D1[[r]]=(EDFc[[r]]-UI[[r]]) 

  D2[[r]]=(UI[[r]]-EDFc.1[[r]]) 

  Dn.bind[[r]]<-cbind(D1[[r]],D2[[r]]) 

  Max2.d[[r]]<-rowMaxs(Dn.bind[[r]]) 

  # Classical tests 

  D.testc[r]=(max(Max2.d[[r]])) 

  W.testc[r]=sum(UI[[r]]-EDFc.5[[r]])^2-EDFc.4[[r]]+(n*Ud[r])*((d[[r]]^2/n^2)-

(Ud[r]*((d[[r]]/n)))+((1/3)*(Ud[r])^2))# steveen w 

  AD.testc[r]=sum((EDFc.2[[r]])*(log(1-UI[[r]])-log(UI[[r]])))-(2*sum(log(1-

UI[[r]])))+n*((2*d[[r]]/n)-((d[[r]]/n)^2)-1)*(log(1-Ud[r]))+((d[[r]])^2/n)*(log(Ud[r]))-

(n*Ud[r])# ad 

} #Power of Proposed/Classical 

a1=0;b1=0;c1=0;d1=0;e1=0;f1=0; 

for(r in 1:N){  # proposed  if(D.test[r]>C.V1) {a1=a1+1} 

  if(W.test[r]>C.V2){b1=b1+1} 

  if(AD.test[r]>C.V3) {c1=c1+1} 
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  # Classical  

  if(D.testc[r]>C.V4) {d1=d1+1} 

  if(W.testc[r]>C.V5){e1=e1+1} 

  if(AD.testc[r]>C.V6) {f1=f1+1} 

}# rounding the result of the power for three digit 

r.1=round(a1/N,3) 

r.2=round(b1/N,3) 

r.3=round(c1/N,3) 

r.4=round(d1/N,3) 

r.5=round(e1/N,3) 

r.6=round(f1/N,3) 

Power=matrix(c(r.1,r.2,r.3,r.4,r.5,r.6), nrow = 3, ncol = 2) 

colnames(Power) <- c("10% Power Proposed Method","10% Power Classical 

Method") 

rownames(Power)<-c("Power.KS","Power.W","Power.AD") 

# Final Results for all 

print(list("Crtical points"=Result.CV," 10% Emprical 

alpha"=Emprical,"Power"=Power)) # for 10% 
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APPENDIX C: CODE OF THE REAL DATA ANALYSIS 

rm(list=ls(all=TRUE)) 

# Real data 4.1 

library("nlme") 

library(matrixStats) 

set.seed(2020) 

ti=c(0.27, 0.40, 0.69, 0.79, 2.75,3.91, 9.88,13.95, 15.93, 27.80,53.24, 

82.85,89.29,100.58,215.10) 

(tii= sort(ti)) 

(n=length(tii)) 

ind1=c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0) 

c=27; 

(yi=pmin(tii,c)) 

(Data=cbind(yi,ind1)) 

a=1;B=1 

L1<-function(p){-(sum((ind1)*log(p[2]/p[1]))+(p[2]-1)*sum((ind1)*log((yi)/p[1]))-

2*sum((ind1)*log(1+((yi)/p[1])^p[2]))-sum((1-(ind1))*log(1+((yi)/p[1])^p[2])))} 

result1=nlm(L1,p<-c(a,B),hessian = T) 

print(result1) 

(a.h=result1$estimate[1]) 

(B.h=result1$estimate[2]) 

#MLEs for Logistic  

(mu.h=log(a.h)) 

(sigma.h=(1/(B.h))) 

#The data only take cases ti<c to start testing  
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(y1<-yi[yi<c]) 

(L<-length(y1))   #length of y1 data /d      

#Proposed method 

(Cum=(1/(1+exp(-(log(y1)-mu.h)/sigma.h)))) 

(Cum.C=(1/(1+exp(-(log(c)-mu.h)/sigma.h)))) 

# transformed data 

(wi=(Cum/Cum.C))#Proposed method 

(wd= rev(wi)) #reverse order of wi 

# EDF for porposed 

(Ewf=(1:L)/L)#(i/d)   

(Ewf.1=((1:L)-1)/L)#(i-1/d) 

(Ewf.2=(2*(1:L)-1)/(2*L))#(2*i-1/2d)  

(Ewf.3=(2*(1:L)-1)/(L)) #(2*i-1/d)  

(D.pw=(Ewf-wi))   

(D.mw=(wi-Ewf.1)) 

(D.Bind=cbind(D.pw,D.mw)) 

(Max1=rowMaxs(D.Bind)) 

#Proposed Tests 

#test.D 

(test.d=(max(Max1))) 

# test.Wst 

(test.w=sum((wi-Ewf.2)^2)+(1/(12*L))) 

#test.ad 

(test.ad=(-L)-sum((Ewf.3)*(log(wi)+log(1-wd)))) 

#Classical Tests 
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# CDF for logistic distrbution  at y1  & C 

(Wi=((1/(1+exp(-(log(y1)-mu.h)/sigma.h))))) # 

(Wd=(1/(1+exp(-(log(c)-mu.h)/sigma.h)))) 

# EDF classical 

(EWf=(1:L)/(n)) #(i/n) 

(EWf.1=((1:L)-1)/(n)) #(i-1/n) 

(EWf.2=(2*(1:L)-1)/(n)) #(2*i-1/n)  

(EWf.3=((1:L)-0.5)/(n))#(*i-0.5)/n  

(EWf.4=((L)*(4*L^2-1))/(12*(n^2))) 

(EWf.5=(2*(1:L)-1)/(2*n)) #(2*i-1/2n)  

(D1.W=(EWf-Wi)) 

(D2.W=(Wi-EWf.1)) 

(D.bind=cbind(D1.W,D2.W)) 

(max1=rowMaxs(D.bind)) 

#classical Tests 

(test.D=(max(max1))) 

(test.W=sum(Wi-EWf.5)^2-EWf.4+(n*Wd)*((L^2/n^2)-

(Wd*((L/n)))+((1/3)*(Wd)^2)))  # steveen w 

(test.AD=sum(EWf.2*(log(1-Wi)-log(Wi)))-2*sum(log(1-Wi))+n*((2*L/n)-((L/n)^2)-

1)*(log(1-Wd))+((L)^2/n)*log(Wd)-(n*Wd)) 

########Test statistics####### 

Test.Result=matrix(c(test.d,test.w,test.ad,test.D,test.W,test.AD), nrow = 3, ncol = 2) 

colnames(Test.Result) <- c(" Proposed tests"," Classical tests") 

rownames(Test.Result)<-c("KS","W","AD") 

print(list("Test statistics"=Test.Result))  
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################ 

rm(list=ls(all=TRUE)) 

# Real data 4.2 

library("nlme") 

library(matrixStats) 

set.seed(2020) 

a=1;B=1;c=135; 

ti=sort(c(22.5,37.5,46.0,48.5,51.5,53.0,54.5,57.5,66.5,68.0,69.5,76.5,77.0,78.5,80.0,8

1.5,82.0,83.0,84.0,91.5,93.5,102.5,107.0,108.5,112.5,113.5,116.0,117.0,118.5,119.0,1

20.0,122.5, 123.0, 127.5, 131.0, 132.5, 134.0 ,135, 135, 135, 135, 135, 135, 135, 135, 

135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 135, 

135,135,135,135,135,135,135,135,135,135,135,135,135,135,135,135,135,135,135, 

135,135,135,135,135,135,135,135,135,135,135,135,135,135,135,135, 135, 135, 135, 

135)) 

ind=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0) 

cbind(ti,ind) 

(yi=pmin(ti,c)) 

(y1<-ti[ti<c]) 

L1<-function(p){-(sum((ind)*log(p[2]/p[1]))+(p[2]-1)*sum((ind)*log((yi)/p[1]))-

2*sum((ind)*log(1+((yi)/p[1])^p[2]))-sum((1-(ind))*log(1+((yi)/p[1])^p[2])))} 

result1=nlm(L1,p<-c(a,B),hessian = T) 

print(result1) 

(a.h=result1$estimate[1]) 
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(B.h=result1$estimate[2]) 

#MLEs for Logistic  

(mu.h=log(a.h)) 

(sigma.h=(1/(B.h))) 

################ 

n=length(ti);L=length(y1);mu=0;sigma=1; 

#Proposed method 

(Cum=(1/(1+exp(-(log(y1)-mu.h)/sigma.h)))) 

(Cum.C=(1/(1+exp(-(log(c)-mu.h)/sigma.h)))) 

# Transformed data 

(wi=(Cum/Cum.C))#Proposed method 

(wd= rev(wi)) #reverse order of wi 

# EDF for porposed 

(Ewf=(1:L)/L)#(i/d)   

(Ewf.1=((1:L)-1)/L)#(i-1/d) 

(Ewf.2=(2*(1:L)-1)/(2*L))#(2*i-1/2d)  

(Ewf.3=(2*(1:L)-1)/(L)) #(2*i-1/d)  

(D.pw=(Ewf-wi))   

(D.mw=(wi-Ewf.1)) 

 

(D.Bind=cbind(D.pw,D.mw)) 

(Max1=rowMaxs(D.Bind)) 

#Proposed Tests 

#test.D 

(test.d=(max(Max1))) 
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# test.Wst 

(test.w=sum((wi-Ewf.2)^2)+(1/(12*L))) 

#test.ad 

(test.ad=(-L)-sum((Ewf.3)*(log(wi)+log(1-wd)))) 

#####################Classical test########### 

#classical Tests 

# CDF for logistic distrbution  at y1  & C 

(Wi=((1/(1+exp(-(log(y1)-mu.h)/sigma.h))))) # 

(Wd=(1/(1+exp(-(log(c)-mu.h)/sigma.h)))) 

# EDF classical 

(EWf=(1:L)/(n)) #(i/n) 

(EWf.1=((1:L)-1)/(n)) #(i-1/n) 

(EWf.2=(2*(1:L)-1)/(n)) #(2*i-1/n)  

(EWf.3=((1:L)-0.5)/(n))#(*i-0.5)/n  

(EWf.4=((L)*(4*L^2-1))/(12*(n^2))) 

(EWf.5=(2*(1:L)-1)/(2*n)) #(2*i-1/2n)  

(D1.W=(EWf-Wi)) 

(D2.W=(Wi-EWf.1)) 

(D.bind=cbind(D1.W,D2.W)) 

(max1=rowMaxs(D.bind)) 

#classical Tests 

(test.D=(max(max1))) 

(test.W=sum(Wi-EWf.5)^2-EWf.4+(n*Wd)*((L^2/n^2)-

(Wd*((L/n)))+((1/3)*(Wd)^2)))  # steveen w 

(test.AD=sum(EWf.2*(log(1-Wi)-log(Wi)))-2*sum(log(1-Wi))+n*((2*L/n)-((L/n)^2)-
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1)*(log(1-Wd))+((L)^2/n)*log(Wd)-(n*Wd)) 

########Test statistics####### 

Test.Result=matrix(c(test.d,test.w,test.ad,test.D,test.W,test.AD), nrow = 3, ncol = 2) 

colnames(Test.Result)<-c(" Proposed tests"," Classical tests") 

rownames(Test.Result)<-c("KS","W","AD") 

print(list("Test statistics"=Test.Result))  

#mu=0;sigma=1;c=0.849; 

(prof.F.Logistic=(1/(1+exp(-(c-mu)/sigma)))) 

##################### 

#P-value and Critical points code 

#Proportion Logistic distribution  

#at C=-0.40  F(C)=0.40   

#at C=0.41   F(C)=0.60 

#at C=1.40   F(C)=0.80 

library("nlme") 

library(matrixStats) 

set.seed(2020) 

N=10000;n=15;C=0.41; 

#--------------------------------------------------------------- 

mu=0;sigma=1;# True Parameters Values of Logistic distribution 

a=exp(mu);B=(1/sigma)    #Log-Logistic distribution 

yi<-vector("double")     

dq<-vector("double")    

y1<-list()      # Data from Logistic distribution 

y2<-list()  
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T1<-list()      # Data from Log-Logistic distribution 

ind<-list()     #indicator        

ind1<-list()  

#MLE's 

a.h<-c()  

B.h<-c() 

mu.h<-c()           

sigma.h<-c()      

# EDF of Proposed 

L<-list()     #length of data of size d      

Ewf=list()    #EDF 

Ewf.1=list() 

Ewf.2=list() 

Ewf.3=list() 

Cum=list()#  CDF at y1 

Cum.C=c() #  CDF at C 

#Transformed sample for the Proposed 

wi=list()    #CDF(y1)/CDF(C)  

wd=list()    #wi(d+1-i)/revs wi 

## Proposed Tests 

# ks test 

D.pw<-list() #Dn.plus 

D.mw<-list() #D.minus 

D.Bind<-list() # Combined (D.pulus,D.minus) 

Max1<-list()   # max of row for (D.plus,D.minus) 
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# Proposed Tests 

test.d<-c()  

test.w<-c() 

test.ad<-c() 

#Classical Tests 

# EDf of  classical 

EWf=list() 

EWf.1=list() 

EWf.2=list() 

EWf.3=list() 

EWf.4=list() 

EWf.5=list() 

# CDF  

Wi=list()       #CDF(y1) 

# CDF for logistic distrbution  at  C 

Wd=c()       #CDF(C) 

D1.W<-list() # Dn.plus 

D2.W<-list() # Dn.minus 

D.bind<-list()  # Combined (D1,D2) 

max1<-list()   # max of row (D1,D2) 

# Classical Tests 

test.D<-c()  

test.W<-c() 

test.AD<-c() 

#--------------------------- Critical Points------------------------------ 
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# Frist loop for critical Points  

for (i in 1:N){ 

  q=sort(runif(n,0,1)) 

  qi=(-sigma*log((1/(q))-1))+mu   

  yi=pmin(qi,C)                    

  dq=as.numeric(qi<=C)  

  y2[[i]]<-yi 

  ind1[[i]]=dq 

  y1[[i]]<-yi[yi<C]  

  ind[[i]]<-dq[dq==1]             

  L[[i]]<-length(y1[[i]])   #length of y1 data /d      

  T1[[i]]<-exp(y2[[i]])          

  L1<-function(p){-(sum((ind1[[i]])*log(p[2]/p[1]))+(p[2]-

1)*sum((ind1[[i]])*log((T1[[i]])/p[1]))-

2*sum((ind1[[i]])*log(1+((T1[[i]])/p[1])^p[2]))-sum((1-

(ind1[[i]]))*log(1+((T1[[i]])/p[1])^p[2])))} 

  result1=nlm(L1,p<-c(a,B),hessian = T) 

  a.h[i]=result1$estimate[1] 

  B.h[i]=result1$estimate[2] 

  #MLEs for Logistic  

  mu.h[i]=log(a.h[i]) 

  sigma.h[i]=(1/(B.h[i])) 

  #Proposed method 

  Cum[[i]]=(1/(1+exp(-(y1[[i]]-mu.h[i])/sigma.h[i]))) 

  Cum.C[i]=(1/(1+exp(-(C-mu.h[i])/sigma.h[i]))) 
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  # Transformed data 

  wi[[i]]=(Cum[[i]]/Cum.C[i]) #Proposed method 

  wd[[i]]= rev(wi[[i]]) #reverse order of wi 

  # EDF for porposed 

  Ewf[[i]]=(1:L[[i]])/L[[i]]#(i/d)   

  Ewf.1[[i]]=((1:L[[i]])-1)/L[[i]]#(i-1/d) 

  Ewf.2[[i]]=(2*(1:L[[i]])-1)/(2*L[[i]])#(2*i-1/2d)  

  Ewf.3[[i]]=(2*(1:L[[i]])-1)/(L[[i]]) #(2*i-1/d)  

  D.pw[[i]]=(Ewf[[i]]-wi[[i]])   

  D.mw[[i]]=(wi[[i]]-Ewf.1[[i]]) 

  D.Bind[[i]]=cbind(D.pw[[i]],D.mw[[i]]) 

  Max1[[i]]=rowMaxs(D.Bind[[i]]) 

  #Proposed Tests 

  #test.D 

  test.d[i]=(max(Max1[[i]])) 

  # test.Wst 

  test.w[i]=sum((wi[[i]]-Ewf.2[[i]])^2)+(1/(12*L[[i]])) 

  #test.ad 

  test.ad[i]=(-L[[i]])-sum((Ewf.3[[i]])*(log(wi[[i]])+log(1-wd[[i]])))    

  #classical Tests 

  # CDF for logistic distrbution  at y1  & C 

  Wi[[i]]=((1/(1+exp(-(y1[[i]]-mu.h[i])/sigma.h[i])))) # 

  Wd[i]=(1/(1+exp(-(C-mu.h[i])/sigma.h[i]))) 

  # EDF classical 

  EWf[[i]]=(1:L[[i]])/(n) #(i/n) 
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  EWf.1[[i]]=((1:L[[i]])-1)/(n) #(i-1/n) 

  EWf.2[[i]]=(2*(1:L[[i]])-1)/(n) #(2*i-1/n)  

  EWf.3[[i]]=((1:L[[i]])-0.5)/(n)#(*i-0.5)/n  

  EWf.4[[i]]=((L[[i]])*(4*L[[i]]^2-1))/(12*(n^2)) 

  EWf.5[[i]]=(2*(1:L[[i]])-1)/(2*n) #(2*i-1/2n)  

  D1.W[[i]]=(EWf[[i]]-Wi[[i]]) 

  D2.W[[i]]=(Wi[[i]]-EWf.1[[i]]) 

  D.bind[[i]]=cbind(D1.W[[i]],D2.W[[i]]) 

  max1[[i]]=rowMaxs(D.bind[[i]]) 

  #classical Tests 

  test.D[i]=(max(max1[[i]])) 

  test.W[i]=sum(Wi[[i]]-EWf.5[[i]])^2-EWf.4[[i]]+(n*Wd[i])*((L[[i]]^2/n^2)-

(Wd[i]*((L[[i]]/n)))+((1/3)*(Wd[i])^2))# steveen w 

  test.AD[i]=sum(EWf.2[[i]]*(log(1-Wi[[i]])-log(Wi[[i]])))-2*sum(log(1-

Wi[[i]]))+n*((2*L[[i]]/n)-((L[[i]]/n)^2)-1)*(log(1-Wd[i]))+((L[[i]])^2/n)*log(Wd[i])-

(n*Wd[i])# ad test.AD[i]=sum((EWf.2[[i]])*(log.1.Wi[[i]]-log.Wi[[i]]))-

(2*sum(log.1.Wi[[i]]))+n*((2*L[[i]]/n)-((L[[i]]/n)^2)-

1)*(log.1.Wd[i])+((L[[i]])^2/n)*(log.Wd[i])-(n* Wd[i])# ad 

} 

#Proposed Method 

(C.V1=quantile((test.d),.95,na.rm=TRUE))  

(C.V2=quantile((test.w),.95,na.rm=TRUE)) 

(C.V3=quantile((test.ad),.95,na.rm=TRUE)) 

#Classical Method 

(C.V4=quantile((test.D),.95,na.rm=TRUE))  
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(C.V5=quantile((test.W),.95,na.rm=TRUE)) 

(C.V6=quantile((test.AD),.95,na.rm=TRUE)) 

R.1=round(C.V1,5) 

R.2=round(C.V2,5) 

R.3=round(C.V3,5) 

R.4=round(C.V4,5) 

R.5=round(C.V5,5) 

R.6=round(C.V6,5) 

Result.CV=matrix(c(R.1,R.2,R.3,R.4,R.5,R.6), nrow = 3, ncol = 2) 

colnames(Result.CV) <- c("5% Crtical Proposed ","5% Crtical Classical ") 

rownames(Result.CV)<-c("CV1.KS","CV2.W","CV3.AD") 

#---------------------------- p-values ------------------------------ 

mu.=0;sigma.=1; 

a.=exp(mu.);B.=(1/sigma.)     

yj<-vector("double")     

dqq<-vector("double") 

y11<-list()               

y22<-list()   

T11<-list()               

Ind<-list()    #Indicator d         

Ind1<-list() 

a.hh<-c()  

B.hh<-c() 

mu.hh<-c()           

sigma.hh<-c()      
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# EDF- porposed 

Lq<-list()   #d         

EwF=list()  

EwF.1=list() 

EwF.2=list() 

EwF.3=list() 

CUM=list() 

CUM.C=c() 

wii=list()  # proposed method 

log.wii=list() 

wdd=list()#w(d+1-i) 

log.1.wdd=list() #log(1-w(d+1-i)) 

D.wp<-list() #Dn.plus 

D.wm<-list() #D.minus 

D11.Bind<-list() 

Max11<-list() 

# Proposed test 

Test.d<-c()  

Test.w<-c() 

Test.ad<-c() 

# EDF classical 

EWF=list() 

EWF.1=list() 

EWF.2=list() 

EWF.3=list() 
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EWF.4=list() 

EWF.5=list() 

# CDF for logistic distrbution  at y11 & C 

Wii=list() #CDF(y11) 

# CDF for logistic distrbution  at  C 

Wdd=c()#W(d+1)  

D11<-list() # Dn.plus 

D22<-list() # Dn.minus 

D11.bind<-list() 

Max.11<-list() 

# Classical Tests 

Test.D<-c()  

Test.W<-c() 

Test.AD<-c() 

# Second loop for p-values 

for (j in 1:N){ 

  qq=sort(runif(n,0,1)) 

  qj=(-sigma.*log((1/(qq))-1))+mu. 

  yj=pmin(qj,C)                    

  dqq=as.numeric(qj<=C)  

  y22[[j]]<-yj 

  y11[[j]]<-yj[yj<C]    

  Ind1[[j]]<-dqq 

  Ind[[j]]<-dqq[dqq==1]             

  Lq[[j]]<-length(y11[[j]])   # length of y11 data/d      
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  T11[[j]]<-exp(y22[[j]])          

  L2<-function(P){-(sum((Ind1[[j]])*log(P[2]/P[1]))+(P[2]-

1)*sum((Ind1[[j]])*log((T11[[j]])/P[1]))-

2*sum((Ind1[[j]])*log(1+((T11[[j]])/P[1])^P[2]))-sum((1-

(Ind1[[j]]))*log(1+((T11[[j]])/P[1])^P[2])))} 

  result2=nlm(L2,P<-c(a.,B.),hessian = T) 

  a.hh[j]=result2$estimate[1] 

  B.hh[j]=result2$estimate[2] 

  #MLEs for Logistic  

  mu.hh[j]=log(a.hh[j]) 

  sigma.hh[j]=(1/(B.hh[j])) 

  #Proposed method 

  CUM[[j]]=(1/(1+exp(-(y11[[j]]-mu.hh[j])/sigma.hh[j]))) 

  CUM.C[j]=(1/(1+exp(-(C-mu.hh[j])/sigma.hh[j]))) 

  wii[[j]]=(CUM[[j]]/CUM.C[j]) #Proposed method 

  wdd[[j]]= rev(wii[[j]]) #reverse order of wii 

  # EDf - proposed 

  EwF[[j]]=(1:Lq[[j]])/Lq[[j]]#(i/d) 

  EwF.1[[j]]=((1:Lq[[j]])-1)/Lq[[j]]#(j-1/d) 

  EwF.2[[j]]=(2*(1:Lq[[j]])-1)/(2*Lq[[j]])#(2*j-1/d)  

  EwF.3[[j]]=(2*(1:Lq[[j]])-1)/(Lq[[j]]) #(2*j-1/d)  

  D.wp[[j]]=(EwF[[j]]-wii[[j]]) 

  D.wm[[j]]=(wii[[j]]-EwF.1[[j]]) 

  D11.bind[[j]]=cbind(D.wp[[j]],D.wm[[j]]) 

  Max.11[[j]]=rowMaxs(D11.bind[[j]]) 
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  # Propsoed Tests 

  Test.d[j]=(max(Max.11[[j]])) 

  Test.w[j]=sum((wii[[j]]-EwF.2[[j]])^2)+(1/(12*Lq[[j]])) 

  Test.ad[j]=(-Lq[[j]])-sum((EwF.3[[j]])*(log(wii[[j]])+log(1-wdd[[j]])))    

  #Classical method 

  # CDF for logistic distrbution  at y11 & C 

  Wii[[j]]=((1/(1+exp(-(y11[[j]]-mu.hh[j])/sigma.hh[j]))))  

  Wdd[j]=(1/(1+exp(-(C-mu.hh[j])/sigma.hh[j]))) 

  # EDf classical 

  EWF[[j]]=(1:Lq[[j]])/(n) #(i/n) 

  EWF.1[[j]]=((1:Lq[[j]])-1)/(n) #(i-1/n) 

  EWF.2[[j]]=(2*(1:Lq[[j]])-1)/(n) #(2*i-1/n)  

  EWF.3[[j]]=((1:Lq[[j]])-0.5)/(n) #(i-0.5/n) 

  EWF.4[[j]]=((Lq[[j]])*(4*Lq[[j]]^2-1))/(12*(n^2)) 

  EWF.5[[j]]=(2*(1:Lq[[j]])-1)/(2*n) #(2*i-1/2n)  

  D11[[j]]=(EWF[[j]]-Wii[[j]]) 

  D22[[j]]=(Wii[[j]]-EWF.1[[j]]) 

  D11.Bind[[j]]=cbind(D11[[j]],D22[[j]]) 

  Max11[[j]]=rowMaxs(D11.Bind[[j]]) 

  #Classical 

  Test.D[j]=(max(D11.Bind[[j]])) 

  Test.W[j]=sum(Wii[[j]]-EWF.5[[j]])^2-EWF.4[[j]]+(n*Wdd[j])*((Lq[[j]]^2/n^2)-

(Wdd[j]*((Lq[[j]]/n)))+((1/3)*(Wdd[j])^2))# steveen w 

  Test.AD[j]=sum(EWF.2[[j]]*(log(1-Wii[[j]])-log(Wii[[j]])))-2*sum(log(1-

Wii[[j]]))+n*((2*Lq[[j]]/n)-((Lq[[j]]/n)^2)-1)*(log(1-
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Wdd[j]))+((Lq[[j]])^2/n)*log(Wdd[j])-(n*Wdd[j])  

} 

a=0;b=0;c=0;d=0;e=0;f=0; 

for(j in 1:N){ 

  # proposed 

  if(Test.d[j]>0.20775346) {a=a+1} 

  if(Test.w[j]>0.05822051){b=b+1} 

  if(Test.ad[j]>0.38320388) {c=c+1} 

  # classical 

  if( Test.D[j]>0.11804940) {d=d+1} 

  if( Test.W[j]>0.01044565){e=e+1} 

  if( Test.AD[j]>0.14294709) {f=f+1} 

}#Proposed 

a/N 

b/N 

c/N# classical 

d/N 

e/N 

f/N 

P_value=matrix(c(a/N,b/N,c/N,d/N,e/N,f/N), nrow = 3, ncol = 2) 

colnames(P_value) <- c(" P-values Proposed "," P-values Classical ") 

rownames(P_value)<-c("P-value.KS","P-value.W","P-value.AD") 

print(list("Crtical points"=Result.CV," % P-value "=P_value)) 

 


