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ABSTRACT 

ANSARI, FAJR, A, Masters : June : 2021, Masters of Science in Engineering Management 

Title: Environmental Efficiency of Electric Vehicles in Europe: a Well-to-Wheel Life 

Cycle Assessment-Based Data Envelopment Analysis 

Supervisor of Thesis: Murat, Middle Initial, Kucukvar. 

         The environmental problems have raised the world demand toward a rapid change 

in the policy-making to achieve environmental sustainability. Nowadays, the world and 

especially the European countries have focused the studies and investments on the 

adoption of the electric vehicle as a way to reduce the effect of environmental burdens 

and achieve sustainability in the field of e-mobility. For this purpose, this study 

introduces the first empirical analysis that used Well- to- Wheel LCA method to cover 

the scenarios of average electricity mix, marginal electricity mix (2015-2020), and 

renewable energy-based electricity mix (2030-2040) to assess the efficiency of 27 

European countries usage of the battery electric vehicles. In order to achieve this, the 

midpoint method is considered in estimating the environmental impacts of generating 

one kWh of electricity for each European country utilizing the latest data published by 

ecoinvent. Based on that, the environmental footprints produced by one kWh of 

electricity are estimated per country. Then, the well-to-wheel method is applied to 

calculate the environmental impacts of BEVs using the functional unit per km traveled. 

The implicit weighting of data envelopment analysis and the expert judgment-based 

weights that are obtained from the survey of the European Commission’s Joint 

Research Center (JRC) are then modeled to evaluate and compare the footprint 

efficiency of different electricity mix production scenarios. The results of the efficiency 

analysis revealed that the countries with the highest efficiency usage for all electricity 
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mix in unrestricted scenarios are France, Finland, and the Netherland. While most of 

the European countries were observed to be efficient for the renewable energy-based in 

the unrestricted DEA scenario. The surprising results appear when the weight restricted 

scenario of renewable energy-base was put under comparison with the unrestricted 

scenario of the same type, the result showed that 81.48% of the European countries 

were considered environmentally efficient for the unrestricted scenario while a drastic 

change to around 77% of the countries was found to be inefficient in the weight 

restricted scenario with a score ranging from 0.968 to 0.754. This study can present the 

roadmap for the policymakers towards decarbonized energy supply in the power 

generation mix to cut down emissions from all the environmental impact categories. 
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1. THESIS OVERVIEW 

1.1 Introduction 

        Transport emissions of the European Countries account for nearly a quarter of the 

total greenhouse gases (GHG) emissions with an amount of 945,871.55-kilo tonnes Co2 

equivalent this can be seen in figure 1. The percentage of transport emissions including 

residential and commercial road transport. (EEA, 2019) 

 

Figure 1. EU’s emissions of the transport sector 

 

For the periods between 1995 and 2019, emissions from passenger vehicle 

transportation have increased by 28% instead of a planned decrease of 2.5 metric tons 

of emissions from light-duty vehicles by 2020 (Ritchie, 2020). Experts from 

International Energy Agency predict an increase in the number of personal vehicle 

transportation as the global population increases, where the demand for car ownership 

would peak to a value of 63% by 2070 (Yuan et al., 2018). These numbers have pushed 

the use of fuel consumption patterns against the frontiers of sustainability and have left 
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concerns in cutting down the GHG emissions to mitigate climate change-related 

impacts such as global warming. 

 

       The global push to halt fossil fuel dependence has left automotive manufacturers 

in countries including France, Germany and, the United Kingdom (UK) to purely ban 

vehicles powered by combustion engines by the end of 2040 (IEA, 2019). Clean electric 

mobility alternatives will be key to lessen the costs of climate change and create a 

balance between sustainable growth patterns and carbon-neutral objectives of the Paris 

Agreement (Biresselioglu et al., 2018; Onat et al., 2017; Liang et al., 2019). In this 

context, leading economies around the globe including the United States (U.S), Canada, 

and Europe are targeting major shares of investments to support sustainable mobility 

practices through the deployment of Electric Vehicles (EV) onto their highways (Onat 

et al., 2019). Booming economies like India and the Middle East have also taken 

initiatives in joining hands to support the e-mobility practices (Puertas et al., 2020). 

 

      Electrified powertrains continue to gain popularity worldwide as a dominant clean 

fuel alternative to the traditional “internal combustion vehicles” (ICV) (Hawkins et al., 

2013; Heidrich et al., 2017). European countries have started to show some pockets of 

growth in the EV uptake rate since 2014, with 60% of new vehicle registrations in 

Norway falling in the EV category post-2018 (EEA, 2020). Europe stands as the first 

runner up to date in EV adoption due to the declining manufacturing costs and, nation-

wide charging infrastructure deployment (IEA, 2019). The EU-wide EV sales have 

captured over 1.8 million vehicle registrations in the “battery electric vehicle (BEV)” 

and “plug-in hybrid electric vehicle (PHEV)” categories throughout 2019 (EEA, 2020). 

The share of EV users in Europe has moved beyond 2.5% to 4.2% in 2019 (IEA, 2019). 
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Combined EV adoption targets have been set by the European commission across each 

member state to reach 9-10 million EV users on road by the end of 2022 (McKinsey & 

Company, 2014). But within the major European countries, the timeline and targets 

along the road to large-scale EV adoption vary drastically across each state and from 

city to city (McKinsey & Company, 2014). Accordingly, the Netherlands has set an 

aspiring target of 1 million EV users on highways by the end of 2025. While, France 

has paved stones to a more ambitious target of 2 million EV users by early 2024, where 

Germany expects a figure of over 1.5 million EVs on road by 2025. Understanding the 

dynamics related to the adoption of EV across the member state is crucial in structuring 

policies to support the penetration of additional support infrastructures like charging 

service solutions to users. 

          The shift in the global powertrain portfolio accompanies a set of sustainability-

related questions, namely related to the power surges in the electric grid to satisfy the 

extra charging needs of EV adopters, the ecosystem related impacts across the EV life 

cycle stages, and the concerns related to material recycling and end-of-life (EoL) 

impacts. Consequences related to the energy storage systems, range anxieties, impact 

backed with the increased use of low-carbon sources in the power mix (Wolfram et al., 

2018; Onat and Kucukvar, 2020), and active conditioners have all resulted in taking 

steps to pioneer the technology with a touch of sustainability science throughout the 

life cycle. This thesis thus stays as a backbone in signaling action plans to accelerate 

the EU-wide large-scale EV adaption to support sustainable mobility. 

 

           Studies to date have focused on several life cycle approaches and efficiency 

evaluation techniques for EV sustainability assessment using non-parametric methods. 

This study is the first of its kind to understand the synergies between average electricity 
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mix (2015), marginal electricity mix (2015-2020), and renewable energy-based 

electricity mix (2030-2040) for each of the EU member state used for powering the 

BEVs along with the energy efficiency by the use of BEVs. In addition, the panel-based 

weights obtained from the survey of the European Commission’s Joint Research Center 

is used to model the environmental efficiency (Sala et al. 2018). Several controversies 

exist in the contingent weights assigned using the linear programming model by the 

DEA to the inputs and outputs. The implicit weighting using DEA and the expert 

judgment-based weights were used to evaluate and compare the footprint efficiency 

results related to different electricity production mix scenarios. This helps in 

understanding the change impact on each EU member state's efficiency that can rule 

out cognitive bias and support unbiased decision making. 

 

1.2 Problem Statement 

        One of the fundamental keys that evolved human civilization and have a great 

impact on economic growth is energy. The huge role that energy takes place in building 

the current development can not be estimated or measured by a practical magnitude. 

Obtaining access to a sufficient amount of energy becomes a global demand toward the 

development of industrial, agricultural, transportation, and all aspects of modern life. 

This global demand has been constantly increasing over the years. In 2018 the world 

production rate of electricity has increased by 3.9% to reach a gross production of 

26730 TWh. The shares of production for the non-renewable sources (fossil fuels) are 

63.9% where the renewable sources are accounted for the rest which is 36.1% (IEA, 

2018). With the majority of the world’s electricity generation being sourced from non-

renewable energy sources, the environmental burdens become greater. Freight and 

passenger road transportation is responsible for around a quarter of the global CO2 
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emissions. Emissions from light-duty vehicles have increased by 28% instead of a 

planned decrease of 2.5 metric tons of emissions from the period between 1995 and 

2019 (Ritchie, 2020). Due to the increase in emissions, the fuel consumption patterns 

have raised an alarming need to cut down the GHG emissions to mitigate climate 

change-related problems. Therefore, the United States (U.S), Canada, and Europe have 

focused their investments and studies toward a clean alternative that achieves 

sustainable mobility through the utilization of electric vehicles (Onat et al., 2019).  

        Thus,  many studies have emphasized studying the environmental impact using 

different methods including LCA to assess the electric vehicles from cradle to grave in 

order to estimate their environmental impact. This thesis sheds the light on studying 

well-to-wheel LCA analysis to account for all the impact of the fuel chain from 

production till operations, as well as the fuel consumption of the vehicle. The results of 

LCA analysis are then combined with weight-restricted and unrestricted DEA models 

to evaluate the environmental efficiency of BEV using different production electricity 

mix scenarios.  

 

1.3 Objectives 

              Most studies of sustainability on e-mobility have not applied parametric 

analysis in their research. Therefore this study is considered as the first empirical 

analysis that focused on understanding and analyzing the interconnections between 

different production of electricity mix scenarios used for supplying BEVs and studying 

their efficiency.  

            On all account, this thesis aims to cover the following objectives to broaden the 

scope of EV environmental sustainability assessment across Europe: 
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1. Conduct a scenario-based analysis for average power mix (base year), marginal 

electricity 

mix (2015-20), and renewable electricity mix (2030-2040). 

2. Develop environmental efficiency assessment models for the operational 

environmental 

performance of battery electric vehicles across Europe. 

3. Build a weighted and non-weighted CCR-DEA model to analyze the environmental 

efficiency of battery electric vehicles based on their well-to-wheel life cycle 

performance. 

4. Propose policy recommendations for each country for environmentally sustainable 

electric vehicle deployment in relation with the present and future electricity 

production 

mixes. 

 

1.4 Thesis layout  

          This thesis consists of five chapters. Chapter one provides an overview of the 

thesis. The purpose of this chapter is to present the reasons for choosing this thesis 

topic. This chapter also underlines the complexity of the problem, problem statement, 

the objectives of the thesis, and the uniqueness of the methods applied in this thesis. 

Chapter two presents a comprehensive literature review of the methods and models 

used in this thesis. This chapter includes a literature review of environmental life cycle 

assessment models, environmental LCA of electricity production, LCA of electric 

vehicles, and efficiency assessment using DEA. Chapter three provides a detailed 

presentation on the methods used for this thesis. This chapter is highlighting the 
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methods used in detail and how they are utilized to accomplish the purpose of this 

thesis. This chapter includes data collection, analysis of the data, and running the 

models to obtain the results. This chapter presents in detail the well-to-wheel analysis 

combined with weight restricted and unrestricted DEA models to assess the 

environmental efficiency of each of the 27 European countries towards the use of BEVs 

comparing three scenarios which are average electricity mix, marginal electricity mix, 

and renewable energy-based electricity mix. Chapter four presents the results and 

discussions. This chapter highlights the results of the analysis conducted for all the 

scenarios considered for this thesis. A comparison of the results between the weight-

restricted and unrestricted DEA models. A model-based variability assessment is then 

conducted to determine the significant difference in the mean score across each 

scenario. Efficiency performance grouping is used to group the efficiency score for 

each DMU under their respective scenarios depending on their performance. Using 

projection level analysis which helps countries move towards the sustainable use of 

BEVs following best-performing peers. Chapter five presents conclusions and future 

work. In this chapter, a conclusion for all the work done on the thesis is presented as 

well as a roadmap to help guide futuristic policies towards net zero carbon electricity 

production plans.   
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2. LITERATURE REVIEW 

2.1 Environmental life cycle assessment models 

        Environmental life cycle assessment (E-LCA) is an environmental management 

system-tool widely applied in calculating the associated environmental impacts of 

products, processes, and services across their life cycle (LC) (Heijungs, 1992; Bhat and 

Prakash, 2009; Arveseh and Hertwich, 2012). It provides a holistic view of all the 

potential environmental burdens that can be developed from the product’s life-cycle 

(Friedrich and Buckley, 2002). Understanding the ecosystem-related impacts across the 

stages of the life cycle became an important and core element for any assessment during 

the early 1970s till late 1980s (Sala et al., 2018). Initially, the partial LCA approach 

that formed the basis of studies included limited impact categories including energy 

consumption and solid waste (Owens, 2000; Kucukvar and Tatari, 2012; Sen et al., 

2020). Following a period of diminishing interests by the research community on partial 

E-LCA models during the early 1980s, compilation and assessment of environmental 

impacts using a comparative perspective were broadened to the creative use of E-LCA 

models for dynamic and nonlinear systems that include ecosystem restoration and 

regionalized activity-based mechanisms (Guinee et al., 2011). Life cycle studies have 

broadened the scope to midpoint impact categories (Vasquez-Ibarra et al., 2020). These 

impact categories account for the damages caused to human health, resource base 

deterioration, and ecological system effectiveness by the intervention of a product or 

service either voluntary or involuntary into the environment (Stamford and Azapagic, 

2012; Asdrubali et al., 2015). 

        Recent noticeable contributions of the integration of new technologies with the 

life cycle assessment. (Zhang et al, 2020) have developed a framework that provides 
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guidance and support to implement the methodology of blockchain-based LCA. In this 

study, the new technology of blockchain associated with other technology such as the 

internet of things, the analytics of big data, and data visualizations all these technologies 

have participated in overcoming the problem of reliable data collection of multiple 

stages of the supply chain and achieve excellence in the organizational operation due 

to the efficient and effective implementation of LCA that led in improvement in supply 

chain environmental performance. Another contribution of (Hou et al, 2020) is the 

development of a model using machine learning that is capable of estimating the 

ecotoxicity produced over the life cycle of a product. In chemicals is it difficult to 

estimate the characterization factors of ecotoxicity due to the complexity generated 

during the process of interaction and transformation of the chemicals in the 

environment, this has been achieved by using the model of machine learning. 

        Regardless of the recent developments in the LCA models, the underlying 

principles and the process within the scope of the assessment for any type of LCA 

remains unchanged. The various types of LCA methods include the E-LCA, “Social 

life cycle assessment (S-LCA)”, hybrid LCA, LCSA, and “Life cycle costing (LCC)”. 

The S-LCA approach refers to the assessment of socio-economic impacts throughout 

the LC stages of a good or service. The S-LCA models are widely used in quantifying 

the social impacts across several areas of research namely; agriculture (Prasara-A and 

Gheewala, 2021), chemical process industry (Tsalidis et al., 2021; Naghshineh et al., 

2020), wastewater treatment (Anwar et al., 2021), pork production (Zira et al., 2020), 

transportation (Gompf et al., 2020), building and construction (Toosi et al., 2020), 

plastic packaging industry (Reinales et al., 2020) and, oil and gas industry (Hannouf et 

al., 2020). The input-output (IO) based LCA models combined with process-LCA 

within a single boundary have broadened the LCA scope to give better estimates under 
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the hybrid-LCA framework (Martinez et al., 2018). Similar to the applications of E-

LCA, the hybrid LCA has been applied across several studies in the past to: estimate 

the GHG mitigation potential for the urban built environment (Yu et al., 2021), compare 

the energy efficiency of Chinese cities (Song et al., 2015), calculate resource efficiency 

of dams (Martinez et al., 2018) and understand the productivity of industrial sectors 

(Yuan et al., 2018; Wang et al., 2019). 

        Unlike LCA or integrated LCA, “life cycle sustainability assessment (LCSA)” is 

a multi-level combination of several LC models under a unified sustainability 

framework that consists of guiding principles and models for specific sustainability-

related challenges (Finkbeiner et al., 2010). LCSA is the future framework of LCA 

(Santoyo-Castelazo and Azapagic, 2014). Broadening the scope from the traditional 

environmental impact assessment models of LCA to a more intricate network of 

economic and social impact categories including human health, eco-toxicity and, 

cumulative resource utilization, the E-LCA models have evolved to an umbrella 

concept underpinning a plethora of multi-disciplinary sustainability models (Guinee et 

al. 2011). The transdisciplinary integration of multiple models and guiding principles 

into a single modeling phase has resulted in broadening the object of analysis into 

economy-wide, meso-level, and product-oriented levels of assessment under the LCSA 

framework (Hannouf and Assefa, 2018). A better understanding of the LCA models 

can help sustainability and environmental science in designing complete solutions to 

work against climate change-related problems, carbon and water footprint-related 

sustainability concerns, and eco-design scenarios.  
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2.2 Environmental LCA of electricity production 

         The increased emissions of CO2 over the years had led to serious problems such 

as environmental degradation, resource depletion, global warming, and more other 

problems. The key source of global CO2 emissions is the production of energy. Most 

of the energy around the world used to produce electricity and since 85% of the 

production is accounted for fossil fuels this leads to a fact that most carbon emissions 

are due to electricity production (Rahman, 2020; Outlook, 2019). (Turconi et al., 2013) 

have reviewed 167 cases for different technologies used to produce electricity with 

relation to LCA to find the data that identifying the ranges of SO2, GHG, and NOx 

emissions for each used technology. It has been found that to accurately quantify the 

impact of the environment for each technology, the data should be evaluated with 

regard to three different phases of the electricity production life cycle which are 

infrastructure, provisioning of fuel, and the operation of a plant. The conclusion was 

fossil fuels have produced most of the emissions from the operations process while 

biomass and nuclear power have contributed by 71%, 60% of GHGs respectively from 

the provisioning of fuel. Whereas renewable sources are mostly contributed to affect 

the environment from its infrastructure. Another study, that evaluated the GHG 

emissions using LCA for nine different technologies used in the power systems has 

been conducted by (Hondo, 2005) to understand the system characteristics with respect 

to global warming. Further analyses were made to understand the impact of changes in 

the assumptions and future technology on the environment and considering the effect 

of uncertainty in interpreting the results while the comparison. Moreover, many studies 

on renewable energy sources have been conducted to quantify their impact using LCA 

such as (Bhat and Prakash, 2009) have reviewed the existing data of renewable energies 
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using LCA and compare it with the conventional method in order to support the 

decision of choosing the best alternative. (Asdrubali et al., 2015) have shown that the 

results concluded of around 100 LCA cases for different renewable energies are 

variable and not consistent. A harmonized methodology has been used to produce more 

reliable results that were used in the comparison of renewable technologies. The 

Comparison shows that wind power has the lowest impact on the environment while 

PV and wind power have the highest impact. Expanding this comparison with the 

conventional methods resulted in significant advantages of renewable energies. Finally, 

This research has shown that the PV power system can be considered a promising 

source for producing electricity that can save the resources used and reduce carbon 

emissions. In addition, the recent efficiency resulted from the development of the PV 

system is designed to use the maximum amount of recycled material that will lead to a 

reduction in GHG emissions and the amount of energy required (Sherwani and Usmani, 

2010).  

 

2.3 LCA for Electric Vehicles 

     The switch towards carbon-neutral mobility practices have resulted in reshaping the 

automotive landscape to better understand the associated environmental impacts to 

avert the switch of the burden from one stage to the other across the life cycle 

(Elhamoud and Kutty, 2020). Life cycle studies on EVs mainly cover impact categories 

including air quality impacts on human health, ecosystem health, and climate change 

(Onat et al. 2017). Studies on electric vehicle LCA have acknowledged contributions 

in these impact categories and have attempted to investigate whether the deployment of 
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these alternative technologies offers promising benefits in terms of cost and impact 

reduction from a day-to-day perspective across the life cycle or not. 

     Electric vehicle life cycle assessment (EV-LCA) is a time-tested multimedia 

assessment technique used to calculate the ecological impacts and estimate the resource 

consumption for EV using a life cycle thinking approach (Onat et al. 2019; Kutty et al. 

2020; Naranjo et al. 2021). The EV-LCA studies often branch out into two prime 

assessment categories namely; Fuel life cycle analysis (F-LCA) and vehicle-based LCA 

approach (Onat et al. 2019a). Several studies have been developed and applied in the 

area of EV-LCA over the years. A well-to-wheel fuel LCA analysis was carried out by 

Lucas et al. (2012) to quantify the energy utilization and carbon emissions from 

manufacturing, maintenance and, scrapping of fuel supply support infrastructures for 

EV and ICVs in Portugal. While, a combined LCA approach using PCO-CENEX drive 

cycle considering F-LCA, that consist of “Tank-to-Wheel (TTW)” and “Well-to-Tank 

(WTT)” approach and, vehicle LCA using a “cradle-to-grave (CTG) approach” for 

vehicle material related consumption was studied by Baptista et al. (2011). The results 

revealed fuel cell-powered London passenger taxis consumed less energy than diesel-

powered ICV and electric propelled EVs. Similarly, a comparative approach with E-

LCA combined with cost analysis from a CTG perspective using the Well-to-Wheel 

(WTW) analysis for fuel supply on Lithuanian passenger vehicles was carried out by 

Petrauskienė et al. (2021). Low-carbon energy in the electricity mix for BEVs proved 

to neutralize the environmental impacts considerably, while simultaneously the BEVs 

and ICVs proved to be cost-effective throughout the total life cycle use phase. 

     Naranjo et al. (2021) conducted a comparative LCA utilizing the CTG approach to 

quantify the potential climate change-related impacts during the use of Spanish 

passenger vehicles. Multiple impact categories and energy scenarios across time were 
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taken into account for a BEV lifetime of 150,000 km. The energy projection scenario 

results revealed a considerable reduction in the CO2-eq emissions up to 27.41% by the 

use of renewable electricity sources in BEVs by 2050. A similar study was carried out 

earlier by Yang et al. (2020) for Chinese passenger vehicles including ICV, BEV, and 

PHEV, evaluating the particulate emissions across the entire vehicle LC stages. The 

study found PM2.5 and Sulfur dioxide (SO2) high when using the renewable energy 

source with biomass share compared to the emission statistics obtained for ICEVs. 

Xiong et al. (2021) conducted a hybrid-LCA to understand the emission reduction 

potential for the complete electrification of passenger cars in mainland China. The study 

identified a lack of potential in reducing CO2 emissions by the electrification of 

passenger cars in China since the emissions released during the vehicle manufacturing 

phase outweigh the emission saved on the road by the EV deployment. While the use 

of renewable energy sources in fuel cell technologies has resulted in considerable 

reductions in footprint-related emissions up to 70% as identified through the LCA study 

conducted by Usai et al. (2021) for fuel cell electric vehicles (FCEV). An electricity 

system model integrated with LCA was used by Xu et al. (2020) to identify the 

difference in the impacts generated while utilizing several charging strategies for EVs 

in Europe. Prolonged vehicle-to-grid charging strategies resulted in load issues and 

impacts associated with overload on the power grid system. All these studies play a 

pivotal role in structuring policies to meet air quality directives and support 

commitments laid to accomplish emission reduction targets. 
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2.4 Efficiency assessment using DEA 

       Data Envelopment Analysis (DEA) is a mathematical model used to assess the 

relative efficiency and performance of a set of “decision-making units (DMU)” using 

linear programming (Ewertowska et al., 2016; Shao et al., 2019). The technique differs 

in which, the DMUs freely choose from a set of inputs and outputs to minimize the 

associated impacts and maximize the relative efficiency (Sueyoshi and Yuan, 2015). 

Different from the traditional empirical models such as the regression analysis is the 

ability of DEA to arbitrarily assign weights to the sustainability indicators to estimate 

the efficiency of DMUs (Galan-Martin et al., 2016; Mardani et al., 2017; Yu et al., 

2019; Kutty et al., 2020a). The relative efficiency for each of the comparable units, as 

a result of using the DEA technique, appears as a non-negative score within the range 

of 0 to 1 (Liu et al., 2017; Zurano-Cervello et al., 2019). The efficiency scores translate 

the fact that each of the DMU performs relative to the inputs they consume for the set 

of output units they produce, determining how best performing each unit is compared 

to similar functional units. 

     DEA has long been used to assess the sustainable performance and the associated 

energy efficiency of comparable units across several areas of research over the years 

(Ezici et al., 2020). Fathi et al., (2021) used an integrated bargaining “game cross-

efficiency DEA model” to understand the energy efficiency performance of fossil fuel 

exporting nations worldwide. The countries were ranked based on the Nash equilibrium 

bargaining payoff points to find the most energy-efficient nation. An improved window 

DEA was used by Zhang et al. (2021) to analyze the cross-sectional energy efficiency 

of countries in western Europe. To acknowledge the optimal use of innovation 

strategies in energy management and assess the environmental performance of energy 



  

 

 

16 

R&D expenditure in developing countries, a “bootstrap DEA analysis” was used by 

Koçak et al. (2021). The study adds an empirical assessment to show the improvement 

path for inefficient countries as well. While a game theory-based “cross-efficiency 

DEA model” with Malmquist productivity index was used for Chinese utility sector 

efficiency calculation by Xie et al. (2021). 

     DEA being a powerful analytical technique has not failed in extending its application 

in addressing concerns in the transportation sector as well (Neves et al., 2020). A 

parallel DEA model was applied in evaluating the integrated ecological efficiency for 

the passenger transportation system in China by Liu et al. (2020). A convergence 

analysis was used to capture the significant difference between the groups of 

performing units.  Kucukvar et al., (2020) conducted an eco-efficiency performance 

assessment on 30 international airports around the world using a frontier-based DEA 

model taking into account the Triple Bottom Line (TBL) sustainability aspects. The 

carbon efficiency as a result of the governmental regulations on the Chinese 

transportation sector was evaluated using a “Slacks-based Measure (SBM) DEA 

model” by Chang and Zhang, (2017). The results revealed adhering to the opportunity 

cost to reduce the carbon dependency. While, an SBM-DEA model with undesirability 

factors was used to understand the environmental efficiency of the Chinese traffic 

network in 30 provinces of mainland china by Song et al., (2015). Application of several 

modified DEA models can be seen in the studies conducted by Ibrahim and Daneshvar, 

(2017) for supply chain performance assessment, Ru and Si, (2015) to calculate energy 

efficiency in the sugar cane industry, and Zhang and Wang (2010) for project selection 

process efficiency evaluation. 
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3. METHODS 

     This study uses the Well-to-Wheel (WTW) LCA method combined with weight 

restricted and unrestricted DEA model to bring out the environmental efficiency values 

for each of the 27 European countries. The research undertakes the following structure 

to accomplish the desired results in assessing the environmental efficiency of European 

countries towards the use of BEVs. This thesis makes use of the latest ecoinvent v3.7 

life cycle impact database. The midpoints environmental impacts per kWh of electricity 

generation are then estimated for each of the 27 European countries. After estimating 

the per kWh environmental footprints for the electricity generation per country, the 

well-to-wheel environmental impacts of BEVs are calculated based on the functional 

unit of per km traveled.  

A CCR-based weighted DEA model is then run using the panel-based weights obtained 

from the survey of the “European Commission’s Joint Research Center” to model the 

environmental efficiency (Sala et al. 2018). The footprint-based efficiency related to 

different electricity production mix scenarios is identified. It is then compared with the 

traditional input-oriented DEA model results. A scenario-based comparison is carried 

out followed by a future projection analysis to improve the environmental efficiency of 

BEVs. An environmental efficiency performance grouping is then done using the 

Quintiles method to identify the grouped performance scoring for each country (see Fig 

1). A model-based variability assessment using the Kruskal-Wallis H test is undertaken, 

supported with a projection level analysis. The following sub-sections detail the 

methods used in this study. 
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  Figure 2. Thesis flow diagram 

 

 

3.1 Well-to-Wheel (WTW) Analysis 

         WTW is an LCA method used in calculating the energy utilization and the 

associated emissions from the powertrain starting from the extraction phase of the 

energy system (Well) to the utilization point (Wheel). The analysis not only captures 

the tailpipe emissions but gives an entire picture of the emissions along the production, 

transportation, and distribution pathways of the fuel cycle. BEVs do not emit exhaust-

based emissions along with their operation phase. Thus, sustainability assessment for 

BEVs depends on the source of the energy mix used during their life cycle (Onat et al., 

2014b). The WTW analysis can further be split into two sub-phases namely; the WTT 

approach and the TTW approach (see Fig. 2). The WTT analysis accounts for the 

indirect emissions across the entire fuel chain and not along the drive cycle. While the 

TTW accounts for the emissions during the driving phase of BEVs.  

       If j represents the environmental impact categories then, the associated emissions 
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along the assessment stages for the jth category is calculated using equation(1): 

                                                   Ej = EVcc × [ WTTj + TTWj ]                                                                  

(1) 

where; 

Ej     = emissions associated with all the assessment stages for the jth category of 

environmental impact 

EVcc = electric vehicle charge consumption expressed in kWh/km 

WTTj = energy consumption for the jth impact category associated with the electricity 

generation phase 

TTWj = energy consumption for the jth impact category across the drive cycle 

Per km travel is taken as the functional unit for the WTW assessment. 
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Figure 3. Schematics for a WTW analysis 

 

      The associated environmental impacts vary based on the power generation, trends 

in driving patterns, and weather-related uncertainties (Alghoul et al., 2018). The 

upstream and downstream energy consumption-related impacts vary based on the 

source used for the power generation (Kucukvar et al. 2018; 2017). The data for the 

electricity generation mix was collected from the ecoinvent v3.7 life cycle impact 

database for the 27 European countries across three periods: a) average electricity mix 

(2015), b) marginal electricity mix (between 2015 and 2020), and c) renewable energy-

based electricity mix (between 2030 and 2040) (Fig. 3). As observed from (Fig. 3) 

scenario a, that the three main sources of energy that dominate the average electricity 
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mix in 2015 are high voltage- import, nuclear, and heat - power co-generation-fossil 

respectively. The three leading countries for generating electricity using the source of 

high voltage- imports are Lithuania 73.18%, Luxembourg 73.07%, and Latvia 66.11%. 

While France, Belgium, and Slovakia are the highest scored countries using the nuclear 

source of energy with percentages of 78.45%, 40.59%, and 40.55%. For heat-power co-

generation-fossil source of energy, Poland, Denmark, and Latvia are the most European 

countries that using this type of energy with percentages of 78.95%, 29.31%, and 

26.38%.  

         For (Fig. 3) scenario b, natural gas- combined cycle power plant, wind >3MW 

turbine, and photovoltaic- 3kWp slanted-roof installation -multi-Si- panel- mounted are 

the most used source of energy to produce the marginal electricity mix for the periods 

between 2015 and 2020. Where deep geothermal, hydro- reservoir- alpine region, and 

oil are the least used sources of energy for producing marginal electricity mix. The 

largest country producer of the marginal electricity mix using the energy source of wind 

across other types of energy sources is Irland with a production percent of  94.61%, 

while Lithuania is the second producer using the source of natural gas with a percent of 

93.25%. 

         In the last scenario c (Fig. 3), the highest source of the renewable energy-based 

electricity mix in the period between 2030 and 2040 are photovoltaic-3kWp slanted-

roof installation -  multi-Si -panel- mounted, natural gas- combined cycle power plant, 

and wood. The leading countries using the photovoltaic source are Malta with a 98.18% 

production rate, Spain with 78.10%, and Portugal with 76.83%. While natural gas is 

most used by Luxembourg, Croatia, and Cyprus with production rates of 38.25%, 38%, 

and 33.51% respectively. For wood renewable energy-based the most used countries 

will be Latvia 16.9%, Ireland 16.32%, and Italy 13.63%. The largest producer of 
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electricity among the European countries using the source of photovoltaic as a 

renewable energy source is Malta with a 98.18% production rate.  
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c) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. a) Average b) Marginal c) Renewable energy-based electricity mix data for 27 

European countries (Data source: ecoinvent v3.7) 

 

 

       Table 1 shows the average impact factors per kWh electricity generation by a 

source according to the LC analysis data collected from the latest ecoinvent v3.7. The 

environmental impacts of per kWh electricity generation including several phases such 

as raw material extraction and processing, operation and maintenance, and construction 

activities. Similarly, the data for all the impact categories were obtained from the 
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ecoinvent v3.7 database. The battery-operated electric vehicle brand “Nissan Leaf” was 

used to study the associated impacts. The value for the electricity consumption of the 

selected BEV is 0.187 kWh/km. Considering the values for the average electricity mix, 

marginal electricity mix, renewable energy-based electricity mix, and the associated 

impact categories mentioned in Table 1-3, the WTT impacts were calculated using 

equation (2); 

                                           WTTjk = Psk × Ejs                                                                         

(2) 

where; 

jk = jth impact category for the kth country 

Psk = percentage value for the power generation source (s) in the kth country 

Ejs = environmental impact for jth category per sources 

       The water consumption (L/kWh) and GHG emissions (g/kWh) values are found to 

be zero due to no direct emissions in the TTW stage. The environmental impact 

categories including climate change (kg CO2-Eq/kWh), freshwater ecotoxicity (kg 1,4-

DCB-Eq/kWh), freshwater eutrophication (kg P-Eq / kWh), human toxicity (kg 1,4-

DCB-Eq/ kWh), metal depletion (kg Fe-Eq/kWh), particulate matter formation (kg 

PM10-Eq/kWh), photochemical oxidant formation (kg NMVOC/kWh), terrestrial 

acidification (kg SO2-Eq/kWh), and urban land occupation (square meter-year/ kWh). 
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Table 1. Environmental impact data per kWh average electricity generation (source: ecoinvent v3.7) 

Impact Categories Climate 

Change 

 

Freshwater 

Ecotoxicity 

 

Freshwater 

Eutrophica

tion 

 

Human 

toxicity 

 

Metal 

depletion 

 

Particulate 

matter 

formation 

 

Petrochemical 

oxidant 

formation 

 

Terrestrial 

acidificatio

n 

 

Urban land 

occupation 

 

Weighting factors* 

 

21.06 1.92 2.80 2.13 7.55 8.96 4.78 6.20 7.94 

Countries Code          

Austria AT 3.27E-01 2.28E-02 3.87E-04 2.83E-01 1.18E-02 3.29E-04 5.03E-04 1.30E-03 1.76E-03 

Belgium BE 2.43E-01 1.80E-02 7.14E-05 1.08E-01 1.28E-02 2.06E-04 3.73E-04 6.37E-04 1.36E-03 

Bulgaria BG 6.84E-01 3.90E-02 1.40E-03 8.89E-01 1.39E-02 1.43E-03 1.33E-03 3.71E-03 1.92E-03 

Cyprus CY 1.05E+00 1.82E-02 4.00E-05 1.34E-01 1.43E-02 2.23E-03 4.26E-03 7.97E-03 1.96E-03 

Czech Republic CZ 7.87E-01 3.58E-02 1.24E-03 8.00E-01 1.31E-02 8.09E-04 1.45E-03 2.81E-03 2.65E-03 

Germany DE 6.20E-01 3.03E-02 8.32E-04 5.44E-01 1.44E-02 4.94E-04 6.13E-04 2.31E-03 3.57E-03 

Denmark DK 4.02E-01 2.16E-02 2.16E-04 2.16E-01 1.44E-02 3.58E-04 5.76E-04 1.38E-03 4.75E-03 

Estonia EE 9.59E-01 1.94E-02 5.96E-05 1.83E-01 1.50E-02 2.00E-03 3.86E-03 6.99E-03 3.58E-03 

Spain ES 3.69E-01 2.08E-02 1.43E-04 1.50E-01 1.48E-02 9.29E-04 1.31E-03 2.60E-03 3.43E-03 

Finland FI 2.47E-01 1.80E-02 8.48E-05 1.35E-01 1.19E-02 3.06E-04 4.61E-04 8.18E-04 2.70E-03 

France FR 5.68E-02 1.77E-02 3.38E-05 8.16E-02 1.35E-02 1.38E-04 1.56E-04 3.10E-04 6.17E-04 

Greece GR 9.07E-01 5.47E-02 2.43E-03 1.53E+00 1.40E-02 2.10E-03 1.55E-03 4.94E-03 2.03E-03 

Croatia HR 4.49E-01 2.65E-02 5.90E-04 4.12E-01 1.22E-02 1.30E-03 1.30E-03 4.18E-03 2.28E-03 

Hungary HU 5.05E-01 2.87E-02 7.39E-04 5.36E-01 1.33E-02 7.21E-04 1.12E-03 2.27E-03 2.71E-03 

Ireland IE 6.06E-01 1.98E-02 1.20E-04 1.33E-01 1.25E-02 6.18E-04 1.02E-03 2.16E-03 3.28E-03 

Italy IT 4.15E-01 1.96E-02 1.26E-04 1.32E-01 1.39E-02 6.97E-04 9.03E-04 2.82E-03 4.70E-03 

Lithuania LT 7.45E-01 2.03E-02 1.53E-04 1.81E-01 1.59E-02 1.11E-03 1.73E-03 2.76E-03 2.98E-03 

Luxembourg LU 5.65E-01 2.60E-02 6.38E-04 4.26E-01 1.28E-02 4.12E-04 5.69E-04 1.86E-03 2.12E-03 

Latvia LV 8.01E-01 1.92E-02 1.09E-04 1.78E-01 1.43E-02 1.48E-03 2.48E-03 4.78E-03 3.08E-03 

Malta MT 1.37E+00 1.90E-02 4.63E-05 1.62E-01 1.53E-02 2.89E-03 5.58E-03 1.03E-02 2.34E-03 

Netherlands NL 6.20E-01 2.09E-02 2.65E-04 2.12E-01 1.14E-02 3.02E-04 6.51E-04 1.13E-03 2.79E-03 

Poland PL 1.06E+00 3.67E-02 1.28E-03 8.61E-01 1.20E-02 1.63E-03 2.18E-03 5.74E-03 5.45E-03 

Portugal PT 4.13E-01 2.04E-02 1.49E-04 1.46E-01 1.37E-02 8.17E-04 1.28E-03 2.86E-03 3.84E-03 

Romania RO 4.87E-01 3.39E-02 9.67E-04 6.28E-01 1.54E-02 1.61E-03 1.01E-03 2.63E-03 1.45E-03 

Sweden SE 4.34E-02 1.76E-02 3.59E-05 8.22E-02 1.20E-02 1.01E-04 1.34E-04 2.30E-04 1.04E-03 

Slovenia SI 4.58E-01 2.90E-02 8.07E-04 5.43E-01 1.22E-02 1.64E-03 1.50E-03 6.56E-03 1.48E-03 

Slovakia SK 4.61E-01 2.62E-02 6.45E-04 4.56E-01 1.21E-02 8.39E-04 1.03E-03 2.67E-03 1.90E-03 
* Panel-based weights assigned by the European Commission’s Joint Research Centre (JRC Technical Reports, 2018) 
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Table 2. Environmental impact data per kWh renewable energy-based electricity generation (source: ecoinvent v3.7) 

Countries Code 

Environmental Impact Categories 

 

Climate 

Change 

Freshwater 

ecotoxicity 

Freshwater 

eutrophicat

ion 

Human 

toxicity 

Metal 

depletion 

Particulate 

matter 

formation 

Petrochemical 

oxidant 

formation 

 

Terrestrial 

acidificatio

n 

Urban land 

occupation 

Austria AT 2.00E-01 2.74E-02 9.88E-05 2.10E-01 3.73E-02 2.17E-04 5.25E-04 1.26E-04 1.72E-03 

Belgium BE 2.07E-01 2.89E-02 1.07E-04 1.99E-01 4.03E-02 1.98E-04 4.43E-04 -5.15E-06 1.33E-03 

Bulgaria BG 1.69E-01 2.53E-02 8.52E-05 1.83E-01 3.19E-02 1.76E-04 4.10E-04 8.48E-05 1.48E-03 

Cyprus CY 1.77E-01 2.21E-02 6.52E-05 1.27E-01 2.43E-02 1.25E-04 2.96E-04 6.44E-05 6.65E-04 

Czech 

Republic 

CZ 1.22E-01 2.75E-02 1.03E-04 2.07E-01 3.87E-02 1.87E-04 3.79E-04 -3.22E-05 1.41E-03 

Germany DE 1.86E-01 2.81E-02 1.02E-04 2.08E-01 3.83E-02 2.06E-04 4.73E-04 6.87E-05 1.63E-03 

Denmark DK 1.78E-01 2.63E-02 8.71E-05 1.63E-01 3.35E-02 1.61E-04 3.36E-04 2.33E-05 1.03E-03 

Estonia EE 1.52E-01 2.80E-02 9.18E-05 1.73E-01 3.63E-02 1.59E-04 3.21E-04 -1.61E-05 1.12E-03 

Spain ES 1.26E-01 2.77E-02 9.10E-05 1.72E-01 3.41E-02 1.71E-04 3.54E-04 4.36E-05 1.14E-03 

Finland FI 6.94E-02 2.46E-02 8.49E-05 2.00E-01 3.20E-02 1.70E-04 3.48E-04 5.58E-05 1.68E-03 

France FR 1.86E-01 2.75E-02 9.34E-05 1.79E-01 3.59E-02 1.78E-04 3.91E-04 2.76E-05 1.24E-03 

Greece GR 9.20E-02 2.97E-02 9.37E-05 1.80E-01 3.60E-02 1.54E-04 2.98E-04 -2.18E-05 1.20E-03 

Croatia HR 4.00E-01 2.72E-02 7.56E-05 1.64E-01 3.00E-02 3.43E-04 6.75E-04 8.47E-04 1.40E-03 

Hungary HU 2.52E-01 2.68E-02 8.94E-05 1.72E-01 3.47E-02 2.08E-04 5.28E-04 1.75E-04 1.17E-03 

Ireland IE 7.46E-02 2.91E-02 9.53E-05 2.32E-01 3.65E-02 1.97E-04 4.21E-04 1.11E-04 2.21E-03 

Italy IT 1.60E-01 2.51E-02 8.52E-05 2.03E-01 3.22E-02 1.97E-04 4.73E-04 1.56E-04 1.87E-03 

Lithuania LT 2.01E-01 2.70E-02 9.97E-05 2.13E-01 3.70E-02 2.00E-04 4.64E-04 3.98E-05 1.75E-03 

Luxembourg LU 2.12E-01 2.37E-02 8.01E-05 1.47E-01 3.00E-02 1.54E-04 3.63E-04 3.38E-05 8.94E-04 

Latvia LV 1.42E-01 2.48E-02 8.79E-05 2.19E-01 3.26E-02 2.03E-04 4.83E-04 1.52E-04 2.14E-03 

Malta MT 9.35E-02 2.83E-02 1.12E-04 2.07E-01 4.03E-02 1.71E-04 3.40E-04 -1.36E-04 1.35E-03 

Netherlands NL 2.13E-01 2.62E-02 9.61E-05 1.84E-01 3.54E-02 1.87E-04 4.33E-04 3.25E-05 1.30E-03 

Poland PL 1.05E-01 2.74E-02 9.42E-05 1.87E-01 3.59E-02 1.65E-04 3.18E-04 -2.61E-05 1.24E-03 

Portugal PT 7.09E-02 3.23E-02 9.67E-05 1.95E-01 3.79E-02 1.59E-04 2.93E-04 -6.32E-06 1.42E-03 

Romania RO 1.68E-01 2.84E-02 9.47E-05 2.05E-01 3.60E-02 1.94E-04 4.40E-04 8.97E-05 1.70E-03 

Sweden SE 8.29E-02 2.69E-02 9.86E-05 1.98E-01 3.71E-02 1.69E-04 3.14E-04 -5.92E-05 1.30E-03 

Slovenia SI 1.58E-01 2.40E-02 8.23E-05 1.93E-01 3.07E-02 1.84E-04 4.38E-04 1.27E-04 1.75E-03 

Slovakia SK 6.89E-02 2.44E-02 8.44E-05 1.72E-01 3.19E-02 1.46E-04 2.64E-04 -3.43E-05 1.10E-03 
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Table 3. Environmental impact data per kWh marginal energy-based electricity generation (source: ecoinvent v3.7) 

Countries Code 

Environmental Impact Categories 

Climate 

Change 

Freshwater 

ecotoxicity 

Freshwater 

eutrophicat

ion 

Human 

toxicity 

Metal 

depletion 

Particulate 

matter 

formation 

Petrochemical 

oxidant 

formation 

 

Terrestrial 

acidificatio

n 

Urban land 

occupation 

Austria AT 4.07E-01 1.93E-02 4.78E-05 1.10E-01 1.87E-02 2.06E-04 6.23E-04 5.36E-04 1.30E-03 

Belgium BE 6.82E-02 2.82E-02 6.00E-05 1.26E-01 2.84E-02 1.73E-04 2.40E-04 3.69E-04 7.15E-04 

Bulgaria BG 3.14E-01 1.96E-02 3.82E-05 1.08E-01 1.77E-02 1.56E-04 4.48E-04 3.60E-04 1.05E-03 

Cyprus CY 3.34E-01 2.06E-02 3.94E-05 9.36E-02 1.70E-02 1.23E-04 3.87E-04 2.70E-04 4.02E-04 

Czech 

Republic 

CZ 8.67E-01 4.81E-02 1.49E-03 9.58E-01 2.57E-02 8.29E-04 1.58E-03 2.71E-03 2.44E-03 

Germany DE 8.21E-02 4.45E-02 1.26E-04 2.10E-01 4.72E-02 1.51E-04 2.32E-04 2.68E-05 1.31E-03 

Denmark DK 4.25E-02 2.41E-02 5.82E-05 3.22E-01 2.68E-02 2.86E-04 7.38E-04 7.15E-04 4.80E-03 

Estonia EE 1.14E+00 3.29E-02 4.61E-04 4.07E-01 2.51E-02 2.46E-03 3.79E-03 8.25E-03 9.86E-03 

Spain ES 1.56E-01 3.05E-02 7.49E-05 1.78E-01 3.30E-02 1.56E-04 3.67E-04 1.49E-04 1.54E-03 

Finland FI 1.75E-01 2.37E-02 9.73E-05 1.36E-01 2.09E-02 1.82E-04 2.23E-04 4.50E-04 1.66E-03 

France FR 6.86E-02 3.62E-02 9.29E-05 1.94E-01 4.04E-02 1.48E-04 2.77E-04 3.55E-05 1.45E-03 

Greece GR 4.50E-01 2.38E-02 5.55E-05 1.17E-01 2.54E-02 2.91E-04 7.58E-04 7.89E-04 8.11E-04 

Croatia HR 3.97E-01 2.70E-02 7.03E-05 1.61E-01 2.99E-02 3.23E-04 6.65E-04 8.24E-04 1.37E-03 

Hungary HU 6.22E-01 1.92E-02 3.81E-05 8.59E-02 2.08E-02 2.83E-04 9.66E-04 8.15E-04 6.67E-04 

Ireland IE 3.40E-02 4.49E-02 7.77E-05 1.56E-01 3.87E-02 1.15E-04 1.19E-04 1.26E-04 1.01E-03 

Italy IT 6.22E-01 2.06E-02 1.77E-04 1.99E-01 1.98E-02 7.37E-04 1.25E-03 2.08E-03 3.68E-03 

Lithuania LT 4.59E-01 1.74E-02 3.34E-05 9.05E-02 1.56E-02 1.44E-04 4.64E-04 3.09E-04 8.28E-04 

Luxembourg LU 5.07E-02 5.37E-02 9.66E-05 2.02E-01 4.88E-02 1.67E-04 2.10E-04 2.06E-04 1.54E-03 

Latvia LV 5.43E-02 4.21E-02 7.71E-05 2.06E-01 3.83E-02 1.74E-04 3.00E-04 2.91E-04 2.06E-03 

Malta MT 3.89E-01 1.92E-02 4.23E-05 8.29E-02 1.88E-02 1.41E-04 4.40E-04 2.71E-04 4.74E-04 

Netherlands NL 5.13E-02 3.35E-02 7.74E-05 2.26E-01 3.61E-02 1.84E-04 3.87E-04 2.68E-04 2.42E-03 

Poland PL 5.51E-01 2.91E-02 5.04E-04 4.15E-01 2.02E-02 1.94E-03 1.41E-03 2.56E-03 2.96E-03 

Portugal PT 1.41E-01 1.83E-02 4.27E-05 9.46E-02 1.51E-02 5.27E-04 5.97E-04 2.02E-03 6.21E-04 

Romania RO 4.60E-01 2.45E-02 4.05E-04 3.14E-01 1.72E-02 3.80E-04 6.74E-04 1.15E-03 1.04E-03 

Sweden SE 1.36E-01 3.34E-02 6.42E-05 2.08E-01 3.09E-02 1.91E-04 4.33E-04 3.89E-04 2.39E-03 

Slovenia SI 3.69E-01 3.79E-02 7.26E-04 5.73E-01 2.72E-02 1.53E-03 1.47E-03 6.06E-03 2.00E-03 

Slovakia SK 1.03E-01 1.98E-02 1.95E-04 2.21E-01 1.63E-02 7.46E-04 3.88E-04 7.01E-04 1.27E-03 
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3.2 Data Envelopment Analysis for efficiency assessment 

         DEA approach compares each DMU only with the best set of DMUs for relative 

efficiency calculation. While these DMUs are determined as the best form of the 

efficiency limit, the efficiency of any DMU is measured based on this limit. This 

method considers the best DMUs as relatively efficient on the efficiency limit and these 

units are referred to as reference sets (Thanassoulis et al., 2004). Other DMUs that are 

not located on the efficiency limit are considered relatively inefficient units.  

       DEA guides managers and decision-makers in improving the effectiveness of 

relatively inefficient decision-making units regarding inputs and outputs (Zhao et al., 

2018). Several different measurement units are used simultaneously for input and 

output variables (such as weight, number, monetary or proportional size) for the 

analysis. DEA constitutes the theoretical background of this study. Models that are 

provided with this methodology allow you to compute "Total efficiency", "Technical 

efficiency" and "Scale efficiency" values. Using the system-related input combination 

in producing as many outputs as possible is defined as "technical efficiency", at an 

appropriate scale in production is defined as "scale efficiency". Besides, a 

multiplication of “technical efficiency” and “scale efficiency” yields the “total 

efficiency” (Cazals et al., 2002).  

        In DEA, efficiency measurement is made under the assumption that the production 

function (also called production limit, efficiency limit) is known and the efficiency of 

the systems is measured relative to the production limit (Mavi and Mavi, 2021). Also, 

the degree to which the output amount of a system is below the production limit 

concerning the input is defined as its relative inefficiency (inefficiency) measure. 

Therefore, the production limit should be determined correctly to reach the correct 

results. (Banker et al. 1984; Kucukvar et al., 2020).  
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3.3 Input-oriented DEA model 

       There are mainly two different models that form the infrastructure of DEA 

methodology. A “constant-return to-scale” model developed by Cooper, Charnes, and 

Rhodes (1978) and a “variable return-to-scale” model developed by Banker, Charnes, 

and Cooper (1984). This study uses the input-oriented CCR model due to the robust 

efficiency measures delivered by the model under realistic scenarios (Ozden, 2008; 

Lombardi et al., 2019; Supciller & Bulak, 2020).  

Another issue in DEA is the choice of either the “input-oriented (IO)” or “output-

oriented (OO)” DEA approach. In the IO method, the minimum amount of input (input 

minimization) to be used to produce a given output is considered. In the output-oriented 

perspective, the maximum amount of output (output maximization) to be produced with 

a given input is taken as a basis. Considering these two optimization problems that are 

dual of each other gives the same effective limit, but sometimes differences may occur 

in inefficient units. The study aims to cut down the environmental impacts under the 

triple bottom line umbrella for the member states to be efficient in terms of their use of 

EVs. For this reason, the first model which is the IO DEA multiplier model was used. 

        Eq.3 represent 𝑥𝑗 and 𝑦𝑘 as the 𝑗th input and kth output for the respective DMU 

under evaluation. To estimate the relative efficiency, we use the ratio between the 

weighted output (WO) with respect to the weighted input (WI) as represented in (Eq.4) 

(Onat et al. 2017 a,b):  

WI = ∑ 𝑣𝑗

p

𝑗=1

𝑥𝑗          ;         WO = ∑ µ𝑘

q

𝑘=1

𝑦𝑘                                                        (3) 

Where; 

P = number of input DMUs 

https://onlinelibrary.wiley.com/doi/full/10.1002/sd.2134#sd2134-bib-0070
https://onlinelibrary.wiley.com/doi/full/10.1002/sd.2134#sd2134-bib-0049
https://onlinelibrary.wiley.com/doi/full/10.1002/sd.2134#sd2134-bib-0080
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q = number of output DMUs 

𝑣𝑗 ≥ 0 = weights assigned to the 𝑗th input 

 µ𝑘 ≥ 0 = weights assigned to the 𝑘th output 

The environmental efficiency can be computed using equation (4); 

ξ =
WO

WI
=

∑ µ
k

q

k=1 y
k

∑ vj
p

j=1
xj

                                                                        (4) 

The DMU’s weights, 𝑣𝑗  and µ𝑘 are arbitrarily chosen by linear programming.                                 

The proposed DEA model is as follows; 

Objective Function 

max 𝑧 =  ∑ µ
k

q

k=1 y
k

/ ∑ vj
p

j=1 xj                                                  (5)                                                                                                                

Subject to; 

max 𝑧 =  ∑ µ
k

q

k=1 y
k
/ ∑ vj

p

j=1 xj ≤ 1, 𝑗 = 1, … , 𝑁                                (6)                                                                                        

µ𝑘, 𝑣𝑗 ≥ 0                                                                (7)                                                                                                                                                     

Where; 

 𝑥𝑖𝑗 and 𝑦𝑘𝑖 =  𝑗th input and kth output  of the ith DMU,  

Z = total number of DMUs.  

Increasing the input variables or reducing the output variables is crucial in obtaining 

the anticipated efficiency level (Park et al. 2015). This model can be interpreted as the 

following: DMUj is considered efficient if the value of the objective function z (Eq. 5) 

is 1that are subjected to constraints (Eq. 6 & 7).  If the value is found to be less than 1, 

the DMUj is considered inefficient where the inputs of DMUj were not able to reach a 

sufficient level producing the output for other DMUs. 
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3.4 Weighted and non-weighted DEA model 

          The non-weighted DEA model arbitrarily assigns weights that maximize the 

efficiency scores for each DMU and provides flexibility in determining these weights 

(Egilmez et al., 2013). This flexibility enables the use of different input and output 

weights of different DMU, thus eliminating the need to obtain a common weight set for 

all decision-making units. 

          Due to the flexibility provided by the non-weighted DEA in determining weights, 

the discrimination power of the model is considerably reduced in some cases (Egilmez 

et al., 2016). The discrimination power of the model decreases inputs and output 

indicators are included in the evaluation set. In this context, to raise the discrimination 

power of the model, it may be preferable to include more decision-making units in the 

analysis or to eliminate some of the input and output variables from the analysis (Dyson 

et. al, 2001). However, in some cases, it is not possible to achieve this condition. 

Another way to raise the discrimination power of the model is by adding constraints on 

the weights for the model. In other words, since unrealistic input and output weights 

are used, constraints on weights can be included in the model as a way of eliminating 

the possibility of the DMUs having a high-efficiency score (Podinovski and 

Thanassoulis, 2007; Gumus et al., 2016; Mavi et al., 2019). Therefore, the DEA may 

be adjusted to alleviate the subjective evaluation of the weights of the inputs 

(environmental impact categories) and outputs (economic performance variables), 

while the conventional DEA does not necessitate an initial weight assignment 

(Kuosmanen, 2005; Tatari and Kucukvar, 2012; Pan et al., 2021). In this context, two 

different approaches were put in place to identify and compare the different 

consequences. Besides the conventional approach, a weight-restricted model was 

adopted in the environmental efficiency analysis of electrical vehicles. (Eq. 5) is 
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converted into a mathematical programming model by multiplying the inverse function 

of the environmental efficiency ratio to form (Eq. 8), subject to the constraints (Eq. 9) 

and (Eq. 10).  

min 𝑧−1 =
1

𝑌𝑗
 ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1                                                              (8)                                                                                                                              

Subject to 

1

𝑌𝑗
× ∑ 𝑣𝑖

𝑚

𝑖=1

𝑥𝑖𝑗 ≥ 1, 𝑗 = 1, … , 𝑁                                                       (9) 

𝑣𝑟 ≥ 0                                                                           (10)                                                                                                                                                          

Yj is the per km traveled by the DMUj. This model does not require any multipliers due 

to the existence of a single output. The weight restricted model (Eq. 11) helps us in 

identifying whether discrimination limits the capacity of the DEA model to bring 

efficient results when compared with the traditional model for the envelopment 

analysis. Weights for certain impact categories are assigned through estimation even 

after the weight restriction as per equations (12), (13), (14), and (15). This model reads 

as follows: 

min 𝑧−1 =  
1

𝑌𝑗
× ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1                                                  (11)                                                                                                                                       

Subject to  

1

𝑌𝑗
× ∑ 𝑣𝑖

𝑚

𝑖=1

𝑥𝑖𝑗 ≥ 1, 𝑗 = 1, … , 𝑁                                           (12) 

𝛼𝑗𝑣1 − 𝑣𝑗 ≥ 0, 𝑗 = 2,3, … , 𝑠                                              (13)                                         

𝛽𝑗𝑣1 −  𝑣𝑗 ≤ 0, 𝑗 = 2,3, … , 𝑠                                             (14)                                                                                                                                                                               

𝑣𝑟 ≥ 0                                                                     (15)  

 

where αj and βj = positive scalars. Weights gathered from the European Commission’s 

Joint Research Center (Sala et al. 2018) is used to denote the constraint (Eq. 16) given 



  

 

 

33 

as follows:  

    𝑉𝑐𝑙𝑖𝑚𝑎𝑡𝑒𝑐ℎ𝑎𝑛𝑔𝑒 ≥  𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑒𝑚𝑎𝑡𝑡𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ≥  𝑉𝑢𝑟𝑏𝑎𝑛𝑙𝑎𝑛𝑑𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 ≥

𝑉𝑚𝑒𝑡𝑎𝑙𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛  ≥ 𝑉𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑖𝑎𝑙𝑎𝑐𝑖𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ≥

𝑉𝑝𝑒𝑡𝑟𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙𝑜𝑥𝑖𝑑𝑎𝑛𝑡𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ≥   𝑉𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟𝑒𝑢𝑡𝑟𝑜𝑝ℎ𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ≥

𝑉ℎ𝑢𝑚𝑎𝑛𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦 ≥  𝑉𝑓𝑟𝑒𝑠ℎ𝑤𝑎𝑡𝑒𝑟𝑒𝑐𝑜𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦                                                                                          (16)                                                                                                                    

           

 

          The weights are assigned to each of the midpoint impact categories using an equal 

weighting approach by the expert panel. The experts use the elicitation techniques and 

“value choice” method based on the most critical impact categories and elementary 

flows to reach a consensus in assigning the weights. The assigned weights by the expert 

panel to each of the impact categories can be found in Sala et al. (2018). 

           The primary objective in running a weight-restricted DEA model is to arbitrarily 

manage the efficiency level of the DMUs and undertake a comparison between the 

weight-restricted and unrestricted DEA model. Assigning weights by the experts to the 

impact categories can have great significance on the efficiency outcomes for each 

DMU. Table 4 shows all the six DEA models categorized into weighted and non-

weighted scenarios along with the inputs and outputs. All the inputs listed in Table 4 

fall under the environmental impact categories while per km travel is used as the output 

indicator. Under the proposed framework, three different analyses were carried out for 

both the weighted and non-weighted scenarios using an input-oriented DEA model. 
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Table 4. Proposed Scenarios with Inputs and Output of the DEA Model  

Scenario with Energy Source Inputs Unit Output 

 

    

Scenario-1: Average electricity 

mix (2015) 

Climate change kg CO2-Eq / kWh Per-Km 

Travel 

   

Scenario-2: Marginal electricity 

mix (2015-20) 

Freshwater ecotoxicity kg 1,4-DCB-Eq / kWh 

   

   

Scenario-3: Renewable energy-

based electricity mix (2030-40) 

Freshwater 

eutrophication 

kg P-Eq / kWh 

   

WScenario-1: Average electricity 

mix (2015) 

Human toxicity kg 1,4-DCB-Eq/ kWh 

   

WScenario-2: Marginal electricity 

mix (2015-20) 

Metal depletion kg Fe-Eq/ kWh 

   

WScenario-3: Renewable energy-

based electricity mix (2030-40) 

Particulate matter 

formation 

kg PM10-Eq/ kWh 

   

 Photochemical oxidant 

formation 

kg NMVOC/ kWh 

   

 Terrestrial acidification kg SO2-Eq/ kWh 

        Urban land occupation square meter-year/ kWh 
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4. RESULTS AND DISCUSSIONS 

4.1 Unrestricted DEA Model 

           This section attempts to explain the analysis conducted for all six scenarios. 

(Fig.4) shows the relative environmental efficiency score (ξ) under all the Scenarios 

(Scenario 1, Scenario 2, Scenario 3) for each of the European member states. The results 

appear as a non-negative score within the range from 0 to 1. Each of the 27 European 

countries is ranked in the ascending order of their performance under Scenario 1 as 

shown in (Fig.4). The results reveal Romania with an environmental efficiency score 

of ξ = 0.7781 as the least performing European country relative to other comparable 

units.  

         On the other hand, European countries like Slovenia, Sweden, Netherlands, Great 

Britain, France, Finland, Belgium and, Austria were ranked among the top with an 

efficiency score ξ = 1. When, Netherlands, France, Finland, and Belgium retained their 

position under Scenario 2 (Fig. 4) as the most environmentally efficient countries in 

terms of their use of EVs, Slovenia, Sweden, and Austria were pushed out of the list to 

fall under the medium-to-low efficiency categories. Scenario 2 witnessed the Czech 

Republic as the least performing unit with an efficiency score of ξ = 0.6554. Romania, 

the least performing country in terms of its relative efficiency under scenario 1 showed 

considerable improvement under scenario 2 (ξ = 0.9531). Despite the improvement, 

Romania still falls under the “fairly good” performing category in the medium 

efficiency zone. Under this scenario, apart from the aforementioned countries, 

Slovakia, Portugal, Malta, Latvia, Lithuania, Italy, Ireland, Hungary, Denmark, Cyprus, 

and Bulgaria were termed environmentally efficient with an efficiency score ξ=1. 

         The results for Scenario 3 show that all the European countries selected for the 

study except Latvia, Hungary, Germany, Belgium, and Austria are efficient with an 
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efficiency score of ξ =1. It is under Scenario 3, that most of all the European countries 

showed meritorious performance in comparison with the least performing countries. 

The least performing countries under scenario 3 do hold a fairly high-efficiency score 

(ξ=0.999) compared to the least performing countries in Scenario 1 and Scenario 2. 

 

 

 

Figure 5. Environmental efficiency and ranking results of BEVs under nonrestricted model 
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4.2 Weight-restricted DEA Model 

         According to the weights assigned to the impact categories, all the previous 

scenarios were run for the EU Electrical Vehicle environmental efficiency DEA Model. 

According to the analysis, Fig 5 shows the results under the weight-restricted DEA 

model for WScenario 1, Wscenario 2, and Wscenario 3. The countries that were 

categorized as the most efficiently performing units under Scenario 1 for the non-

weighted DEA model (Fig 4) when compared with the Wscenario 1, remained the same. 

Notably, the weights assigned by the expert panel to each indicator made no difference 

in the efficiency outcomes in the high-performing countries. While the efficiency scores 

drastically fell for the remaining European countries. Under the WScenario 1, the Czech 

Republic with an efficiency score of ξ = 0.241 is the least performing European country 

relative to other comparable units. Despite the Czech Republic not falling on the 

efficient frontier under both scenarios, for Scenario 1, the country ranks 20th with an 

ξ score equal to 0.8834. An efficiency score of 0.8834 is fairly good in comparison with 

the Wsecanrio 1 score of the Czech Republic (ξ = 0.241). A total of 19 countries 

reported poor performance based on the efficiency score as the scores ranged from 0.38 

to 0.241.  

      This translates to the fact that nearly 70.37% of countries in the WScenario 1 stood 

way under the efficient frontier. In terms of the value-added outcomes for each of the 

listed countries to their environmental burdens when accounted for relatively, certain 

weight assignments negatively impacted the efficiency scores of some countries.  

     Similarly, when comparing the efficiency results of WScenario 2 with Scenario 2 

(Fig. 5), we can see that all the efficient countries under WScenario 2 (Fig. 6) remained 

the same as Scenario 2, like the former case mentioned. While, Estonia with an 
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efficiency score ξ = 0.248 is the least efficient country in terms of their use of BEVs 

under WScenario 2. The least efficient Czech Republic under Scenario 2 was pushed 

to the 26th rank under WScenario 2 with an efficiency score of ξ = 0.308. The results 

were surprising when WScenario 3 was put under comparison with the results of 

Scenario 3. 81.48% of countries considered for the assessment were efficient under 

Scenario 3. This percentage fell leaving Portugal, Slovakia, Malta, Finland, Czech 

Republic and, Cyprus as the environmentally efficient country in terms of BEV usage 

under Wscenario 3. Nearly, 21 countries were inefficient under this scenario. Nearly 

77% of countries under the WScenario 3 can be found to be inefficient. The inefficient 

countries hold an efficiency score ranging from 0.968 to 0.754. 
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Figure 6. Environmental efficiency and ranking results of BEVs under the weight restricted 

model 

 

4.3 Model-based variability assessment   

      A non-parametric test to determine the significant difference in the mean ξ score 

across each scenario is conducted using the Kruskal-Wallis H test. The test draws the 

assumption that the samples are randomly distributed. The null hypothesis (H0) for the 

Kruskal-Wallis H test is that the mean ξ score is equally distributed to the alternative 

hypothesis (HA) that there exists at least one ξ score significantly different from the 
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overall sample. The test hypothesis can be represented as; H0 = μ
ξ(1)= μ

ξ(2)=…..= μ
ξ(6) 

and HA = μ
ξ(1)= μ

ξ(2) ≠ μ
ξ(3)=…..= μ

ξ(6); where μ
ξ(j)

 is the mean ξ score for the jth 

Scenario. The Kruskal-Wallis H test statistics can be calculated using equation(17); 

H =
∑  (X̅j-X̅)all j  (Z-1)

∑ ∑ (Xjk-X̅)
2nj

k=1all j

;         For  j =1,2,…,6                                  (17) 

where; 

nj = DMUs tested under the jth Scenario  

Z = total number of DMUs considered in the study 

Xjk = rank of kth observation under the jth Scenario 

X̅j = average rank for the jth Scenario 

X̅ = average rank across all the scenarios considered in the study 

      To determine whether the mean ξ score across each scenario varies significantly 

from each other, a 95% significance level represented by α = 0.05 is chosen to compare 

the estimates with the p-value. If p-value > α, the H statistics is insignificant. Thus, we 

fail to reject H0. This translates to the fact that the mean ξ score across each scenario is 

insignificantly different from the other. On the contrary, if the p-value ≤ α, there is 

sufficient evidence to prove that the mean ξ score across each varies significantly from 

the other. The H statistics and p-value for the Kruskal-Wallis test were found to be 

48.21 and 0.000 respectively. Based on the p-value, we conclude the fact that either of 

the scenarios dominates the other, resulting in rejecting the null hypothesis. The 

influence of input and output variables on the mean ξ score can be studied using 

pairwise comparison. The pairwise comparison aims to identify the set of scenarios 

with similar ξ scores. The combination for each scenario can be calculated using 

equation (18);  
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Cr
n =

n!

(n-r)! r!
;       For n = 6 and r = 2                                         (18)  

where; 

n = number of scenarios  

r = number of subsets under comparison  

      Table 5 shows the pairwise comparison results of ξ score for a significance level of 

α = 0.05. Based on the results of the pairwise comparison, we can see that there assumes 

an insignificant difference in the mean ξ score across Scenario 1 and, Scenario 2, 

Wscenario 2, and Wscenario 3. Similar results can be seen in the pairwise comparison 

for Scenario 2, Wscenario 3, and Wscenario 2. While significant difference can be seen 

in the mean ξ score across Scenario 1 with Scenario 3 and Wscenario 1. Similarly, the 

pairwise comparison results show a significant difference when compared across 

Scenario 2, Scenario 3, and Wscenario 1. 

 

Table 5. Pairwise comparison on the mean ξ scores 

Analysis Category Kruskal-

Wallis 

P-value Decision 

   Insignificant  Significant 

 

Scenario 1 Vs. Scenario 2 15,685 1.000 √  

Scenario 1 Vs. Scenario 3 42.444 0.005  √ 

Scenario 1 Vs. WScenario 1 34.944 0.050  √ 

Scenario 1 Vs. WScenario 2 4.407 1.000 √  

Scenario 1 Vs. WScenario 3 12.926 1.000 √  

Scenario 2 Vs. Scenario 3 26.759 0.370 √  

Scenario 2 Vs. WScenario 1 50.360 0.000  √ 
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Analysis Category Kruskal-

Wallis 

P-value Decision 

   Insignificant  Significant 

 

Scenario 2 Vs. WScenario 2 11.278 1.000 √  

Scenario 2 Vs. WScenario 3 28.611 0.244 √  

Scenario 3 Vs. WScenario 1 77.389 0.000  √ 

Scenario 3 Vs. WScenario 2 38.037 0.021  √ 

Scenario 3 Vs. WScenario 3 55.370 0.000  √ 

WScenario1 Vs.WScenario2 39.352 0.014  √ 

WScenario1 Vs.WScenario3 22.019 0.967 √  

WScenario2 Vs.WScenario3 17.333 1.000 √  

 

 

4.4 Efficiency performance grouping  

     The efficiency scores for each DMU under the respective scenario were grouped 

depending on their performance. One of the most common methods customarily used 

in the grouping is the Quintiles (Q) method. The method divides the data set into five 

equal intervals. These interval groups are tagged “Poor”, “Slightly Fair”, “Fair”, 

“Good” and “Excellent”. Performance grouping helps in understanding the impact of 

having certain output parameters in the production set on the total efficiency 

performance. Once the data set is divided into five equal intervals, each DMU is placed 

in the appropriate quintile based on their efficiency scores to better understand the 

standing of each DMU relative to one another. (Fig.6) shows the group-based efficiency 

performance for each DMU under all six scenarios. To better visualize the efficiency 

performance, conditional formatting tends to assign position-dependent color gradience 

for each quintile. The results show Finland as the most efficiently performing country 

in terms of their use of BEVs for all six scenarios. While France and Netherlands stand 

as the first runner up with a slight dip in their performance under WScenario 3. It was 



  

 

 

43 

found that all the countries that fell under the “Good performance” quintile in Scenario 

1 were pushed to the poorly performing category under WScenario 1. All the countries 

under Scenario 3 except Austria, Belgium, Hungary, and Latvia maintained an 

“Excellent performance”. Estonia and Croatia were grouped as the least performing 

countries across all the six scenarios followed by Austria, Czech Republic, Poland, and 

Romania.  

 

Figure 7. Comparative performance assessment 

 

EU 

Countries 
Scenario 1 Scenario 2 Scenario 3 WScenario 1 WScenario 2 WScenario 3 

AT 5 4 4 5 3 3 

BE 5 5 4 5 5 3 

BG 4 5 5 1 5 4 

CY 4 5 5 1 5 5 

CZ 4 3 5 1 1 5 

DE 4 5 4 1 5 3 

DK 4 5 5 1 5 4 

EE 4 3 5 1 1 4 

ES 4 4 5 1 4 4 

FI 5 5 5 5 5 5 

FR 5 5 5 5 5 4 

GR 5 4 5 5 3 4 

HR 4 3 5 1 2 3 

HU 4 5 4 1 5 3 

IE 4 5 5 1 5 4 

IT 4 5 5 1 5 4 

LT 4 5 4 1 5 3 

LU 4 4 5 1 4 4 

LV 4 5 5 1 5 4 

MT 4 5 5 1 5 5 

NL 5 5 5 5 5 4 

PL 4 4 5 1 1 4 

PT 4 5 5 1 5 5 

RO 3 4 5 1 2 4 

SE 5 4 5 5 3 4 

SI 5 3 5 5 1 4 

SK 4 5 5 1 5 5 

Color 

Code Key 
     

  

        Poor  
Slightly 

Fair 
 

  

Fair 
       Good  Excellent 
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4.5 Projection Level Analysis 

       This section attempts to carry out a projection level analysis for all the six scenarios 

discussed in this thesis. The percentage reduction level corresponding to each 

environmental impact category help in understanding the extent to which each indicator 

needs to be cut down to reach the efficient frontier. In a better sense, this analysis helps 

each European country to move towards the sustainable use of BEVs following its best-

performing peers. Table 6 shows the reference set and average projection level for 

Romania (RO) under Scenario 1. Romania with an efficiency score of ξ = 0.7781 is 

observed to be the least efficient European country in comparison with other counties. 

Austria (v1 = 0.102), Netherlands (v2 = 0.009) and Sweden (v3 = 0.889) were chosen as 

the benchmarks under this scenario. This means that Romania needs to follow the 

benchmarked units to achieve the average projection level to reach the desired 

sustainability level. The input variables for each of the benchmarked units need to be 

multiplied by their corresponding weights for Romania to be considered efficient. 

Figure 7 depicts the projection levels considering environmental impact categories of 

each country for all six scenario analyses. Romania needs to reduce the climate change-

related impacts by 84.087%, freshwater eco-toxicity by 46.48%, freshwater 

eutrophication by 92.379%, human toxicity by 83.477%, metal depletion by 22.19%, 

particulate matter formation by 92.159%, petrochemical oxidant formation by 22.19%, 

terrestrial acidification and urban land occupation value by 86.772% and 22.19% 

respectively, to improve its performance to reach the efficient frontier as seen in 

(Fig.7a). 

      Table 7 shows the least efficient country like the Czech Republic (CZ) that accounts 

for an ξ = 0.241 under Scenario 2. Cyprus (v4 = 0.918) and Portugal (v5 = 0.082) were 

chosen as the reference set to guide Czech Republic (CZ) for becoming efficient unit. 
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Similarly, while considering Scenario 3, Table 8 demonstrates that Cyprus (v6 = 0.747) 

and Slovakia (v7 = 0.253) were taken as the benchmarking units for the inefficient unit 

Lithuania (LT). The assigned weights for each of the reference set is multiplied with 

the respective environmental impact categories to lay pathways for the inefficient units 

to improve their performance. The average projection level for the former is 69.56% 

and the latter is 4.57%. While considering Scenario 2, Czech Republic needs to cut 

down the impacts by 63.24% from the climate change category, followed by 57.576% 

from freshwater eco-toxicity and 97.328% from freshwater eutrophication to improve 

the inefficient performance. While 90.227% needs to be downsized from the human 

toxicity impact category, 34.461%  from metal depletion, 81.156% from particulate 

matter formation, 34.461% from photochemical oxidant formation, 84.796% from the 

terrestrial acidification, and 82.76% from the urban land occupation-related impacts for 

possible efficiency improvements as indicated in (Fig 7b). Scenario 3 projection level 

is illustrated by (Fig. 7c) which indicates that Lithuania needs to decrease its share 

across “climate change-related impacts, freshwater eco-toxicity, freshwater 

eutrophication, human toxicity, metal depletion, particulate matter formation, 

petrochemical oxidant formation, terrestrial acidification, and urban land occupation” 

value by 25.717%, 1.849%, 0.007%, 11.448%, 1.573%, 0.01%, 0.018%, 0.007%, and 

0.47%, respectively. Finally, when considering all the weighted DEA Scenarios, Czech 

Republic (CZ), Estonia (EE), and Hungary (HU) were found to be the inefficient and 

the least performing European countries under WScenario 1, WScenario 2, and 

WScenario 3 respectively. 

      Diving deep into each of the scenarios Table 9 shows that France with a weight of 

v8 = 0.714 and Sweden with an assigned weight of v9 = 0.286 need to be multiplied with 

their respective environmental impact categories to reach efficiency levels under 
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WScenario 1. Similarly, Table 10 illustrates the weights assigned to Cyprus (v9 = 1) 

under WScenario 2 and, Table 11 indicates that Slovakia (v10 = 0.011)  and Cyprus (v11 

= 0.989) under WScenario 3 need to be multiplied with the respective input parameters 

to push the inefficient countries namely; Estonia and Hungary to fall onto the efficient 

frontier. 

        The average projection levels for the Czech Republic (CZ), Estonia (EE), and 

Hungary (HU)  are 73.63%, 75.09%, and 8.62% respectively for the weight-restricted 

condition. In the meantime, Wscenario1, Wscenario 2, and Wscenario 3 are taken into 

consideration with their environmental indicators and provided with their overall 

projection levels as illustrated in (Fig. 7d-f.) It is to be noted that to improve the 

sustainability performance of the inefficient units, not all the inputs need to be reduced 

or outputs are increased. Some inputs remain constant whose increase or decrease does 

not affect the overall outcome. 

 

Table 6. Benchmark levels for Romania (RO) in Scenario 1 

 

 

Inputs Romania 

Best Level 

Reference Set Average 

Projection 

Level (%) 

 

Climate change 0.01446 

Austria (AT), 

Netherland (NL), 

Sweden (SE) 

61.33 

Freshwater ecotoxicity 0.00338 

Freshwater eutrophication 

Human toxicity 

Metal depletion 

Particulate matter formation 

Photochemical oxidant 

formation 

Terrestrial acidification 

Urban land occupation  

1.4E-05 

0.01936 

0.00224 

2.3E-05 

0.00019 

6.5E-05 

0.00021 
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Table 7. Benchmark levels for the Czech Republic (CZ) in Scenario 2 

 

Table 8. Benchmark levels for Lithuania (LT) in Scenario 3 

Inputs Lithuania 

Best Level 

Reference Set Average Projection 

Level (%) 

 

Climate change 0.02784   

Freshwater ecotoxicity 0.04252   

Freshwater eutrophication 0.08172   

Human toxicity 0.10746 Cyprus (CY) 4.57 

Metal depletion 0.12576 Slovakia (SK)  

Particulate matter formation 0.12785   

Photochemical oxidant 

formation 

0.12793   

Terrestrial acidification 0.00098   

Urban land occupation 0.03844   

 

 

Table 9. Benchmark levels for Czech Republic (CZ) in Wscenario 1 

Inputs Czech Republic 

Best Level 

Reference Set Average Projection 

Level (%) 

 

Climate change 0.00987   

Freshwater ecotoxicity 0.00329   

Freshwater eutrophication 6.4E-06   

Human toxicity 0.01525 France (FR) 73.63 

Metal depletion 0.00245 Sweden (SE)  

Particulate matter formation 2.4E-05   

Photochemical oxidant 

formation 

0.00012   

Terrestrial acidification 5.4E-05   

Urban land occupation 0.00014   

 

Inputs Czech Republic  

Best Level 

Reference Set Average 

Projection  

Level (%) 

 

Climate change 0.0594 

Cyprus (CY), 

Portugal (PT) 
69.56 

Freshwater ecotoxicity 0.0038 

Freshwater eutrophication 

Human toxicity 

Metal depletion 

Particulate matter formation 

Photochemical oxidant 

formation 

Terrestrial acidification 

Urban land occupation  

7.4E-06 

0.01746 

0.00314 

2.9E-05 

4.7E-05 

7.7E-05 

7.8E-05 



  

 

 

48 

 

Table 10. Benchmark levels for Estonia (EE) in Wscenario 2 

 

 

 

 

Table 11. Benchmark levels for Hungary (HU) in Wscenario 3 

 

 

 

 

 

 

 

Inputs Estonia  

Best Level 

Reference Set Average 

Projection  

Level (%) 

 

Climate change 0.06234 

Cyprus (CR) 75.09 

Freshwater ecotoxicity 0.00384 

Freshwater eutrophication 

Human toxicity 

Metal depletion 

Particulate matter formation 

Photochemical oxidant 

formation 

Terrestrial acidification 

Urban land occupation  

7.3E-06 

0.01744 

0.00317 

2.3E-05 

2.8E-05 

5E-05 

7.5E-05 

Inputs Hungary 

Best Level 

Reference Set Average 

Projection 

Level (%) 

Climate change 0.01307 

Cyprus (CR), 

Slovakia (SK) 
8.62 

Freshwater ecotoxicity 0.04283 

Freshwater eutrophication 

Human toxicity 

Metal depletion 

Particulate matter formation 

Photochemical oxidant 

formation 

Terrestrial acidification 

Urban land occupation  

0.08172 

0.11373 

0.12679 

0.12785 

0.12795 

0.00097 

0.0385 
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a)  

 

 

b)  
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e) 

f) 

 

Figure 8. Projection results on environmental impact categories a) Scenario 1 b) Scenario 2  

c) Scenario 3 d) Weight-restricted Scenario 1 e) Weight-restricted Scenario 2                          

f) Weigh-restricted Scenario 3 
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5. CONCLUSIONS AND FUTURE WORK 

        This thesis used a WTW-LCA combined with weight-restricted and unrestricted 

DEA to quantify the environmental efficiency for each of the 27 European countries. 

An efficiency performance grouping scheme was then used to identify the grouped 

performance scores for each country. A model-based variability assessment using a 

non-parametric test was undertaken, supported with a projection level analysis. The 

projection level analysis can help the least performing countries in identifying pathways 

to reach the efficient frontier. 

The findings clearly proved that decarbonization of power generation can lead to 

favorable results in efficiency performance. This can be seen when taken into account 

the case of renewable energy-based electricity mix (Scenario 3). Countries showed 

excellent performance in terms of their use of BEVs on highways under scenario 3 for 

all of Europe. Scenario 3 acts as a baseline in addressing climate change-related 

impacts. Similar results can be seen under WScenario 3 that uses the same renewable 

energy-based electricity mix. All the countries fall under the fairly high performing to 

excellent performing category in this scenario. Countries including Romania, Czech 

Republic, and Estonia should strengthen their EV usage policies for different electricity 

types. Under all the scenarios, these countries showed below-average performance. The 

findings in this study thus critically acknowledge the advantage in the use of 

decarbonized energy supply in the power mix to cut down emissions from all the impact 

categories. The methods utilized in this thesis can be applied to all countries in the 

world if the fuel efficiency of EVs is known, the electricity mix, and associated 

environmental impacts. 

         National incentives and benefits apart from the central European commission 

incentives can strengthen the nationwide EV adoption. The monetary EV incentives in 
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Belgium, EV registration tax benefits in Denmark, 100% exemption on ownership tax 

for EVs that emit less than 50g/CO2 eq., and the attractive scrappage scheme offered 

by France for EVs are all examples of national incentives to strengthen the EV adoption 

to reach maturity. However, despite the promising benefits offered by the subsidies to 

commercialize the use of EVs with the meta goal of carbon emission reduction, the case 

of Finland is surprising and an answer to our thesis. Finland is well known for no 

subsidies and tax incentives when it comes to the use of EVs. However, according to 

the study conducted in this thesis, Finland is the highest performing country in terms of 

their use of EVs across Europe under all the six scenarios. The reason behind the 

meritorious performance of Finland can be attributed to its bio-fuel adaption policy 

post-2015 and the switch to intense carbon neutral practices. The use of differentiated 

smart metering systems for EV charging can help in separate taxation for electricity use 

by EV adopters to take advantage of the government incentives for the use of EVs. To 

socially optimize the use of EVs on highways, policymakers can implement charges on 

the amount of emissions per vehicle type as the EV market transitions towards maturity. 

Such initiatives can open a new market to the concept of EVs for sharing economy. 

       Power generation from clean energy sources has become a key overlay in bringing 

carbon neutral and circular economy opportunities in the transportation industry. For 

future work, a suggestion to choosing the full ReCipe endpoint impact categories to 

understand the destructions inflicted on human health, ecosystem health, and resource 

damage by the use of alternative mobility practices in Europe under the same scenarios 

using the environmental and social LCA approach. Furthermore, it is suggested to 

conduct a material footprint analysis to identify and compare the emissions associated 

with the materials required per unit generation of electricity utilizing the decarbonized 

technologies with the traditional fossil fuel generation system. A scenario-based multi-
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level integrated LCA approach is suggested to identify the carbon emissions associated 

with the use of electricity generation technologies under energy scenarios. It is readily 

important to determine the actual share-of-use of low-carbon energy per km for EVs 

with the identified saving potential values from the use of “renewable electricity mix” 

to avoid the unfair estimation of advantage for EVs. In addition, it is suggested that the 

combined application of hybrid life cycle sustainability assessment and DEA models to 

measure the social, economic, and environmental performance for the complete 

electrification of passenger cars based on the triple bottom line sustainability impacts 

in Europe and the globe. Therefore, it is proposed to include more environmental and 

socioeconomic indicators such as material footprint, life cycle cost, and economic 

value-added and develop a holistic input-output hybrid life cycle sustainability 

assessment of battery electric vehicles considering the full life cycle stages including 

the circular battery production, automotive part manufacturing, and economy 

applications of end of life batteries.  
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