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ABSTRACT 

TAHIR, ANAS, M, Masters: June: 2021, Master of Science in Electrical Engineering 

Title: Deep ConvNets for COVID-19 Recognition from Chest X-Rays 

Supervisor of Thesis: Prof. Mustafa, Serkan, Kiranyaz. 

Co-Supervisor of Thesis: Dr. Muhammad, Enamul Hoque, Chowdhury.  

Coronavirus disease 2019 (COVID-19) is an extremely contagious and quickly 

spreading Coronavirus infestation. Severe Acute Respiratory Syndrome (SARS)-CoV 

and Middle East Respiratory Syndrome (MERS)-CoV, which outbreak in 2002 and 

2011, and the current COVID-19 pandemic are all from the same family of coronavirus. 

The fatality rate due to SARS and MERS was higher than COVID-19. However, the 

spread of those was limited to few countries, while COVID-19 affected more than 200 

countries worldwide, causing over 3 million causalities and infected more than 145 

million people as of April 25, 2021. Given the effects of COVID-19 on pulmonary 

tissues, chest radiographic imaging has become a necessity for screening and 

monitoring the disease. Recently, numerous studies have proposed Deep Learning 

approaches based on Convolutional Neural Networks (CNNs, or ConvNets) for the 

automatic diagnosis of COVID-19 from chest X-rays (CXR). Although these methods 

achieved astonishing performance in early detection and diagnosis, they have used 

limited CXR repositories for evaluation, usually with a few hundred COVID-19 CXR 

images only. Thus, such data scarcity prevents reliable evaluation with the potential of 

overfitting. In addition, manual annotation of X-rays (delineation of the lung, or 

infection regions) is another challenge due to the extensive time and manual labor 

required from the physicians. Therefore, most of the proposed studies showed no or 
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limited performance in infection localization and severity grading of COVID-19 

pneumonia. 

In this thesis, in order to overcome the aforementioned limitations and 

challenges, we have conducted the following: (i) compiled the largest COVID-19 

benchmark dataset, namely COVID-QU, which consists of 11,956 COVID-19, 11,263 

non-COVID-19, 10,701 normal, 134 SARS, and 144 MERS CXR images, (ii) 

generated ground-truth lung segmentation masks for the entire COVID-QU dataset 

using an elegant human-machine collaborative approach, (iii) proposed a systematic 

approach to segment the lung, detect, localize, and quantify COVID-19 infections from 

CXR images, (iv) Trained and evaluated the proposed system for lung segmentation, 

infection segmentation, and two classification tasks: Ⅰ) COVID-19 detection from the 

predecessor COVID family members, SARS, and MERS, Ⅱ) COVID-19 detection from 

non-COVID-19 infections, and normal cases.  

A detailed set of experiments using several state-of-the-art ConvNets showed 

top performance for the lung segmentation task with Intersection over Union (IoU) of 

96.11% and Dice Similarity Coefficient (DSC) of 97.99%. Besides, COVID-19 

infections of various shapes and types were reliably localized with 83.05% IoU and 

88.21% DSC. Moreover, the proposed system was able to discriminate between 

different COVID family members, which is an extremely challenging task for medical 

doctors without the aid of clinical data. Sensitivities of 96.94%, 79.68%, and 90.26% 

were achieved for classifying COVID-19, MERS, and SARS classes, respectively. 

Furthermore, a good performance was obtained for the second classification scheme 

with sensitivities of 91.52%, 93.21%, and 91.12 for COVID-19, non-COVID, and 

normal classes, respectively. 
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CHAPTER 1: INTRODUCTION 

The World has experienced outbreaks of coronavirus infections during different 

points of time in the last two decades: (i) the Severe Acute Respiratory Syndrome 

(SARS)-CoV outbreak in 2002-2003 from Guangdong, China; (ii) the Middle East 

Respiratory Syndrome (MERS)-CoV outbreak in 2011 from Jeddah, Saudi Arabia; and 

(iii) Coronavirus Disease 2019 (COVID-19) or SARS-CoV-2 outbreak from Wuhan, 

China in December 2019. Even though all three diseases are from the same family of 

coronavirus [1], the genomic sequence of COVID-19 showed similar but distinct 

genome composition from its predecessors SARS and MERS [1, 2]. Despite a lower 

fatality rate of COVID-19, i.e., around 3% [3] when compared to SARS (10%) and 

MERS (35%), COVID-19 has resulted in many fold deaths (>3M already) than 

combined deaths of MERS and SARS (around 1700) [4]. The SARS-CoV epidemic has 

spread to 26 countries worldwide using person-to-person human contact [5]. In 2012, 

the infectious outbreak caused by MERS-CoV epidemic had spread to more than 1600 

patients in 27 countries, resulting in over 600 deaths, 80% of which were reported in 

Saudi Arabia [6, 7]. The recent outbreak of COVID-19 was and still is an extremely 

infectious disease that has spread all over the world, forcing the World Health 

Organization (WHO) on 11th March 2020 to declare it as a pandemic [8].  

1.1 Background 

The business, economic, and social dynamics of the whole world were affected. 

Governments have imposed flight restrictions, social distancing, and increasing 

awareness of hygiene. However, COVID-19 is still spreading at a very rapid rate. The 

common symptoms of coronavirus include fever, cough, shortness of breath, and 

pneumonia. Severe cases of the CoV diseases include acute respiratory distress 

syndrome (ARDS) or complete respiratory failure, which requires support from 
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mechanical ventilation and intensive-care unit. People with a compromised immune 

system, elderly people, or people with other chronic diseases are more likely to develop 

serious illnesses, including organs failure, particularly kidneys or septic shocks [9].  

Intuitively, reliable detection of COVID-19 disease has the utmost importance. 

However, the diagnosis procedures are not straightforward, as the common symptoms 

of COVID-19 are generally indistinguishable from the other viral infections [10, 11]. 

Currently, the primary diagnostic tool to detect COVI-19 is reverse-transcription 

polymerase chain reaction (RT-PCR) arrays, where the presence of SARS-CoV-2 RNA 

is tested on collected respiratory specimens from the suspected case [12, 13]. However, 

RT-PCR arrays have a high false alarm rate caused by sample contamination, damage 

to the sample, or virus mutations in the COVID-19 genome [14, 15]. Therefore, several 

studies suggested using chest computed tomography (CT) imaging as a primary 

diagnostic tool since it shows higher sensitivity values compared to RT-PCR [16, 17]. 

In addition, several studies [16-18] suggest performing CT as a secondary test if the 

suspected patients with shortness of breath or other respiratory symptoms showed 

negative RT-PCR findings. Despite the superior performance, CT scans are challenged 

by several limitations. Their sensitivity is limited for early COVID-19 cases, slow in 

imaging acquisition, and costly. On the other hand, X-ray imaging is a cheaper and 

faster method, where the body gets exposed to less radiation compared to CT [19]. 

Chest X-ray imaging is widely used as an assistive diagnostic tool in COVID-19 

screening, and it is reported to have high potential prognostic capabilities [20].  

Aiming to automize the COVID-19 recognition process from CXR images, 

recently, many studies [21-26] have proposed to use Deep Learning approaches based 

on Convolutional Neural Networks (CNNs, or ConvNets). These studies showed 

superior performance for early detection and diagnosis of COVID-19. However, the 
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data scarcity in these studies prevents a reliable evaluation with the potential of 

overfitting and limits the performance of deep networks. Moreover, several studies [27-

29] proposed lung segmentation as a first-line in their COVID-19 recognition approach. 

Lung segmentation is an important pre-classification step, which narrows the region of 

interest from the entire CXR down to the region of lungs to increase network reliability. 

Thus, avoiding irrelevant areas in the decision-making process, such as heart, bones, 

background, or text. However, the reported segmentation performance is limited for 

COVID-19 cases. In general, the proposed lung segmentation networks miss highly 

COVID-19 infected lung regions, such as peripheral infection or fluid accumulation in 

lower lung lobes. Such poor performance takes place, as so far, there are no lung 

segmentation masks datasets available for COVID-19 X-ray images. Furthermore, most 

of these studies showed limited performance in infection localization and severity 

grading of COVID-19 pneumonia. 

On the other hand, the majority of the proposed AI-based COVID-19 

recognition approaches tries to distinguish COVID-19 from other viral/bacterial 

infections or normal X-rays. However, up to the author’s knowledge, there is no work 

in the literature to recognize COVID-19 infection from the other two COVID-family 

members, MERS and SARS. Due to the overlapping patterns of lung infections, without 

the aid of clinical data, it is difficult for medical doctors (MDs) to distinguish between 

the images from different CoV family members using CXR only. Therefore, 

investigating the similarities of COVID family members in the eyes of AI can provide 

meaningful insights that can help in the medical diagnosis. 

1.2 Thesis Objective 

  In order to overcome the aforementioned limitations and challenges, the key 

objectives of this thesis are: 
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1) Review the different proposed approaches in the literature for automatic 

COVID-19 recognition from CXR and investigate their gaps and limitations.  

2) Compile the largest COVID-19 benchmark dataset, referred to as COVID-QU, 

which consists of 11,956 COVID-19, 11,263 non-COVID, 10,701 normal, 134 

SARS, and 144 MERS chest X-rays images. This will help to investigate deep 

ConvNet on a comparatively larger dataset, which can provide a more reliable 

solution with better generalization capabilities. 

3) Create ground-truth lung segmentation masks for the entire COVID-QU dataset 

using an elegant human-machine collaborative approach which can 

significantly reduce human labor and thus speed up the annotation process.  

4) Propose a robust system to segment the lung, detect, localize, and quantify 

COVID-19 infections from chest X-ray images. This is a crucial task for 

accurate diagnosis and follow-up of COVID-19 patients. 

5) Train and evaluate the proposed recognition system for lung segmentation, 

infection segmentation, and two classification schemes: 

• COVID-19 recognition from non-COVID-19 infections, and normal 

cases. 

• COVID-19 recognition from the predecessor COVID family members, 

SARS, and MERS. 

1.3 Thesis Outline 

The rest of the thesis is organized as follows: In Chapter 2, a comprehensive 

review is conducted on recent studies for AI-assisted diagnosis of COVID-19 from 

CXR.  In Chapter 3, the benchmark COVID-QU CXR dataset is introduced with a novel 

collaborative human-machine approach for lung ground-truth saliency-map generation. 

Besides, the details of the proposed COVID-19 recognition system are explained in 
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Section 3.2. In Chapter 4, the experimental setup is defined, and the COVID-19 

recognition system is evaluated on the benchmark dataset. Accordingly, the final results 

are discussed and analyzed. Finally, Chapter 5 draws the conclusion of the thesis and 

suggests some future directions.   
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CHAPTER 2: LITERATURE REVIEW 

Readily available radiological imaging techniques such as chest CT and X-ray 

are crucial tools for COVID-19 detection. The majority of early COVID-19 cases show 

similar features on radiographic images, including bilateral, multi-focal, ground-glass 

opacities with posterior or peripheral distribution, mainly in the lower lung lobes, while 

it develops to pulmonary consolidation in the late stage. Even though chest radiographs 

can help in the early screening of the suspected case, the images of several viral 

pneumonia are similar. They show a high overlap with other inflammatory lung 

diseases. Therefore, it is difficult for medical doctors to distinguish COVID-19 

infection from other viral pneumonia. Hence, this symptom similarity can lead to wrong 

diagnosis in the current situation.  Such an incorrect result can lead to non-COVID-19 

viral pneumonia being falsely diagnosed as a highly suspicious COVID-19 case, thus 

delaying the treatment with consequent effort, costs, and risk of exposure to positive 

COVID-19 patients.  

2.1 Related work 

The tremendous development in Machine Learning and Deep Learning 

techniques in recent years led to state-of-the-art performance in several Computer 

Vision tasks, such as image classification, object detection, and image segmentation. 

This breakthrough in performance led to increased utilization of AI-based solutions in 

various fields, including biomedical health problems and complications. Specifically, 

ConvNet has been proven extremely beneficial in several biomedical imaging 

applications, such as skin lesion classification [30], brain tumor detection [31], and 

breast cancer detection [32], and lung pathology screening [33, 34]. Deep Learning 

techniques on chest X-ray images are gaining popularity with the availability of deep 

ConvNets, showing promising results in various applications. Rajpurkar et al. [35] 
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proposed CheXNet network, one of the top-performing architectures for CXR, by 

training DenseNet121 on the ChestX-ray14 dataset [36], the largest public CXR dataset 

with over 100 thousand X-ray images for 14 different pathologies. Vikash et al. [37] 

utilized the concept of transfer learning to recognize pneumonia infection from normal 

CXR by proposing an ensemble approach that combines the output of five pre-trained 

deep models achieving sensitivity values of >98% for pneumonia class. Lakhani et al. 

[38] reported an AUC of 0.99 on a dataset of 1,007 CXR by utilizing an assemble of 

GoogleNet and AlexNet to classify the CXR images as having manifestations of 

pulmonary tuberculosis TB or as healthy. 

2.1.1 Deep Learning for COVID-19 Recognition from Chest X-rays  

Recently, many studies have reported Machine Learning and Deep Learning 

approaches to automize COVID-19 detection from chest X-rays [21-26]. Ozturk et al. 

[21] presented a modified version of DarkNet, to provide a reliable diagnosis for binary 

classification (COVID-19 vs. Normal) and multi-class classification (COVID-19 vs. non-

COVID-19 pneumonia vs. Normal). The introduced network was evaluated over a dataset 

that contains 114 COVID-19 CXR. However, low performance was reported with 

COVID-19 sensitivity values of 90.65% and 85.35% for binary and multi class schemes, 

respectively. Apostolopoulos et al. [22] utilized a dataset that consists of  224 COVID-

19, 714 confirmed viral or bacterial pneumonia, and 504 normal X-rays. High 

discrimination accuracy of 96.7% and COVID-19 Sensitivity of 98.7% was obtained with 

MobileNetV2 model. Wang et al. [23] introduced a new ConvNet architecture (COVID-

Net) tailored for COVID-19 recognition. COVID-Net was evaluated on a dataset with 

358 COVID-19 CXR, where it achieved sensitivity values of 91%, 94%, and 95% for 

COVID-19, non-COVID-19 pneumonia, and normal classes, respectively. Waheed et al. 

[24] proposed a synthetic data augmentation technique to alleviate the scarcity of public 
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data available for COVI-19 X-rays. Auxiliary Classifier Generative Adversarial Network 

(ACGAN) model was introduced and implemented on 403 COVID-19, and 721 Normal 

CXR images. ACGAN model along with synthetic data augmentation yielded 95% 

accuracy and 90% COVID-19 sensitivity. Apostolopoulos et al. [25] trained 

MobileNetV2 on a 7-class dataset that includes 358 COVID-19, 1,342 Normal, and 1,199 

x-ray images for five common thorax abnormalities. The followed approach achieved 

87.66% 7-class Accuracy, 99.18% 2-class Accuracy (COVID-19 vs. remaining classes), 

and 97.36% COVID-19 sensitivity. Chowdhury et al. [26] compiled a dataset of 423 

COVID-19, 1485 viral pneumonia and 1579 normal X-rays and have trained several deep 

ConvNets (SqueezeNet, ResNet18, ResNet101, MobileNetV2, DenseNet201 and 

CheXNet) for both 2-class (COVID-19 vs Normal) and 3-class schemes. DenseNet201 

showed the best classification performance with 99.7% and 97.9% COVID-19 

sensitivities for 2-class and 3-class schemes, respectively. However, most of the 

conducted studies used a rather small amount of data, e.g., the largest dataset includes 

only few hundred CXR samples. Therefore, it is difficult to generalize their results in 

practice. 

Yamac et al. [39] introduced a compact architecture that utilizes the state-of-the-

art pneumonia detection network, CheXNet, as a feature extractor while a proposed 

classifier, Convolution Support Estimation Network (CSEN), discriminates the target 

CXR as COVID-19, Bacterial pneumonia, Viral Pneumonia or Normal.  The network 

produced satisfactory results with 98% COVID-19 sensitivity over the benchmark QaTa-

COV19 dataset that contains 462 COVID-19 CXR images. In a recent approach [40] the 

same group of researchers, as in [39], proposed a reliable advance warning system to 

diagnose early-stage COVID-19 cases with limited or no infection signs from normal 

cases. Several deep learning and compact classifier approaches were evaluated over 
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Early-QaTa-COV19 datasets with 1,065 early-stage COVID-19, and 12,544 Normal 

CXR images. Satisfactory results were obtained with >97% and 95% COVID-19 

sensitivity for the best deep learning (CheXNet) and compact (CSEN) approaches, 

respectively.  

2.1.2 Lung Segmentation as a First Stage in the COVID-19 Recognition System 

Moreover, several studies [27-29] considered lung segmentation as the first stage 

in their recognition system. This ensures reliable decision-making in the classification 

phase and guards the network against irrelevant features from non-lung areas. Rajaraman 

et al. [29] proposed a two-stage COVID-19 recognition model. In the first stage, U-Net 

segmentation network was utilized to segment the lung regions. Secondly, several pre-

trained deep models (VGG16, VGG19, InceptionV3, etc.) were iteratively pruned to 

reduce network complexity while maintaining a satisfactory classification performance. 

The obtained results showed that the weighted average of top-3 pruned models improves 

the performance significantly, resulting in 99% COVID-19 sensitivity and 99.72% AUC.  

In a similar approach, Oh et al. [28] proposed a patch-based deep ConvNet architecture 

for COVID-19 recognition. First, lung areas were extracted using a fully connected (FC)-

DenseNet103 followed by patch-based classification using ResNet50, where a majority 

voting was utilized to make the final decision.  The proposed system achieved an overall 

classification accuracy and sensitivity of 88.9% and 85.9%, respectively. However, the 

previous segmentation approaches were trained on a mixture of medium and high-quality 

CXR, mainly from Montgomery [41] and Shenzhen [42] CXR lung mask dataset, which 

combinedly creates 704 X-ray images for normal and tuberculosis (TB) cases. Therefore, 

the segmentation performance degrades in unseen scenarios such as severe COVID-19 

cases or low-quality images with poor SNR levels. Hence, lung areas can be partially or 

incompletely segmented for severe infections such as bilateral consolidation or fluid 
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accumulation at lower-lung lobes.  Consequently, the classification performance 

degrades. Therefore, creating a large benchmark CXR dataset with ground-truth lung 

segmentation masks is of high importance, and will help the research community to 

provide more reliable detection system for COVID-19 and other thorax pathologies.  

2.1.3 COVID-19 Infection Localization and Severity Grading 

In addition, along with COVID-19 detection, infection localization is another 

crucial point that helps in evaluating the status of the patient and in the treatment process 

[43]. Therefore, several studies utilized class activation maps which are generated from 

Deep Learning models trained for COVID-19 classification tasks to localize infected lung 

regions. Even though those localized regions are potential biomarkers for COVID-19, 

more precise and reliable localization can be provided by ground-truth infection mask 

from expert radiologists. Therefore, Degerli et al. [44] proposed a novel approach for 

COVID-19 infection map generation by compiling the largest COVID-19 dataset 

consisting of 2,951 CX images with annotated ground-truth infection segmentation 

masks. Several encode-decoder (E-D) ConvNets were trained and evaluated on the 

generated dataset, where the best performing network achieved an 85.81% f1-score for 

infection localization. However, their proposed approach is limited to infection 

localization. Therefore, there is room to revisit the problem with both lung and infection 

segmentation models to localize and quantify infection regions by computing the overall 

percentage of infected lungs. This can help medical doctors to better assess the severity 

and progress of COVID-19 pneumonia. 

2.1.4 Classification of Coronavirus Family Members: COVID-19, MERS and SARS 

  On the other hand, worldwide researchers have presented numerous clinical 

and experimental information regarding the SARS and MERS, which could be useful 

in the fight against COVID-19 [54]. There have been studies in the literature 
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investigating the similarities between the genome structure of SARS, MERS, and 

COVID-19 [55]. However, up to the author's knowledge, COVID-19 recognition from 

the other two family members, MERS and SARs, using CXR has never been 

investigated. Owing to the overlapping pattern of lung infections, it is very challenging 

for MDs to diagnose the COVID type without the aid of clinical data, specifically RT-

PCR. Although, SARS epidemic was contained in July 2003, and no case has been 

reported since May 2004 [45]. However, MERS still exists, where the most recent 

laboratory-confirmed cases were reported by Riyadh in March 2020 [46]. Therefore, 

investigating the similarities and uniqueness of COVID family members in the eyes of 

AI can bridge the knowledge gaps and provide MDs with meaningful insights that help 

in the diagnosis process.   

In a nutshell, many studies have reported Deep Learning approaches to 

automate COVID-19 detection from CXR images. They have reported high detection 

performance for the disease; however, they also present certain issues and drawbacks. 

First of all, majority of them have used a limited amount of COVID-19 data, e.g., the 

largest dataset includes only a few hundred CXR samples. As mentioned earlier, such 

a data scarcity yields a lack of proper evaluation, and thus it is difficult to generalize 

their results in practice. Moreover, they only aimed for COVID-19 detection and/or 

classification among other types without further assessment and localization. Due to 

these issues, their usability and robustness for a clinical usage will be very limited. In 

this study, an end-to-end solution will be provided to segment the lung, detect, localize, 

and quantify COVID-19 infections from CXR images. Besides, the largest benchmark 

CXR dataset, named COVID-QU, will be compiled with over 33 thousand CXRs 

including 11,956 COVID-19 CXRs. Ground-truth lung segmentation masks will be 

created for the entire dataset using a novel collaborative human-machine approach, 
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which can save valuable human labor time and minimize subjectivity in the annotation 

process. This will help to investigate the state-of-the-art deep network models more 

reliably and accurately for COVID-19 and other lung pathology problems.  
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CHAPTER 3: MATERIALS AND METHODOLOGY 

In this thesis, in order to overcome the aforementioned limitations and 

drawbacks, first, a large benchmark dataset so-called COVID-QU, is compiled with 

over 33,000 CXR images from five different classes: SARS, MERS, COVID-19, non-

COVID-19 infections, and normal. Besides, in Section 3.1, a novel human-machine 

collaborative approach is proposed to generate lung saliency maps for the entire 

COVID-QU dataset. In section 3.2, a systematic approach is proposed to segment the 

lung, detect, localize, and quantify COVID-19 infections from chest X-ray images. 

Furthermore, two classification schemes are tackled: COIVD-19 recognition from non-

COVID-19 and normal CXR, and COVID-19 discrimination from the other COVID 

family members MERS and SARs.  

3.1 The Benchmark COVID-QU Dataset 

Sharing COVID-19 data will help researchers, doctors, and engineers around 

the world to come up with innovative solutions for the early detection of COVID-19. 

In this section, we first show the data compilation process; then, we propose a novel 

approach for ground-truth lung saliency map generation.  

3.1.1 Data Compilation  

Due to the emerging nature of the pandemic, initially, little efforts have been 

made by highly infected countries on sharing clinical and radiography data publicly. 

Therefore, a group of researchers from Qatar University (QU) and Tampere University 

(TU), including the author of this thesis, have created two datasets, the so-called 

COVID-Family [47] and QaTa-Cov19 datasets [39]. The COVID-Family dataset 

consists of 462 COVID-19, 144 MERS, and 134 X-ray images. While QaTa-Cov19 

dataset contains the same 462 COVID-19 samples included in the COVID-Family 

dataset, along with 2,760 bacterial pneumonia, 1,485 viral pneumonia, and 1,579 
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normal X-rays. The QaTa-Cov19 dataset was extended in a recent study [44] to include 

2,951 COVID-19 CXR along with their ground-truth infection masks. Gradually, more 

X-rays become available publicly, and QU group managed to collect additional X-rays 

images. Hence, QU group compiled the largest COVID-19 CXR dataset with over 33 

thousand samples, called COVID-QU. The dataset includes X-rays from five different 

classes:  

1) 134 SARS X-rays 

2) 144 MERS X-rays 

3) 11,956 COVID-19 X-rays  

4) 11,263 non-COVID-19 infections (viral or bacterial pneumonia) X-rays 

5) 10,701 normal X-rays 

In this study, only posterior-to-anterior (PA) or anterior-to-posterior (AP) chest 

X-rays were considered as this view of radiography is widely used by the radiologist. 

This dataset was created by utilizing numerous publicly available, scattered, and 

different format datasets and repositories. Authors ensured the quality of the provided 

information; duplicates, extremely low-quality, and over-exposed images were 

identified and removed in the preprocessing stage. Consequently, the dataset 

encapsulates images of high intraclass dissimilarity with varying resolution, quality, 

and SNR levels, as shown in Figure 1. Details of different data sources are listed below: 

COVID-19 CXR dataset: The dataset contains 11,956 positive COVID-19 CXR 

images: 10,814  images are collected from BIMCV-COVID19+ dataset [48], 183 

images from a Germany medical school [49], 559 X-ray image from SIRM, Github, 

Kaggle and Tweeter [50-53], and 400 X-ray images from another COVID-19 chest X-

ray repository [54].  

RSNA CXR dataset (Lung opacity and normal CXR): RSNA pneumonia 
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detection challenge dataset [55] consists of 26,684 chest X-ray images, where 8,851 

images are normal, 11,821 are abnormal, and 6,012 are lung opacity images. All images 

are in DICOM format. In this study, we used 8,851 normal and 6,012 lung opacity X-

ray, where lung opacity images are used as non-COVID-19 class.  

Chest-Xray-Pneumonia dataset: This is a Kaggle dataset [56] that encapsulates 

1,300 viral pneumonia, 1,700 bacterial pneumonia, and 1,000 normal X-rays. In this 

study, the viral and bacterial pneumonia are considered as non-COVID-19 class.    

PadChest dataset: PadChest [57] dataset comprises more than 160,000 X-ray 

images from 67,000 patients that were collected and reported by radiologists at Hospital 

San Juan (Spain) from 2009 to 2017.  In this study, we used 4,000 normal, and 4,000 

pneumonia/infiltrate cases as non-COVID-19 class.   

SARS and MERS CXR dataset: SARS and MERS X-ray images are even 

scarcer compared to COVID-19. Therefore, we collected and indexed X-ray images 

from different publicly available online resources and articles. SARS and MERS 

radiographic images were collected from 55 different articles (25-MARS, 30-SARS). 

A total of 260 images was collected from articles, and 18 images were from Joseph 

Paul Cohens’ GitHub database [58]. Out of these, 70 MERS X-ray images were 

collected from [59], while 16 SARS X-ray images were collected from [60].   
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Figure 1. Sample X-ray images from the COVID-QU Dataset from five different 

classes: COVID-19, MERS, SARS, non-COVID-19 infections, and normal. The dataset 

encapsulates images from several countries around the world with different resolution, 

quality, and SNR levels.  

 

Montgomery and Shenzhen CXR lung mask dataset: This dataset consists of 

704 CXR images with their corresponding lung segmentation masks. However, it was 

not included in the COVID-QU dataset. Still, it was used as initial ground truth masks 

to train the segmentation model in the first stage of the proposed human-machine 

collaborative approach. The dataset was acquired by Shenzhen Hospital in China [42], 

and the tuberculosis control program of the Department of Health and Human Services 

of Montgomery County, MD, USA [41]. Montgomery dataset consists of 80 normal 

and 58 tuberculosis CXR with lung segmentation masks. While Shenzhen dataset 
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compromises 326 normal and 336 tuberculosis CXR, where 566 out of 662 CXR are 

provided with their corresponding masks.  

QaTa-Cov19 CXR infection mask dataset [44]: This dataset was created by a 

research group from Qatar University and Tampere University. It consists of nearly 

120K CXR images, including 2,913 COVID-19 images with their corresponding 

ground-truth infection masks. In this study, the ground-truth infection masks were used 

to train and evaluate the infection segmentation models.  

3.1.2 Collaborative Human-Machine Ground-Truth Annotation 

The process of producing ground truth segmentation masks is an exhaustive 

task, where human experts need to delineate pixel-wise masks with high accuracy 

levels. Besides, with the emergent of the current pandemic, it is even more challenging 

to assign such a task to medical experts, as they are busy fighting the disease.  

In order to overcome this issue, a collaborative human-machine approach is 

proposed to produce ground-truth lung segmentation masks for CXR images 

accurately. The majority of the manual annotation process was assigned to biomedical 

engineering researcher assistants (RAs) from QU team to reduce the load on medical 

collaborators from Hamad Medical Corporation (HMC). Unlike infection 

segmentation, which needs precise delineation by medical experts, lung segmentation 

can be done by non-medical people with proper supervision by MDs. Therefore, before 

starting the annotation process, all RAs attended several training sessions conducted by 

MDs to grasps a general understating of Chest X-ray imaging and get exposed to a 

variety of cases with mild, moderate, or severe infections. Hight attention was given to 

different types of abnormalities, such as lung opacity consolidation and fluid 

accumulation, which can make border detection more difficult. 

The intended approach was performed in four main stages. 
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3.1.2.1 Stage Ⅰ (Initial Training): 

In the first stage, three variants of U-Net [61] segmentation model, are trained 

on 704 ground-truth CXR lung masks from Montgomery and Shenzhen dataset 

mentioned previously. The ground-truth CXR lung masks are referred to as CXR lung 

mask repository in  Figure 2, and it is enlarged throughout the mask creation process. 

Next, the best performing network in terms of DSC is selected as the main network for 

Stage Ⅱ, which is referred to as CXR-Segmentation network in Figure 2.   

3.1.2.2 Stage Ⅱ (Collaborative Evaluation): 

In the second stage, an iterative training is utilized to create lung masks for a 

subset of 3,000 CXR samples (10% of the full dataset) that well present the diversity 

of COVID-QU dataset. Firstly, A subset of 500 samples is selected and inferred using 

CXR-Segmentation model. The predicated lung masks are then evaluated by 

researchers from QU group: as accept, reject, unsure, or exclude. Accepted masks that 

cover the lung areas are directly added to CXR-lung-mask-repository. Rejected mask 

are incomplete ones which miss parts of the lung areas or include extra areas. Those 

rejected masks are first modified by RAs then added to CXR-lung-mask-repository. 

Unsure masks are severe cases with highly infected areas; those are usually 

consolidations or fluid accumulation at lower lung lobes with a whitish color, which 

makes them indistinguishable from neighboring organs. The doubtful areas are first 

assessed by MDs; then, RAs adjust the masks based on their recommendations.  While 

the generated masks and corresponding X-rays are excluded only if the quality is 

extremely bad such as the case shown in Figure 2, where the right lung is blurred and 

corrupted by extra lighting. Finally, the segmentation network is re-trained on the 

extended mask dataset. Then a second subset of 500 samples is selected, and the steps 

of Stage Ⅱ are repeated. This process is repeated until ground-truth masks for all 3,000 
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CXR samples are generated.  

3.1.2.3 Stage Ⅲ (Collaborative Selection): 

In the third stage, six deep segmentation networks, inspired by U-Net [61], U-

Net++ [62], and FPN [63] architectures, are trained on the 3,000 collaborative masks 

generated in Stage Ⅱ. The trained networks are used to predict segmentation masks for 

the rest of COVID-QU dataset, which is around 30,900 unannotated samples (90% of 

the full dataset). Among the six predictions, RAs select the best one as a ground-truth 

or deny if none of the masks segments the lung properly. The latter case was a minority 

case that included less than 5% of unannotated data. The most selected network was 

considered as the main network and re-trained with the extended masks repository. The 

denied cases were then inferred by the main segmentation network and evaluated 

manually following the steps in Stage Ⅱ. As a result, the ground-truth masks for 33,920 

CXR images are gathered to construct the benchmark COVID-QU lung masks dataset. 

The proposed collaborative approach saves valuable human labor time. Also, it 

enhances the quality and reliability of the generated masks and reduces subjectivity. 

3.1.2.4 Stage Ⅳ (Final Verification): 

In the final stage, a final verification is performed by MDs on 6,788 CXR 

samples (20% of the full dataset) that well presents the diversity of COVID-QU dataset. 

The samples are selected from COVID, non-COVID-19 and normal classes, with 

different resolution, quality, and SNR levels. Even though checking the entire dataset 

will result in higher quality masks. However, it is not a feasible solution with the large 

number of images that we have as it will add an extra burden for MDs. In this study, 

the verified subset (20%) was considered as a test set for all the experiments, while the 

remaining data (80%) was considered as train and validation sets. 
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Figure 2. Collaborative human-machine approach to create ground-truth lung 

segmentation masks for COVID-QU CXR dataset 

 

3.2 COVID-19 Recognition System  

In this section, we describe the proposed system to segment the lung, detect, 

localize, and quantify COVID-19 infections from CXR images (Figure 3). First, a 
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binary lung mask is generated from the input CXR image using the 1st encoder-decoder 

(E-D) ConvNet. In parallel, the input CXR is fed to the 2nd E-D ConvNet to generate 

COVID-19 infection masks. Next, generated lung and infection masks are 

superimposed with the CXR image to localize and quantify COVID-19 infected lung 

regions. The generated infection mask is then used to detect COVID-19 positive cases 

from COVID-19 negative cases, where the CXR is classified positive if at least one 

pixel of lung area is predicted as COVID-19 infection. Furthermore, a 3rd ConvNet is 

trained and evaluated on two classification schemes: 

• COVID-19 recognition from non-COVID-19 infections and normal cases 

• COVID-19 recognition from the other coronaviruses SARS and MERS. 

Additionally, Score-CAM visualization method is deployed to provide an 

interpretable result and investigate the reasoning behind the specific decisions of the 

deep ConvNet classifier. 

The classification network will be removed in future studies, once ground-truth 

infections masks are created for non-COVID-19 cases using the proposed collaborative 

human-machine approach. Therefore, the infection segmentation model can be used to 

generate a 3-channel infection mask, where the channels represent: background, non-

COVID-19 lesion, and COVID-19 lesions.  Thus, the 3-channel infection masks can be 

used to detect COVID-19 from non-COVID-19, or normal cases.  
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Figure 3. Schematic representation of the proposed COVID-19 recognition system 

 

3.2.1 Image Pre-Processing  

Medical images are sometimes poor in contrast and often corrupted by noise 

due to different sources of interference, such as the imaging process and data 

acquisition. As a result, it may become harder to evaluate them visually. Contrast 

enhancement methods can play an important role in improving the image quality to 

provide a better interpretable image to the medical doctors. Besides, it can boost the 

performance of deep recognition systems. In order to investigate potential enhancement 

on the classification performance, four pre-processing schemes were evaluated in this 
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study: original chest X-ray image, which did not undergo any form of pre-processing, 

contrast limited adaptive histogram equalization (CLAHE), image complementation, 

and finally, the combination of the three (original, CLAHE, complemented) schemes 

applied altogether to form a 3-channel approach. 

3.2.1.1 CLAHE Technique 

Histogram equalization (HE) is a technique mainly used with images that are 

predominantly dark to enhance the contrast by effectively spreading out the most 

frequent intensity values [64]. The HE transformation can be defined as follows: 

                                    𝑦 = 𝑇(𝑥) = (𝐿 − 1) ∑ 𝑝𝑥(𝑋 = 𝑖)𝑥
𝑖=0                                        (1) 

where x denotes the random variable representing the original pixel intensities, 

𝑝𝑥(𝑋 = 𝑥) is the probability of having the pixel intensity 𝑥,  𝑇(. ) is the transformation 

function, 𝑦 are the new intensities after transformation, and 𝐿 = 2𝑁 is the intensity 

values for an N-bit image, i.e., for 8-bit gray-scale image, L-1=255 is the maximum 

intensity value. A closer look at equation (1) will reveal the fact that 𝑇(𝑥) is the 

approximation of the cumulative distribution functions [65]. An improved HE variant 

is called Adaptive Histogram Equalization (AHE). The adaptive equalization performs 

HE over small regions (patches) in the image. It improves local contrast and edges 

adaptively in each patch according to the local distribution of pixel intensities instead 

of the global information of the image. However, AHE could over amplify the noise 

component in the image [66]. To address this difficulty, Contrast-Limited Adaptive 

Histogram Equalization (CLAHE) limits the amount of contrast enhancement that can 

be produced within the selected region by a threshold parameter. Therefore, produced 

images are more natural in appearance than those produced by AHE [67]. Besides, the 

clarification of image details is improved.   

  When the HE technique was applied to the X-ray images, it was observed that 
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it might saturate certain regions. However, CLAHE technique can address this 

drawback in general.  For instance, Figure 4 shows the application of CLAHE and HE 

techniques over a sample X-ray image. The histogram for the equalized images shows 

that the values are redistributed across all pixels compared with the histogram of the 

original image. The CLAHE image showed bell-shaped histogram as Rayleigh 

distribution was used for transformation, while the HE showed a flat histogram with an 

uniform distribution.  However, the image was saturated in the center of the lungs when 

HE technique was applied.  In addition, some regions of the HE image show a sharp 

brightness difference, whereas the CLAHE image exhibits a smooth transition of 

intensities for adjacent pixels. As a result, in this study, CLAHE was used for pre-

processing the X-ray images instead of HE. 

 

 

Figure 4. Comparison between original, HE, and CLAHE equalized X-ray images with 

corresponding histograms 
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3.2.1.2 Image Complementation 

The image inversion or complement is a technique where the zeros become ones 

and ones become zeros so black and white are reversed in a binary image. For an 8-bit 

greyscale image, the original pixel is subtracted from the highest intensity value, 255, 

the difference is considered as pixel values for the new image. The mathematical 

expression is: 

                                                          𝑦 = 225 − 𝑥                                                           (2) 

where 𝑥 and 𝑦 are the intensity values of the original and the transformed (new) images. 

This technique shows the lungs area (i.e., the region of interest) lighter and the bones are 

darker. As this is a standard procedure, which is used widely by radiologists, it may 

equally help deep networks for a better classification. It can be noted that the histogram 

for the complemented image is a flipped copy of the original image (Figure 5).   

 

 

Figure 5. Comparison between an original X-ray and its image complement. 

 

3.2.1.3 3-Channel Scheme 

Finally, as shown in Figure 6, the 3-channel scheme was used as the input to the 
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deep networks, where original, CLAHE, and complement images were used altogether. 

The pixel values for each image are concatenated into a single matrix in order to create 

a new image. This 3-channel approach is expected to enhance the network performance 

compared to grayscale X-ray images as the utilized deep ConvNet classifiers were 

initially pre-trained on RGB images from the ImageNet dataset. 

 

 

Figure 6. Illustration of 3-channel scheme 

 

3.2.2 ConvNet Models for Lung and COVID-19 Infection Segmentation 

Lung parenchyma and COVID-19 infections segmentation were performed on 

CXR images using three state-of-the-art deep E-D ConvNets: U-Net [61], U-Net++ 

[62], and FPN [63] with different backbone (encoder) models using the variants of 

ResNet, DenseNet, and InceptinV4 networks. Five variants of the backbone models 

were considered starting from shallow to deep structures: ResNet18, ResNet50, 

DenseNet121, DenseNet161, and InceptionV4.  

The deployed encoder-decoder structures provide a firm segmentation model 

that captures the context in the contracting path and empowers precise localization by 
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the expanding path. U-Net architecture has a classical decoder part that is symmetric to 

the encoder part, where max-pooling operations are replaced with up-sampling 

operations. In addition, high-resolution features from the encoder path are merged with 

the up-sampled output from the corresponding decoder path through skip connection. 

Moreover, U-Net++ is a recent implementation that has further developed the decoder 

structure. The encoder and decoder blocks are connected through a series of nested 

dense convolutional blocks. This ensures a firm bridge between the encoder and 

decoder parts of the network, where information can be transferred to the final layers 

more intensively compared to conventional U-Net. Both U-Net and U-Net++ 

architectures utilize 1×1 convolution to map the output from the last decoding block to 

two-channel feature maps, where a pixel-wise SoftMax activation function is applied 

to map each pixel into a binary class of background or lung for Lung segmentation task, 

and background or lesion for infection segmentation task. In contrast, FPN employs the 

encoder-decoder as a pyramidal hierarchy by generating prediction masks at each 

spatial level of the decoder path. All predicted feature maps are upsampled to the same 

size, concatenated, convolved with 3x3 convolutional filter, and then SoftMax 

activation is applied to generate the final prediction mask. 

3.2.2.1 Segmentation Loss Function  

The cross-entropy (CE) loss is used as the cost function for the segmentation 

networks: 

                                𝐶𝐸 = −
1

𝐾
∑ ∑ 𝑦

𝑘
log(𝑝(𝑥𝑘))𝑐𝑘                                             (3) 

where 𝑥𝑘 denotes the kth pixel in the predicted segmentation mask, 𝑝(𝑥𝑘) denotes its 

SoftMax probability, 𝑦𝑘 is a binary random variable getting 1 if 𝑦𝑘 = 𝑐, otherwise 0, and 

𝑐 denotes the class category, i.e., 𝑐 ∈ {𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, 𝑙𝑢𝑛𝑔} for the lung segmentation 

task, and 𝑐 ∈ {𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, 𝑙𝑒𝑠𝑖𝑜𝑛} for the infection segmentation. 
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3.2.2.2 Post-processing for Segmentation Masks 

The predicted segmentation masks, Ŷ, by the segmentation models are defined as 

Ŷℎ,𝑤 ∈ [0,1], where ℎ and 𝑤 represent the size of the image. In the post-processing 

step, binary segmentation masks are first generated by thresholding with a fixed value 

of 0.5. The predicted pixels are classified as lung if 𝑦̂ > 0.5 for the lung segmentation 

task, while classified as COVID-19 infection if 𝑦̂ > 0.5 for the infection segmentation 

task. The binary lung masks are further processed by hole filling and removal of small 

regions, <5% of the total positive predicted pixels. As a result, we increase the true-

positives while minimizing the false-positives, non-lung regions that are falsely 

predicted as lung. In contrast, infection masks are and operated with post-processed 

lung masks to ensure that the infection region falls within the lung area and remove the 

false positives outside the lung region.  

3.2.2.3 COVID-19 Detection and Quantification 

The detection of COVID-19 is performed based on the prediction maps generated 

by the infection segmentation network. Accordingly, a CXR image is classified as 

COVID-19 positive if at least one pixel of lung areas is predicted as COVID-19 

infection, i.e., 𝑝(𝑥_𝑘  ) > 0.5. Otherwise, the image is considered as COVID-19 

negative, healthy people or patients with non-COVID-19 pneumonia. Furthermore, 

COVID-19 infection is quantified by computing the overall percentage of infected 

lungs. Equivalently, the sum of predicted infection pixels over the sum of predicted 

lung pixels. In addition, the infection percentage of each lung is computed, enabling 

doctors to assess the progress of COVID-19 for each lung individually.  

3.2.3 ConvNet Models for Chest X-ray Classification   

Choosing the best ConvNet for a specific problem is usually a tradeoff between 

the following two criteria: computational complexity and classification accuracy. 
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Therefore, we investigated several Deep Learning models, starting from shallow to 

deep models with sequential, residual, and dense connections. In this study, two 

classification schemes were considered: (i) COVID-19 recognition from SARS and 

MERS coronaviruses, (ii) COVID-19 recognition from non-COVID-19 infections and 

normal cases. For the first classification scheme, four pretrained models were 

investigated: SqueezeNet, ResNet18, DenseNet201, and InceptionV3. While for the 

second classification scheme, five pretrained models were investigated: ResNet18, 

ResNet50, DenseNet121, Densenet161, and InceptionV4. The output layer of each 

network was replaced by a SoftMax layer with three neurons to classify the X-ray 

images into one of the two 3-class schemes.  Details of the employed models are given 

below: 

SqueezeNet [68]: is the smallest network considered in this study, with 18 layers 

only. Introducing fire modules, where a squeeze convolutional layer with 1x1 kernels 

is fed to an expand layer that has a mix of 3x3 and 1x1 kernels. The network begins 

with a standalone convolutional layer, followed by eight fire block and end with a 

convolutional layer followed by a SoftMax layer. The number of kernels per fire 

module is increased gradually through the network. The network performs max-pooling 

after the first convolutional layer, 4th fire module, and 8th fire module. The compact 

architecture of SqueezeNet makes it favorable over other networks for such problems 

that it can achieve a comparable performance level.  

ResNet [69]: Overfitting is a well-known paradigm for training deep ConvNets 

that can drastically degrade the network performance when trained with scarce data. 

The overfitting problem becomes worse when higher number of training epochs are 

performed and eventually, the network saturates due to the vanishing gradients 

problem. ResNet introduces the concept of residual blocks, where the input and output 
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of stacked layers are merged by simple add-up, providing an extra path for the backward 

gradient flow. This prevents the vanishing gradients problem and enhances the 

generalization capabilities of the network. In this study three variants of ResNet model 

were considered: ResNet18, ResNet50, and ResNet152.  

DenseNet [70]: aggregates all feature maps instead of summing residuals. All 

layers in a dense block are densely connected to their subsequent layers, receiving extra 

supervision from previous layers. The dense structure creates a compact layer with little 

redundancy in the learned feature, where different network parts can share pieces of 

collective knowledge. In this study three variants of DenseNet model were considered: 

DeneNet121, DenseNet161, and DenseNet201. 

InceptionV3 [71]: showed improved performance compared to its deeper 

competitors in classifying different types of problems. Typically, larger kernels are 

favored for global features that are distributed over a large area of images. In contrast, 

smaller kernels are preferred for an area-specific feature that is distributed over image 

frame. This inspired the idea of inception layers, where kernels of different sizes (1x1, 

3x3, and 5x5) are concatenated within the same layer instead of going deeper into the 

network. The Inception architecture increases the network space, where the best 

features can be selected by training.  

InceptionV4 [72]: further factorized the convolutions and pruned the 

dimensions of the InceptionV3 network. Despite the lower complexity, it preserves a 

higher performance. 

3.2.3.1 Classification Loss Function 

The cross-entropy loss is used as the cost function for the classification 

networks. 

3.2.4 Transfer Learning 
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Transfer learning is a well-established Deep Learning approach, where gained 

knowledge from one problem is applied to a different but a related problem. To ensure 

an efficient training and faster convergence, transfer learning was utilized for the 

classification networks and on the encoder side of the segmentation networks by 

initializing the convolutional layers with ImageNet [73] weights. 

3.2.5 ConvNet Output Visualization   

 Visualization techniques help in understanding the internal mechanisms of 

ConvNet and the reasoning behind the network making a specific decision. In addition, 

it interprets the results in a way that is easily understandable to human, thereby 

increasing the confidence of ConvNet outcomes. The main visualization technique 

employed in literature is Gradient-weighted class Activation Map (Grad-CAM)  [74], 

where activation maps are generated by backward passing the gradients of the target 

class back to the final convolutional layer in the network to produce the localization 

map. The localization map Grad − 𝐶𝐴𝑀 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 ∈ ℝℎ𝑥𝑤 of height ℎ and width 𝑤 

for class 𝑐 is obtained by first computing the gradients of the score of target class with 

respect to the feature map 𝐴𝑘 as 
𝜕𝑦𝑐

𝜕𝐴𝑘 where 𝑦𝑐 is the network output before SoftMax. 

Next, the gradients are backward passed through global average pooling to compute the 

𝛼 weights, which highlights the importance of feature map k for the decision making 

of target class c: 

                                                        𝛼𝑘
𝑐 =

1

𝑍
∑ ∑  

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘𝑗𝑖                                                      (4) 

Finally, a weighted combination of activation maps 𝐴𝑘 is followed by ReLU to obtain 

Grad-CAM map: 

                                                  𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑘

𝑐𝐴𝑘
𝑘 )                                     (5) 

Recently, Score-CAM [75] was proposed as a promising alternative to GRD-
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CAM. Score-CAM gets rid of the dependencies on gradients by obtaining the weight 

of each activation map through forward passing scores of the target class. Given a 

ConvNet model 𝑦𝑐 = 𝑓(𝐶𝑋𝑅) that takes an input 𝐶𝑋𝑅 image and outputs a scalar 𝑦𝑐. 

The contribution of a specific feature map 𝐴𝑘 toward output 𝑦𝑐 is defined as follows: 

                                         𝛼𝑘
𝑐 = 𝑓(𝐶𝑋𝑅 ∘ 𝐻𝑙

𝑘) − 𝑓(𝐶𝑋𝑅)                                (6) 

where  

                                                                 𝐻𝑙
𝑘 = 𝑛(𝑈𝑝(𝐴𝑙

𝑘))                                            (7) 

𝑈𝑝(. ) denotes the up-sampling operation of 𝐴 into the input (𝐶𝑋𝑅) size, 𝑛(. ) is a 

normalization function that maps elements of input matrix into [0,1], and ∘ is the 

element-wise multiplication. Finally, the Score-CAM saliency map is computed using 

the same equation as Grad-CAM, Equation (5).  

 In this study, Score-CAM method is deployed to visualize the classification 

outputs of the proposed COVID-19 recognition system.  
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CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, first, the experimental setup is presented. Then, both numerical 

and visual results are reported with an extensive set of comparative evaluations.  

The findings of this thesis are published in two journal articles [47] and [76], 

which will be referred to as study Ⅰ and study Ⅱ in the upcoming section, respectively. 

In study Ⅰ, we released a unique dataset, COVID-family, consisting of 701 CXR images 

with their corresponding ground-truth lung masks targeting a challenging classification 

task to distinguish among different COVID family members: SARS, MERS, COVID-

19. A robust 2-stage system was employed, where first lung regions are segmented and 

then classified. In study Ⅱ, we proposed a more practical diagnosis solution for the 

current pandemic, recognizing COVID-19 positive cases from non-COVID-19 

infections or normal cases. We released the largest CXR lung mask dataset, COVID-

QU, with over 33k CXR images. A reliable end-to-end solution was provided not for 

CXR classification only but to localize and quantify COVID-19 infections as well using 

a robust 3-stage system (Figure 3).   

4.1 Experimental Setup 

In Study Ⅰ, a 2-stage image recognition system was proposed using the 

concatenation of lung segmentation and classification networks. The U-Net segmentation 

network was pre-trained and validated on the Montgomery [41] and Shenzhen [42] lung 

masks dataset. The pre-trained U-Net model was used to create lung masks for COVID-

19, MERS, and SARS chest X-ray images. Next, the lung masks were fine-tuned by the 

MDs to develop ground truth masks for the COVID-family dataset. The deep 

classification networks were evaluated on the compiled COVID-family dataset and their 

corresponding lung masks. Two classification schemes were considered: plain CXR 

classification and segmented CXR classification. Both networks were trained using 5-



  

34 

 

fold cross-validation (CV), with 80% train and 20% test (unseen folds), where 20% of 

training data is used as a validation set to avoid overfitting. The CXR images were 

resized to have a fixed dimension of 256x256 pixels to be used as the input for deep 

networks. The imbalance class distribution ratio of the dataset has a major impact on 

the performance of deep models. Therefore, the size of each class was balanced in the 

train set using data augmentation. We performed data augmentation by applying 

rotations of 5, 10, 20, and 25 degrees. In addition, horizontal and vertical image 

translations were used within the interval [-0.1, +0.1]. Table 1 summarizes the number 

of images per class used for training, validation, and testing at each fold. 

 

Table 1. Number of Images per Class and per Fold Used for Study Ⅰ 

Task Dataset Class # of 

Samples 

Training 

Samples 

Augmented 

Training 

Samples 

Validation 

Samples 

Test 

Samples 

Lung 

Segmentation 

Montgomery 

[41] and 

Shenzhen 

[42] 

 

- 

 

704 

 

450 

 

- 

 

112 

 

142 

CXR 

Classification 

COVID-

family 

COVID-19 423 270 1,890 68 85 

MERS 144 92 1,932 23 29 

SARS 134 89 1,806 21 26 

Total 701 451 5,628 112 140 

 

In study Ⅱ, both CXR classification and lung segmentation task were conducted 

over the constructed benchmark COVID-QU lung masks dataset. In contrast, the 

infection segmentation and COVID-19 detection tasks were conducted over a subset of 

2,913 CXR samples from COVID-QU dataset with corresponding infection masks from 

QaTa-Cov19 dataset [44]. All tasks were performed with 20% test set, and 80% train 

set, where 20% of training data was used as a validation set. Table 2 summarizes the 

number of images per class used for training, validation, and testing. 
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Table 2. Number of Images per Class and per Fold Used for study Ⅱ 

Dataset 

Name 

Task Class # of 

Samples 

Training 

Samples 

Validation 

Samples 

Test 

Samples 

 

COVID-QU 

dataset 

Lung 

Segmentation 

and 

CXR 

Classification 

COVID-19 11,956 7,658 1,903 2,395 

non-COVID-19 11,263 7,208 1,802 2,253 

Normal 10,701 6,849 1,712 2,140 

Total 33,920 21,715 5,417 6,788 

COVID-QU 

and 

QaTa-

Cov19 [44] 

datasets 

Infection 

Segmentation 

and 

COVID-19 

Detection 

COVID-19 positive 2,913 1,864 466 583 

COVID-19 

negative 

non-

COVID-19 

1,457 932 233 292 

Normal 1,456 932 233 291 

Total 5,826 3,728 932 1,166 

 

The performance of different ConvNet models was assessed using different 

evaluation metrics with 95% confidence intervals (CIs). Accordingly, CI for each 

evaluation metric was computed as follows: 

                        𝑟 = 𝓏√𝑚𝑒𝑡𝑟𝑖𝑐(1 − 𝑚𝑒𝑡𝑟𝑖𝑐)/𝑁                                               (8)       

where, N is the number of test samples, and z is the level of significance that is 1.96 for 

95% CI. 

4.1.1 Segmentation Evaluation Metrics 

The performance of the segmentation models is evaluated on a pixel-level, 

where the foreground (lung or infected region) was considered as the positive class and 

background as the negative class. Three evaluation metrics were computed to evaluate 

the segmentation performance:  

                                𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                             (9) 

where 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the ratio of the correctly classified pixels among the image pixels. 

TP, TN, FP, FN represent the true positive, true negative, false positive, and false 

negative, respectively.   

                            𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 (𝐼𝑜𝑈) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                             (10) 
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                   𝐷𝑖𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐷𝑆𝐶) =  
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
                                  (11) 

where, both 𝐼𝑜𝑈 𝑎𝑛𝑑 𝐷𝑆𝐶 are statistical measures of spatial overlap between the binary 

ground-truth segmentation mask and the predicted segmentation mask, while the main 

difference is that DSC considers double weight for 𝑇𝑃 pixels (true lung/lesion 

predictions) compared to IoU.  

4.1.2 Classification Evaluation Metrics 

The performance of different classification networks is assessed using five 

evaluation metrics: Accuracy, Precision, Sensitivity, F1-score, and Specificity. 

Per-class values were computed over the overall confusion matrix that accumulates all 

test fold results of the 5-fold cross-validation. 

     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠_𝑖 =
𝑇𝑃𝑐𝑙𝑎𝑠𝑠_𝑖+𝑇𝑁𝑐𝑙𝑎𝑠𝑠_𝑖

𝑇𝑃𝑐𝑙𝑎𝑠𝑠_𝑖+𝑇𝑁𝑐𝑙𝑎𝑠𝑠_𝑖+𝐹𝑃𝑐𝑙𝑎𝑠𝑠_𝑖+𝐹𝑁𝑐𝑙𝑎𝑠𝑠_𝑖
                                          (12) 

where accuracy is the ratio of correctly classified CXR samples among all the data. 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠_𝑖 =
𝑇𝑃𝑐𝑙𝑎𝑠𝑠_𝑖

𝑇𝑃𝑐𝑙𝑎𝑠𝑠_𝑖+𝐹𝑃𝑐𝑙𝑎𝑠𝑠_𝑖
                                                                 (13) 

where precision is the rate of correctly classified positive class CXR samples among all 

the samples classified as positive samples. 

                 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖
=

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖
+𝐹𝑁𝑐𝑙𝑎𝑠𝑠𝑖

                                                              (14) 

where sensitivity is the rate of correctly predicted positive samples in the positive class 

samples, 

                𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠_𝑖 =
𝑇𝑁𝑐𝑙𝑎𝑠𝑠_𝑖

𝑇𝑁𝑐𝑙𝑎𝑠𝑠_𝑖+𝐹𝑃𝑐𝑙𝑎𝑠𝑠_𝑖
                                                            (15) 

where specificity is the sensitivity of the negative class. 

        𝐹1_𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖
= 2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠𝑖
×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠𝑖
+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖

                                              (16) 

where F1_score is the harmonic mean of precision and sensitivity.  

Besides 𝑐𝑙𝑎𝑠𝑠𝑖 = COVID-19, MERS or SARS for the first classification scheme, or 
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COVID-19, non-COVID-19 or Normal for the second scheme.      

The overall performance for each metric is computed using the weighted average 

values of each class.  

                        𝑚𝑒𝑡𝑟𝑖𝑐𝑥 =
∑ 𝑛𝑐𝑙𝑎𝑠𝑠𝑖

(𝑚𝑒𝑡𝑟𝑖𝑐𝑥𝑐𝑙𝑎𝑠𝑠𝑖
)𝑐𝑙𝑎𝑠𝑠𝑖

𝑁
                                                   (17)   

where 𝑚𝑒𝑡𝑟𝑖𝑐𝑥 = Accuracy, Precision, Sensitivity, F1score, or specificity.  

Finally, 𝑛𝑐𝑙𝑎𝑠𝑠𝑖
 is the total number of cases per class, and 𝑁 is the total number of all 

cases. 

PyTorch [77] library with Python 3.7 was used to train and evaluate the deep 

ConvNet networks, with an 8-GB NVIDIA GeForce GTX 1080 GPU card.  Adam 

optimizer was used with the initial learning rate, 𝛼 = 10−4 , momentum updates, 𝛽1 =

0.9 and 𝛽2 = 0.999, an adaptive learning rate which decreases the learning parameter 

by a factor of 5 if validation loss did not improve for 3 consecutive epochs, early 

stopping criterion of 8 epochs, where training stops if validation loss did not improve 

for 8 consecutive epochs, and mini-batch size of 4 images with 40 back propagation 

epochs.  

4.2 Experimental Results 

In this section, numerical and quantitative evaluation results for study Ⅰ and 

study Ⅱ are presented. 

4.2.1 Experimental Results for Study Ⅰ 

The performance of the proposed 2-stage image recognition system is detailed 

in this section. The deep ConvNet based classification networks were evaluated on the 

benchmark COVID-family dataset. Two classification schemes (plain and segmented 

CXR classification) were evaluated, and the outcome was interpreted with the help of 

Score-CAM visualization technique. 
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4.2.1.1 Lung Segmentation Results  

The U-Net segmentation model was trained and evaluated on 704 CXR samples 

with ground-truth lung masks of the Montgomery and Shenzhen dataset, as shown in 

Table 3. The model showed promising segmentation performance with IoU and DSC 

of 93.11% and 96.35%, respectively, on the two publicly available datasets.  

 

Table 3. Performance Metrics for Lung Region Segmentation Using U-Net Model 

Network Accuracy (%) IoU (%) DSC (%) 

U-Net 98.21 ± 0.98 93.11 ± 1.87 96.35 ± 1.39 

 

The qualitative evaluation of the trained U-Net model on the compiled COVID-

family dataset images is presented in Figure 7. The model can reliably segment the lung 

images if the lung areas are distinguishable; however, the segmentation network suffers 

from severely infected lungs due to the whitened infection area in the lungs. Predicted 

lung masks by the U-Net model were revised by medical doctors to ensure that the 

segmentation masks encapsulate the entire lung region.  
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Figure 7. Qualitative evaluation of the U-Net model. Original X-ray images (left), lung 

mask generated by the trained U-Net model and corresponding segmented lung, fine-

tuned mask by the radiologist, and their corresponding lung segment 

 

4.2.1.2 Classification Results  

Table 4 summarizes the classification performances of the deep ConvNet 

models in-terms of the per-class performance metrics for plain and segmented X-ray 

image classifications. For each network, four different pre-processing schemes 

(original, CLAHE, complemented, and 3-channel) were compared, and the best 

performing scheme is presented in Table 4. For plain X-ray images, it was observed 
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that SqueezeNet achieved the best classification performance on original images, while 

ResNet18 and Inceptionv3 outperformed on 3-channel images. For the segmented lung 

X-ray images, SqueezeNet and InceptionV3 showed the best performance with the 

original lung images without any pre-processing, and InceptionV3 outperformed all the 

networks. On the other hand, ResNet18 and DenseNet201 performed better on 3-

Channel images. In general, the investigated ConvNet models showed high COVID-19 

sensitivity values (>96%) for segmented data, while it showed varying results with 

plain X-rays. For instance, with plain X-ray, SqueezeNet showed 91.97% COVID-19 

sensitivity, while InceptionV3 showed 99.53% COVID-19 sensitivity. For SARS and 

MERS, the InceptionV3 network achieved the highest sensitivities for a plain and 

segmented lung X-ray images. The sensitivity for MERS and SARS detection were 

93.1%/79.68% and 97.04%/90.26% for plain/segmented lung CXRs, respectively. It is 

evident that the overall performance for MERS detection significantly degrades with 

segmentation. This is most likely due to a large number of lower-quality chest X-ray 

images in the MERS dataset. Even though the performance degrades with segmented 

lungs, as the network learns from the main region of interest (lung area), the results 

obtained from the segmented lungs are much more reliable.  
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Table 4. Performance Metrics (%) for Four Classification Networks: SqueezeNet, 

ResNet18, InceptionV3, and DenseNet201. The Best Preprocessing Technique is 

Reported for Each Network. 

 Network Class Accuracy Precision Sensitivity F1-score Specificity 

Plain  

X-rays 

SqueezeNet 

(Original) 

COVID-19 88.27 ± 3.07 89.31 ± 2.94 91.97 ± 2.59 90.48 ± 2.8 82.63 ± 3.61 

MERS 91.56 ± 4.54 84.97 ± 5.84 72.09 ± 7.33 77.58 ± 6.81 96.58 ± 2.97 

SARS 91.86 ± 4.63 77.32 ± 7.09 81.25 ± 6.61 78.9 ± 6.91 94.36 ± 3.91 

Overall 89.77 ± 2.24 86.13 ± 2.56 85.84 ± 2.58 85.98 ± 2.57 88.02 ± 2.4 

ResNet18 

(3-Channel) 

COVID-19 94.04 ± 2.26 92.99 ± 2.43 97.88 ± 1.37 95.29 ± 2.02 88.21 ± 3.07 

MERS 96.03 ± 3.19 94.34 ± 3.77 85.49 ± 5.75 89.5 ± 5.01 98.75 ± 1.81 

SARS 97.16 ± 2.81 96.17 ± 3.25 88.89 ± 5.32 91.97 ± 4.6 99.12 ± 1.58 

Overall 95.02 ± 1.61 93.88 ± 1.77 93.61 ± 1.81 93.74 ± 1.79 92.41 ± 1.96 

Inceptionv3 

(3-Channel) 

COVID-19 97.87 ± 1.38 97.13 ± 1.59 99.53 ± 0.65 98.29 ± 1.24 95.36 ± 2 

MERS 98.3 ± 2.11 98.4 ± 2.05 93.1 ± 4.14 95.56 ± 3.36 99.64 ± 0.98 

SARS 99.29 ± 1.42 99.2 ± 1.51 97.04 ± 2.87 98.08 ± 2.32 99.82 ± 0.72 

Overall 98.22 ± 0.98 97.79 ± 1.09 97.73 ± 1.1 97.76 ± 1.1 97.07 ± 1.25 

DenseNet201 

(complement) 

COVID-19 96.17 ± 1.83 96.55 ± 1.74 97.18 ± 1.58 96.85 ± 1.66 94.64 ± 2.15 

MERS 97.02 ± 2.78 93.57 ± 4.01 91.72 ± 4.5 92.63 ± 4.27 98.39 ± 2.06 

SARS 98.86 ± 1.8 97.23 ± 2.78 97.04 ± 2.87 97.05 ± 2.86 99.3 ± 1.41 

Overall 96.84 ± 1.29 96.07 ± 1.44 96.03 ± 1.45 96.05 ± 1.44 96.28 ± 1.4 

Segmented 

X-rays 

SqueezeNet 

(Original) 

COVID-19 92.12 ± 2.57 91.51 ± 2.66 96.22 ± 1.82 93.71 ± 2.31 85.83 ± 3.32 

MERS 91.26 ± 4.61 83.01 ± 6.13 71.31 ± 7.39 75.92 ± 6.98 96.41 ± 3.04 

SARS 92.88 ± 4.35 82.58 ± 6.42 80.6 ± 6.7 81.28 ± 6.6 95.78 ± 3.4 

Overall 88.13 ± 2.39 88.05 ± 2.4 88.13 ± 2.39 88.09 ± 2.4 89.89 ± 2.23 

ResNet18 

(3-Channel) 

COVID-19 93.01 ± 2.43 91.74 ± 2.62 97.16 ± 1.58 94.37 ± 2.2 86.69 ± 3.24 

MERS 92.44 ± 4.32 85.27 ± 5.79 76.39 ± 6.94 80.59 ± 6.46 96.59 ± 2.96 

SARS 95.44 ± 3.53 91.13 ± 4.81 84.33 ± 6.16 87.6 ± 5.58 98.06 ± 2.34 

Overall 91.12 ± 2.11 91.2 ± 2.1 91 ± 2.12 91 ± 2.12 93.58 ± 1.81 

Inceptionv3 

(Original) 

COVID-19 94.84 ± 2.11 94.85 ± 2.11 96.94 ± 1.64 95.82 ± 1.91 91.63 ± 2.64 

MERS 93.41 ± 4.05 86.87 ± 5.52 79.68 ± 6.57 82.62 ± 6.19 96.95 ± 2.81 

SARS 96 ± 3.32 88.97 ± 5.3 90.26 ± 5.02 89.58 ± 5.17 97.35 ± 2.72 

Overall 92.12 ± 1.99 92.08 ± 2 92.12 ± 1.99 92.1 ± 2 93.81 ± 1.78 

DenseNet201 

(3-Channel) 

COVID-19 94.12 ± 2.24 93.2 ± 2.4 97.64 ± 1.45 95.3 ± 2.02 88.74 ± 3.01 

MERS 93.27 ± 4.09 89.75 ± 4.95 75.57 ± 7.02 81.93 ± 6.28 97.84 ± 2.37 

SARS 94.86 ± 3.74 86.38 ± 5.81 87.21 ± 5.65 86.42 ± 5.8 96.66 ± 3.04 

Overall 91.12 ± 2.11 91.18 ± 2.1 91.12 ± 2.11 91.15 ± 2.1 92.11 ± 2 
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Figure 8 shows the comparative ROC curves for different networks for different 

pre-processing schemes with plain and segmented X-rays. For plain X-rays, it is 

apparent from Figure 8(A) that Inceptionv3 outperforms other models over the original 

dataset while DenseNet201 and ResNet18 obtain a close performance, even though 

DenseNet201 is a very deep network compared to ResNet18. In contrast, the 

performance of SqueezeNet is comparable to the significantly deeper network, 

DenseNet201. Interestingly, the performances of InceptionV3, ResNet18, and 

DenseNet201 are comparable in the case of CLAHE images, and SqueezeNet shows a 

promising performance as well (Figure 8(B)). However, there is no notable 

performance improvement observed by this pre-processing scheme rather than making 

the classification less network independent. Figure 8(C) shows that significant 

performance improvement can be achieved using deeper networks with the 

complemented image. In contrast, the performance degrades for ResNet18 and 

especially for SqueezeNet. Figure 8(D) clearly depicts that the 3-channel scheme 

significantly improves the classification performance of InceptionV3 and ResNet18. 

However, this is not the case for DenseNet201 and SqueezeNet. On the other hand, with 

segmented X-rays, the four networks showed close performance for different pre-

processing techniques (Figure 8(E-H)). Therefore, it can be concluded that proper 

segmentation can guide the network to learn from lung regions mainly. Thus, it makes 

the classification problem less dependent on the preprocessing technique. In addition, 

it eases the recognition task for the shallow networks, allowing them to achieve 

comparable results to their deeper competitors. Consequently, InceptionV3 using the 

original dataset without any preprocessing, showed the best classification performance 

for segmented X-rays. 

In a nutshell, the performance gain from a specific pre-processing technique is 
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both problem and network dependent. Additionally, for future studies, it is worth 

investigating the effect of the ensemble technique on the X-ray classification scheme. 

The ensemble approach combines the output from several networks trained with 

different pre-processing techniques to generate the final classification output, rather 

than the 3-channel scheme used in this study, where the variants of the pre-processed 

input X-ray are combined and fed to a single network to make the final decision. 
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Figure 8. Comparison of the ROC for four networks using plain X-ray images (A-D) 

and segmented lung images (E-H): Original images (A/E), Complemented images 

(B/F), CLAHE images (C/G), and 3-channel images (D/H) 

 

Score-CAM can help to localize the main regions of the input CXR that 

contributes to the ConvNet prediction. Figure 9 shows the Score-CAM saliency map 

for COVID-19, MERS, and SARS examples. It can be observed that with plain X-ray 

inputs, the ConvNets are learning irrelevant features from non-lung areas. In contrast, 
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with segmented X-rays, ConvNets are restricted to learn from the lung areas only. 

Therefore, the dominant contributing regions in the ConvNet decision-making are the 

lung areas. 

  

 

Figure 9. Examples of probabilistic saliency maps for COVID-19, MERS and SARS 

patients: (A) Plain CXR image, (B) Score-CAM for plain CXR inferred by InceptionV3 

network, and (C) Score-CAM for segmented CXR inferred by InceptionV3 network 

 

Figure 10 shows sample miss-classified X-ray images, corresponding lung 

image and Score-CAM visualization for COVID-19, MERS, and SARS images to 

identify the potential reasons of the network failure. It can be seen from Figure 10 that 

InceptionV3 failed to classify the lung images properly if the network did not learn 

from the lung areas exclusively whereas, for those images that are correctly classified 
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by the network, Score-CAM is showing that the ConvNet model is learning from the 

entire lung region. Therefore, it can be summarized that the reliable segmentation of 

lung from the X-ray images and the use of segmented X-ray images for the 

classification problem can significantly increase the reliability of AI-based computer-

aided diagnosis applications. 

 

 

Figure 10. Comparison of the Score-CAM for correctly classified and miss-classified 

CXR images by InceptionV3 

 

4.2.2 Experimental Results for Study Ⅱ 

In this section, qualitative and quantitative evaluation over the benchmark 

COVID-QU dataset is presented for the proposed end-to-end COVID-19 recognition 

system. An extensive set of experiments was performed for lung segmentation, lesion 

segmentation, COVID-19 detection, CXR classification tasks. 
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4.2.2.1 Lung Segmentation Results  

The performance of the lung segmentation models over the test (unseen) set is 

tabulated in Table 5. Each model was evaluated with five different encoder structures. 

For all models, it was observed that DenseNet encoders give the top-segmentation 

performance as they can share pieces of collective knowledge by densely connecting 

convolutional layers to their subsequent layers, therefore, preserving the information 

coming from the earlier layer through the output layer. The FPN model with 

DenseNet121 encoder holds the leading performance with 96.11% IoU, and 97.99% 

DSC.  

 

Table 5. Performance Metrics (%) for Lung Region Segmentation Computed over Test 

(Unseen) Set with Three Network Models and Five Encoder Architectures. 

Model Encoder Accuracy IoU DSC 

U-Net 

ResNet18 99.07 ± 0.23 95.91 ± 0.47 97.88 ± 0.34 

ResNet50 99.08 ± 0.23 95.93 ± 0.47 97.89 ± 0.34 

DenseNet121 99.1 ± 0.22 96.06 ± 0.46 97.96 ± 0.34 

DenseNet161 99.1 ± 0.22 96.02 ± 0.47 97.94 ± 0.34 

InceptionV4 99.07 ± 0.23 95.9 ± 0.47 97.88 ± 0.34 

U-Net ++ 

ResNet18 99.07 ± 0.23 95.9 ± 0.47 97.88 ± 0.34 

ResNet50 99.1 ± 0.22 96.04 ± 0.46 97.95 ± 0.34 

DenseNet121 99.11 ± 0.22 96.1 ± 0.46 97.98 ± 0.33 

DenseNet161 99.09 ± 0.23 95.98 ± 0.47 97.92 ± 0.34 

InceptionV4 99.08 ± 0.23 95.96 ± 0.47 97.91 ± 0.34 

FPN 

ResNet18 99.06 ± 0.23 95.86 ± 0.47 97.86 ± 0.34 

ResNet50 99.07 ± 0.23 95.91 ± 0.47 97.88 ± 0.34 

DenseNet121 99.12 ± 0.22 96.11 ± 0.46 97.99 ± 0.33 

DenseNet161 99.09 ± 0.23 96.01 ± 0.47 97.94 ± 0.34 

InceptionV4 99.07 ± 0.23 95.92 ± 0.47 97.89 ± 0.34 

 

The outputs of the top three networks compared with the ground-truth are shown 

in Figure 11. An interesting observation is that the three networks can reliably segment 

lung regions not only for COVID-19 cases, but for non-COVID-19 pneumonia as well 
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with different severity levels: mild, moderate, or severe. This elegant performance is 

empowered by the large COVID-QU dataset (over 33k samples), which encapsulates 

CXR samples with different quality, resolution, and SNR levels from COVID-19, non-

COVID-19 and normal classes. Therefore, the constructed benchmark dataset can help 

researchers to overcome the challenges and limitations faced, mainly in the lung 

segmentation phase for COVID-19 or other lung pathology problems. As most of the 

previous approaches were trained over Montgomery [41] and Shenzhen [42] CXR lung 

mask dataset which comprise of medium and high-quality X-ray images from normal 

and TB classes. Therefore, previous segmentation approaches were falling in unseen 

scenarios, such as severe infection or low-quality images [28].  
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Figure 11. Qualitative evaluation of generated lung masks by top three networks.  CXR 

image (1st column), ground truth (2nd column), and the lung masks of the top three 

networks (columns 3-5). 

 

4.2.2.2 Infection Segmentation Results  

The infection segmentation model was first evaluated over two different 

configurations: cascaded and parallel segmentation. For the cascaded scheme, first lung 

region was segmented using the lung segmentation model, then the segmented CXR 
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was fed to the infection segmentation model. While the plain CXR was fed to both 

models independently for the parallel scheme. FPN model with DenseNet161 encoder 

was trained and evaluated on both schemes (Table 6). The parallel scheme showed 

slightly better results with 87.08% DSC compared to 86.84% DSC for the cascaded 

scheme. Therefore, the parallel scheme was used as the main configuration for the 

remaining experiments. 

 

Table 6. Performance Metrics (%) for COVID-19 Infected Region Segmentation Using 

Two Types of Inputs: Plain CXR, and Segmented CXR 

Model Encoder Input Accuracy IoU DSC 

FPN DenseNet161 

Plain CXR 97.95 ± 0.81 81.89 ± 2.21 87.08 ± 1.93 

Segmented 

CXR 
97.99 ± 0.81 81.86 ± 2.21 86.84 ± 1.94 

 

The performance of the infection segmentation models is presented in Table 7. 

U-Net++ model with DenseNet121 encoder showed the best performance with IoU and 

DSC values of 83.05% and 88.21%, respectively. Besides, InceptionV4 encoder has 

achieved the highest performance among FPN models with 83.08% IoU and 88.13% 

DSC. In contrast, the shallowest encoder, ResNet18 presented the leading performance 

among U-Net models with IoU and DSC values of 82.92% and 88.1%, respectively.  
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Table 7. Performance Metrics (%) for COVID-19 Infected Region Segmentation 

Computed over Test (Unseen) Set with Three Network Models, and Five Encoder 

Architectures. 

Model Encoder Accuracy IoU DSC 

U-Net 

ResNet18 98.02 ± 0.8 82.92 ± 2.16 88.1 ± 1.86 

ResNet50 97.84 ± 0.83 81.73 ± 2.22 87.02 ± 1.93 

DenseNet121 97.98 ± 0.81 82.53 ± 2.18 87.74 ± 1.88 

DenseNet161 97.86 ± 0.83 81.95 ± 2.21 87.19 ± 1.92 

InceptionV4 97.98 ± 0.81 82.03 ± 2.2 87.11 ± 1.92 

U-Net 

++ 

ResNet18 97.9 ± 0.82 82.9 ± 2.16 88.06 ± 1.86 

ResNet50 97.93 ± 0.82 82.59 ± 2.18 87.78 ± 1.88 

DenseNet121 97.97 ± 0.81 83.05 ± 2.15 88.21 ± 1.85 

DenseNet161 97.95 ± 0.81 81.55 ± 2.23 86.66 ± 1.95 

InceptionV4 97.9 ± 0.82 81.13 ± 2.25 86.22 ± 1.98 

FPN 

ResNet18 97.84 ± 0.83 81.9 ± 2.21 87.25 ± 1.91 

ResNet50 97.84 ± 0.83 80.83 ± 2.26 86.25 ± 1.98 

DenseNet121 97.99 ± 0.81 82.55 ± 2.18 87.71 ± 1.88 

DenseNet161 97.95 ± 0.81 81.89 ± 2.21 87.08 ± 1.93 

InceptionV4 97.99 ± 0.81 83.08 ± 2.15 88.13 ± 1.86 

 

Figure 12(a) shows the robustness of top-three networks to reliably segment 

COVID-19 infections of various shapes (small, medium, or large infection) with 

different severity levels (mild, moderate, severe, or critical infection). In general, the 

FPN models produced smoother masks with better localization of infected regions 

compared to U-Net and U-Net ++ models. This can be inspired by the hierarchy 

architecture of FPN where predictions are made on each spatial level of the decoder 

path, then merged to produce the final prediction mask, whereas only the final decoder 

block is used to generate the prediction mask in U-Net and U-Net ++ models. Figure 

12(b) shows infection localization and severity grading of COVID-19 pneumonia for a 

42-year female patient on the 1st day (admission to hospital), 2nd day, and 3rd day 

using the proposed COVID-19 recognition system. 
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Figure 12. (a) Qualitative evaluation of generated infection masks by top three 

networks.  CXR image (1st column), ground truth (2nd column), and the infection 

masks of the top three networks (columns 3-5). (b) Infection localization and severity 

grading of COVID-19 pneumonia for a 42-year female patient on the 1st, 2nd, and 3rd 

days using the proposed system. 
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4.2.2.3 COVID-19 Detection Results 

The performance of infection segmentation networks for COVID-19 detection 

from the CXR images is presented in Table 8. The sensitivity was considered as the 

primary metric for the detection task, as missing any COVID-19 positive case is critical. 

All the networks achieved high sensitivity values (>97%), where U-Net with 

DenseNet121 backbone and FPN with ResNet18 backbone achieved the best 

performance with 99.66% sensitivity. Similarly, all models showed elegant specificity 

values (>97%), where U-Net++ with ResNet18 backbone achieved the top performance 

with 100% specificity, indicating the absence of false alarm rate. 

 

Table 8. COVID-19 Detection Performance Results (%) Computed Over Test (Unseen) 

Set with Three Network Models and Five Encoder Architectures. 

Model Encoder Accuracy Precision Sensitivity F1-score Specificity 

U-Net 

ResNet18 98.89 ± 0.6 99.14 ± 0.53 98.63 ± 0.67 98.88 ± 0.6 99.14 ± 0.53 

ResNet50 98.89 ± 0.6 98.47 ± 0.7 99.31 ± 0.48 98.89 ± 0.6 98.46 ± 0.71 

DenseNet121 98.8 ± 0.62 97.98 ± 0.81 99.66 ± 0.33 98.81 ± 0.62 97.94 ± 0.82 

DenseNet161 98.71 ± 0.65 97.97 ± 0.81 99.49 ± 0.41 98.72 ± 0.65 97.94 ± 0.82 

InceptionV4 98.03 ± 0.8 98.28 ± 0.75 97.77 ± 0.85 98.02 ± 0.8 98.28 ± 0.75 

U-Net ++ 

ResNet18 99.23 ± 0.5 100 ± 0 98.46 ± 0.71 99.22 ± 0.5 100 ± 0 

ResNet50 99.14 ± 0.53 99.83 ± 0.24 98.46 ± 0.71 99.14 ± 0.53 99.83 ± 0.24 

DenseNet121 99.23 ± 0.5 99.14 ± 0.53 99.31 ± 0.48 99.22 ± 0.5 99.14 ± 0.53 

DenseNet161 98.2 ± 0.76 97.95 ± 0.81 98.46 ± 0.71 98.2 ± 0.76 97.94 ± 0.82 

InceptionV4 98.2 ± 0.76 98.45 ± 0.71 97.94 ± 0.82 98.19 ± 0.77 98.46 ± 0.71 

FPN 

ResNet18 98.54 ± 0.69 97.48 ± 0.9 99.66 ± 0.33 98.56 ± 0.68 97.43 ± 0.91 

ResNet50 98.46 ± 0.71 98.46 ± 0.71 98.46 ± 0.71 98.46 ± 0.71 98.46 ± 0.71 

DenseNet121 98.97 ± 0.58 99.65 ± 0.34 98.28 ± 0.75 98.96 ± 0.58 99.66 ± 0.33 

DenseNet161 98.11 ± 0.78 97.3 ± 0.93 98.97 ± 0.58 98.13 ± 0.78 97.26 ± 0.94 

InceptionV4 99.23 ± 0.5 99.31 ± 0.48 99.14 ± 0.53 99.22 ± 0.5 99.31 ± 0.48 

 

4.2.2.4 Classification Results 

The classification network was used for a 3-class recognition scheme to classify 

CXR images as COVID-19, non-COVID-19, or normal. However, this network will be 
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removed in future studies once ground-truth infection masks are created for non-

COVID-19 cases. Therefore, the binary masks generated by infection segmentation 

models can be extended to a 3-channel infection mask, where the channels denote: 

background, non-COVID-19 lesion, and COVID-19 lesions.  Thus, the multi-channel 

infection mask can be used to distinguish between COVID-19, non-COVID-19, or 

normal images.  

The recognition was first evaluated on two schemes: plain CXR and segmented 

CXR classification.  InceptionV4 was trained and evaluated on both schemes (Table 9). 

Similar findings to study Ⅰ were observed, where the performance degrades with 

segmented CXR. An Overall sensitivity of 95.53% was achieved with plain CXR, while 

91.95% sensitivity was achieved with segmented CXR. However, the results are more 

reliable with segmented CXR as the network learns from the main regions of interest, 

lung areas (Figure 13). Therefore, the cascaded configuration was used for the 

classification scheme with the concatenation of lung segmentation and classification 

models. 

 

Table 9. Performance Metrics (%) for the 3-Class Recognition Scheme Using Two 

Types of Inputs: Plain CXR, and Segmented CXR 

Model Input Accuracy Precision Sensitivity F1-score Specificity 

InceptionV4 

Plain CXR 97.07 ± 0.4 95.6 ± 0.49 95.53 ± 0.49 95.55 ± 0.49 97.84 ± 0.35 

Segmented 

CXR 

94.65 ± 0.54 91.98 ± 0.65 91.95 ± 0.65 91.96 ± 0.65 96 ± 0.47 
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Figure 13. Examples of probabilistic saliency maps for COVID-19, non-COVID-19 

and normal cases: (A) Plain CXR image, (B) Score-CAM for plain CXR inferred by 

InceptionV4 network, and (C) Score-CAM for segmented CXR inferred by 

InceptionV4 network. 

 

The performance of different classification models is presented in Table 10. 

DenseNet models and InceptionV4 showed better performance compared to ResNet 

family models. InceptionV4 achieved the best overall sensitivity of 91.95%, with per 

class sensitivities of 91.52%, 93.21%, and 91.12 for COVID-19, non-COVID-19, and 

normal classes, respectively. DenseNet161 has achieved the highest sensitivity for the 

COVID-19 class, 92.82%. However, it showed lower sensitivity to non-COVID-19 

cases, 87.71%.  

Comparing the best achieved COVID-19 sensitivity from the classification 

scheme, 91.52%, with the achieved sensitivities using the COVID-19 detection scheme 
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based on infection masks, >97%, we can clearly see around 6% drop in performance. 

However, as mentioned previously, the infection segmentation models were trained and 

evaluated on a subset of COVID-QU dataset, 2913 CXR images, with mild, moderate, 

and severe cases. On the other hand, the full dataset was utilized for the classification 

task, including 11956 COVID-19 CXR images with different severity levels, including 

early cases with minimum or no signs of COVID-19 pneumonia. Therefore, the 

network can confuse those cases with normal or non-COVID-19 cases. Thus, the 

overall performance degrades.  

 

Table 10. Performance Metrics (%) for the 3-Class Recognition Scheme Computed 

over Test (Unseen) Set with Four Network Models. 

Model Class Accuracy Precision Sensitivity F1-score Specificity 

ResNet18 

Normal 92.1 ± 0.64 86.03 ± 0.82 89.49 ± 0.73 87.73 ± 0.78 93.31 ± 0.59 

COVID-19 92.37 ± 0.63 93.59 ± 0.58 84.13 ± 0.87 88.61 ± 0.76 96.86 ± 0.41 

non-COVID 92.84 ± 0.61 86.67 ± 0.81 92.68 ± 0.62 89.57 ± 0.73 92.92 ± 0.61 

Overall 92.44 ± 0.63 88.91 ± 0.75 88.66 ± 0.75 88.65 ± 0.75 94.43 ± 0.55 

ResNet50 

Normal 93.56 ± 0.58 88.34 ± 0.76 91.68 ± 0.66 89.98 ± 0.71 94.43 ± 0.55 

COVID-19 94.05 ± 0.56 91.5 ± 0.66 91.65 ± 0.66 91.57 ± 0.66 95.36 ± 0.5 

non-COVID 93.18 ± 0.6 91.28 ± 0.67 87.84 ± 0.78 89.53 ± 0.73 95.83 ± 0.48 

Overall 93.61 ± 0.58 90.43 ± 0.7 90.39 ± 0.7 90.39 ± 0.7 95.22 ± 0.51 

DenseNet121 

Normal 94.45 ± 0.54 88.54 ± 0.76 94.63 ± 0.54 91.48 ± 0.66 94.36 ± 0.55 

COVID-19 94.59 ± 0.54 95.97 ± 0.47 88.39 ± 0.76 92.02 ± 0.64 97.97 ± 0.34 

non-COVID 94.55 ± 0.54 91.02 ± 0.68 92.72 ± 0.62 91.86 ± 0.65 95.46 ± 0.5 

Overall 94.53 ± 0.54 91.98 ± 0.65 91.79 ± 0.65 91.8 ± 0.65 96 ± 0.47 

DenseNet161 

Normal 93.97 ± 0.57 88.28 ± 0.77 93.27 ± 0.6 90.71 ± 0.69 94.3 ± 0.55 

COVID-19 94.73 ± 0.53 92.28 ± 0.63 92.82 ± 0.61 92.55 ± 0.62 95.77 ± 0.48 

non-COVID 93.83 ± 0.57 93.3 ± 0.59 87.71 ± 0.78 90.42 ± 0.7 96.87 ± 0.41 

Overall 94.19 ± 0.56 91.36 ± 0.67 91.27 ± 0.67 91.26 ± 0.67 95.67 ± 0.48 

InceptionV4 

Normal 94.27 ± 0.55 90.74 ± 0.69 91.12 ± 0.68 90.93 ± 0.68 95.72 ± 0.48 

COVID-19 94.84 ± 0.53 93.72 ± 0.58 91.52 ± 0.66 92.61 ± 0.62 96.65 ± 0.43 

non-COVID 94.8 ± 0.53 91.3 ± 0.67 93.21 ± 0.6 92.25 ± 0.64 95.59 ± 0.49 

Overall 94.65 ± 0.54 91.98 ± 0.65 91.95 ± 0.65 91.96 ± 0.65 96 ± 0.47 

 

4.2.2.5 Computational Complexity Analysis 

Table 11 compares the segmentation models in terms of computational 
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inference time and the number of trainable parameters. The results present the running 

time per CXR sample. It can be seen that FPN and U-Net models are faster than U-Net 

++ models, due to their shallow and close structures. FPN with ResNet18 encoder is 

the fastest network taking up to 5.74 ms per image. In contrast, U-Net++ model is the 

slowest with the largest number of trainable parameters. The most computationally 

demanding model is UNet++ with InceptionV4 encoder with 59.35M trainable 

parameters. However, UNet++ with DenseNet161 encoder is the slowest, with an 

inference time of 48.62 ms, as it is the deepest model with 161 layers.  

 

Table 11. The Number of Trainable Parameters of The Segmentation Models with Their 

Inference Time (ms) per CXR Sample. 

Model Encoder Trainable parameters Inference Time (ms) 

U-Net 

ResNet18 14.32 M 5.78 

ResNet50 32.50 M 10.44 

DenseNet121 13.60 M 22.86 

DenseNet161 38.73 M 29.74 

InceptionV4 48.79 M 26.53 

U-Net ++ 

ResNet18 15.96 M 8.30 

ResNet50 48.97 M 19.90 

DenseNet121 30.06 M 25.13 

DenseNet161 79.04 M 48.62 

InceptionV4 59.35 M 32.53 

FPN 

ResNet18 13.04 M 5.74 

ResNet50 26.11 M 10.34 

DenseNet121 9.29 M 22.68 

DenseNet161 29.49 M 29.62 

InceptionV4 43.57 M 26.08 

 

The computational complexity and inference time of the classification models 

is presented in Table 12. ResNet18 has achieved the fastest speed performance with 

3.83 ms, while DenseNet161 is the slowest with 27.40ms. Therefore, the overall 

inference time for the full system is <100ms, where lung and infection segmentation 
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models are used in parallel, and the classification system is used in a sequential manner, 

cascaded with the lung segmentation model. Moreover, for systems with limited 

computational capabilities, where one model can run at a time, the three models can be 

used in sequence. This will increase the inference time, <150ms. However, we can still 

say that the full system can be used for real-time clinical applications. 

 

Table 12. The Number of Trainable Parameters of The Classification Models with Their 

Inference Time (ms) per CXR Sample. 

Model Trainable parameters Inference Time (ms) 

ResNet18 11.18 M 3.83 

ResNet50 23.51 M 8.49 

DenseNet121 6.96 M 20.42 

DenseNet161 26.48 M 27.40 

InceptionV4 41.15 M 23.98 

 

To the best of our knowledge, this is the first work to utilize both lung and 

infection segmentation to detect, localize and quantify COVID-19 infection from X-ray 

images. Therefore, assisting medical doctors to better diagnose the severity of COVID-

19 pneumonia and follow up the progression of the disease.  
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

Early identification and isolation of highly infectious COVID-19 cases play a 

vital role in preventing the spread of the virus. X-ray imaging is a low-cost, easily 

accessible, and fast method that can be an excellent alternative for conventional 

diagnostic methods such as RT-PCR and CT. Therefore, numerous studies proposed AI-

based solutions for automatic and real-time detection of COVID-19. In general, these 

methods showed outstanding performance for early detection and diagnosis. However, 

they have used limited CXR repositories for evaluation with a small number, a few 

hundreds, of COVID-19 samples. Thus, the generalization of the achieved results on 

large cohort dataset is not guaranteed. In addition, they showed limited performance in 

infection localization and severity grading of COVID-19 pneumonia. In this thesis work, 

we propose a robust system to segment the lung, detect, localize, and quantify COVID-

19 infections from CXR images. To accomplish this, we compiled the largest CXR 

dataset, COVID-QU, which consists of 11,956 COVID-19, 11,263 non-COVID-19 

pneumonia, and 10,701 normal, 134 SARS-CoV, and 144 MERS-CoV images. 

Moreover, we constructed ground-truth lung segmentation masks for the benchmark 

dataset using an elegant collaborative human-machine approach, which can save valuable 

human labor time and minimize subjectivity in the annotation process. The released 

dataset can help researchers to investigate deep ConvNet on a comparatively larger 

dataset, which can provide more reliable solutions for COVID-19 and other lung 

pathology problems. An extensive set of experiments using state-of-the-art ConvNets 

over COVID-QU dataset showed superior lung segmentation performance with 96.11% 

IoU and 97.99% DSC. Moreover, the proposed system proved reliable in localizing 

COVID-19 infection of various sizes and shapes, achieving IoU and DSC values of 

83.05% and 88.21%, respectively. Furthermore, two classification schemes were tackled: 
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(i) COVID-19 recognition from non-COVID-19 infections, and normal cases, (ii) 

COVID-19 recognition from other coronaviruses, SARS, and MERS. For the first 

classification scheme, the best network achieved sensitivities of 96.94%, 79.68%, and 

90.26% for classifying COVID-19, MERS, and SARS images, respectively. For the 

second classification scheme we achieved sensitivities of 91.52%, 93.21%, and 91.12 for 

COVID-19, non-COVID, and normal classes, respectively.  

In the future, we plan to modify our system to localize non-COVID-19 

infections as well by creating ground-truth infection masks for non-COVID-19 CXR 

images using the collaborative human-machine approach. In addition, we plan to 

explore robust quantization and model compression techniques to further reduce the 

model complexity and accelerate the inference process, using the new generation of 

heterogeneous network models, Self-Organized Operational Neural Networks [78, 79].  
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