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The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS)
cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO

2
into Tb and O

2
, whereas the 2nd step

corresponds to the production of H
2
through Tb oxidation by water splitting reaction. Equilibrium compositions associated with

the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in
the inert gas on thermal reduction of TbO

2
and effect of water splitting temperature (𝑇

𝐿
) on Gibbs free energy related to the H

2

production step were examined in detail. The cycle (𝜂cycle) and solar-to-fuel energy conversion (𝜂solar-to-fuel) efficiency of the Tb-WS
cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that 𝜂cycle and 𝜂solar-to-fuel
increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (𝑇

𝐻
). It was also

realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor
efficiency. At 𝑇

𝐻
= 2280K, by applying 60% heat recuperation, maximum 𝜂cycle of 39.0% and 𝜂solar-to-fuel of 47.1% for the Tb-WS

cycle can be attained.

1. Introduction

H
2
is considered as one of the most promising future energy

sources as it is characterized by a very high energy density
(143MJ/kg) and environmentally clean utilization. H

2
can

be produced by gasification and reforming of fossil fuels
[1–3], pyrolysis and reforming of biomass [4–7], ethanol
and methanol decomposition [8–11], and so forth. Literature
survey indicates that, in recent years, the researchers are
attractedmore towards production of H

2
fromwater by using

solar energy as the heat source.
Solar radiation is an essentially inexhaustible energy

source that delivers about 100,000 TW to the earth. Har-
vesting the solar radiation and converting it effectively into
renewable H

2
fuel from H

2
O provide a promising path for

a future sustainable energy economy. Solar H
2
production

via metal oxide (MO) based thermochemical H
2
O splitting

reaction is considered as one of the capable new technologies
for fulfillment of future energy requirement. In comparison
to the high temperature direct thermolysis of H

2
O, the MO

based thermochemical cycle is advantageous as (a) this cycle

needs lower temperatures as compared to thermolysis, (b)
it has no explosive mixture formation as the production of
H
2
and O

2
can be carried out in two different steps, and (c)

it is environmentally and thermodynamically more feasible
compared to thermolysis.

Production of solar H
2
via MO based thermochemical

reactions is a two-step process. In the first step, the MO is
reduced into a lower valence MO or metal with the help
of solar energy. The reduced MO is further reoxidized in
the second step via H

2
O splitting reaction. Several MO

based redox systems were theoretically and experimentally
studied towards thermochemical water splitting reaction
which includes ZnO/Zn cycle [12–15], Fe

3
O
4
/FeO cycle [16–

20], SnO
2
/SnO cycle [21–23], ferrite cycle [24–30], ceria cycle

[31–36], and perovskite cycle [37–41]. Previous investigations
indicate that these cycles are promising towards solar water
splitting reaction but possess certain imitations also. The
ZnO/Zn and SnO

2
/SnO cycles are volatile in nature and

hence material loss during multiple cycles is inevitable. On
the other hand, Fe

3
O
4
/FeO, ferrite, ceria, and perovskite

cycles depend upon the nonstoichiometry of the redox
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materials and hence the complete reduction and oxidation
were not observed which resulted in the fact that smaller
amounts of H

2
production were observed. Due to these

reasons, investigations are underway to explore new thermo-
chemical cycles for the production of H

2
via water splitting

reaction.
In this study, computational thermodynamicmodeling of

a new terbium oxide based two-step solar thermochemical
water splitting (Tb-WS) cycle was performed to determine
its thermodynamic efficiency by using HSC Chemistry soft-
ware and databases (HSC 7.1). Thermodynamic equilibrium
composition of the solar thermal reduction of terbium oxide
(step 1) and water splitting reaction (step 2) were determined.
Effect of oxygen partial pressure in the inert flushing gas
used inside the solar reactor during thermal reduction step
on thermodynamic efficiency of the process was explored in
detail. Furthermore, the effect of water splitting temperature
(𝑇
𝐿
) on Gibbs free energy associated with the oxidation of Tb

(via water splitting reaction) was also explored. In addition
to the thermodynamic equilibrium analysis, the solar reactor
thermodynamic modeling was also carried out. Absorption
efficiency of the solar reactor, solar energy input required to
run the Tb-WS cycle, heat losses due to radiation, rate of
heat rejected by the quench unit and water splitting reactor,
Tb-WS cycle efficiency, and solar-to-fuel energy conversion
efficiency were estimated. Typical redox reactions involved in
the Tb-WS cycle are presented in Figure 1.

The redox reactions involved in the Tb-WS cycle are as
follows:

TbO
2
󳨀→ Tb (g) +O

2
(g) (1)

Tb + 2H
2
O (g) 󳨀→ TbO

2
+ 2H
2
(g) (2)

Thermodynamic data associated with TbO
2
, Tb, O

2
, H
2
O,

and H
2
as the reactive species were taken from HSC and the

analysis was performed by assuming continuous operation
of the solar reactor with inlet molar flow rate of TbO

2
equal

to 1mol/sec. The boiling and fusion points for Tb are 1629
and 3396K, respectively. Similar to other lanthanides, Tb
possesses low toxicity. According to Patnaik [42], the crust
global abundance of Tb is estimated to be 1.2mg/kg.

2. Equilibrium Thermodynamic Analysis

Previous investigations associated with the production of
solar fuels via MO based thermochemical reactions indicate
that the heat energy that is thermal reduction temperature
(𝑇
𝐻
) required to achieve complete reduction of MOs can be

decreased if ultra-high purity inert flushing gas with lower
oxygen partial pressures in the range of 10−3 to 10−8 atm
is used during the reduction step inside the solar reactor
[43, 44]. The effect of oxygen partial pressure in the inert
flushing gas on thermal reduction of TbO

2
was examined

in this study and the results are reported in Figure 2. The
reported findings indicate that, similar to the previous MO
cycles, 𝑇

𝐻
required for the thermal reduction of TbO

2
can be

lowered due to the drop in the oxygen partial pressure in the
inert flushing gas. For example, at oxygen partial pressure of

High temperature 1st step

Low temperature 2nd step

Endothermic reduction

Tb
TbO2

Exothermic oxidation

2H2O
O

2H2

O2

TbO2 → Tb + O2

Tb + 2H2 → TbO2 + 2H2

Figure 1: Typical redox reactions involved in the Tb-WS cycle.
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Figure 2: Influence of oxygen partial pressure in the inert flushing
gas on 𝑇

𝐻
for Tb-WS cycle.

10−5 atm,𝑇
𝐻
required for the complete dissociation of TbO

2
is

equal to 2780K. 𝑇
𝐻
can be decreased by 80, 260, and 500K if

the oxygen partial pressure in the inert flushing gas is reduced
to 10−6, 10−7, and 10−8 atm, respectively.

In addition to 𝑇
𝐻
, the effect of oxygen partial pressure in

the inert flushing gas on equilibrium compositions associated
with the thermal reduction of TbO

2
was also investigated.

HSC simulations reported in Figure 3 indicate that the slope
of the decrease in the equilibrium concentration of TbO

2
and

increase in the equilibrium concentration of Tb(g) is shifted
significantly towards the lower 𝑇

𝐻
due to the decrease in the

oxygen partial pressure in the inert flushing gas.The possible
reason behind this shift is the reduction in the entropy of the
product gases due to the drop in the oxygen partial pressure
in the inert flushing gas used inside the solar reactor.

As per the HSC simulations, formation of Tb
2
O
3
is an

intermediate step in the thermal reduction of TbO
2
into

Tb(g) and O
2
(g). In addition, it was observed that the Tb

formation is achieved only after decomposition of Tb
2
O
3
.

Hence, as we are dealing with the final products, there is
no need to consider Tb

2
O
3
in the thermodynamic analysis.

Therefore, Tb
2
O
3
is not included in this study.
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Figure 3: Influence of oxygen partial pressure in the inert flushing
gas on equilibrium compositions associated with the thermal reduc-
tion of TbO

2
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Figure 4: Variation in Gibbs free energy as a function of 𝑇
𝐿
for Tb-

WS cycle.

Figure 4 shows the variation in the Gibbs free energy
related to the water splitting reaction as a function of 𝑇

𝐿
. The

Gibbs free energy change plot indicates that the hydrogen
production via water splitting reaction and oxidation of Tb is
feasible below 5400K (pressure = 1 atm). It was also observed
that Δ𝐺WS decreases by 434.5 kJ/mol due to the drop in 𝑇

𝐿

from 5400 to 300K.

3. Tb-WS Solar Reactor
Thermodynamic Modeling

Solar reactor operating the Tb-WS cycle was thermody-
namically modeled by using the principles of the second
law of thermodynamics. Figure 5 shows the process flow
configuration of the Tb-WS cycle which includes a solar
reactor, a quench unit, a water splitter, and an ideal H

2
/O
2

fuel cell. Like the previous studies, for the solar reactor
thermodynamic modeling, several assumptions were made
such as the following [20]:

THQsolar

Qquench

Solar

Quench

reactor

Fuel
cell

splitting
H2O

QH2O splitting

WFC-Ideal

FC-IdealQ

reradiationQ

(TL = 298K)

(TL = 298K)

(TL = 298K)

(TL = 298K)

(TL = 298K)

2H2O

(TH)
Tb(g) + O2(g)

Tb(s)

O2(g)

2H2(g)

TbO2(s)

Figure 5: Process flow diagram for H
2
production via Tb-WS cycle.

(a) The Tb-WS solar reactor considered as a perfectly
insulated blackbody absorberwith effective emissivity
and absorptivity equal to 1 and negligible conductive
convective heat losses.

(b) Atmospheric H
2
production and steady state con-

ditions with negligible viscous losses and kinet-
ics/potential energies.

(c) Complete conversion of all the reactions associated
with the Tb-WS cycle.

(d) Products separating naturally without laying out any
work.

(e) Omission of heat exchanger required for recovering
the sensible latent heat from the thermodynamic
modeling.

Previously reported methodology was employed to perform
the solar reactormodeling [20]. HSCChemistry software and
databases were used to get the thermodynamic properties of
the reactive species and the calculations are normalized to the
TbO
2
molar flow rate (1mol/sec) entering the solar reactor.

The solar reactor absorption efficiency (𝜂absorption), which
is defined as the net rate at which energy is being absorbed by
the solar reactor divided by the solar energy input through
the aperture, can be calculated as per

𝜂absorption = 1 − (
𝜎𝑇
4

𝐻

𝐼𝐶
) , (3)

where 𝐼 is direct-normal solar irradiance (normal bean inso-
lation) (W/m2),𝐶 is solar flux concentration ratio (ratio of the
solar flux intensity achieved after concentration to the normal
beam insolation, dimensionless number) (suns), 𝑇

𝐻
is solar

reactor temperature required for the thermal reduction of
TbO
2
(K), and 𝜎 is Stefan-Boltzmann constant which is equal

to 5.6705 × 10−8 (W/m2⋅K4).
Figure 6 indicates a significant improvement in 𝜂absorption

due to the reduction in 𝑇
𝐻
and oxygen partial pressure in the

inert flushing gas used inside the solar reactor decreases. At
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Figure 6: Effect of 𝑇
𝐻
on 𝜂absorption.

oxygen partial pressure in the inert flushing gas of 10−5 atm,
the required 𝑇

𝐻
is 2780K and corresponding 𝜂absorption is

66.1%. As the oxygen partial pressure in the inert flushing
gas is further lowered to 10−7 atm, 𝑇

𝐻
can be decreased

to 2520K and 𝜂absorption can be increased up to 77.1%. As
per the conditions employed in this study, the maximum
𝜂absorption that can be achieved is equal to 84.7% (oxygen
partial pressure in the inert flushing gas is 10−8 atm and 𝑇

𝐻

is 2280K).
In addition to the oxygen partial pressure in the inert

flushing gas and 𝑇
𝐻
, 𝐶 also has a significant impact on

𝜂absorption. At oxygen partial pressure of 10−8 atm and 𝑇
𝐻
of

2280K, the lower values of 𝐶 (2000 suns) yield 𝜂absorption
of 23.4%. As the value of 𝐶 increases up to 3000 to 5000
suns, 𝜂absorption can get enhanced up to 48.9% and 69.3%,
respectively.

The net energy required to operate the Tb-WS solar reac-
tor can be determined according to the following equations:

𝑄reactor-net = 𝑄TbO2-heating + 𝑄TbO2-reduction (4)

𝑄TbO2-heating = 𝑛̇Δ𝐻|TbO2@𝑇𝐿→TbO2@𝑇𝐻 (5)

𝑄TbO2-reduction = 𝑛̇Δ𝐻|TbO2@𝑇𝐻→Tb+O2(g)@𝑇𝐻 . (6)

The variation in 𝑄reactor-net with respect to the change in 𝑇
𝐻

is presented in Figure 7. Presented results indicate that the
required𝑄reactor-net decreases with the drop in𝑇𝐻 and oxygen
partial pressure in the inert flushing gas. As 𝑇

𝐻
is reduced

from 2780K (oxygen partial pressure in the inert flushing
gas of 10−5 atm) to 2280K (oxygen partial pressure in the
inert flushing gas of 10−8 atm),𝑄reactor-net is also lowered from
1543.0 kW to 1499.2 kW, respectively.

By using the calculated 𝜂absorption and 𝑄reactor-net, total
amount of solar energy required for the operation of the Tb-
WS cycle can be estimated as

𝑄solar =
𝑄reactor-net
𝜂absorption

. (7)

The decrease in 𝑄solar as a function of reduction in 𝑇
𝐻
and

oxygen partial pressure in the inert flushing gas is shown
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Figure 7: Effect of 𝑇
𝐻
on (a) 𝑄solar and (b) 𝑄reactor-net.

in Figure 7. 2333.2 kW of solar energy is required for the
operation of Tb-WS cycle when the oxygen partial pressure
in the inert flushing gas is equal to 10−5 atm (𝑇

𝐻
= 2780K).

𝑄solar is reduced to 1970.3 kW as the oxygen partial pressure
in the inert flushing gas is lowered to 10−7 atm (𝑇

𝐻
= 2520K).

As per the modeling conditions employed in this study, the
minimum 𝑄solar (1770.5 kW) is possible at oxygen partial
pressure in the inert flushing gas of 10−8 atm (𝑇

𝐻
= 2280K).

The reason behind this drop in 𝑄solar is the elevation in
𝜂absorption due to the fall in 𝑇

𝐻
from 2780 to 2280K as the

oxygen partial pressure in the inert flushing gas is reduced
from 10−5 to 10−8 atm.

Radiation heat losses from the Tb-WS solar reactor are
unavoidable as the operating temperatures are very high.
These losses can be calculated as

𝑄reradiation = 𝑄solar − 𝑄reactor-net. (8)

The radiation heat losses associated with the Tb-WS cycle are
presented in Figure 8(a).The plot shown indicates that, at 𝑇

𝐻

= 2780K, 790.2 kWof heat is lost from the solar reactor due to
the reradiation. However, the radiation losses are decreased
due to the lowering of 𝑇

𝐻
. For instance, at 𝑇

𝐻
= 2280K,

only 271.3 kW of reradiation losses is reported as per the
thermodynamic modeling. This is again due to the fact that
𝜂absorption of the Tb-WS solar reactor is higher at lower 𝑇

𝐻
.

Solar thermal reduction of TbO
2
yields Tb(g) and O

2
(g).

As the operating temperatures are very high, these com-
pounds will try to recombine and reform the TbO

2
. There-

fore, it is highly essential to quench these compounds from
𝑇
𝐻
to 𝑇
𝐿
to avoid any recombination. During quenching, it

is assumed that the chemical composition of the products
remains unaltered. Due to quenching Tb(g) is cooled down to
solid Tb and automatically gets separated from O

2
(g). Also,

during quenching, latent and sensible heat will be lost to the
surroundings from the quench unit which can be estimated
as

𝑄quench = −𝑛̇Δ𝐻|Tb(g)+O2(g)@𝑇𝐻→Tb(s)+O2(g)@𝑇𝐿 . (9)

The data reported in Figure 8(b) indicates that higher amount
of heat is lost due to quenching (571.4 kW)when𝑇

𝐻
is 2780K

(oxygen partial pressure in the inert flushing gas is 10−5 atm).
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Figure 8: Effect of 𝑇
𝐻
on (a) 𝑄reradiation and (b) 𝑄quench.

However, as 𝑇
𝐻
is decreased to 2280K due to the lowering of

oxygen partial pressure in the inert flushing gas (10−8 atm),
the heat lost is reduced by 43.8 kW.

Because of the irreversible chemical transformations and
reradiation losses, the irreversibilities generated in the solar
reactor and the quench unit can be determined as

Irrreactor = (
−𝑄solar
𝑇
𝐻

) + (
𝑄reradiation
298
)

+ 𝑛̇Δ𝑆|TbO2@𝑇𝐿→Tb(g)+O2(g)@𝑇𝐻

(10)

Irrquench = (
𝑄quench

298
)

+ 𝑛̇Δ𝑆|Tb(g)+O2(g)@𝑇𝐻→Tb(s)+O2(g)@𝑇𝐿 .

(11)

Table 1 lists the Irrreactor and Irrquench values as a function of
𝑇
𝐻
. From the reported numbers, it can be seen that, in case

of both the Tb-WS solar reactor and quench unit, Irrreactor and
Irrquench values are maximum at higher 𝑇

𝐻
and decrease with

the reduction in𝑇
𝐻
. For instance, Irrreactor and Irrquench can be

lowered by 73.8% and 7.8% due to the drop in 𝑇
𝐻
from 2780

to 2280K.
H
2
generation via water splitting reaction can be carried

out at 𝑇
𝐿
of 298K by transferring the Tb obtained after

the quench unit to the water splitting reactor. The water
splitting is an exothermic reaction and hence the rate of heat
rejected to the surroundings from the water splitting reactor
is estimated as being equal to 399.8 kW according to

𝑄Tb oxidation = −𝑛̇Δ𝐻|Tb+2H2O→TbO2+2H2(g)@𝑇𝐿 . (12)

Similarly, the irreversibility associatedwith thewater splitting
reaction is estimated (1.5 kW/K) by solving

IrrSm oxidation = (
𝑄Sm oxidation
298
)

+ 𝑛̇Δ𝑆|Tb+2H2O→TbO2+2H2(g)@𝑇𝐿 .

(13)
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.

To determine the maximum work that can be extracted
from the H

2
generated, an ideal H

2
/O
2
fuel cell with 100%

work efficiency is added to the Tb-WS cycle. According to (14)
and (15), it was observed that the theoretical work performed
and heat energy released by the ideal fuel cell are equal to
473.9 and 97.3 kW:

𝑊FC-Ideal = −𝑛̇Δ𝐺|2H2(g)+O2(g)→2H2O(l)@298K (14)

𝑄FC-Ideal = − (298) 𝑛̇Δ𝑆|2H2(g)+O2(g)→2H2O(l)@298K . (15)

The cycle (𝜂cycle) and solar-to-fuel conversion (𝜂solar-to-fuel)
efficiency of the Tb-WS cycle can be defined as

𝜂cycle =
𝑊FC-Ideal
𝑄solar

(16)

𝜂solar-to-fuel =
HHVH2
𝑄solar
. (17)

Variation in 𝜂cycle and 𝜂solar-to-fuel of the Tb-WS cycle as
a function of 𝑇

𝐻
is presented in Figure 9. The data reported
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Figure 10: Effect of % heat recuperation on 𝑄solar,with recuperation and 𝑄recuperable (𝑇𝐻 = 2280K).

Table 1: Irrreactor and Irrquench as a function of 𝑇
𝐻
for Tb-WS cycle.

𝑇
𝐻
(K) Irrreactor (kW/K) Irrquench (kW/K)

2780 2.3 1.6
2700 1.9 1.6
2520 1.2 1.5
2280 0.6 1.5

indicate 𝜂cycle of 20.3% and 𝜂solar-to-fuel of 24.5% at 𝑇
𝐻

of
2780K. However, at lower 𝑇

𝐻
(2280K), higher 𝜂cycle (26.8%)

and 𝜂solar-to-fuel (32.3%) can be achieved. 𝜂solar-to-fuel of the Tb-
WS cycle at𝑇

𝐻
of 2280K is comparable to the efficiency values

reported by previous investigators in case of ZnO/Zn cycle
(29%), SnO

2
/SnO cycle (29.8%), Fe

3
O
4
/FeO cycle (30%), and

ceria cycle (20.2%).
𝜂cycle and 𝜂solar-to-fuel of Tb-WS cycle can be increased

further by reutilizing the heat released by the water splitting
reactor and quench unit. The amount of heat that can be
recuperated is calculated as

𝑄recuperable = 𝑄quench + 𝑄Sm oxidation. (18)

As the heat released by the water splitting reactor and quench
unit is recycled to run the Tb-WS cycle, the amount of solar
energy required will be decreased as

𝑄solar,with recuperation

= 𝑄solar − [(% recuperation) 𝑄recuperable] .
(19)

In case of 𝑇
𝐻

of 2280K, Figure 10 shows that as the %
heat recuperation increases, 𝑄recuperable enhances whereas
𝑄solar,with recuperation diminishes. At 10% heat recuperation,
𝑄solar,with recuperation is equal to 1677.8 kW, which can be
decreased to 1306.8 kW due to the increase in the heat
recuperation up to 50%.

Table 2: 𝜂cycle and 𝜂solar-to-fuel of Tb-WS cycle.

𝑇
𝐻
(K) 𝜂cycle (%) 𝜂solar-to-fuel (%)

Recuperation = 0%
2780 20.3 24.5
2700 21.4 25.9
2520 24.0 29.0
2280 26.7 32.3

Recuperation = 20%
2780 22.1 26.7
2700 23.5 28.3
2520 26.6 32.1
2280 29.9 36.0

Recuperation = 40%
2780 24.3 29.4
2700 26.0 31.4
2520 29.7 35.9
2280 33.8 40.8

Recuperation = 60%
2780 27.0 32.6
2700 29.1 35.1
2520 33.8 40.8
2280 39.0 47.1

After applying the heat recuperation, 𝜂cycle and 𝜂solar-to-fuel
associated with the Tb-WS cycle can be calculated as

𝜂cycle =
𝑊FC-Ideal

𝑄solar,with recuperation
(20)

𝜂solar-to-fuel =
HHVH2

𝑄solar,with recuperation
. (21)

Table 2 reports 𝜂cycle and 𝜂solar-to-fuel of Tb-WS cycle for
different 𝑇

𝐻
and by applying 10 to 50% heat recuperation.

For the data listed, it can be seen that, due to the inclusion
of heat recuperation, both 𝜂cycle and 𝜂solar-to-fuel of Tb-WS
cycle are significantly improved. For instance, by applying
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20% heat recuperation at 𝑇
𝐻
of 2280K, 𝜂cycle and 𝜂solar-to-fuel

can be increased up to 23.5 and 28.4%. Likewise, at heat
recuperation of 60% and 𝑇

𝐻
of 2280K, 𝜂cycle and 𝜂solar-to-fuel

can get enhanced up to 39.0 and 47.1%.
According to the previous studies, the heat recuperation

is highly essential to achieve higher efficiency values in case
of metal oxide based solar thermochemical cycles [12, 14, 15,
17, 18, 43, 44]. In the past, attempts were made to achieve
the heat recuperation in a real-life solar reactor system. For
instance, Diver et al. [45] developed a heat recovery system
for iron oxide cycle by using a stack of counter-rotating rings
with the reactivematerial along the perimeter of each ring. In
this system, the reactive surfaces act as extended heat transfer
surfaces to achieve heat recuperation. Similarly, in case of Tb-
WS cycle, heat exchangers can be coupled with the quench
unit and water splitting reactor to recover the latent and
sensible heat rejected by these units. Suitable heat exchanger
fluid needs to be selected and the heat rejected by quench
unit (due to the cooling of the thermal reduction products)
and water splitting reactor (due to the exothermic splitting of
water) can be stored in this fluid.This fluid can be recirculated
throughout the process configuration shown in Figure 5 and
the captured heat can be reutilized to run the Tb-WS cycle.

The solar reactor thermodynamicmodeling performed in
this paper is also verified by performing an energy balance
and by evaluating the maximum achievable efficiency from
the total available work and from the total solar power input.
The energy balance performed in case of Tb-WS cycle (for all
𝑇
𝐻
) confirms that

𝑊FC-Ideal = 𝑄solar

− (𝑄reradiation + 𝑄quench + 𝑄Sm oxidation + 𝑄FC-Ideal) .
(22)

As an example, at 𝑇
𝐻
of 2280K, (22) indicates 𝑊FC-Ideal of

473.9 kW which is equal to 𝑊FC-Ideal determined by (14).
Furthermore, themaximum cycle efficiency is also calculated
according to

𝜂cycle,maximum

=

𝑊FC-Ideal + 𝑇𝐿 (Irrreactor + Irrquench + IrrSm oxidation)

𝑄solar
.

(23)

For all 𝑇
𝐻
, it was observed that 𝜂cycle,maximum is equal to

the Carnot heat engine operating between hot and cold
temperature reservoirs:

𝜂cycle,maximum = 1 −
𝑇
𝐿

𝑇
𝐻

= 𝜂carnot. (24)

For instance, at 𝑇
𝐻
of 2280K and 𝑇

𝐿
of 298K, 𝜂cycle,maximum is

86.9% which is equal to 𝜂carnot = 86.9%.

4. Summary and Conclusions

Solar reactor efficiency analysis of the Tb-WS cycle for the
production of H

2
via water splitting reaction was conducted

by using HSC Chemistry software and databases. Simula-
tion results indicate that the heat energy required for the

complete reduction of TbO
2
into Tb and O

2
can be reduced

significantly from 2780 to 2280K by decreasing the oxygen
partial pressure in the inert flushing gas from 10−5 to 10−8 atm.
According to the simulations, the water splitting reaction via
Tb oxidation is feasible below 5400K.

Exergy analysis shows that 𝜂absorption of the Tb-WS solar
reactor can be increased by a factor of 1.28 due to the decrease
in𝑇
𝐻
from2780 to 2280K. It was also observed that𝑄reactor-net

and 𝑄solar can be reduced by 43.8 and 562.7 kW with the
lowering of 𝑇

𝐻
from 2780 to 2280K. Similarly, due to the

similar fall in 𝑇
𝐻
, the quenching and reradiation heat losses

can be dropped by 7.7 and 65.7%, respectively. The reason for
the lower amounts of solar energy requirement and reduction
in the heat loss via quenching and reradiation is due to the
fact that 𝜂absorptionof the Tb-WS solar reactor improves with
the decrease in 𝑇

𝐻
. 𝜂cycle of 23.5% and 𝜂solar-to-fuel of 28.4% of

Tb-WS cycle at 𝑇
𝐻
of 2280K are observed to be comparable

to the previously investigated MO cycles. Furthermore, 𝜂cycle
and 𝜂solar-to-fuel can be further increased up to 39.0% and 47.1%
by recuperating 60% of the heat rejected by the quench unit
and water splitting reactor.

Nomenclature

𝐶: Solar flux concentration ratio, suns
HHV: Higher heating value
𝐼: Normal beam solar insolation, W/m2
MO: Metal oxide
𝑛̇: Molar flow rate, mol/sec
𝑄quench: Heat rejected to the surrounding

from quench unit, kW
𝑄FC-Ideal: Heat rejected to the surrounding

from ideal fuel cell, kW
𝑄Tb oxidation: Heat rejected to the surrounding

from water splitting reactor, kW
𝑄TbO2-heating: Energy required for heating of TbO

2
,

kW
𝑄TbO2-reduction: Energy required for the thermal

reduction of TbO
2
, kW

𝑄reactor-net: Net energy input required for the
operation of Tb-WS cycle, kW

𝑄reradiation: Radiation heat loss from the solar
reactor, kW

𝑄recuperable: Total amount of heat that can be
recuperated, kW

𝑄solar: Solar energy input, kW
𝑄solar,with recuperation: Solar power input after heat

recuperation, kW
𝑇
𝐻
: Thermal reduction temperature, K
𝑇
𝐿
: Water splitting temperature, K
𝑊FC-Ideal: Work output of an ideal fuel cell, kW
𝜂absorption: Solar absorption efficiency
𝜂cycle: Cycle efficiency
𝜂solar-to-fuel: Solar-to-fuel energy conversion

efficiency
Δ𝐺WS: Gibbs free energy change for water

splitting reaction, kJ/mol
Δ𝐻WS: Enthalpy change for water splitting

reaction, kJ/mol
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Δ𝑆WS: Entropy change for water splitting
reaction, J/mol⋅K

𝜎: Stefan-Boltzmann constant,
5.670 × 10

−8 (W/m2⋅K4)
Irrreactor: Rate of entropy produced across solar

reactor, kW/K
Irrquench: Rate of entropy produced across

quench unit, kW/K
IrrSm oxidation: Rate of entropy produced across

water splitting reactor, kW/K.
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