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ABSTRACT

Kharbach, Sarah, L., Masters : June: 2021, Master of Science in Computing

Title: A Visualization Training Tool for Optimum Cutting Range During Urethral
Dissection in Robot-Assisted Radical Prostatectomy: A deep learning approach
Supervisor of Thesis: Dr. Abdulla Al-Ali.

Surgical training and skills assessment is one of the methodologies used by clinical
practitioners to master their skills in a fault-tolerant, safe and risk-free environment.
Software training tools is one of them. Narrowing the scope on surgery, and with the
significant popularity of robotic surgeries in the last few years, clinical and technological
research has shifted their attention towards developing surgical supportive tools such
intraoperative surgical planning, training tools, etc. In this thesis, we attempt to develop
a software to teach surgeons on the optimum urethra dissection locations based on
prostate size and cancer location. The surgeon is presented by a patient case and suggests
optimum different dissection locations. The system would automatically evaluate the
surgeon’s performance and generate a score accordingly. In this thesis, a clinical
validation was conducted to validate the need of such software in a clinical practice
by interviewing three robotic surgeons experts. Once validated successfully, Tutorial
Module was developed and validated with expert urology surgeons using content validity
to evaluate the module’s effectiveness as a teaching modality and Questionnaire for User
Interaction Satisfaction to evaluate the interface perceptiveness among them. Both
tests reflected high surgeons’ satisfaction. To detect the urethra, U-Net, a deep learning
module was trained over a small dataset of images extracted from from HMC’s operating
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rooms as well as publicly available videos. Image semantic segmentation was the
method used to extract and locate the urethra. U-Net model was able to reach a Jaccard
Coefficient of 78.42% and a Dice Coeflicient of 88.11%. To the best of our knowledge,
this thesis is the first of its kind to offer a scenario-based training on optimum urethra

dissection location for robot-assisted radical proastatectomy.
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CHAPTER 1: INTRODUCTION

Medical skills training and assessment have become an integral part of medical
education in the last decades. Such tools allow clinicians to continuously improve their
clinical skills and stay of the edge of latest trends in their fields. Medical training
comes in numerous shapes: training can be on cadavers, phantoms, typical lectures
and exams, online courses, high-fidelity simulations such as Virtual Reality (VR) and
Augmented Reality (AR), computer software, etc. Taking robotic surgeries for instance,
training for such procedures is gaining unprecedented attention due to the benefits of
robotic surgeries. This is because of the rising adaptation of robotic interventions in
many surgical fields such as urology and gynecology. For instance, and with COVID-
19 global pandemic affecting the world and specifically the healthcare system, robotic
surgeries were an optimum solution to physically separate the healthcare worker and the
patient under operation and mitigate infectious contamination as much as possible [1].

Prostatectomy is a medical intervention where the surgeon surgically removes a part
or the whole cancerous prostate gland. This procedure can be done robotically, laparo-
scopically or even as an open surgery. Robotically, Robot-Assisted Radical Prostatec-
tomy or RARP procedure has several steps including releasing the bladder, endopelvic
fascia, urethral transection or dissecting [2]. Urethral dissection is one of the most
crucial step of the procedure as failing to cut the urethra on the correct location will
compromise the surgery outcomes: leaving cancerous tissues behind and failure of the
radical extraction of cancer. In this thesis, we are attempting to build a training tool
for surgeons to teach them the optimum cutting ranges on the urethra based on two
variables: prostate size and cancer location in the prostate. The project has two major

components: Tutorial mode and Evaluation mode. Tutorial mode will serve as a tool



to teach surgeons about the cutting decisions. Evaluation mode will assess surgeons’
acquired knowledge by allowing them to suggest a cutting location and assigning them
a score. Deep learning is used to automate the evaluation, as the urethra image will be
fed to a trained U-Net model, segment the urethra, draw a box around it, and prompt the
trainee surgeon to suggest an excellent, acceptable, unacceptable cut and the urethral
stump. By the end of this training, the trainee surgeon is expected to know the optimum
cutting location based on each patient case.

The objectives of this thesis are as follows:

1. to provide a solution for trainee surgeons to teach the fundamentals of optimum
cutting ranges. The cutting decisions are based on two essential factors: prostate
size and cancer location in the prostate. These factors were chosen after iterative

discussions with an expert RARP surgeon in Hamad Medical Corporation (HMC).

2. to investigate automated guidance and training approaches using deep learning
while leveraging the existing resources of RARP’s surgical videos for continuous
training and development purposes. This would be responsible of detecting the
urethra from a series of images to familiarize trainee surgeons with pelvic area

anatomy, specifically urethra.

3. to validate the prototype by conducting evaluation studies for it to be ready for

deployment in HMC.

The reminder of the document is structured as follows: Chapter 2 will have clinical
and technical backgrounds on most of the concepts mentioned later in thesis. Chapter 3
will have a literature review on state-of-art in training in light of robotic surgery and in
medical image segmentation field. Chapter 4 proceeds to discuss the urethra localisation
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methodology using a deep learning approach and reports key findings. Chapter 5
discusses the clinical validation process that has been conducted before and during the
development. Lastly, chapter 6 concludes the key findings, lists the limitations, foresee

future work and anticipated publications.



CHAPTER 2: BACKGROUND
This chapter discuss key clinical and technical backgrounds needed to understand

thesis topics discussed in later chapters.

2.1 Clinical Background

The section elaborates on the clinical background of the problem in study. Thesis
topic revolves around Robot-Assisted Radical Prostatectomy, or RARP for short. This
is a procedure where the surgeon removes the cancerous prostate out of the body using
a robot. The prostate is a gland in the male reproductive system that is found under
the bladder, with the urethra passing through it. It is responsible for producing seminal
fluid that helps in transporting sperms [3]. Prostate is located beneath the bladder, the
organ responsible for urine storage. The urethral tube is started from the bladder neck
and goes through the prostate to the penis. It consists of a base, an apex, an anterior, a
posterior and two lateral surfaces. Figure 2.1 illustrates the prostate anatomy in its two
cases: benign and malignant.

Prostate gland cancer is the second leading cancer in men. According the US
statistics for the year of 2020 published by American Cancer Society, there will be an

estimate of 191,930 new diagnosed patients and 33,330 deaths [4].



Normal prostate

(a) Benign prostate

Enlarged prostate

{

(b) Malignant prostate

Figure 2.1: Illustrations of prostate anatomy in benign and malignant cases

Surgery is a one of the treatments for this disease along with other treatment plans
such as active surveillance and external beam radiation. The type of surgeries that can
be used to perform partial or full prostatectomy can be an open, a laparoscopic, or a
robotic intervention. In most of the reputable hospitals in the world, including HMC, the

state-of-the-art, FDA-approved surgical robot that is widely used is DaVinci Surgical



System by Intuitive Surgical [S5]. The system comprises of three components. Figure

2.2 illustrates the different components.

Figure 2.2: DaVinci Robotic system components

1. Patient Cart: a component where the patient lays down that is used to insert

instruments through the patient’s body.

2. Surgeon Console: a separate component where the surgeon sits and controls all

instruments through intuitive hardware interfaces.

3. Vision Cart: a component that facilitates the communication across systems and

displays live feed of the procedure for people attending the operation.

Robotic surgeries is a type of surgical interventions that is done using a robot. It
is a minimally invasive procedure that has proven to have better surgical outcomes as
oppose to other types of surgeries like open or laparoscopic interventions. RARP is
an example of it. The procedure is done robotically, which means that the surgeon

reaches the organ through small incisions made on the patient’s abdomen. Surgical



endoscope and instruments are then inserted in and the surgeon performs the entire
procedure through them. By having few small incisions as oppose to an open surgery,
patients experience less blood loss, fewer complications risks, less hospitalization and
ultimately, better surgical outcomes. From a surgeon’s perspective, robotic surgeries
offer the surgeons the ability to be more meticulous while performing the surgery,
especially when dealing with delicate areas that are surrounded by numerous nervous
tissues like the male pelvis region. The robot offers better perceived ergonomics, safety,
high-definition stereoscopic display, display magnification, tremor filtration, movement
scaling, and wristed instrumentation with 6-degrees of freedom [6] [7].

Undergoing training for RARP is crucial for novice and intermediate surgeons to
practice and assess their surgical skills before moving to the operating rooms. RARP is a
procedure that involves many steps including urethra dissection step [8]. In this step, the
surgeon dissects the urethra to free the prostate from its surrounding anatomy and extract
it out of the body. The significance of the step lies in accurately determining the optimum
cutting range or location on the urethra. Generally, prostate cancer lies in the prostate.
However, there is always a chance of metastasis, meaning cancerous cells migrating to
nearby healthy cells such as urethral tube. Incorrect dissection will compromise the
oncological principals as the surgeon would leave cancerous tissues behind, which will
consequently lead to positive margin. Positive margin is hypothesized to lead to an
increased risk of biochemical recurrence of cancer, which defeats the purpose of the
surgery of radical extraction of cancer. Additionally, poor dissection decisions, such
as not leaving enough urethral stump for suturing after dissection, may affect patient’s

quality of life such as urinary continence and erectile dysfunction post-operatively [9].



2.2 Technical Background

This section will elaborate on the technical background needed for this thesis.

2.2.1 Convolutional Neural Network

Convolutional Neural Network, or CNN for short is a sub-type of Neural Networks
that is widely used in the the field of computer vision locate a region of interest. Among
the various applications, we find image segmentation such as in [10], [11], [12], image
and video object detection such as in [13],[14],[15], [16], medical image analysis such as
in [17], [18], [19], [20], etc. The name is inspired from the mathematical operation used
throughout the network called "Convolution". In the context of images, a convolution
is simply applying a filter (or kernal) to the input image to produce a feature map that
is fed to the next layer in the network. Kernal is usually a 2D matrix that applied to the
2D input images and the result is a feature map. Convolutions are repeated throughout
the network along with pooling layers. Pooling layers are responsible for downsampling
the feature maps and reduce their spacial size to reduce the network computations and
parameters, while maintaining the most important features intact. Max pooling and
average pooling are the most used approaches. Simply put, rounds of convolutions and
pooling break down images into features and analyze them.

The last major component of CNN is Fully Connected Layers (or FCL) is responsible
to convert the output of convolution/pooling rounds into a tangible output in terms
of probabilities, class predictions, regressions, etc. This is done by flattening the
convolution/pooling output and turn them into a single vector and applies weights

to output predicted classes and their probabilities. An illustration of a typical CNN



architecture in Figure 2.3.
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Figure 2.3: A typical CNN architecture

In this thesis, U-Net architecture is used to perform semantic segmentation tasks.
U-Net is an encoder and decoder-architecture network that was intended specifically
for medical image segmentation tasks. It consists of two major parts: contraction part
(encoder), where the network digests the input image and learns deep features. The
expansive part (decoder), where the network upsamples the learnt features and attempts
to reconstruct a meaningful segmented image/mask with the same size of the input
image. Based on the original paper that launched U-Net [21], authors report very good
results using very small dataset sizes. Figure 2.4 shows the original architecture of U-
Net with 23 convolutional layers. Blue boxes denote a series of 2D convolutional blocks
followed by Rectified Linear Unit (ReLU) activation function. Red arrows denote a
max pooling convolution with 2 X 2 sized-kernal to perfom down-sampling operations.
Downsampling causes the feature channel to double its size by a factor of 2. To reverse
the process, the expansion path upsamples the feature maps and a 2 X 2 convolutions that
decreases the number of feature channels by 2. The feature map is concatenated with the

corresponding cropped feature in the contracting part followed by a 2 X 2 convolutions



and a ReLLU. The output layer is 64 X 1 feature vector using a 1x1 convolution to map

the different output classes.
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Figure 2.4: U-Net encoder-decoder architecture [21]

2.2.2 Medical Image Segmentation

Image segmentation is the process of partitioning the images into multiple parts,
called "segments". These parts can be different depending on the application such as
edge detection, thresholding, region-based segmentation, boundary detection, etc. For
this task, deep learning is the approach of choice as it requires less human intervention
during the training process. In traditional image processing mothods, a step of manual
feature engineering is required before learning [22]. This would consequently add a
burden of clinician intervention prior to the learning process, which is not suitable for this
project. This is because clinicians are always busy and an automated feature extraction
method is required. Additionally, computational resources for training purposes are not
a constraint in this project. Post training, the model will be exported and used on a

10



standard specifications computer to classify new images.

Image segmentation has been used in various applications including autonomous
driving cars [23], [24] satellite image analysis [25], [26] medical image analysis [17],
[18], [19], [20], etc.

When it comes to the medical field, image segmentation has gained an unprece-
dented attention to its potentials in solving medical imaging problems from segmenting
anatomical structures such as in [27] [28] to segmenting surgical tools such as in [29]
[30], kinematics-based and video-based surgical skills assessment such as in [31] [32]
and automated frames extraction based on surgical step such as in [33] [34].

Novel image segmentation techniques has proven to be highly accurate in analyzing
quite complex and fine medical images, including patterns that are not easily distin-
guishable with human eye. To show an example, Figure 2.5 (a) represents a slice from
a brain volumetric image. The brain has several fluids the algorithm is attempting to
segment. To perform the segmentation, each pixel in the original image will be assigned
to a different label and create a mask accordingly. Thus, each pixel of the generated
mask will have a label. This would enable the image processing unit to focus only on
the region of interest (i.e. regions with specific labels) and ignore regions where no

significant information is present.
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Figure 2.5: (a) A 3D volume slice of a brain image (b) Segmented brain parts using a
statistical pattern recognition methodology. Red is the "white matter", green is the
"gray matter" and blue is the "cerebrospinal fluid". [35]

12



CHAPTER 3: LITERATURE REVIEW AND FUNDAMENTALS
This chapter sheds the light on the similar existing works by fellow researchers and

presents the key findings, similar to thesis work.

3.1 Medical Image Segmentation

Medical Image Segmentation has been widely used in last few years due to its
powerful applications mainly in automating the detection process of anatomical struc-
tures, abnormalities, surgical tools, identifying surgical phases, etc. In similar works
that attempt to segment the urethra using medical imaging modalities, in [36], authors
attempted to segment out the male anterior urethra corpus spongiosum to assist urolo-
gists and surgeons treating urethral stricture disease. To do that, urologists annotated
ground truth masks from ultrasound images, and using neural networks, they were able
to reach a validation accuracy of over 90% in 2 different experiments. To evaluate the
results, they have used similarity index, False-Positive Rate and False-Negative Rate as
evaluation metrics. In a similar work, authors in [37] attempted to segment the urethra
from a volumetric transperineal ultrasound of the female pelvic floor using 3D CNN,
particularly HighRes3DNet. Ground truth data consisted of 35 ultrasound volumes.
For model evaluation, Hausdorff distance and Dice coefficient were used. Standard
Hausdorff Distance yielded in an average of 7.56mm =+ 1.65mm and a dice score of
0.65mm £ 0.08mm. Another similar application is lung segmentation [38]. In this
work, authors attempt to segment out the lung then detect, localize and quantify lesion
areas on COVID-19 patients. They used 51,027 computed tomography (CT) slices. Au-
thors used several networks with different variants of DenseNet and ResNet as encoders.

U-Net with DenseNet 161 encoder showed the best results for lung region segmentation

13



with Jaccard Coeflicient of 95.10% and Dice coefficient of 97.19%

Another application for medical image segmentation from surgical videos or images
is extracting or highlighting anatomical ROIs for further processing such as colon polyps
to detect colorectal cancer, which is the 3rd leading cancer cause of death after lung and
breast cancer worldwide [39] [40]. For instance, authors in [39] attempted to detect, seg-
ment and localize polyps in a colonoscopy procedure. As dataset, authors used around
1000 images of high-resolution electromagnetic imaging system. For the segmentation
task, authors have compared the performance of multiple CNN architectures such as
U-Net, ResUNet, ResUNet++, HRNet, etc. Loss functions used were cross-entropy and
dice loss. To evaluate the different models’ performance, authors used Jaccard Coeffi-
cient, Dice coefficient, F2-score, precision, recall and overall accuracy. Results show
that U-Net with ResNet34 backbone shows the best results among 9 others, with a Jac-
card coeflicient of 81%, Dice coefficient of 87.57%, precision of 94.35% and an overall
accuracy of 96.81%. Another similar work for colon polyp segmentation [40] is where
authors have used transfer-learning based segmentation with U-Net. They used CVC-
ClinicDB, a dataset that consists of standard definition colonoscopy images. U-Net was
the architecture of choice, and experimented different backbones. Accuracy, Jaccard co-
effcient and Dice coeflicient were used an evaluation metrics. U-Net with DenseNet169
backbone showed best results with 99.15%, 90.87%, 83.82% for accuracy, Dice and
Jaccard, respectively. The next best scores were using U-Net with nceptionResNetV2
with 99.1%, 90.42%, 83.16% for accuracy, Dice and Jaccard, respectively. Another
polyp segmentation work [41] used a deep encoder-decoder network. Authors used
CVC-ClinicDB for training and validation and another dataset, ETIS-LaribPolypDB,

for testing. For the evaluation, accuracy, Jaccard coefficient and Dice score were used.
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Promising results were achieved with 0.975, 0.829 and 84.25%, respectively.

Although there exist several works for image segmentation using U-Net, Polyp
segmentation works were the main inspiration to attempt trying image segmentation
approach as they have proved to be effective with videos and images, which are the type
of data we are using for the thesis.

Images segmentation for surgical videos is widely used in the literature, especially
for surgical instruments segmentation and surgical phase recognition and identification.
Surgical instrument segmentation gained increasing popularity due to its applications.
Its applications vary from surgical workflow optimization, intraoperative reminders,
objective skills assessment, etc. In [37], authors used RASNet, a U-shaped network, to
segment and identify different surgical instruments. Jaccard index was used as a loss
function. The model achieved 90.33% mean IoU score and 94.65% mean Dice score.
Another similar work [42] that used U-Net, precisely U-NetPlus architecture to segment
surgical instruments from laparoscopic images showed good results. Authors used
Jaccard loss function and Dice as a performance metric. The model achieved 90.20%
dice coefficient for binary segmentation, 76.26% dice in segmenting instruments parts
and 46.07% dice in identifying instrument type. In a similar work, authors in [43]
proposed a new architecture to segment surgical tools using RNN, and evaluated using
Jaccard coeflicient or IoU, specificity, sensitivity and balanced accuracy. Results show
that the proposed method outperformed FCN-8 and ResNet-101 with 90.4% accuracy,
98.8% of specificity, 82.7% of IoU and 93.3% of balanced accuracy. Other works
such as [29] and [30], authors use instance-based segmentation instead of pixel-wise
segmentation to identify surgical tools using novel architectures. In [30], authors propose

a new architecture called ISINet, in which it superseded the state-of-the-art performance
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for the benchmarked datasets EndoVis 2017 and EndoVis 2018. [29] proceeds to
not only segment the surgical tool but also identify it. They are using Region-based
Convolutional Neural Networks, trained with 333 images. For the evaluation metrics,
authors used Intersection over Union (or Jaccard) and average precision. Results show

81% accuracy for at least 50% IoU.

3.1.1 Loss Functions

Working with machine learning or deep learning models necessitates the use of
appropriate loss functions. Loss functions are functions that calculate the error between
the actual labels and predicted labels. It is used as a metric to judge the goodness of
a prediction in a real number. The loss values are meant to be minimized as possible.
The loss value back-propagates through the network to learn from its wrong predictions
and try to enhance in during the following forward-propagation. Simply put, the role of
the loss function in machine/deep learning models is to optimize and decrease the loss
value, to ensure maximum learning and minimum errors.

When it comes to the evaluation of image segmentation models, various loss func-
tions are used in the literature to evaluate pixel-wise classifications including but not
limited to binary-cross entropy, Jaccard Loss, Dice Loss, etc.

Binary-cross entropy is a loss function that is used in binary classification problem

(in this case: C = 2; urethra and background). Equation 3.1 used often is below:

C=2

BCE = — Ztilog(f(si)) = —t1log(f(s1)) — (1 — t1)log(1 — f(s1)) (3.1

=1

In the context of this thesis, a segmented urethra usually represents from around 5% to
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25% of the image. Similarly, white mask pixels would represent around 5% to 25%,
and the rest of pixels are labeled as background. This cause class imbalance, which is
a problem that is found vastly in the literature [44]. This means, the majority of the
image would be 75% to 95% of the image would be labeled as "background", and the
rest would be "urethra". While using Binary-cross entropy as a loss function, a natural
behavior of this loss function is that the classification accuracy would be quite high
(more than 90%). However, visually, predicted mask would be black and very far from
being accurate. High value of accuracy comes from the fact that most of the pixels (i.e.
background pixels) are correctly classified on the predicted image. However, Region of
Interest (ROI) pixels are not. To overcome these limitations, other loss functions are
usually used with imbalanced images segmentation problems such as Jaccard Loss and
coefficient and Dice loss and coefficient.

Jaccard Loss, referred to also as Intersection Over Union (IoU) or Jaccard Similarity
index is a metric to calculate the ratio of the intersection over union between two sets.
As mentioned in [43], IoU (or Jaccard Loss) is one of the best segmentation metrics as
it penalizes over and under segmentation. Jaccard loss function and metrics are used to
calculate the percentage of overlapping pixels between the the ground truth mask and
the predicted mask. Jaccard score varies from O to 1, with 0 meaning no overlapping and
1 meaning perfect overlapping. Equation 3.2 and Figure 3.1 illustrate Jaccard concept.
In binary classification, positive and negative classes are to be distinguished. This leads
to 4 different possible outcomes. Assuming that A is the positive class and B is the

negative class.

* True Positive (TP): Object belongs to class A and classified as class A.
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* False Positive (FP): Object belongs to class B and classified as class A

* True Negative (TN): Object belongs to class B and classified as class B

* False Negative (FN): Object belongs to class A and classified as class B

B |AN B B |AN B|
JAB) = 0B T AT Bl AN B| (3-2)
TP
JA,B) = 75 T FP+FN (3-3)
A
Jaccard (IOU) =

AUB

Figure 3.1: Illustration for Jaccard Coeflicient or IoU

Serensen—Dice coeflicient, or Dice Coeflicient for simplicity, is a metric that is used
to calculate the similarity between two 2 samples or, images, in our case. The main
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difference from Jaccard index is that Jaccard only counts true positives once, unlike in
Dice where it counts it twice in the numerator and denominator. Similarly, values of
dice coefficient range from O to 1, where O indicates no overlapping and 1 indicates
perfect overlapping. Equation 3.4 shows its formula.

2TP

DiceCoef ficient = TP L FP+FN (3.4)

3.2 End-user Usability Evaluation

As robotic surgery is gaining more and more attention and being used heavily for
intervention, there is an unprecedented need for training on these platforms. Recent
studies that focus on robotic surgery training have shown that research is heading
towards innovative and specialized training that enhances robotic surgical education and
improves surgical skills. Integrating such tools helps to deepen robotic skills proficiency,
according to [45]. It would require validating their effectiveness and use with experts and
intended end-users to prove their usefulness and integrate them into training curricula.
Such validations can vary depending on the nature of the prototype.

Questionnaires and surveys are among the most commonly used methodologies in
the literature to capture users’ feedback. There are numerous standardized surveys that
can be readily employed and others that require adaptation to the application. Content
validity is a commonly used evaluation method for validating interfaces and simulators
and judging their appropriateness as a teaching modality. Such evaluation is important
to be conducted to make sure it is delivering the concepts that it is meant to deliver. It is
also important to perform incremental validations to make sure that a clinical prototype

is being built rightfully and according to the clinical expectations. Content validity is
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heavily used in the literature. For this thesis, we focus the literature search for content
validity on medical robotic and laparoscopic simulators. Robotic procedures are more
and more in demand. Authors in [46] show that in a study between 2012 and 2018
among 169,404 patients across 73 hospitals, robotic surgeries surged for from 1.8% to
15.1%. Consequently, robotic simulators’ demand is one the rise too. To validate their
ability to teach, content validity is conducted, usually along with some other related
tests such as face and construct validity. This is seen in [47], [48], [49], [50], [51]
and [52] where usually the study is conducted with participants with different expertise.
They are presented with pre and post study questionnaire and requested to judge the
simulator using Likert scale subjectively. Some authors record other system objective
metrics like time taken to finish a task, number of errors, etc. Once statistical analysis
results are satisfactory, the prototype is considered validated. Laparoscopic surgeries
quite similar to robotic ones. Validating simulators for such interventions is similar.
In these studies [53],[54], [S5], [56] and [57] authors validated laparoscopic simulator
prototypes using the same approach for robotic simulators. In short, content validity is
an effective and widely-adopted tool in the literature used in validating the usefulness of
training simulators as a teaching modality and thus, will be used to evaluate this thesis’s
interface.

On the other hand, and since the user is intended to use the final prototype, it
is critical to gather end-user feedback not only on its effectiveness, but also on its
usability and satisfaction while using it. This would ensure that users feel involved in
the development phase, excited to use the system, and prevent it from being unused once
deployed. To quantify this, the Questionnaire for User Interaction Satisfaction (QUIS) is

a questionnaire that is deemed to be potentially applied across different types of e-Health
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tools [58]. Although there exist many standardized usability questionnaires, QUIS seems
to be the most comprehensive as it covers many aspects of interface usability. It is used
to assess clinical applications types such as telemedicine applications. QUIS was used
in [59], [60] and [61]. Although it is not not quite used in the literature for clinical
applications (vastly used in non-clinical ones), it is the usability questionnaire of choice

as it is comprehensive and reflects many aspects related to users satisfaction.
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CHAPTER 4: URETHRA LOCALIZATION ON SURGICAL VIDEOS IMAGES: A
DEEP LEARNING APPROACH

This chapter discusses the different training approaches experimented with box and

contour segmentation using U-Net architecture to reach the appropriate results, along

with the discussions and observations.

4.1 Solution Overview

The proposed solution is a desktop app where the trainee surgeon sits and train on
several cases. These cases come from the images extracted from surgical videos from
the operating room. As first step, the trainee surgeons will be asked to train on the
first module called Tutorial mode, where they will have multiple variables to explore
to deepen their understanding about the different cutting ranges’ decisions. Once the
surgeons master these skills, they move to the second module which is the Evaluation
module, where the urethra on the image is automatically segmented and identified for
the surgeons to start suggesting their cutting suggestions based on the patient case
presented. The module will then evaluate their performance using a score. The score
is then displayed and another image is shown to train. The automated segmentation is
needed to help novice surgeon identify the urethra as well as automatically locate it on
any image. The automation is done to leverage the videos acquired from the OR and
extract key frames that include urethra. Surgeons can also export their scores over time
to their respective supervisors through a module named Reporting. Parts of Evaluation
module and Reporting module are out of this thesis’s scope. Further details on this is
mentioned on the next chapter: chapter 5.

Figure 4.1 shows the different modes (in green) and they are interacting with the
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different other modules.

Data Collection: Videos
(OR & Online Source)

Labeling & segmentation

Image preprocessing

Model training

Predicting urethra on a new
image

Suggesting a cutting
location

Evaluating the cut

Figure 4.1: High-level thesis pipeline

Leveraging the potentials of deep learning with medical images, we attempted to
apply it to the scenario of the detection of the ROI from 2D images extracted from

surgical videos. The general automatic detection workflow is illustrated in Figure 4.2:
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Predicted label

Mask/True label

Objective Evaluation

Scores and Metrics
Jaccard Coefficient
Dice Coefficient

Modified U-Net Archtiecture

g ||l

Evaluate

Compare

l Subjective Evaluation

Experts judgements of
segmentation results

Mask/True label

Figure 4.2: Workflow of the automated detection and evaluation of the urethra using
U-Net

4.2 Data Collection & Labeling

The required data for this project are surgical images of urethra right before urethral
dissection step. Such images are not readily available in a previous dataset. However,
Hamad Medical Corporation’s operating rooms (OR) have an archiving system in place
that keeps videos of surgeries done robotically. Thus, four surgical videos were retro-
spectively collected from HMC’s operating theaters and three from publicly available
sources such as YouTube. OR videos were fully anonymized to keep patients’ data pri-
vacy. With assistance of an expert urologist, videos underwent further refining process
by determining video sections that have urethral dissection step. Then, frames were
extracted from these videos using FFMPEG [62] library.

Out of three hours of surgical video footage, all collected videos have yielded in
only 173 images/frames. Number of images with respect to length of footage seems to

be below the expectations. This is due to several challenges in the footage such as:

1. Few RARP videos availability: Recording systems are not always set up and

24



thus, not all RARPs are recorded. This leads to fewer videos that can be used as

datasets.

2. Some pre-urethral dissection step footage has bad quality due to different reasons.

The main quality-degrading reasons are:

* Smoke: During the procedure, smoke is commonly released due to tissue
cauterization. This creates a foggy layer on the camera, and organs become

hard to see. Figure 4.3 represents examples of surgical scenes collected.

Figure 4.3: Surgical scenes with foggy view during tissue cauterization

* Surgical tools: Surgical tools usually block the view as they are being used
for cutting, holding, manipulating organs, etc. Thus, only few frames can
be extracted where organs are not completely covered by them. Figure 4.4

shows examples of tools placed badly.

Figure 4.4: Surgical tools obscuring the vision from the urethra.
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3. Urethrae images imbalance: Due to the various sources of images and the different
lengths of the filmed urethra part in the videos, videos yield different number of
images. Some of the videos generate very large images, while some others
generate very few. This limitation would potentially result in the model learning

being biased to the larger images collection.

4. High variability on urethra images: Urethra looks different in each video. This is
because videos being recorded belong to different patients, at different ages and
anatomies, different surgeons with different operating techniques, non-homogeneous

illumination, different surgical endoscopes, etc. Below is Figure 4.5 that illustrates

examples of how urethrae can differ from different videos:

Figure 4.5: Urethrae (in white boxes) looking different from videos of different sources

To tackle the problem, image segmentation approach was used, where the original
ROI on the image is further represented by a mask. The mask is usually a black and
white image that has the same image size of the original one. The mask is all back,
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and the white spot (or spots) represent the pixels of the object or region of interest.
Therefore, dataset was labeled by rectangular-shaped boxes that encloses the urethra.
To label the data, RectLabel [63] is a tool that was used to localize the urethra on the
images. This was done by drawing a box over the urethra in each of the images. Upon
drawing the box, the annotator assigns it a class, which is "urethra" in this case. After
annotation is done, all images are exported into Pascal VOC XML format, which where
then converted to YOLOV3 annotation format:

<image path> <object-class> <x> <y> <width> <height>

A piece of code was then developed to digest the YOLOV3 annotations and covert them

to boxes as figure 4.6 shows.

Mask (1)

Image (2) Mask (2)

Figure 4.6: Example of two images segmented using box segmentation

Alternatively, urethra images were also labeled using another labeling techniques,
which is segmenting the region of interest (ROI) exactly to its shape. In this case, we
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used splines to draw contours around exact edges of the urethra. To do that, we used
an online, open-source tool named Computer Vision Annotation Tool or (CVAT) [64]
to draw the splines and generate the masks. The figure 4.7 shows an example of the

generated masks.

Image (1) Mask (1)

Image (2) Mask (2)

Figure 4.7: Example of two images segmented using contour segmentation

4.3 Data Pre-processing & Environmental Setup

Before training, data was augmented using the native Keras Image Data Pre-
porcessing function image_dataset_from_directory. Images underwent pre-processing
step by applying filters mentioned in Table 4.1. Examples of generated images are illus-
trated in Figure 4.8. In addition, training images and their respective masks underwent

randomized shuffling before each epoch.
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Table 4.1: Data Pre-porcessing filters applied on training dataset

Filter Value
1
Rescale 25F
featurewise_center True
featurewise_std_normalization True
rotation_range 90
width_shift_range 0.2
height_shift_range 0.2
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Figure 4.8: Examples of the generated data for training with filters applied

Total images used to train and test the model are 168 images: some images were
deleted from the original 173 images due to clarity issues. These images were split into
train-validation-test splits using 4 different variations. To ensure high randomization of

data, each of the splits had 3 different versions, with a total of 12 versions of data. Figure
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4.9 illustrates them. Each version has different images that is different from the other

two versions. The main purpose of such randomization is to validate the performance

of the model with different set of data. The intuition behind it is to prevent the model

from overfitting over a certain set of data and ensure that the model behaves consistently

over many variations of input data. This is because in machine learning in general and

neural networks in particular, models attempt to learn quite complex relationships. The

order of the data can be a feature that it learns, which is what we try to avoid to prevent

overfitting. To add another randomization layer, ImageDataGenerator in Keras is

used to generate batches of image data with real-time data augmentation. Argument

shuffle was set to True for the training set. This enable to data generator to choose a

new random rather than sequential set of images at each batch.

=

A 4 ¢ ¢ Y
80/5/15 80/10/10 90/5/5 92/5/3
£ A4 l ¢ Y ¢ ¢ Y ¢ £ A4 l
Vi V2 V3 \al V2 V3 Vi V2 V3 Vi V2 V3

Figure 4.9: Different data splits used to train and validate the performance of the U-Net

Images were split as follows:

1. 80%/5%/15% (135-9-24): This split had 3 different versions different from each

other. This will be referred to later as S1V1, S1V2, S1V3.

2. 80%/10%/10% (135-17-16): This split had 3 different versions different from

each other. This will be referred to later as S2V1, S2V2, S2V3.

31



3. 90%/5%/5% (152-8-8): This split had 3 different versions different from each

other. This will be referred to later as S3V1, S3V2, S3V3.

4. 92%/5%/3% (155-8-5): This split had 3 different versions different from each

other. This will be referred to later as S4V1, S4V2, S4V3.

Training and testing sets were arranged in a specific format that is readily digested by

U-Net. The below directory hierarchy shows the image splitting.
root

L train
img

L img

mask

L img

— test

img

L img

mask

L img

Training was done on Google Collaboratory platform, leveraging the free GPU
capabilities for computationally-intensive tasks. Table 4.3 lists important environment
requirements to run experiments. Different resources were assigned during different

runs. The most common resources allocated are described in Table 4.2 [65].
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Table 4.2: Google Collaboratory allocated resources of NVIDIA GPUs Tesla T4 &
Tesla K80

Feature Specifications
Graphics Processor TU104
Memory size 16 GB
Bandwidth 320 GB/s
Cores 2560
Graphics Processor GK210 x2
Memory size 24 GB
Bandwidth 480 GB/s
CUDA Cores 4992

Table 4.3: Google Collaboratory environment setup for experiments execution

Module/API Version
Python 3.7.10
Keras 2.4.0
Tensoflow-gpu 2.1.0
opencv 3.4.2
numpy 1.18.1
matplotlib 3.1.3

4.4 Results & Discussions

For the segmentation tasks, U-Net was the convolutional neural network of choice as
it was specifically designated for biomedical images from different imaging modalities
such computerized tomography (CT) scans, Magnetic resonance imaging (MRI) scans
and even Joint Photographic Group (JPG) images. U-Net showed good results with small
dataset sizes and would be a good candidate to investigate its efficacy on surgical images,
especially for an anatomy that is irregular in look, shape and sizes as demonstrated in
Figure 4.5. Jaccard loss and Dice Coeflicient are the the two most used metrics in the

literature that evaluate the performance of image segmentation algorithms [27] [27] [39]
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[38] [41]. They are usually chosen where there is a high imbalance in the in the masks
between white and black pixels. Traditional metrics such as accuracy will give high
accuracy score (more than 0.9) in the first few training and testing runs. This is an
expected behavior as the model is indeed classifying most of the black pixels accurately

and misses few of the white pixels.

4.4.1 Training with box-segmented images

For this approach, we tried a heuristic one that was inspired by YOLO3: a deep
learning object localization network. The detected object is identified within a box.
Several experiments were conducted to reach an acceptable training and validation
results. The model was trained with 50 epochs, 100 epochs, 150 epochs and 300 epochs,
respectively, while changing few hyperparameters such as the learning rates, optimizers,
train and test batch size, U-Net levels, loss functions, etc. Loss function as such binary-
cross entropy and mean-square error were used along with accuracy as a metric and they
showed very high accuracy at the early stages of training, While testing, masks appear
to be black. Figure 4.10 shows an example of the predicted masks while resulting in
98.42% accuracy. This is due to class imbalance. To mitigate this, Jaccard loss was
used. However, results remained inaccurate. Figure 4.11 shows few examples of the
predicted masks. At this point, an alternative solution was applied using contour-based

segmentation.
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Figure 4.10: Predicted segmentation results showing high accuracy in metrics but no
predicted masks.
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Figure 4.11: Predicted segmentation results using box-segmented images, using
binary-cross entropy loss 100 epochs. As seen, predicted masks look very different
from ground truth.
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4.4.2 Training with contour-segmented images

In contrast with box segmentation, coutour-segmented images showed promising
results. Total images used were 168, these images were split as illustrated in Figure
4.9 to determine the one one that yields best results and test the model’s performance
against them.

Image height and width were fixed: 416.X416 pixels. Adam was the optimizer used
with 1 * 1073, which showed no results. Thus, learning rate was lowered to 1 * 1075,
The loss function used was Jaccard loss function and the evaluation metrics used where
Jaccard Coefficient and Dice Coeflicient. Table 4.4 shows the different hyperparameters
and report the one with the best results.

Figures 4.12 and 4.13 show the predictions along with true labels along with the
training and validation trends for Jaccard coefficient, Dice coeflicient and Jaccard loss.

As shown in figure 4.12, in model loss subplot, it is clear that training and testing loss
values are behaving similarly. In fact, training loss is a bit higher than testing loss. This
behaviour is expected due to the low number of testing set of images. Similarly, in model
dice_coef subplot, training and testing coefficients are nearly perfectly converging, which
indicates a predicted values are very similar to ground truth values. Another metric
to assess the model model is jaccard_coef subplot. As shown, plotted values show
similarity in the performance of unseen data, which is a good indication of the model’s

robustness on locating the urethra on new set of images.
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Figure 4.12: Trends of training and validation score of Jaccard coefficient, Dice
coefficient and Jaccard Loss over 750 epochs
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Figure 4.13: Results of the model with the best Jaccard Coeflicient and Dice
Coefficient scores: 78.42% & 88.11%, respectively



Table 4.4: Key parameters and results of the trained U-Net model, validated over test

set
No. Train- Test- # epochs # of Best Val Best Val
BatchSize BatchSize U-Net Jaccard Dice Score
Levels Score
S1V1 8 8 550 6 0.74272 0.8471
S1V2 8 8 550 6 0.73659 0.8582
S1V3 8 8 550 6 0.2728 0.4245
S2V1 8 8 550 6 0.50555 0.6600
S2V2 8 8 550 6 0.76707 0.8682
S2V3 8 8 550 6 0.72524 0.8325
S3V1 8 8 550 6 0.79161 0.8788
S3V2 8 8 550 6 0.77387 0.8634
S3V3 8 8 550 6 0.7594 0.8396
S4V1 16 8 100 4 0.2728 0.4245
S4V1 8 8 250 6 0.7013 0.8288
S4V1 8 8 550 6 0.7619 0.8695
S4V1 8 8 750 6 0.7842 0.8820
S4V?2 8 8 750 6 0.7799 0.8807
S4V3 8 8 750 6 0.7805 0.8811

Highlighted values in Table 4.4 represent the best results among all the experiments

done. S3V1 showed highest Jaccard score while S4V1 showed highest Dice Coeflicient

score. To investigate this further, we checked the similarity of the training and testing

data that could potentially yield to this high score. As expected, 80 out of 152 images

were from the same video. All the testing images were also from the same video. This

explains the higher score. Checking S4V1, training and testing images were highly

randomized. Thus, we deduce that S4 in the split that generates the best results. This is

because the model is training on more examples and able to generalize better.

To test the model’s resilience, 72 additional experiments (6 identical experiments

for each of the 12 splits) were conducted to show the inter-variability of the best Jaccard

and Dice scores obtained across different trials. Table 4.5 shows the summary of the
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experiments by averaging the the best scores and deriving the standard deviation (STD).
Looking at the results, the model showed high resilience, with a maximum STD of

+0.2198. All experiments ran for 550 epochs, except for S4 splits.

Table 4.5: Mean and standard deviation of each split’s best Jaccard and Dice
coefficient values, ran for 6 times

No Mean Best Jaccard Mean Best Dice

Mean STD Mean STD
S1V1l  0.74312 +0.114 0.8499 4+0.1930
S1V2  0.73892 +0.129 0.8533 +0.1229
S1V3  0.27451 +0.192 0.4253 +0.1875
S2V1  0.51219 +0.129 0.6681 +0.1911
S2V2  0.77139 +0.1823 0.8701 +0.1982
S2v3  0.73114 +0.1348 0.8291 +0.1368
S3V1l  0.79108 +0.1391 0.8791 +0.1713
S3v2  0.79211 +0.2198 0.8622 +0.1422
S3V3 0.7605 +0.1332 0.8406 +0.1181
S4V1 0.7833 +0.0118 0.8891 +0.2073
S4V2 0.7783 +0.1722 0.8799 +0.1298
S4V3 0.7703 +0.1685 0.8871 +0.1762

After the generation of masks from the deep learning model, images were post-
processed by applying the predicted mask over the original image to be able to integrate
it in the Evaluation mode. The predicted urethra is surrounded with a box, allowing the
surgeon to suggest locations. Figure 4.14 is an example: white mask is the true mask,
yellow mask is the predicted mask, yellow box is drawn from the first white pixel found

to the last white pixel found, and imposed over the original image.
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Figure 4.14: True and predicted mask and box drawn over original urethra image

Preliminary discussions with one expert urologist surgeon shows that the results are
acceptable and this can be used for surgeons to learn to identify the urethra and suggest
cutting locations on the urethra. Nevertheless, this needs to be further verified with
more surgeons and thoroughly validated at a later stage. Due to the COVID-19 situation

and the unavailability of surgeons, conducting validation studies is not possible.
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CHAPTER 5: CLINICAL VALIDATION

This chapter discusses the efforts into validating the clinical needs for a training tool
during for urethral dissection in a RARP procedure. Validations have been conducted
before the development initiation and after it. It discusses thoroughly the methodology
and key findings. A major part of this chapter has been accepted to be published in a
manuscript entitled: "Content Validity and User Satisfaction Evaluation of Visualiza-
tion Training Tool for Surgeons for Urethral Dissection during Robot-Assisted Radical
Prostatectomy" in 2021 5th International Conference on Medical and Health Informatics

(ICMHI 2021) in Kyoto, Japan.

5.1 Preliminary Clinical Need Validation

In this context, clinical need validation refers to the process of verifying that the
problem in question is significant or relevant to surgeons to find solutions for it. This
is done to make sure that the output of the project will have a significant impact on the
field of surgical training. To do so, we have followed the Stanford University BioDesign
guidelines for value-based innovation of medical applications. Based on the book’s
recommendations, a series of shadowing sessions and questionnaires were conducted to
validate the clinical unmet need.

Training shadowing sessions are sessions where we accompany the robotic surgery
trainer during his training sessions and we observe his training and skills assessment
methodology. In HMC, trainees are required to pass a free online introductory course
on DaVinci Surgery Community [66] to teach them the fundamentals of robotic surgery.
After that, a trainee is moved to training on DaVinci Surgical robot that is dedicated for

this purpose in HMC-Itqan, a state-of-the-art clinical simulation and innovation center.
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After that, the trainee is requested to attend few robotic surgeries and assist in some of
them, and gradually start performing simple surgical tasks.

To validate the clinical needs, three expert RARP surgeons were interviewed. The
questions asked and their answers are available in Appendix A.

Based on their feedback, it is certain that this tool is quite useful both as an intra-
operative and training tool. This validates the assumptions of this tool’s usefulness in
clinical practice. Their feedback will help steer the development into the right direction.

Figures 5.1 and 5.2 summarize their feedbacks.

Not useful Somewhat useful Extremely Useful

Q1

Q3

Votes

Figure 5.1: Surgeons feedback summary on Q1 and Q3
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Surgeon 3

Figure 5.2: Surgeons feedback summary on Q2 and Q4

As part of early clinical validation, surgeons were interviewed about the usefulness
of such training module. Some surgeons believe that, roughly, surgeons tend to always
perform dissection in the middle of the urethral tube. Consequently, this envisioned
training tool will not as useful. While researching, and based on two variables only, we
found that middle dissections are true for only g (44%) of cases. This is not true for
the remaining g (56%). Figure 5.3 shows the cutting decisions based on two variables:

prostate size and cancer location.
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Prostate Size

Severe Moderate Mild

Base

Upper cut

Middle cut

. Lower cut

Cancer location
Middle

Apex

Figure 5.3: Matrix visualizing the different cutting decisions based on two variables:
prostate size and cancer location

5.2 Interface Design

For easy integration between Python-implemented deep learning models outputs
and the interface implementation, Python Tkinter version 3.8 module was used.

Before the implementation begins, several rounds of wire frames designs were
co-designed and reviewed with an expert surgeon to ensure that information and their
placement on the window are logical and conveys the information clearly and accurately.

Figures 5.4, 5.5 and 5.6 show wire frames suggested for different modes.

45



Tutorial Mode

2
N

Cases Manipulator \

Prostate Size Cancer Location
Large Apex
Medium Middle

@ Regular @ Base

Case Description

!he optimum cutting range to the case where the cut should be distal from the prostate apex. /

Figure 5.4: Wire frame design for tutorial mode

Evaluation Mode

e

7N
N

Case Description \

This image is from a prostatectomy case for a 54
years old male. Pre-operative images should he
has cancer in the base and an enlarged prostate.
To be able to completely remove cancer and
ensure no positive margin, where you would

cut the urethra?

Score 100%

The proposed cut is a good cut. Well done!

N

/

Figure 5.5: Wire frame design for evaluation mode
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Evaluation Mode

/

/¥/

\ 4

Figure 5.6: Wire frame design for reporting mode

The interface was designed into three modules. Each module serves a separate
purpose: tutorial mode, evaluation mode and reporting module. These modules are

further explained next.

5.2.1 Tutorial Mode

On the application, the surgeon will be trained on the optimum cutting range decision-

making using the tutorial mode named “Case manipulator.” Interface elements are:

Part 1: Manipulation options: the trainee is presented with nine variables: cancer lo-
cation in the prostate (apex, middle, base) and prostate size (mild enlargement,
moderate enlargement, severe enlargement). During training, the trainee chooses

a combination: cancer location in apex and prostate size is mild, for instance.

Part 2: Optimum dissection regions: Once a combination is selected, colored boxes
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Part 3:

are displayed on the urethra to delineate the optimum cutting ranges along with
case description text to explain further the dissection decisions. In the case of
Figure 5.7, the optimum cutting ranges can be proximal to the top of the prostate.
Additionally, boxes that are overlayed on the urethra are color-coded to mark
different areas of accepted or unaccepted cuts. A green box contour denotes an
excellent cut, an orange box contour denotes an acceptable but not preferred cut,
a red box contour denotes an unacceptable cut, and a blue box contour denotes
the urethral stump that needs to be taken into consideration while cutting, as

emphasized in [67]

Description: Once a combination is selected, a case description appears to elab-

orate further on the specific case.

Figure 5.7 shows a screenshot of the interface with the case of moderate prostate

enlargement and base cancer.

Guia - Cases Manipulator - V0.1

| Case Manipulator Tool

Prostate Size Prostate Cancer Location
Severe enlargement © cancer in base

© Moderate enlargement Cancer in middle
Mild enlargement Cancer in apex

Case Description

In this case, the cancer location is at the base and the
patient has a medium-sized prostate. This means there is
a high chance of cancer propagating to urethral tube.
The cut should be as distal from the prostate as possible.
Dissecting urethra distally from prostate would reduce
the chance of positive margin and thus, increase the
chance of successful surgery. It is highly recommended
to leave enough urethral stump for better continence
post-surgery. However, this may not be always possible.

- - . .
2 .
Excellent cut Acceptable cut Unacceptable cut Urethral stump

Figure 5.7: System graphical user interface (GUI) with a case example: moderate
prostate enlargement and base cancer
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5.2.2 Evaluation Mode

After mastering the tutorial mode, the surgeon is ready to evaluate their skills. In
this mode, the surgeon will be presented with different urethra images extracted from
intraoperative surgical videos. Surgeons can also input their own images to train on them.
The machine learning module trained with urethra images will localize the urethra on
an image in a box then the surgeon needs to suggest optimal cutting ranges based on
the patient’s case presented. The case is described in terms of prostate size and cancer
location in the prostate. Once the surgeon submits the answer, the tool will automatically
evaluate their performance and display a score accordingly. It will also show the correct
answer and recommendations on how to correct their decision to improve the score on
the next round. The score gets stored, and a new urethra image is displayed with a
different case to train on.

For the automatic evaluation, and after the prediction of the urethra location using
the deep learning model, the module would pick a random combination of prostate size
and cancer location and present it to the surgeon as a case for him/her to decide where

to cut. After the surgeon suggests a cutting location, the module will evaluate it.

5.2.3 Reporting Module

Assuming that each surgeon is being monitored and supervised by an expert surgeon,
it is important to keep them informed of the trainee surgeon’s performance. Thus, the
system can record all scores for trainee surgeons, plot them over time, and send timely

reports to supervisors in the form of email reports.
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5.3 Tutorial Module Validation

We aim to validate the system using two validation methodologies to assess two
different aspects of the prototype. Five urology surgeons were voluntarily recruited for
the study with varying years of expertise from multiple Hamad Medical Corporation
hospitals across Qatar. All surgeons have consented to the participation and the use of
their feedback for further analysis. Table 5.1 shows the different surgeons’ demographics.

Please note that “0.5” means that a surgeon has expertise in two types of surgeries.

Table 5.1: Demographic profile of participants

Demographic Variable Resident Fellow Consultant
Number of participants 1(20%) 2(40%) 2(40%)
(n=5)
Type of surgeries
Robotic 1(20%) 2(40%) 0.5(10%)
Laparoscopic 1(20%) 2(40%) -
Open - - 1(20%)
Endoscopic - - 0.5(10%)
# of experience yrs 3 6.5(6,7) 10.5(6, 15)
# of performed 300 600(200,1000)  1250(500, 2500)
surgeries

Recruitment of surgeons was done according to specific inclusion and exclusion
criteria. A surgeon that is included in the study has to be a urologist with experience
in robotic, laparoscopic, or endoscopic procedures. A surgeon who does not satisfy
these requirements will not be qualified for the study. During the session, surgeons
were briefed with an introduction about the unmet clinical need and presented with the
prototype and its main features and were asked to interact freely with it. After the session,
surgeons were given a survey and requested to answer all questions individually, with

no discussion with other surgeons to ensure that they were unbiased. After collecting
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their feedback, the answers were statistically processed and analyzed. We consider a

statement with a mean value of 7 to be weak and needing attention in the next iteration.

5.3.1 Content validity

Content validity is widely used in the literature to judge a prototype’s appropriateness

as a teaching modality. This is performed through a series of 8 questions that should

be answered by experts. To answer the questions, participants were asked to rate a

statement from 1 to 10. Table 5.2 lists the questions and their respective average scores.

Table 5.2: Content validity mean scores ratings by surgeons, out of 10

Content validity statements Mean

1. Useful for training residents

Range

mean

Experts Non-

experts
mean

6
2. Useful for training fellows )
3. Useful for expert surgeons 5.4 3
4. All novices to robotic 7.2 5
prostatectomy surgery should undergo
training on the module to learn where
to cut the urethra prior to performing
robotic surgery on patients
5. Case manipulator is well presented 7.6 6—10
and help training surgeons explore
different case combinations
6. Color-coding helps the trainee 8.4 6 — 10
visualize the proper cutting ranges
according to the patient’s case
7. Cases explanation is important to 8.4
describe further the cutting choices
8. Cutting ranges are well-illustrated 8.4
using boxes in the urethra

7—10

8—10

8.5

8.3

8

5.6

7

7.3

8.6

8.66
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5.3.2 Questionnaire for User Interaction Satisfaction

Questionnaire of User Interaction Satisfaction or (QUIS) is a ready-made question-
naire widely used in the literature and further adapted to the project’s specifications.
QUIS is used to subjectively assess the user’s satisfaction with the interface. The survey
contains a series of 27 questions. Participants were asked to rate a statement from 1 to
10 when filling out the questionnaire. Table 5.3 lists the questions and their respective

average Scores.
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Table 5.3: QUIS mean score ratings by surgeons, out of 10

User satisfaction questionnaire statements Mean
1. Overall reactions to the software 8.5
1.1 Terrible/wonderful 8.6
1.2 Difficult/easy 9.4
1.3 Frustrating/satisfying 8.4
1.4 Inadequate power/adequate power 8.4
1.5 Dull/stimulating 7.6
1.6 Rigid/flexible 8.8
2. Screen 9.3
2.1 Characters on screen (hard to read, easy to read) 9.8
2.2 Highlights on-screen simplify tasks (not at all, very much) 9
2.3 Organization of information on the screen (confusing, very clear) 9.2
3. Terminology and system information 8.5
3.1 Use of terms throughout the system (inconsistent, consistent) 7.8
3.2 Terminologies are related to the task (not at all, very much) 8
3.3 Position of messages on screen (inconsistent, consistent) 9.2
3.4 Computer keeps you informed of what you are doing (never, always) 9
4. Learning 9
4.1 Learning to operate the system (difficult/easy) 9
4.2 Exploring new features by trial and error (difficult/easy) 8.75
4.3 Remembering names and use of commands (difficult/easy) 9
4.4 Tasks are performed in a straight-forward manner (never/always) 9.2
5. System capabilities 8.86
5.1 System speed (too slow/fast enough) 8.4
5.2 System reliability (unreliable/reliable) 8.8
5.3 System tends to be (noisy/quiet) 9.6
5.4 correcting your mistakes (difficult/easy) 8.5
5.5 Designed for all levels of users: experienced and non-experienced 9
(never, always)
6. Usability and system interface 9.2
6.1 Use of colors and sounds (poor, good) 9.4
6.2 system feedback (poor, good) 9.4
6.3 System messages and reports (poor, good) 9.25
6.4 System clutter and user interface noise 8.75

5.3.3 Discussion

Based on the showcased results, the prototype demonstrated high content validity,

which approves its appropriateness as a teaching tool for urethral dissection based on
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prostate size and prostate cancer location. Based on the feedback summarized in 5.2

and visualized in Figure 5.8, mean ratings surpassed the minimum rating threshold of
) 0.4 . .

10’ except statement 3, where the rating was 10 This was an expected result since

expert surgeons are trained well enough to know where to dissect the urethra without

the need for a tool.

Average mean scores per question

9 s 8.4 8.4 8.4
3 7.6 . 7.6
7
6 5.4
5
4
3
2
1
0

Ql Q (E Q4 Qs Q6 Q7 Q8

Figure 5.8: Average mean scores per question in content validity

However, during later discussions, participating surgeons mentioned that this tool
might not be used to teach expert surgeons but rather to evaluate the surgeons’ choice
on where to dissect the urethra intraoperatively. Overall, there was no significant dis-
crepancy between expert and non-expert surgeons in terms of ratings. Statistically, the
p-value was 0.304(30.4%), which means no statistical significance among the ratings
of experts and non-experts. Along with the content validity, the user interaction ques-
tionnaire was satisfactory as all mean ratings were above the minimum threshold of 1—70
This reflects the surgeons’ satisfaction with several aspects.

As shown in Table 5.3 and Figure 5.9, six different interface aspects were evaluated:
the system’s overall reaction, screen, system information and terminology, learning,

system capabilities, and system usability and interface. Looking at the mean ratings,
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question 1.5 scored the least rating with 71—(? Although the system meets the expectation,
it is crucial to refine the interface to make it more stimulating. This is important to
encourage the trainee surgeons to keep using the tool for training and not feel bored
while using it. Question 6.1 scored one of the highest scores among the rest. This
is expected as surgeons during feedback sessions showed high impression with color
coding and box illustration on the urethra. This is also reflected in statement 6 rating in

content validity.

Mean score ratings per questions category
94

9.2
9.2

9.3
9
8.86

8.8
86 8.5 85
8.4
8.2

8

Overall reactions to the Screen Terminology and system Learning System capabilities Usability and system
software information interface

Figure 5.9: Mean score ratings per question category in QUIS

To conclude, this chapter discussed the surgeons’ feedback on the tutorial mode that
teaches surgeons where to dissect the urethra during a RARP procedure based on two

variables: prostate size and cancer location. Feedback has proven to be satisfactory.
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CHAPTER 6: CONCLUSION & FUTURE WORK

In the medical field, continuous learning and skills assessment are critical to ensure
trainees and even expert surgeons to not lose their surgical skills. This can be done
through various ways, including computer-based assessment training. In this thesis, we
have attempted to construct a training tool for trainee surgeons to instruct them on the
urethra’s optimum cutting range during a robotic prostatectomy procedure. Clinically,
this step is particularly crucial as an inaccurate cut may lead to leaving cancerous
tissues behind and thus, jeopardizing surgical outcomes. Thesis consisted of two major
parts: (1) Interface design and urethra localization using U-Net architecture and (2)
Clinical validation. In the interface, trainees would train on the optimum cutting ranges
in a tutorial mode. Next, and on evaluation mode, trainee surgeons would attempt to
perform a cut, and based on their performance, the cut will be evaluated and scored. Our
preliminary investigations have shown urologists accepted the application and perceived
it well. Unfortunately, and due to the current COVID-19 situation, we are not able to
perform further usability studies with surgeons.

To the best of our knowledge, this is the first training software for surgeons to train

in the optimum cutting range for a prostatectomy procedure.

6.1 Limitations

Multiple limitation have been faced during the development and evaluation of this
work, which may have affected the quality and execution of this thesis. The below points

summarizes them:

* No benchmarked datastes, which means dataset has to be manually collected for
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the sake of this thesis. This task is time consuming and requires multiple prior

approvals.

Collected dataset do not have high volume of images, which may effect the deep

learning results negatively.

Dataset images have multiple issues especially issue that degrade the image quality
such as smoke, presence of surgical tools, etc. Bad frames had to be taken away.

Images-related issues are explained and illustrated further in Section 4.2.

Manual annotation of images which was highly time consuming as it is highly

dependant on the presence of an expert surgeon to validate the annotations.

Unavailability of GPU-based computers, which necessitates the use of Google
Collab, which may offer inconsistent results as it randomly allocates available

resources and not sticking to the same resource all the time.

Unavailability of surgeons to perform a second usability evaluation due to their

tight schedule, especially during the pandemic.

6.2 Future works

For the future work, and as clinical validations have showed that this would be

an important addition in the operating room, it is worth investigating incorporating

this module for training purposes for new surgeons. This tool can also serve as a

preoperative surgical planning tool to plan the urethra cutting location by incorporating

accurate patient data and images. It is also worth investigating the potential of applying

such technology into a similar scenario where a dissection region is crucial surgically.
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It is also worth investigating online deep learning training model where the model is
fed new labeled urethra datasets more frequently to generate even more accurate urethra
segmentation until we reach an acceptable end-user accuracy level. The literature have
shown that transfer learning using weights of pre-trained model enhances the results
significantly as in [37] and [68] which is a path that we can investigate in order to
achieve higher results. To go one level higher, we can investigate the results of deep
learning approaches versus traditional image processing techniques. The next step for
this project can be deployment in training rooms in resident rooms in HMC to further
test the application and address limitations. We will also investigate the effectivness of
using VR technology into such prototype.

Once the results are satisfactory, we can investigate the next steps of commercial-
ization and patenting.

One publication is the current output of this work. The further anticipated pub-
lications from this projects are (1) a journal/conference paper on the usability study
conducted with surgeons for the evaluation mode, and (2) a journal publication describ-
ing the urethra localization from surgical images using medical image segmentation

model (U-Net).
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Q1

Q2:

Q3:

Q4:

APPENDIX A: SURGEONS FEEDBACK FOR PRELIMINARY CLINICAL

VALIDATION

: As an intraoperative module, if you had a tool to help you visualize/locate the

optimal dissection location for urethral transection, how useful would that
be? (Not useful, Somewhat useful, extremely useful)
3 surgeons agree that it is extremely useful for novice and intermediate surgeons

to guide them through.

As an intraoperative module, if such a tool is useful, to what expertise level
should it be targeting (novice, intermediate, or expert robotic surgeon)

1 . . b n

3 surgeon say it is extremely useful. Even experts surgeons may use it as a "back

. . . . 1
up" to confirm their location for the urethral dissection. 3 surgeon say somewhat
useful for expert surgeons during intervention but extremely useful for trainee
surgeons. Surgeon suggested to draw emphasis that this is a suggested cut and it’s
S . 1 .

the responsibility of surgeon to find optimum cut. 3 surgeon do not see that it is

useful intraoperatively.

As a training module, do you think a training tool for identifying optimal
cut location in urethral transection would be useful? (Not useful, Somewhat
useful, extremely useful)

3 surgeons say it is an extremely useful tool to be able to learn in a fault-tolerant
environment, generate reports, learn from mistakes and for the supervisor/trainer

to monitor their progress and performance over time.

As a training module, if such a tool is useful, to what expertise level should it

be targeting (novice, intermediate, or expert robotic surgeon)
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2

— surgeons believe that, for all levels of trainees, having this tool available is
invaluable. Expert Surgeons are always learning and looking for ways to improve
efficiency without giving up quality. If the tool made surgeons even a little bit

more efficient and/or confident, it is helpful.

1 . . . . .
— surgeon believe that it is useful for novice and intermediate surgeons but not for
expert surgeons as they already know what they are doing and such tool will not

be of major addition.
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