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a b s t r a c t 

We extend the classical economic order quantity model to address the joint replenishment 

of multiple products under substitution. The proposed model optimizes ordering quantities 

for each product under substitution effects with the objective of minimizing the total cost 

associated with the setup, holding, and shortage of products, while partially meeting de- 

mand. First, the special case of three substitutable products is examined in detail. Then, 

a nonlinear mathematical programming formulation is presented as a general-purpose so- 

lution approach for any number of substitutable products. The convexity of the model is 

discussed. We find that the objective function to be convex in the important special case 

of products having equal unit holding costs, which typically holds for substitutable prod- 

ucts in practice. Sensitivity analysis is conducted in order to determine the impact of cost 

parameters variations on the ordering policy. We focus on identifying conditions that fa- 

vor substitution among products. We find that allowing substitution among products is an 

effective vehicle for cost cutting in supply chain settings involving high fixed costs, low 

holding costs, and low shortage costs. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

Joint replenishment of products is a common approach in supply chain management, which is sought to reduce fixed

costs, e.g., by shipping several products on one truck. Joint replenishment may be also needed for practical logistical pur-

poses. For example, many retailers prefer to receive certain types of goods (e.g., groceries) at a specific time of the day or

the week. The popularity of joint replenishment practices is reflected by a wide academic research on the topic as indicated
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in the review paper of Khouja and Goyal [1] . Examples of recent works on joint replenishment include Hong and Kim [2] ,

Porras and Dekker [3] , Schulz and Telha [4] , Silva and Gao [5] Zhang et al. [6] , and Zhou et al. [7] . 

Demand substitutability commonly occurs for products that are similar in nature (e.g., different brands of coffee or soda)

and may be jointly ordered/shipped. Under such settings, customers of one product can switch to another similar product

due to price or availability. Analyzing the effect of demand substitution on the inventory management of several related

products is also an important problem that has received wide attention in the literature. Detailed accounts of the demand

substitution literature can be found in the review papers by Kök et al. [8] , Mahajan and van Ryzin [9] , and Maddah et al.

[10] . Recent literature has focused on stochastic demand substitution driven by consumer choice models adapted from the

economics and marketing literature (e.g., van Ryzin and Mahajan [11] , Mahajan and van Ryzin [12] , Smith and Agrawal [13] ,

Cachon and Kök [14] , Gaur and Honhon [15] , Gurler and Yilmaz [16] , Maddah and Bish [17] , and Maddah et al. [10] ). 

Despite the relevance of the joint replenishment practice to substitutable products, the academic literature has devoted

little attention to studying the joint replenishment of substitutable products. Notable exceptions include the studies by

Drezner et al. [18] , Gurnani and Drezner [19] , and the recent work by Salameh et al. [20] . Drezner et al. [18] study the joint

replenishment of two substitutable products having deterministic demand in an economic order quantity setting, assuming

a one-to-one substitution, where the demand of a product is fully substituted by another product in the event of a stock-

out of the first product. This type of substitution is possible in manufacturing settings. Gurnani and Drezner [19] extend the

work of Drezner et al. [18] to analyze joint replenishment of multiple, two or more, products. Gurnani and Drezner [19] also

assumed a one-to-one substitution and consider a type of one-way substitution where customers could “upgrade” to a set

of higher quality products in the event that their most preferred product is stocked out. 

Recently, Salameh et al. [20] consider a two-product joint replenishment model with substitution in an EOQ framework

similar to Drezner et al. [18] . However, they allowed for partial substitution, meaning that in the event of a product stock-

out, a fraction of its customers will substitute to the other product, while the remainder customers will chose not to buy,

leading to loss sales, which incurs a penalty. Salameh et al. [20] also allowed for a two-way substitution. They suggest

adopting the substitution direction which has the lowest cost, by solving two related problems with (i) the second product

substituting the first, and (ii) vice versa. Krommyda et al. [21] consider a problem similar to Salameh et al. [20] of two

products under two-way, stock-out, and partial substitution within the EOQ framework; but further assume that the demand

of a product is stimulated by the inventory levels of both products, in an interesting extension of the single-product literature

with stock-dependent demand. 

In this paper, we consider the joint replenishment of multiple, three or more, substitutable products, in an EOQ frame-

work, under a versatile substitution model where every product in-stock can partially substitute a stocked-out product. In

addition, a fraction of customers may elect not to substitute their most preferred product, and a lost sales penalty is charged.

We first develop our substitution model and cast it into a nonlinear programming model, and then draw useful managerial

insights. Our work can be seen as an extension of the two-product work of Salameh et al. [20] to the more challenging case

of three or more products. We differ from the work of Gurnani and Drezner [19] in that we consider partial two-way sub-

stitutions, while they consider one-to-one, one-way substitution. Moreover, our mathematical model is more general than

that of Gurnani and Drezner [19] , which can be seen as a special case of our model. More notably, our work is applicable to

retailing, while that of Gurnani and Drezner [19] is more adequate for manufacturing contexts. 

At this point, it is worth clarifying what is exactly meant by “substitutable products” in this paper. For our purpose

in this paper, the substitutable products we consider belong to a set of products that serves the same basic need for the

consumer (e.g., drinking coffee, brushing teeth, or washing clothes .) but differ in some secondary aspect such as color, flavor,

or smell . This is, for example, the case of several fast-moving consumer goods (FMCG) categories that are offered by super

markets, e.g., coffee, toothpaste, and washing detergent . The economics literature refers to this type of substitutable products

as “horizontally differentiated”, and generally considers such products to have equal or approximately equal unit costs and

different demand rates (e.g., Anderson et al. [22] ). 

Finally, it is worth commenting on the EOQ setting utilized in this paper. The EOQ model is among the most popular

inventory systems, especially in academic studies (see, for example, Silver et al. [23] and Zipkin [24] for overviews). While

some authors defend the applicability of the EOQ model in practice (e.g., Osteryoung et al. [25] and Silver [26] ), many crit-

icize its applicability, mainly due to the difficulty is estimating its related costs (e.g., Jones [27] , Selen and Wood [28] , and

Sprague and Sardy [29] ). Jaber et al. [30] attempt to rectify the limitations of the EOQ model by appealing to thermodynam-

ics principles with an “entropy cost” capturing hidden costs. Subsequently, several extensions of the base model in Jaber

et al. [30] took place to account for different complicating factors such as delays in payments, deterioration effects, and

supply chain effects, among other things, as nicely summarized in Jaber [31] . It is worth noting than none of the works

surveyed in Jaber [31] considers product substitution effects such as the ones mentioned in this paper, which could be an

interesting area for future work, especially that it might be difficult to estimate the substitution rates and the stock-out

costs of our model in some settings. 

The remainder of this paper is organized as follows. Section 2 provides a formal problem statement and our model for

the case of three substitutable products. Section 3 extends the model to n ≥ 4 products, presents the solution methodology

in order to get the optimal ordering quantities, and establishes convexity properties of the cost function. In Section 4 , a

numerical study is presented which leads to several managerial insights. Finally, in Section 5 , we conclude the paper with a

summary of our findings and directions for future research. 
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2. Model formulation for the three-product case 

The focus of this section is on formulating our joint replenishment model with substitution for the three-product case.

We consider three products only in order to simplify the presentation and facilitate the understanding of the general model

presented in the next section. The main objective of this model is to specify how large the order quantities of the three

products should be in order to minimize the total system cost. The three products are ordered jointly (at the same time)

over repetitive cycles in an EOQ-type setting. In order to further reduce the cost, we allow for stock-outs and substitu-

tion among products. That is, during an ordering cycle, a product may run out of stock and part of its demand from

that point onward , is substituted to other products, which are still in stock, while the remaining demand is lost. The or-

dering quantities of the products dictate the stock-out pattern in the inventory cycle, which ends when the last prod-

uct, among the three, runs out of stock. We next present the notation, assumption, and mathematical formulation of this

model. 

Consider an inventory system with a set j ∈ N = { 1 , 2 , 3 } of substitutable products having ordering quantities y j and

deterministic demand rates D j per unit time. As aforementioned, at the beginning of an ordering cycle the three products

are ordered simultaneously up to y 1 , y 2 , and y 3 . Then, when product j , denoted by P j , is totally consumed, a proportion

of its customers will substitute to P k , k � = j . Let γ jk be the percentage of the demand of P j that will be substituted by P k 
after the stock-out of P j , when the third product in the assortment is still in stock. For example, the parameter γ 12 is the

substitution rate between P 1 and P 2 , when P 1 runs out and P 2 and P 3 are both in stock. Similarly, γ 13 is the substitution rate

between P 1 and P 3 , in this same situation. Therefore, when P 1 is out of stock, the demands for P 2 and P 3 are respectively

D 12 = D 2 + γ12 D 1 and D 13 = D 3 + γ13 D 1 . We adopt a numbering of the products such that P 1 runs out of stock first, followed

by P 2 , then P 3 . The notation D jk , j < k denotes the demand for P k when P 1 , . . . , P j are out of stock. This notation is useful

when we describe the general multi-product model in the next section. 

When two products are out of stock, the substitution rate between a product P j , which is stocked out, and a product P k ,

which is still in stock, exceeds γ jk . Specifically, we assume that “second-choice” substitution is also done according to γ jk .

That is, when some custome rs fail to find their most preferred product, P j in stock, a γ jk fraction of them will switch to

looking for their second most preferred product, P k . Then, if P k is also out of stock, a fraction γ kl , of the secondary demand

for P k being diverted to P j , will switch to the least-preferred product P l , with the remaining P j demand being lost. For

example, when P 1 and P 2 are both out of stock, the total demand for P 3 is composed of its own demand D 3 , the first-order

substitution demands, γ 13 D 1 and γ 23 D 2 , and the second-order substitution demands γ 12 γ 23 D 1 and γ 21 γ 13 D 2 . Therefore,

the total demand for P 3 when P 1 and P 2 are both out of stock is D 23 = D 3 + (γ13 + γ12 γ23 ) D 1 + (γ23 + γ21 γ13 ) D 2 . We point

out, finally, that our demand model capturing second-choice demand is consisting with the literature on multi-product

substitution (e.g., Smith and Agrawal [13] and the references, therein). 

Our cost model follows that of the classical EOQ model with a unit holding cost of h j ($/unit/unit time), a fixed ordering

cost of K j ($/order), and a lost sales cost π j ($/unit) for P j , j ∈ N . 

Next, we derive the inventory cost per unit time, which is the sum of the ordering, holding and lost sales costs of all

three products. Fig. 1 shows the behavior of the inventory level over one ordering cycle. This figure follows our conven-

tion that the order of product stock-outs is P 1 , then P 2 , then P 3 . The following auxiliary decisions variables are defined in

Fig. 1 . 

1. The time until P 1 is stocked-out is T̄ 0 = t 1 = y 1 /D 1 . 

2. The inventory level of P 2 and P 3 , when P 1 runs out of stock are respectively w 12 = y 2 − D 2 t 1 and w 13 = y 3 − D 3 t 1 . 

3. The time between the stock-outs of P 1 and P 2 is T̄ 1 = w 12 /D 12 , where D 12 = D 2 + γ12 D 1 , as discussed above. (Equivalently,

and to better relate to the notation, this is the duration of time when only P 1 is stocked-out.) 

4. The inventory level of P 3 when P 2 runs out of stock is w 23 = w 13 − T̄ 1 D 13 . 

5. The time between the stock-outs of P 2 and P 3 is T̄ 2 = w 23 /D 23 , where D 23 = D 3 + (γ13 + γ12 γ23 ) D 1 + (γ23 + γ21 γ13 ) D 2 , as

defined above. (Equivalently, this is the duration of time when both P 1 and P 2 are stocked-out.) 

We denote by T C 1 u (y 1 , y 2 , y 3 ) as the total cost per unit time for products P 1 , P 2 and P 3 under the scenario that the

order of product stock-out is P 1 , then P 2 , then P 3 . We name this pattern of stock-outs as Scenario 1. We elaborate on other

stock-out scenarios below. We next develop the cost per ordering cycle for each product and the ordering cycle duration. 

The total cost of P 1 , under Scenario 1 of stock-outs, is composed of the fixed ordering, holding and shortage cost of P 1 
over one cycle. Therefore, its total cost per cycle is 

T C 1 1 (y 1 , y 2 , y 3 ) = K 1 + 

h 1 t 1 y 1 
2 

+ π1 D 1 T̄ 1 [ 1 − γ12 − γ13 ] + π1 D 1 T̄ 2 [ 1 − γ12 γ23 − γ13 ] . (1) 

The last two terms in (1) are the shortage cost of P 1 over T̄ 1 , when only P 1 is stocked-out, and over T̄ 2 when both P 1 and

P are stocked-out. 
2 
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Fig. 1. JRMS model under Scenario 1: P 1 runs out of stock, then P 2 then P 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, the total cost per cycle of P 2 under Scenario 1 of stock-out is 

T C 1 2 (y 1 , y 2 , y 3 ) = K 2 + h 2 

[
t 1 (y 2 + w 12 ) 

2 

+ 

(w 12 T̄ 1 ) 

2 

]
+ π2 D 2 T̄ 2 [ 1 − γ21 γ13 − γ23 ] , (2)

and that P 3 is 

T C 1 3 (y 1 , y 2 , y 3 ) = K 3 + h 3 

[
t 1 (y 3 + w 13 ) 

2 

+ 

(w 13 + w 23 ) ̄T 1 ) 

2 

+ 

w 23 T̄ 2 
2 

]
. (3)

Next, we find the ordering cycle duration, denoted by T . This can be found as follows: 

T = t 1 + T̄ 1 + T̄ 2 . (4)

Then, the total cost per unit time, under Scenario 1 of stock-outs, is found based on (1) –(4) as 

T C 1 u (y 1 , y 2 , y 3 ) = 

∑ 3 
j=1 T C 

1 
j 
(y 1 , y 2 , y 3 ) 

T 
. (5)

The optimal order quantities, y 1 ∗
1 

, y 1 ∗
2 

, and y 1 ∗
3 

, under Scenario 1 of stock-outs, can then be found by minimizing

T C 1 u (y 1 , y 2 , y 3 ) in (5) . We discuss the convexity of this cost function in the next section in a more general setting. Our

numerical experimentation indicates, however, that the optimal order quantities can be found easily with any nonlinear

solver. 

Finally, in this section, we discuss the issue of finding the optimal ordering policy under all possible stock-out scenarios.

Recall that in our analysis, thus far, we have assumed that the sequence of product stock-out is P 1 , then P 2 , then P 3 . In

reality, this scenario of stock-outs may not be the optimal one, depending on the values of demand and cost parameters

of each product. In order to find the optimal stock-out scenario, and corresponding optimal order quantities, one needs to

evaluate the following six stock-out scenarios. These scenario can be analyzed similar to Scenario 1 with an appropriate

renumbering of products. 

Scenario 1. Stock-out sequence: 1, 2, then 3. 

Scenario 2. Stock-out sequence: 1, 3, then 2. 

Scenario 3. Stock-out sequence: 2, 1, then 3. 

Scenario 4. Stock-out sequence: 2, 3, then 1. 

Scenario 5. Stock-out sequence: 3, 1, then 2. 

Scenario 6. Stock-out sequence: 3, 2, then 1. 

Once these scenarios have been analyzed, as described above, the order quantities from each scenario, y 
J∗
1 

, y 
J∗
2 

, and y 
J∗
3 

,

and corresponding optimal cost per unit time, T C 
J∗
u = T C 

J 
u (y 

J∗
1 

, y 
J∗
2 

, y 
J∗
3 
) , J = 1 , 2 , . . . , 6 , can be found. Then, the optimal sce-

nario can be identified as the one having the least cost, T C 
J∗
u , and the corresponding optimal order quantities are determined

based on the optimal scenario. 
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While enumerating six scenarios with three products may be seen as a manageable task, the number of scenarios, unfor-

tunately, increases substantially with more products. In general, the number of scenarios to be considered is n !, which may

be hard to work with. In the case of a large number of products, n , which is discussed in the next section, we recommend,

utilizing simple heuristics to identify promising scenarios. For example, a heuristic that seems to be promising is to order

the products based on a stock-out desirability factor (SDF) equal to the ratio of the unit shortage cost to the unit holding

cost. For Product j , this factor is SDF j = h j /π j . This heuristic is sought to allow products having a low shortage cost and a

high holding cost to run out of stock first. 

3. General formulation and convexity for the joint replenishment model with substitution 

In this section, utilizing similar notation and assumptions to Section 2 , we extend our model to more than three products,

N ≥ 4, and present some further convexity analysis. In Section 3.1 , we present our general model as a nonlinear program,

specifically, a quadratic program. Then, in Section 3.2 we discuss the convexity of the model, establishing convexity in an

important special case. 

3.1. General model formulation 

Consider a set N = { 1 , . . . , n } of substitutable products, which are ordered jointly, at the beginning of an ordering cycle,

and then run out of stock sequentially, similar to the three-product case described on Section 2 . In the following, we present

the necessary formulation for finding the optimal order quantities, assuming a stock-out scenario where P 1 runs out of stock,

then P 2 , . . . , then P n . The notation we utilize in this section is essentially the same as that in Section 2 . We summarize our

notation below for completeness. 

Model parameters 

• K j : Fixed setup cost per order of Product j ∈ N . 
• h j : Holding cost per unit per unit time of Product j ∈ N . 
• π j : Shortage cost per unit of Product j ∈ N . 
• D k : Demand rate for Product k ∈ N when all other products in N are in-stock. 
• D jk : Demand rate for Product k ∈ N , when all products in Set { 1 , 2 , . . . , j} ⊂ N, j < k , are out of stock. 
• γ jk : Percentage of demand substitution from Product j ∈ N to Product k ∈ N , after the stock-out of Product j , when the

all other products in N are still in stock. 

Main and auxiliary decision variables 

• y j : Order quantity of Product j ∈ n . These are our main decision variables. 

• T̄ j : Time when products { 1 , 2 , . . . , j} ⊂ N are out of stock and substitution to the remaining stocked product occurs. That

is, T̄ j is the time between the stock-out of Product j and Product j + 1 . By definition, let T̄ 0 = y 1 /D 1 . 
• w jk : Inventory level of a Product k when products in Set { 1 , 2 , . . . , j} ⊂ N, j < k , are out of stock. By definition, let

w 0 k = y k . 
• H j : Holding cost of Product j ∈ N per ordering cycle. 
• S j : Shortage cost of Product j ∈ N per ordering cycle. 
• T : Ordering cycle duration 

Then, assuming a stock-out scenario where P 1 runs out of stock, then P 2 , . . . , then P n , the optimal order quantities and

corresponding cost per unit time can be found by solving the following nonlinear program. 

(JRMS) : Minimize min 

y 1 ,y 2 , ... ,y n 
T C u = 

∑ n 
j=1 K j + 

∑ n 
j=1 

(
H j + S j 

)
T 

, (6) 

Subject to 

T 0 = 

y 1 
D 1 

, 
(7) 

T̄ j = 

w j, j+1 

D j, j+1 

, j = 1 , . . . , n − 1 (8) 

T = 

n −1 ∑ 

j=0 

T̄ j , (9) 

w 0 k = y k , k = 1 , 2 , . . . , n (10) 

w = 0 , k = 1 , 2 , . . . , n (11) 
kk 
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w jk = w j−1 ,k − T̄ j−1 D j−1 ,k , k = 2 , . . . , n, j = 1 , . . . , k − 1 (12)

D 0 k = D k , k = 1 , 2 , . . . , n (13)

D jk = D j−1 ,k + 

( 

γ jk + 

j−1 ∑ 

l=1 

γl j γ jk 

) 

D j , k = 2 , . . . , n, j = 1 , . . . , k − 1 (14)

H j = h j 

j−1 ∑ 

l=0 

T̄ l 

(
w l j + w l+1 , j 

)
2 

, j = 1 , 2 , . . . , n (15)

S j = π j D j 

n −1 ∑ 

k = j 
T̄ k 

( 

1 −
n ∑ 

l= k +1 

γ jl −
k ∑ 

l 1 =1 ,l 1 � = j 

n ∑ 

l 2 = k +1 

γ jl 1 γl 1 l 2 

) 

, j = 1 , 2 , . . . , n − 1 (16)

The objective function (6) minimizes the total cost composed of ordering, holding and shortage costs of all products

in N . Constraint (7) gives the time until P 1 runs out of stock function of the order quantity and demand rate for this

product. Constraint (8) gives the time between the consecutive product stock-outs as function of the inventory levels and

demand. Specifically, the variable w j, j+1 denotes the inventory level of Product j + 1 when P j runs out of stock, and D j, j+1

is the demand rate of P j+1 when products in the set { 1 , 2 , . . . , j} are out of stock. As such, the time T̄ j defines the duration

between the stock-out of P j and P j+1 . Constraint (9) gives the order cycle duration as the sum of the incremental stock-out

times, T̄ j . Constraint (10) initializes the initial inventory level of each product in a cycle to its ordering quantity. Constraint

(11) sets the final inventory level of each product, in an ordering cycle, to zero. Constraint (12) gives the inventory levels of a

product, e.g., P k , at the all products that stock-out before it, e.g., P 1 , P 2 , . . . P k −1 . Constraint (13) initializes the demand rate of

each product. Constraint (14) updates the demand rate of each product by incrementally adding the first- and second-choice

substitution demand, similar to what we discuss in detail in Section 2 , for the case of three products. Constraint (15) gives

the holding costs per ordering cycle for P j . It is based on aggregating the total inventory over incremental stock-out periods,

T̄ j . Finally, constraint (16) gives the shortage cost per ordering cycle for P j , by aggregating the total number of P j stock-outs

over the incremental stock-out times, T̄ j , T̄ j+1 , . . . T̄ n . 

3.2. Convexity 

In the mathematical program (JRMS) of Section 3.1 , it can be easily seen that the constraints are linear in the order quan-

tities, y , y 2 , . . . , y n . In the objective function, the cost per cycle (in the numerator), 
∑ n 

j=1 (K j ) + 

∑ n 
j=1 (H j + S j ) is a quadratic

function since it can be easily seen that the holding cost, 
∑ n 

j=1 H j , is quadratic while the shortage cost, 
∑ n 

j=1 S j , is linear.

The order cycle duration, T , is also linear. Following, a result in Avriel [32] , it follows that the objective function is pseudo-

convex if the holding cost is convex. It has been generally difficult to establish the convexity of the holding cost. However,

in the following lemma, we show that in the special case where all the unit holding costs are equal, it can be shown that

the holding cost is indeed convex. 

Lemma 1. If h i = h j = h, for i = 1 , . . . , n, and j = 1 , . . . , n, then the objective function of the JRMS problem is pseudoconvex. 

Proof. See Appendix. �

The special case in Lemma 1 is important, as in practice the unit costs of substitutable products are generally close, which

leads to approximately equal holding cost. This implies that in most practical settings, the objective function of the JRMS

problem is pseudoconvex, which together with the linear constraints makes solving JRMS quite easy with many available

commercial solvers. 

4. Numerical examples and managerial insights 

In this section, we present numerical examples which illustrate the application of the proposed model where we

derive the optimal ordering quantities. We then perform sensitivity analysis and develop useful managerial insights.

Section 4.1 presents our base example, and Section 4.2 presents extensive sensitivity analysis on this example. 
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Table 1 

Initial data. 

Parameters P 1 P 2 P 3 

Consumption rate ( D j ) 25 35 40 

Holding cost ( h j ) 5 5 5 

Fixed setup cost ( K j ) 350 400 250 

Shortage cost ( π j ) 4 5 3 

Table 2 

Percentage of substitution. 

γ jk P 1 P 2 P 3 

P 1 ∗ 0.13 0.17 

P 2 0.16 ∗ 0.14 

P 3 0.10 0.20 ∗

Table 3 

Results for all six scenarios of the base example. 

Scenario y 1 y 2 y 3 TCU j 

1 20 35 125 899 .56 

2 17 125 28 846 .98 

3 23 32 125 899 .93 

4 106 28 32 821 .74 

5 20 125 24 846 .57 

6 105 35 24 820 .41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Base example 

Consider a situation with three products whose demand rate, holding cost, setup cost, percentage of substitution, and

shortage cost are known, as shown in Table 1 . 

The percentage of substitution γ jk are given in Table 2 . 

First, we solve the corresponding optimization problems for the six possible stock-out sequence scenarios discussed in

Section 2 using AMPL/KNITRO. Table 3 presents the results of optimizing all scenarios. Comparing all scenarios, Scenario

6, involving P 3 running out of stock first, then P 2 , then P 1 , gives the minimum total cost per unit time. Thus, the optimal

ordering quantities are those of Scenario 6, i.e., y ∗
1 

= 24 units, y ∗
2 

= 35 units, y ∗
3 

= 105 , and the optimal cost is $820.41/unit

time. 

As a side note, and as a follow-up on the idea of utilizing a simple heuristic to select good scenarios, instead of enu-

merating all possible scenarios, consider the heuristic based on the stock-out desirability briefly discussed in Section 2 . This

heuristic directly yields Scenario 5 for this example (as SDF 1 = 5 / 4 , SDF 2 = 1 , SDF 3 = 5 / 3 , and SDF 3 > SDF 1 > SDF 2 ), with a

cost of $846.57/unit time having an optimality gap of 3.2%. 

In order to assess the benefit of allowing substitution in this example, we compare our results with those of the classical

joint replenishment model, involving no substitution. In this model, all products in N are ordered at the beginning of the

ordering cycle, and they all run out of stock simultaneously at the end of the ordering cycle. This model has a simple closed-

form solution, which is described in the Appendix, for completeness. The optimal order quantities of the joint replenishment

model with no substitution is y 1 = 50 , y 2 = 70 , and y 3 = 80 with a total cost of $10 0 0. Therefore, allowing substitution in

this example reduces the total cost from $10 0 0 to $820.41/unit time, which represents a relative “improvement” of (10 0 0 −
−820 . 41) / 820 . 41 = 21 . 89% . Note that we measure the improvement from substitution in terms of the relative increase in

cost if substitution is not allowed. This improvement measure is the main focus of the sensitivity analysis in Section 4.2 . 

4.2. Sensitivity analysis and managerial insights 

In this section, we evaluate the impact of changing parameter values on optimal solutions of the JRMS model. Specifically,

we start with the base example of Section 4.1 and perform a one-way sensitivity analysis on all the cost parameters. For

each instance of the parameters, we find an optimal solution for all possible six substitution scenarios, and select the one

that has the lowest cost, similar to our analysis in Section 4.1 . However, in this section we only report on the results of the

optimal scenario for each instance. For comparison purpose, we also report results on the classic joint replenishment model

without substitution (henceforth JRM). Details of the JRM are presented in the Appendix. 

The results in Tables 4 reports on the optimal solution of JRMS as the fixed cost of P 1 is varied while holding all other

model parameters fixed at their base values (given in Section 4.1 ). Table 4 also reports on the improvement from allowing

substitution by comparison to the joint replenishment model with no substitution, as explained in Section 4.1 . Table 4
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Table 4 

Sensitivity analysis on the fixed setup costs of P 1 . 

Joint replenishment Joint replenishment 

with substitution without substitution 

K 1 y 1 y 2 y 3 TC u y 1 y 2 y 3 TC u Improvement (%) 

100 88 35 24 734.42 45 63 72 866 .67 18.01 

150 92 35 24 752.80 45 63 72 894 .44 18.82 

250 99 35 24 787.67 50 70 80 950 .00 20.61 

350 105 35 24 820.41 50 70 80 10 0 0 .00 21.89 

400 108 35 24 836.10 50 70 80 1025 .00 22.59 

450 111 35 24 851.38 55 77 88 1050 .00 23.33 

Table 5 

Sensitivity analysis on the unit holding costs of P 1 . 

Joint replenishment Joint replenishment 

with substitution without substitution 

h 1 y 1 y 2 y 3 TC u y 1 y 2 y 3 TC u Improvement (%) 

3 140 32 23 693.32 55 77 88 949 .55 36.96 

4 119 34 23 761.12 50 70 80 975 .00 28.10 

5 105 35 24 820.41 50 70 80 10 0 0 .00 21.89 

6 16 126 25 848.79 50 70 80 1025 .00 20.76 

7 13 127 25 850.19 50 70 80 1050 .00 23.50 

8 11 127 26 851.16 45 63 72 1073 .06 26.07 

Table 6 

Sensitivity analysis on the shortage cost of P 1 . 

Joint replenishment Joint replenishment 

with substitution without substitution 

π1 y 1 y 2 y 3 TC u y 1 y 2 y 3 TC u Improvement (%) 

0.5 2 131 24 785.61 50 70 80 10 0 0.0 0 27.29% 

1 5 130 24 795.26 50 70 80 10 0 0.0 0 25.74% 

2 10 129 24 813.64 50 70 80 10 0 0.0 0 22.90% 

3 105 35 24 820.41 50 70 80 10 0 0.0 0 21.89% 

4 105 35 24 820.41 50 70 80 10 0 0.0 0 21.89% 

5 105 35 24 820.41 50 70 80 10 0 0.0 0 21.89% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

validates the common intuition that higher fixed cost lead to higher order quantities and costs. It is interesting to note in

Table 4 that the order quantities of P 2 and P 3 (remaining fixed at 45 and 63, respectively) are not changed as K 1 increase

in JRMS. This is in contrast with the JRM, where the order quantities of all products are increased as K 1 increases. This can

be interpreted as the condition in which allowing substitution, products get “decoupled” under joint replenishment, with a

product having an order quantity close to its own EOQ in an ordering cycle, and any additional demand for that product in

the ordering cycle is either lost or substituted. Another interesting, and probably more important, observation in Table 4 is

that the improvement from allowing substitution (i.e., of JRMS over JRM) increases as the fixed cost increase to around 23%

for high fixed costs. This is related to the key insight that substitution improves on joint replenishment by allowing longer

cycle and reducing the fixed ordering cost. This key insight has been observed by Salameh et al. [20] for the case of two

products only. Here, we generalize this insight to multiple products. 

Table 5 reports on the optimal solution of the JRMS and JRM models as the holding cost of P 1 is varied, with all other

parameters held at their base values. The results conform the intuition that higher holding costs lead to lower order quan-

tities and higher cost, in what concerns P 1 only. However, it is interesting to note that as h 1 increases the order quantity

of P 2 , and of P 3 , to an extent, increase. This can be interpreted that substitution is allowing a fraction demand of the high-

holding cost product, P 1 , by the low-holding cost product, P 2 , leading to a higher demand for P 2 . Note that for the JRM

model involving no substitution, the order quantities of all products increase as h 1 increases. Table 5 also indicates that that

substitution is most useful when the holding cost is low, with the improvement of JRMS over JRM reaching 37% for low h 1 .

Finally, Table 6 reports on the optimal solution of the JRMS and JRM models as the shortage cost of P 1 is varied, with all

other parameters held at their base values. Table 5 conforms the intuition that higher shortage costs lead to higher order

quantities and cost for P 1 only. Interestingly, Table 6 indicates that high shortage costs of P 1 lead to lower order quantities

for P 2 . This can be interpreted that having high-order quantities for P 1 makes it appealing to have some P 2 customers switch

to it, which cuts the costs for P 2 . Table 6 also indicates that substitution is most useful when the shortage cost is low, with

the improvement of JRMS over JRM reaching 27% for low π . 
1 
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Tables 4 –6 indicate that JRMS works well (outperforming) JRM when the fixed cost is high and the holding and shortage

costs are low. While this cost pattern is not common in typical retailing setting, it is observed, for example, for retailers that

import goods from overseas, where the shipping cost is high. Moreover, many of these retailers import low-cost products

such as car and mobile phone accessories. For these kind of products the holding and shortage costs are also typically low.

The holding cost is low as it is tied-up to low unit cost, and the shortage cost is low, due to non-critical nature of the

products, the lack of brand loyalty, and the availability of several alternatives in the open market for such products. This

type of retailing is common in the Middle East, with imports typically coming from China. 

The main managerial insight from Tables 4 –6 is that JRMS attempt to improve on JRM by having more flexibility for

the product inventory cycle. To elaborate, note that the main advantage of joint replenishment (in JRM) is the reduction of

shipping and other logistical costs, as discussed in Section 1 . Note also that the main down side of joint replenishment is

its restrictive nature, as it requires all products to have the same common inventory cycle, which could increase costs for a

product if the common cycle is far from its “own” (optimal) cycle, which balances its own costs. (A product’s own cycle can

be obtained in the context of our model from the classic EOQ model, applied to the product individually.) By allowing for

stock-outs, JRMS is in a sense allowing some products to have a cycle different from the common cycle, and close to these

products own cycles, while continuing to benefit from joint replenishment. This is done by allowing partial substitution and

shortages of the products, which might, in turn, be costly. 

5. Conclusion 

In this paper, we address a challenging problem of extending the classical joint replenishment model (JRM) to account

for stock-out based substitution of multiple products. To simplify the presentation, we first presented our model for joint

replenishment with substitution (JRMS) in the context of three products only and then provided a general quadratic pro-

gramming formulation with linear constraints. One complicating aspect of our analysis is that the form of the cost function

depends on the sequence of product stock-outs. This implies that one needs to enumerate a large number of substitution

scenarios (specifically, n ! scenarios for n products). However, with the available modern-day computing capabilities, and

some desirable convexity properties of our JRMS model, the total enumeration scheme of stock-out scenarios proved to be

manageable, and allowed to gain useful managerial insights by numerically analyzing a three-product illustrative example. 

Our numerical analysis indicated some interesting counter-intuitive behavior, where JRMS departs from JRM. For example,

a high holding cost of one product could lead to a higher order quantity of another product, as it becomes appealing to

induce customers to switch from the former to the later product. A similar interesting observation is made on the shortage

cost, as increasing these costs for one product could lead to lower order quantities for another product. Moreover, our

numerical analysis reports significant cost improvements of JRMS over JRM in the order of 20–30%. These substitution-driven

improvements are observed to occur in high fixed costs, and low holding and shortage costs environments. 

An explicit enumeration of stock-out scenarios is not effective to solve larger problems involving possibly tens of products

in practice. Future extensions of our work could address developing efficient search schemes in order to explore or curtail

the space of stock-out scenarios. 

Finally, one may see our JRMS strategy in this paper as a form of partial “inventory pooling,” with more demand pooled

to certain products via substitution. The classical study of inventory pooling is focused on the risk aspect, as demand vari-

ability could be reduced due to pooling (e.g., Eppen [33] ). In this paper, we consider an EOQ system with deterministic

demand . It might be interesting to study the risk aspect of the inventory pooling encapsulated in JRMS-type systems in

future works considering stochastic demand. 
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Appendix 

Proof of Lemma 1 

It is enough to show the holding cost per ordering cycle is convex. Note that with equal unit holding costs, the inventory

level of all products can be aggregated, and the inventory level when product j runs out of stock can be written as β j y where

y = 

∑ n 
k =1 y k and 0 ≤ β j < β j+1 ≤ 1 . Letting the total demand when Products 1 , . . . , j are out of stock be D 

j , j = 1 , . . . , n − 1 .

It follows that D 

j = 

∑ n 
k = j+1 D jk . Also, define D 

0 as the total demand, D 

0 = 

∑ n 
k =1 D k . Then, it follows that the holding cost is 

H = h 

n −1 ∑ 

j=0 

(β j y + β j+1 y ) 

2 

(β j y − β j+1 y ) 

D 

j 
= h 

( 

n ∑ 

k =1 

y k 

) 2 
n −1 ∑ 

j=0 

(β2 
j 
− β2 

j+1 
) 

2 D 

j 
, 

http://dx.doi.org/10.13039/100007458
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where by definition β0 = 1 , and βn = 0 . Since β j+1 < β j . it can be easily shown that the function g(y 1 , . . . , y n ) = 

(∑ n 
k =1 y k 

)2

is convex in y 1 , y 2 , . . . , y n . It follows that H is convex. 

To show that g(y 1 , . . . , y n ) is convex, note that g(y 1 , . . . , y n ) = h (l (y 1 , . . . , y n ) where l (y ) = 

∑ n 
k =1 y k and h ( l ) = l 2 . The fact

that h (.) is convex and increasing and l (.) is linear and increasing completed the proof, since the composition of two mono-

tone convex functions is also convex (e.g., Avriel [32] ). 

The Joint Replenishment Model (JRM) 

We consider a simplified version of the classical JRM model, where both products have the same cycle time, t 0 . Then, 

t 0 = 

y 1 
D 1 

= 

y 2 
D 2 

= 

y 3 
D 3 

. (17)

The total cost per unit time is then: 

T C u (t 0 ) = 

∑ 

j∈ N (K j + h j 
D j t 

2 
0 

2 
) 

t 0 
. (18)

The first-order optimality conditions then give: 

∂T CU(t 0 ) 

d t 0 
= −

∑ 

j∈ N K j 

t 2 
0 

+ 

∑ 

j∈ N 

h j D j 

2 

. (19)

Further, 
∂ 2 T CU t 0 

d 2 t 0 
= 2 

∑ 

j∈ N K j 
t 3 
0 

> 0 , which establishes the convexity of TCU ( t 0 ). Then, the optimal cycle length is given from the

first-order conditions as: 

t ∗0 = 

√ 

2 

∑ 

j∈ N K j ∑ 

j∈ N h j D j 

. (20)

Then, the optimal order quantities for all products j ∈ N are: 

y ∗j = D j t 
∗
0 . (21)
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