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ABSTRACT 

ZAMZAM, TASSNEEM, A., Masters: June:[2021:], 

Masters of Science in Electrical Engineering  

Title: Two-Timescale Multi-Objective Volt/Var Optimization Considering Distributed 

Energy Resources in Active Distribution Networks  

Supervisor of Thesis: Ahmed, M, Massoud. 

The high penetration of distributed energy resources (DERs) introduces several 

challenges to the power network. They may cause a high level of voltage variation, 

sudden over/under-power generation, high power losses, and negatively impacted 

distribution assets. Thus, there is a vital need for volt/var optimization (VVO) schemes 

that integrate utility-owned assets with inverter-interfaced resources to overcome these 

challenges. This thesis addresses the above-mentioned challenges by proposing a 

comprehensive two-timescale multi-objective VVO algorithm. The slow timescale 

utilizes utility-owned assets to minimize system losses and maximize asset lifetime in 

a three-step methodology. This stage incorporates the utility operator’s direct input for 

setting the utility-owned assets. At the faster scale, the algorithm optimizes the reactive 

power of DERs to minimize voltage variations and system losses. The proposed VVO 

is solved using conventional optimization and reinforcement learning algorithms. The 

IEEE 33-bus system is modified and used to demonstrate the effectiveness of the 

proposed algorithms.  
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𝑄𝑄𝑥𝑥,𝑡𝑡
𝑃𝑃𝑃𝑃 Reactive power absorbed or supplied from the 𝑥𝑥𝑡𝑡ℎ PV at time 𝑡𝑡. 
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ε Epsilon value of the ε-constraint method. 
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CHAPTER 1 : INTRODUCTION 

This chapter starts with highlighting the motivations behind the research work 

of the thesis. It then provides backgrounds on distributed energy resources, their impact 

on distribution networks, and the challenges and benefits associated with them. It also 

introduces active distribution networks and their emerging concerns, as well as volt/var 

optimization in active distribution networks. Finally, it states the research objectives 

and contributions of the thesis. 

1.1 Motivations  

The core function of utility operators is to fulfill customers’ requirements by 

providing standardized electrical services while minimizing network losses. However, 

the increasing penetration of distributed energy resources (DERs) technologies of 

battery energy storage systems (BESSs), electric vehicles (EVs), and renewable energy 

sources (RESs) such as wind turbines (WTs) and photovoltaics (PVs), has increased 

the complexity of power network planning and operation. A primary concern due to 

such technologies' high usage is the undervoltage and overvoltage events [1]. DERs 

may allow electric power to flow back to the upstream transformer causing bus voltages 

to rise. This may damage customers' electrical appliances and may cause equipment 

malfunction and reduce energy efficiency. Furthermore, DERs output power's 

uncertainty may lead to voltage variations and sudden over-/under-generation that may 

drive the network to be out of synchronization [2]. Thus, there is a vital need for 

coordinating schemes to overcome these challenges.  

To improve voltage profile, volt/var optimization (VVO), volt/var control 

(VVC), and conservation voltage reduction (CVR) are employed [3]. These algorithms 

consider distribution system switch-based assets that include capacitor banks (CBs), 

step voltage regulators (SVRs), and transformer on-load tap changers (OLTCs) to 



  

2 

 

optimize the network power flow. System data of a wide time-resolution is utilized to 

limit voltage variations and control injected reactive power to improve voltage profile, 

reduce system losses, and improve energy saving [4]-[8]. The time response of 

distribution system switch-based assets is, however, considered to be relatively slow. 

Moreover, due to the stochastic nature and fast fluctuations of DERs’ generation, their 

employment to reduce the adverse impacts on a distribution network may not be 

effective [9]. On the other hand, the interface-inverters of DERs are power electronic 

devices that have faster time response. That is, they are capable of handling the fast-

changing components of demand and generation. Therefore, the utilization of the 

reactive power of DERs to support the network will lead to improving network 

performance. Furthermore, their adoption will decrease the dependency on the 

distribution network switched-assets, reducing their wear-and-tear effect.   

1.2 Distributed Energy Resources 

In numerous aspects of generation, demand, and control, electricity grids have 

been transformed over the last few decades. In order to reduce greenhouse emissions, 

renewable generations gradually replaced fossil fuel generations. Moreover, with the 

continuation of electrification and digitization of devices and resources in people's daily 

life, advanced technologies such as electric vehicle charging and computing services 

are emerging.  Due to these technological developments and environmental protections, 

DERs, such as BESSs, internal combustion engines, EVs, and distributed generations 

(DG) such as gas turbines, microturbines, PVs, fuel cells, and WTs, have emerged 

within the distribution system. Their capacities, however, are much smaller than 

conventional generation units. To meet the rising energy demand, DERs are installed 

near the loads in distribution networks. To offer enough power to new loads and new 

areas without expanding grids, the locations and capacities of DERs, which are 
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connected to the system, are optimized [10]. The DERs can be broadly classified into 

three categories: 1) distributed energy technologies that comprise conventional and 

non-conventional generators, 2) energy storage technologies of different energy storage 

systems, pumped storage and flywheels, and 3) e-transportation, including EVs, electric 

aircrafts, electric ships, and electric trains. The classification of DERs is presented in 

Figure 1-1. 

 

 

Figure 1-1. Classification of distributed energy resources [11] 

 

According to the U.S. Energy Information Administration, EIA-861M, statistics 

and analysis report, the total residential PV generation capacity was 3,346MW in 2014 

and has increased to 13,526MW in 2019 [12]. Furthermore, BESS's capacity in the U.S. 
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was only 862MW at the end of the year 2018 but is estimated to be over 2,500MW by 

2023 [13]. Likewise, EV sales escalated from 118k in 2014 to 358k in 2018 to benefit 

from the advanced BESS technology [14]. The substantial amount of EVs and BESSs 

charging demand has increased stability issues in the distribution grid. Nonetheless, if 

properly coordinated together along with renewable resources, EVs will increase 

operational efficiency.    

1.2.1 Interface-Inverter of DERs 

Recently, with the proliferation of DERs, their associated inverters are widely 

applied to convert the DC power, which is generated by renewable resources, to AC 

power that can be injected into the system. For example, solar inverters convert the DC 

output of PV plants to AC, then feed the power into the network. Appropriate design 

and operation of inverters can improve the efficiency of power systems. Reference [15] 

proposed an inverter topology of single-stage operation considering battery charging 

capability to increase renewable sources' usage rate. In [16], the authors proposed 

connecting the PV inverter to the network using a phase-locked loop control system for 

more effective maximum power point tracking, which increased system efficiency. A 

multilevel transformer-less PV inverter is proposed in [17] to overcome the leakage 

current issue of the single-stage inverters. Further, results showed better system 

performance in terms of lower electromagnetic interference (EMI), lower total 

harmonic distortion (THD), and lower switching stress.   

1.2.2 Challenges and Benefits Associated with DERs 

When the number of DERs increases, the challenges of incorporating them into 

the distribution network increases as well. Both their bidirectional power flow and 

stochastic nature may lead to high voltage fluctuations [18]. The pressing challenge 

here is how to reduce and manage the negative effects of DERs, like high voltage 
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deviations. Keeping in mind that in conventional distribution networks, all voltage 

controlling devices have been principally designed to perform in the absence of DERs, 

and that voltage magnitudes are assumed to be decreasing along the distribution feeder 

from substations to customers. This assumption becomes no longer authentic after the 

integration of DERs. The bidirectional power flow led to bus voltages along the 

distribution feeder, violating these assumptions [19].  

The impacts of DER decrease or increase comparatively depending on their 

location, size, and penetration level. These impacts may negatively affect the lifetime 

of the voltage controlling and reactive power compensating devices used along the 

distribution feeders, like CBs, SVRs, and OLTCs, due to the high DER output 

fluctuations. In addition, protection devices may be adversely affected since they are 

not designed to operate in such conditions. They can also increase the potential risk of 

overloading transformers due to, for example, adopting a large number of EVs and 

cause reverse power flow to substations due to an imbalance of demand and generation. 

The major significant challenges and impacts that have been addressed in literature 

concerning planning, controlling, and monitoring distribution networks with DERs 

include power flow, protection, fault current levels, thermal equipment ratings, and 

voltage magnitude levels issues [20].  

On the other hand, the introduced benefits of DERs to electric utilities have been 

vividly increased. Most electric utilities discovered that the effective use of DERs may 

reduce the cost of injecting reactive power into distribution networks. Thus, electric 

utilities will be positively impacted by their efficient use. Several advantages have been 

realized from the employment of DERs in distribution networks, for instance, 

minimizing feeder losses, supporting the network voltage, reducing greenhouse gas 

emissions, and increasing the system reliability [21]–[23]. Furthermore, for economic 
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benefits, it is found that DERs can efficiently reduce both operation and maintenance 

costs and increase operating profit [24]. Optimal placement of DERs can also decrease 

the investment of network upgrading and expansion [25]. Moreover, DERs are capable 

of assisting the energy supply for loads of the distribution networks. 

1.3 Active Distribution Networks 

A conventional power distribution network is a component of a power delivery 

system that links the customers and transmission system. It has been operated initially 

and designed based on several fundamental assumptions that designers evaluate the 

distribution networks' efficiency and reliability. It is designed to transport power from 

the electric grid -high voltage side- to the end-users -low voltage side-. Further, it is 

designed based on low energy losses, currents and voltages within permissible ranges, 

minimum consumption, centralized generation, and unidirectional power flow [26]. 

Recently, due to the presence of high DER penetrations, the power flow in distribution 

networks is transformed from unidirectional power flow in passive distribution 

networks into bidirectional power flow in active distribution networks (ADNs), also 

known as the Smart Grids [19].  

ADNs include protection and communication systems to achieve technical and 

economic benefits to systems by optimally managing the electrical energy. ADNs can 

flexibly tackle faults to enhance reliability and robustness [27]. Flexible resources can 

reduce energy outages, and energy dispatch strategies can be improved [28]. By 

controlling DG, storage devices, and active power, the operation of ADNs can be more 

efficient, and the operation cost can be reduced [29]. Flexible control methods and 

multiple components can help ADNs improve voltage stability and voltage profiles 

[30],[31]. The active power source can be controlled to reduce power loss, and the 

efficiency of ADNs would be improved [32]. New market mechanisms, such as peer-
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to-peer trading, can be designed to benefit both consumers and prosumers [33]. Besides 

these advantages, ADNs also embody the benefits of all components which are applied 

in ADNs. The structure of passive and active distribution networks is shown in Figure 

1-2. 

 

 

 

Figure 1-2. Structure of (a) passive distribution networks, (b) active distribution 

networks [34] 

 

Overall, ADNs take advantage of advanced communication systems, sensors, 

measuring units, feedback control, and intelligent systems to improve the network's 

performance. Table 1-1 compares active and passive distribution networks based on 

several aspects. The benefits ADNs can contribute to are: enhancing capacity and 

efficiency of existing networks, improving power reliability and quality, avoiding 

construction of peak load power plants, optimizing facility utilization, improving 
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resilience to disruption, integrating DERs to the grid, enabling predictive maintenance, 

allowing self-healing responses to system faults and disturbances, reducing greenhouse 

gas emissions, facilitating the expanded deployment of RESs, automating maintenance 

and operation, and decreasing the need for inefficient generation during peak demand 

periods.  

 

Table 1-1. Comparison Between Passive and Active Distribution Networks [26] 

Feature Passive Distribution 

Network 

Active Distribution 

Network 

Communication One-way Two-way 
Metering Mechanical Digital 
Generation  Centralized Distributed 
Restoration Manual Self-healing 
Monitoring Manual check Remote check 
Control Limited Pervasive 

 

1.4 Volt/Var Optimization in Active Distribution Networks 

The main aim of VVO employment in distribution networks is to manage the 

uncertainty of power injections and loads and maintain convenient network voltages by 

supplying or absorbing reactive power as required. VVO actions have been achieved in 

conventional distribution networks through voltage regulating and reactive power 

compensation devices such as CBs, OLTCs, and SVRs. These VVO devices are 

designed to operate based on assumptions like unidirectional power flow that adopts 

the fact that bus voltages decrease along the distribution network within the permissible 

range stated by the American National Standards Institute (ANSI).  

The coordinated VVO approaches that utilize conventional reactive power and 

voltage control devices in distribution networks have been extensively studied and 

investigated by researchers to minimize network losses or energy consumption. For 
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instance, the settings of SVRs and CBs are configured to maintain network bus voltages 

within the permissible range under different load conditions in [35]. Another study 

demonstrated that determining optimal settings of OLTCs positions and CBs hours in 

advance reduces active power loss [36]. The system's voltage stability can be improved 

by controlling voltage-controlling equipment [37]. Different control methods in 

distribution networks are analyzed based on VVO strategies [38]. After the 

development of ADNs, uncoordinated VVO algorithms led to excessive use of OLTCs 

and CBs, causing a reduction in their life expectancy [27]. Therefore, VVO algorithms 

that reduce their usage are required to relieve the stress on conventional volt/var 

devices. 

Besides, considering decreasing costs and increasing interests in energy sources 

substitutes other than fossil-fuel-based sources, usage of DERs in transmission and 

distribution systems has increased significantly in recent years [39]. The integration of 

DERs in distribution networks has increased conventional VVO devices' challenges to 

cope with the initially-set assumptions for distribution networks. With the increment of 

the level of penetrations and stochastic nature of DERs, conventional feeders are too 

slow to manage rapid variations in DGs' output power. Conventional voltage 

controlling systems, such as local static var sources, are expensive and cannot cope with 

rapid fluctuations of output powers of DERs [40]. Therefore, a VVO algorithm that 

coordinates between DERs and conventional volt/var devices is vital. 

1.4.1 Volt/Var Optimization Utilizing DERs  

With the rapid advancement in DER inverter technologies, electric utilities 

discovered that inverter-based DERs are alternative reactive sources and can contribute 

to solving the introduced issues in ADNs, such as the rapid variations of network 

voltages. Based on the fact that inverter-based DERs are power electronic devices, they 
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can provide the required reactive power in less than 50 milliseconds to manage rapid 

voltage variations, for instance, as in [41], [42] handling transient cloud passing to PVs 

circumstances. Incorporating DERs has decreased the reliance on conventional 

distribution network devices such as OLTCs, CBs, STATCOM, and static var 

compensators. Moreover, CBs can only provide support to the network by supplying 

reactive power. However, it cannot consume reactive power. On the contrary, DERs 

inverters can support the network more efficiently by injecting or absorbing reactive 

power with faster response times. Thus, more flexible reactive power support can be 

attained [40]. A comparison between different volt/var technologies is provided in 

Table 1-2. 

 

Table 1-2. Comparison Between Different Volt/Var Technologies [43] 

Technologies Inverters  Capacitor 

Banks 

On-load Tap 

Changers 

STATCOM 

Time Response Rapid Slow Slow Rapid 
Output Capacity Flexible Discrete Discrete Flexible 
Initial Cost  Low Moderate  Low High 

 

Coordinated reactive power compensation, attained from conventional VVO 

devices along with inverter-based DERs, can enhance system reliability and efficiency 

and provide substantial economic benefits to electric utilities [44]. For instance, 

utilizing PV inverters to increase line capacities and reduce network losses [45]. An 

optimal VVO using the PV inverters’ capability to inject and consume the reactive 

power to reduce energy consumption and network losses while sustaining network 

voltages within the acceptable range is proposed in [46]. 

Another objective of VVO is to maintain voltage deviation within an adequate 
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range by utilizing distribution network devices and DERs. OLTCs and PV inverters 

control bus network voltages for either global or local control along the distribution 

feeder [47]. Inverter-based PVs can provide reactive power compensation to supply 

voltage support when generation fluctuations occur [48]. VVO can also conserve 

energy by preserving network voltages within the allowed range [49]. By controlling 

voltage magnitudes based on ANSI standards, electric utilities can efficiently deliver 

energy [50]. As a result, they will conserve money through the minimization of total 

power losses in distribution feeders [51]. 

1.5 Reinforcement Learning  

In literature, machine learning approaches are classified based on the expected 

learning tasks and the available data. Figure 1-3 demonstrates the three top categories 

of machine learning algorithms. Which include 1) supervised learning (immediate 

feedback), where the training dataset includes both the inputs and the desired outputs, 

and the model tries to learn the functional relationship between them [52], 2) 

unsupervised learning (no feedback) where no clear output from the training dataset is 

provided, and the model learns similarities between input data and makes actions 

accordingly, and 3) Reinforcement learning (delayed feedback) where no output is 

provided and the model tries to learn the input-output relationship from the data. 
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Figure 1-3. Types of machine learning algorithms [52] 

 

Reinforcement learning, derived from neutral stimulus and response, is a 

machine learning approach capable of learning from scratch and relies on 

environmental interaction rather than complex mathematical models. Due to its success 

in addressing challenging sequential decision-making problems, it has become 

increasingly popular [52], [54]. Its combination with deep learning, called deep 

reinforcement learning (DRL), has achieved significant successes in games [55]–[57], 

robotics [58], [59], natural language processing [60], [61], finance and business 

management [62], [63]. Recently, few researches have reported the application of DRL 

in power systems and that it outperforms traditional approaches in overcoming the 

introduced challenges in smart grids. Traditional approaches mainly include convex 

optimization methods, programming methods, and heuristic methods. 

Convex optimization methods are classical mathematical methods, such as the 

Lyapunov optimization algorithm [64]. The advantage of this method is that the 

mathematics are rigorous, and real-time management can be realized. However, this 

method relies on explicit objective functional expressions, difficult to abstract from 

many real-world optimization decision scenarios. Moreover, the Lyapunov condition 
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(required for the Lyapunov optimization algorithm) cannot be guaranteed in 

complicated, high-dimensional scenarios. While the programming methods, such as 

stochastic programming [65], [66], mixed integer programming [67], [68], and dynamic 

programming [69], [70], can handle diverse optimization problems. However, they tend 

to have high calculation costs and lack of realizing real-time decision-making in some 

scenarios. Also, programming algorithms rely on accurate predictions of load and 

renewable energy generation, which are difficult to achieve in real scenarios. Heuristic 

methods, such as ant colony optimization (ACO) [71], [72], PSO [73], [74], and GA 

[75], [76], are also able to handle diverse optimization problems. Especially for non-

convex optimization problems, a heuristic method can achieve the local optimal 

solution with a certain probability, which helps solve large data scale and complicated 

scenarios. However, these methods are less robust and cannot be proven rigorously 

using mathematics.  

Compared with convex optimization methods, the exact objective function is 

not necessary for DRL. In contrast, DRL uses a reward function to evaluate decision 

behavior. DRL can also handle higher dimensional data than convex optimization 

methods. Against the programming methods, DRL makes decisions according to the 

current state and makes real-time and online decisions. It can also handle uncertainty 

in the load and renewable energies profiles. In contrast to the heuristic methods, DRL 

is more robust with stable convergence results and is better suited for decision-making 

problems. Also, it has been proven that it can escape local optimal solutions since it 

performs stochastic optimization. Besides, the traditional approaches rely on the exact 

power system model, while DRL requires less accurate or no information about the 

system model. 

Many researches have recently addressed DRL applications in power systems, 
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and most of them are published since 2018. These applications cover a wide range of 

decision, control, and optimization problems in the power systems, including energy 

management [77]-[80], demand response [81]-[84], electricity market [85]-[88], 

operational control [89]-[92], cybersecurity [93]-[95], economic dispatch [96], [97], 

system optimization [98], edge computing [99], energy routing [100] and many others. 

1.6 Thesis Objectives  

This work aims to develop a VVO algorithm that minimizes power loss and 

voltage deviation in an ADN. The algorithm will consider the volt/var impact of 

conventional devices of CBs and OLTCs along with DERs, including RESs, EV 

charging stations, and BESS. It will optimize conventional assets and DERs settings at 

multi-timescales to limit network voltage deviation, reduce system losses while 

considering the distribution transformer lifetime. The system operators' input on CBs 

and OLTC settings is also included in the optimization. Figure 1-4 describes the overall 

concept of the proposed VVO algorithm. The VVO controller comprises of two-

timescales optimizers. The slow timescale optimizer sends control decisions to set the 

position of CBs and OLTCs in the ADN, based on demand and generation, to achieve 

power loss and number of position adjustments of CBs and OLTCs minimization 

simultaneously. While the fast timescale optimizer uses the settings of the CBs and 

OLTCs and sends control decisions to schedule the amount of reactive output power of 

DERs to achieve voltage variation minimization.  
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Figure 1-4. Conceptual diagram of the proposed VVO algorithm 

 

The thesis objectives can be summarized as follows: 

1. Literature survey: Conduct a literature survey on existing volt/var optimization 

algorithms focusing on devices and resources utilized, as well as timescale 

resolution considerations.  

2. VVO assets/resources survey: Study the different volt/var control components and 

resources utilized in the VVO solving, including utility-owned assets and DERs.  

3. Comprehensive multi-objective and multi-timescale formulation: To attain 

better performance of ADNs and overcome its rising concerns, the foremost issues 

should be considered in the VVO problem. Besides, to effectively achieve this aim, 

an optimization problem should be formulated to not improve one of the objectives 

at the expense of other objectives. Thus, we aim to develop a VVO algorithm that 

minimizes network power losses and the number of adjustments of utility-owned 

assets simultaneously and minimizes bus voltage deviations. In addition, to achieve 
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more efficient VVO performance and due to the uncertainty in DERs’ generation, 

the VVO algorithm is preferred to have high time-resolution to manage fast-

changing components of demand and generation. Hence, to match the time response 

of the utilized utility-owned assets and DERs, the VVO problem should be 

formulated with different timescales. This thesis aims to formulate the VVO 

algorithm with a multi-time scale resolution to match the utilized assets and 

resources accordingly. 

4. Utility operator involvement: Benefiting from utility operators’ experience in 

network operation can add value and give a higher degree of flexibility in managing 

the distribution network. We aim to incorporate utility operators' preference range 

in the VVO problem concerning network power loss and the number of utility-

owned assets' adjustments.   

5. Utility assets management independently: The utility-owned assets can have 

different conditions and lifetime status, where the utility operator may require 

giving higher priority to the assets having severe conditions. In this thesis, we aim 

to optimize the number of adjustments of utility-owned assets, named: CBs and 

OLTCs, independently, depending on their conditions. 

6. DERs incorporation: In order to handle the fast variations of demand and 

generation of DERs, devices/resources with fast time response should be 

considered. We aim to develop a VVO algorithm that integrates DERs that include 

PVs, BESSs, and EV charging stations in solving the VVO problem by utilizing 

their reactive output power. Further, carry out performance evaluation and examine 

the effect of the utilization of DERs, individually, on network power losses and bus 

voltage deviations.  

7. Deep RL (DRL)-based VVO approach: To overcome the limitations of the 
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conventional optimization-based VVO algorithm, a real-time optimization 

approach that can handle DERs’ uncertainty and does not require an accurate 

distribution network model to solve the VVO problem is pivotal. Thus, in this 

thesis, we propose a two-timescale deep RL-based VVO scheme for ADNs. First, 

understand preliminaries and basic terminologies of RL. Following, formulate the 

two-timescale VVO problem as a Markov decision process (MDP) and solve it 

using a suitable DRL approach.  

8. DRL and conventional optimization-based VVO comparison: Evaluate and 

compare the performance of the conventional optimization and DRL-based VVO 

approaches in realizing power loss reduction and voltage deviation minimization of 

ADNs.   

1.7 Thesis Contributions 

The contributions of this thesis can be summarized as follows: 

• A two-timescale VVO algorithm that incorporates EV charging stations, BESSs, 

and RESs, in addition to standard devices. Where, also the condition of the different 

distribution assets, namely, CBs and OLTCs, are considered independently. 

• A VVO algorithm that engages the operator by considering its preference ranges of 

the planning objectives, namely, power loss and a number of adjustments of 

standard volt/var devices.  

• Due to conventional optimization VVO scheme limitations, a DRL-based two-

timescale VVO algorithm that jointly coordinates the different utilized VVO 

resources at the two timescales using a DRL approach, named twin-delayed deep 

deterministic policy gradient (TD3), is proposed.  

• A model-free DRL approach that supports continuous action spaces since PVs, 

BESSs, and EV charging stations can continuously provide reactive power rather 
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than quantized levels as in CBs. In addition, the algorithm does not rely on a precise 

optimization model nor accurate and complete information of distribution networks.  

1.8 Thesis Outline  

The thesis content is organized into eight chapters, of which an introduction 

chapter (chapter 1), 6 main chapters (chapters 2-7), and a final concluding chapter 

(chapter 8). Chapter 1 introduces the challenges and provides background information 

related to research objectives, and chapter 10 summarizes the work carried out and 

provides future recommendations and research plans. The research chapters are divided 

into two VVO common chapters  (chapters 2 and 3) and four VVO solving chapters 

(chapters 4-7). Chapter 2 presents the conducted literature review of VVO in active 

distribution networks, their history, and current status in the market. It also presents 

related RL-based VVO prior work; chapter 3 presents the volt/var optimization main 

features and resources. The research VVO solving chapters are further divided into two 

parts, each comprising 2 chapters with the following structure. Part I: Chapter 4 

demonstrates the formulation of the developed volt/var optimization algorithm and 

employed optimization techniques; Chapter 5 presents the tested network with its 

parameters and assumptions of the examined case studies, the implemented code, and 

the simulated cases. It then discusses the solution to the volt/var optimization problem 

and its effectiveness. Part II: Chapter 6 introduces RL and DRL and provides their 

theory and fundamentals; chapter 7 formulates the DRL-based VVO problem and 

describes the workflow of the employed DRL algorithm. It then presents the solution 

and analysis of the two-timescale DRL-based VVO scheme. It also demonstrates a 

comparative study of DRL and conventional optimization-based VVO scheme 

performances. Figure 1-5 shows a schematic representation of the thesis outline.   
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Figure 1-5. Thesis outline schematic 



  

20 

 

CHAPTER 2 : REVIEW OF RELATED WORK 

This chapter presents a review of previous and related VVO approaches and 

their deployments throughout the years. It presents the volt/var management market's 

current status and a forecast for the coming years. It also presents the prior related VVO 

researches that employ RL algorithms.   

2.1 Historical View on Volt/Var Optimization  

Numerous studies have been dedicated to investigating and examining the 

impact of reactive power and voltage drop resources on distribution networks in the late 

1800s, when they were first developed. Figure 2-1 shows the main studies of the road 

to the deployment of VVO. The first marked research related to the concept of volt/var 

control is [101], in 1932, performed basic local control. The study utilized series reactor 

behavior and transformer taps to study load ratio characteristics in local control circuits. 

Incomplete local measurements are used as inputs to find the settings of the utilized 

resources. Mostly, these measurements estimated the amount of reactive current flow 

in the distribution network. Accordingly, it was not reliable and lead to unsatisfactory 

performance, unacceptable power factor, and voltage levels. Moreover, the local 

control scheme lacked coordination on system-level and ineffective periodic maneuvers 

and trips of CBs. Generally, CBs and other resources' settings were not optimal, leading 

to an excess of reactive current network flow. Consequently, network power loss 

increased.  

Most of the research work in the 1970s focused on static VAR optimization 

schemes [102]-[107]. The simple utilization of static capacitors in the distribution 

network's optimization was presented in [102]. In the 1980s, centralized control-based 

monitoring schemes were introduced. A basic communication design between VAR 

measurement devices at distribution feeder breakers was developed. The 



  

21 

 

communication to CBs was mostly one-way, and the VAR flow at feeder breakers was 

the only controllable parameter. The automatic tracking of CBs’ settings did not exist, 

making the process of reconfiguration of distribution feeders to balance loads or isolate 

faults complicated. This control scheme did not consider other aspects that affect 

distribution networks' performance, like end-users loads and voltages. Subsequently, 

the control scheme was unreliable and inaccurate, which drove utilities to define VVO 

mechanisms.  

 

 

Figure 2-1. Road to Volt/Var optimization 

 

Some of the heavily studied issues in the 1980s were the optimizations, aiming 

for power loss minimization, of the secondary volt/var control devices [108], and the 

allocation of reactive power sources [109]. In 1985, several volt/var schemes in 

distribution networks were published [110], [111]. It was the first use of the notation 

“volt/var” for reactive power and voltage optimization. Researchers studied the general 

volt/var control problem and then proposed design and control solutions.  

 In the 1990s, features like distribution management systems (DMS) and 

distribution automation were introduced in the distribution segment. The authors of 

[112] and [113] were the first researchers who studied the volt/var control concerns 
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related to DMS. Since the 2000s, desperate efforts are spent on solving the reactive 

power and voltage optimization problem for distribution networks [114]-[117]. 

However, with recent advancements in technology and distribution networks, more 

studies are required to overcome the introduced issues. 

2.2 Volt/Var Management Market  

The global volt/var management market is estimated to be worth $427 million 

in 2019 and is projected to reach $568 million by 2024, growing at a compound annual 

growth rate (CAGR) of 5.9% in the period of 2019-2024 [118]. The market is set to 

grow and focus on reducing transmission and distribution losses in power systems, 

optimizing power factor, and increasing electricity supply due to DGs' growing 

investment.  

The distribution segment is driven by investments in smart grids and a need to 

reduce power outages and faults in distribution feeders. Upcoming plans for upgrading 

the existing infrastructure and new transmission and distribution projects in economies 

such as the US, China, India, the UK, France, Spain, Norway, Denmark, Belgium, and 

Ireland are expected to boost the volt/var management market growth from 2019 to 

2024. Moreover, the utility and hardware segments are expected to grow at the fastest 

rate from 2019 to 2024 due to a need to reduce system-wide losses and minimize the 

distribution system and customer voltage variations. The increasing number of 

substation automation projects will drive the market in the coming years.  

The leading players in the volt/var management market are Eaton (Ireland), 

Siemens (Germany), DC Systems (US), ABB (Switzerland), Open Systems 

International (US), GE (US), Advanced Control Systems (US), Varentec (US), 

Schneider Electric (France), Beckwith Electric (US), Landis+Gyr (Switzerland), S&C 

Electric Company (US), DVI(US) and Utilidata (US) [118]. 
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In [118], the volt/var management market has been analyzed for five regions: 

Europe, North America, Asia Pacific, South America, and the Middle East & Africa. 

Figure 2-2 illustrates the market share for the years 2017-2024 for the aforementioned 

regions. Based on this study, North America is expected to be the largest market 

because of the number of investments in volt/var management solutions, increasing 

investments in RESs, and volt/var optimization projects in the utility sector to reduce 

losses.  

 

 

Figure 2-2. Volt/var management market [118] 

 

2.3 Studies on Solving the Volt/Var Optimization Problem 

VVO approaches can be categorized into several groups based on various 

aspects. In this thesis, the review of prior work on VVO algorithms is viewed, as 

depicted in Figure 2-3, based on two main features: the type of resources used in solving 

the VVO problem and the VVO problem formulation timescale.  
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Figure 2-3. Categorization of VVO algorithms. 

 

2.3.1 The Utilization of Utility-Owned Assets in VVO Algorithms 

Several VVO methodologies utilizing utility-owned assets, CBs, OLTCs, and 

SVRs, have been proposed in the literature. Since CBs and OLTCs are discrete control 

devices, the single VVO problem is formulated as a mixed-integer nonlinear 

optimization problem (MINLP). Numerous algorithms employing MINLP have been 

proposed in literature [119]-[123]. Authors in [120] proposed a discretization penalty-

based VVO algorithm using a nonlinear interior point method with limited control 

actions. While in [123], a prime-dual interior point (PDIP) method is proposed to solve 

a power dispatch problem. Ref. [124] proposed a static equivalent method for a reactive 

power flow model of an interconnected network.  

In [5], a VVC approach using the PDIP technique with a penalty-based 

discretization algorithm to coordinate the reactive power output of CBs and OLTC 

settings is introduced. Ref. [6] proposed a model-free VVC scheme based on advanced 

metering infrastructure (AMI) data analytics to reduce power loss and maintain voltage 

levels. The approach is extended to integrate the CVR as an objective. The proposed 

method is based on adjusting voltage regulators setting points to switch On/Off CBs in 
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radial systems. Where [7] proposed a support vector regression-based model predictive 

control (MPC) VVO (trained and employed by the MPC in a closed-loop scheme to 

adjust the settings of CBs and OLTCs). Another model-free method is proposed in [10], 

where a CVR is implemented to control OLTCs via the distribution management 

system based on voltage feedback from AMI meter readings. Results showed that 

energy saving is achieved by optimizing off-peak voltage. To maintain voltage levels 

and achieve peak reduction by controlling SVRs, ref. [125] proposed a VVC that 

combined voltage alarms based on AMI with remote terminal unit measurements.  

Due to multiple conflicting concerns that need to be considered, multi-objective 

VVO problems have been recently studied. In [126], the authors proposed an algorithm 

that aims to minimize the voltage stability index and reactive power loss. While in 

[127], the authors developed an algorithm to minimize voltage deviation and a weighted 

power loss. Ref. [128] proposed a multi-objective reactive power control algorithm to 

simultaneously minimize power loss of reactive compensation devices and minimize 

voltage deviation. Moreover, in multi-objective VVO problems, the number of 

adjustments of the utility-owned assets, CBs, and OLTCs, need to be considered. This 

is due to their frequent actions reduce their lifetime.  

2.3.2 The Utilization of DERs VVO based Algorithms 

Notwithstanding, the aforementioned approaches are based on adjusting the 

settings of SVRs, CBs, and OLTCs, which have considerably slow time responses that 

span several seconds to minutes [9], and the frequent operations reduce the lifetime of 

these assets as well as of the substation transformer. Besides, switched volt/var devices 

are costly, which adds to the overall system cost [129]. For an active distribution 

network (ADN) to be efficient, these devices' slow time response and the impact on 

system assets need complete coordination with DERs [129], representing alternative 
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means for reducing power losses and maintaining voltage levels. BESSs, for instance, 

are mainly introduced to support the fluctuations of other weather-dependent DERs like 

PVs and WTs [130],[131]. Moreover, EVs’ batteries can also support grid volt/var 

related issues. Recent literature shows that DERs can provide fast responses in adjusting 

their reactive power via their grid-integrated inverters [132]-[136]. The number of 

DERs in an ADN is continuously increasing, and their response time is faster than the 

SVRs, CBs, and OLTCs [9]. Therefore, there is a vital need to coordinate among 

inverter-based, i.e., fast response, DERs, and the switch-based devices with the slow 

response to control voltage profile within the standard boundaries, reduce system 

losses, and enhance system asset lifetime.  

In [137], a VVO approach combined with DER control is proposed for reactive 

power compensation and voltage control. The OLTCs and CBs, along with WT and PV 

resources, have been used to minimize power losses and voltage deviations. A model-

free control of DERs for voltage regulation based on extreme seeking control is 

proposed in [138]. 

2.3.3 Multi-Timescale VVO based Algorithms 

To efficiently solve the VVO problem and due to the different time responses 

of the different resources that can be utilized, multi-time scale VVO algorithms are 

emerging. In [9], a two-timescale approach is proposed to integrate PVs and BESSs 

using particle swarm optimization and GA. The work focused on minimizing the total 

system cost and minimizing power losses. Authors in [139] and [140] proposed a multi-

time scale approach that coordinates settings of CBs, OLTCs, along with the output of 

RES to minimize power loss. In [141], in addition to the power loss minimization, the 

authors studied the effect of minimizing the number of setting adjustments of OLTCs, 

while utilizing the same resources as in [139]-[140] based on a two-stage algorithm. A 
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three-stage inverter-based VVC (TRI-VVC) framework is proposed, in [142], to 

minimize energy loss utilizing CBs and OLTCs, in the first stage and minimize voltage 

deviation utilizing PV inverters at different timescales in the second and third stages. 

The main differences between the proposed conventional optimization-based VVO 

approach in this thesis and multi-time scale approaches presented in literature are 

shown in Table 2-1.  

 

Table 2-1. Comparison of Objectives and Resources of Multi-timescale VVO 

Approaches 

Ref Objectives of the Algorithm Utilized resources (Q of 

Converters) 
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[9] ✓ ✓ ✕ ✕ ✓ ✕ ✕ 
[139],[140]  ✕ ✕ ✕ ✕ ✓ ✕ ✕ 
[141] ✕ ✕ ✕ ✓ ✓ ✕ ✕ 
[142] ✓ ✕ ✕ ✕ ✓ ✕ ✕ 
Proposed ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

2.4 Studies on Solving Volt/Var Optimization using Reinforcement Learning  

The existing VVO algorithms deployed by electric utilities mainly incorporate 

their assets, namely, OLTCs, CBs, and VRs. However, as previously mentioned, their 

time response is considerably slow, from several seconds to minutes, and their frequent 

operation reduces their lifetime [9]. While DERs are equipped with smart inverters, 

which enable them to inject or absorb reactive power to/from the network with faster 



  

28 

 

time response [9]. Hence, DERs are utilized in solving the VVO problem for ADNs.  

Further, most existing algorithms, to minimize power loss and/or bus voltage 

deviation, either employ day-ahead conventional optimization-based algorithms, such 

as PSO [9],[143], GA [3],[144], mixed-integer quadratic programming (MIQP) 

[145],[4], mixed-integer quadratically constrained programming (MIQCP) [146],[147], 

etc.. or real-time algorithms that require records of history data, such as model-

predictive control (MPC) algorithm, etc. [7], [148]. Although such algorithms achieve 

promising performance, they are physical model-based control approaches that require 

the knowledge of a complete and accurate set of network models and parameters, such 

as the model of transmission lines, non-linear system components, and renewable 

energies. Nevertheless, this is not easily manageable for modern, large, and 

interconnected distribution networks with increasing complexity. Also, the 

aforementioned approaches highly depend on precise optimization models and have 

limited capabilities to manage the rapid and intermittent nature of generation and 

demand of ADNs. To overcome these issues and reduce their impact on VVO 

performance, RL approaches have emerged as one of the most promising tools to solve 

decision-making problems with uncertainties [60]. In this thesis, we focus on 

summarizing the most recent related researches that propose an RL-based approach.   

The most common and simple RL algorithm is the Q-learning [54]. A 

dimensional Q-learning (DQL) approach is proposed in [149] for implementing 

reactive power optimization with discrete control variables. Where settings of utility-

owned assets are configured to minimize power loss. The proposed algorithm employs 

the conventional Q-learning to explore the feasible area dimensionally to reduce the 

agent's memory. While, in [150], authors proposed a distributed Q-learning, model-

free, multiagent-based RL algorithm for solving the optimal reactive power dispatch 
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problem. The proposed algorithm coordinates utility-owned assets along with PVs to 

minimize power loss. The authors then proposed a fully distributed multiple agent 

system based on sub-gradient RL in [151], where utility-owned assets are coordinated 

to minimize power loss and voltage deviations in the network. In [152], the authors 

proposed a batch RL algorithm to coordinate tap positions of OLTCs to regulate voltage 

levels in power distribution systems. The problem is solved with an action-value 

function and discrete action space based on a linearized power flow model.  

However, as previously mentioned, in applications that involve high 

dimensional continuous action and/or state spaces, the traditional RL algorithms will 

suffer from “curse of dimensionality”, which makes them inefficient in practical cases 

[153]. Subsequently, DRL approaches have emerged to overcome the dimensionality 

issue. DRL is the combination of deep learning (DL) and RL perceptions. DRL 

approaches employ neural networks (NNs) in their agent as value or policy function 

approximators, which increases the efficiency and applicability of the algorithm in real 

cases. 

In [153], a model-free, soft actor-critic, off-policy DRL approach is proposed 

to solve the volt/var control (VVC) problem with discrete action space where utility-

owned assets are coordinated to minimize the costs of power loss and devices’ 

switching. While in [91], the authors proposed a two-timescale voltage regulation 

algorithm for distribution grids. On the fast timescale, the reactive output power of the 

DERs is scheduled to minimize bus voltage deviations using a conventional 

optimization algorithm. While, on the slower scale, CBs are coordinated to minimize 

voltage deviations using a DRL approach, named deep Q-network (DQN).  

In [154], the authors proposed a DRL approach to solve the VVC problem, 

where settings of utility-owned assets are configured to minimize the costs of power 
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loss and device switching. Two policy gradient approaches are examined: constrained 

policy optimization and trust region policy optimization. The authors demonstrated that 

policy gradient methods could learn near-optimal solutions and determine control 

actions faster than conventional optimization methods. While, in [155], a DRL-based 

algorithm to coordinate multiple smart inverters for voltage regulation is proposed. The 

authors demonstrated that a well-trained DRL agent can schedule different smart 

inverters to maintain voltage levels within permissible ranges, minimize system losses, 

and achieve a reduction of PV production curtailment. The authors in [201] propose a 

multi-agent DQN based VVO approach with discrete action space. The proposed 

algorithm utilizes utility-owned assets along with DERs to minimize power loss. 

Noticeably in the context of VVO, existing DRL approaches employ discrete 

spaces when representing action spaces. However, utilizing reactive output power of 

DERs in solving the VVO problem, and since their output is continuous, a continuous 

action space is preferred to precisely schedule their reactive output power. Discretizing 

the output of DERs could lead to higher DERs’ generation curtailment due to their 

capacity limit. Further, the discretization will tremendously increase the action space 

size, leading to dimensionality issues. The main differences between the proposed and 

recent DRL approaches in literature are summarized in Table 2-2. 
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Table 2-2. Comparison of Related DRL-Based Approaches 
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[153]  ✓ ✕ ✓ ✕ ✓ ✓ ✓ ✕ ✕ 
[91]  ✕ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✕ 
[154] ✓ ✕ ✓ ✕ ✓ ✕ ✕ ✕ ✕ 
[155] ✕ ✓ ✕ ✓ ✓ ✕ ✕ ✕ ✕ 
[201] ✓ ✕ ✓ ✓ ✓ ✓ ✕ ✕ ✕ 
Proposed ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

2.5 Summary  

In conclusion, most VVO studies utilized only utility-owned assets in the 

problem solving and did not consider the presence of DERs [5]-[7], [10], [119]-[128], 

and few research integrated existing DERs in distribution networks [137]-[142]. 

Moreover, most studies formulated the VVO problem as a one-timescale problem, 

which ineffective due to the stochastic nature of RESs in the ADNs. Thus, the existing 

gaps in the literature in regards to solving VVO include but not limited to the 

availability of VVO algorithm with comprehensive objective functions of the 

conflicting objectives, considering the presence of DERs, like PVs, BESSs, and EVs 

and utilizing them in the optimization problem, considering the conditions and lifetime 

of utility-owned assets, involving the utility operator in the decision-making process.  

Further, to overcome raised concerns in ADNs more efficiently, DRL 

approaches have been proposed. Recent DRL VVO related studies adopted RL 
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algorithms that only support discrete action spaces. However, utilizing reactive output 

power of DERs in VVO problem solving, and since their output is continuous, a 

continuous action space is preferred to precisely schedule their reactive output power. 

Moreover, almost all recent DRL-based VVO studies [201], [91], and [153]-[155] 

formulated the VVO problem as a one-timescale problem, which is ineffective when 

utilizing both utility-owned assets and DERs. Hence, it will not manage the intermittent 

outputs of DERs in ADNs. Thus, the existing gaps in the literature in regard to solving 

VVO using a DRL approach include but are not limited to the availability of DRL-

based VVO algorithm with comprehensive objective functions and multi-timescale 

resolutions, as well as, being able to handle continuous action spaces.  

The first step towards formulating and solving the VVO problem is 

understanding the distribution network's topology and the possible utilized resources. 

The aforementioned points are presented in the next chapter.  
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CHAPTER 3 : VOLT/VAR OPTIMIZATION TOPOLOGY AND RESOURCES 

One of the main parts of a power system is the distribution network. It links 

high power sources and customers. Understanding the topology of the distribution 

network aids in formulating and solving a VVO problem. In this chapter, the VVO 

distribution network's topology is emphasized, and the different VVO devices and 

resources utilized in solving the optimization problem are studied.  

3.1 Distribution Network Structure 

Generally, distribution networks consist of sub-transmission parts, distribution 

substations, distribution feeders, distribution transformers, and secondary feeders. 

Figure 3-1 shows the one-line diagram (OLD) of a distribution network.  

 

 

Figure 3-1. OLD of a distribution network 

 

Typically, a distribution substation comprises a station bus, power transformer, 

breakers, voltage regulating devices like OLTCs and CBs, and switchgears. It is where 

the voltage level is reduced to primary feeder voltage. The distribution transformer then 
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reduces the voltage level further to secondary voltage. Finally, through service drops, 

the secondary circuits distribute power to customers.  

The most common, low cost and simple topology of primary and secondary 

feeders is “radial”. A typical OLD of a radial primary and secondary feeder is shown 

in Figure 3-2(a) and Figure 3-2(b), respectively. Based on this fact, the focus of this 

thesis is on radial active distribution networks. Moreover, it should be emphasized that 

voltage levels at any point in a distribution network have to be in the acceptable ranges 

according to the ANSI C.84.1 standard [50].  

 

 

Figure 3-2. OLD of radial feeders. (a) OLD of radial primary feeder, (b) OLD of the 

radial secondary feeder 

 

As to the control topology used, SCADA (supervisory control and data 

acquisition) is the commonly employed tool for monitoring and controlling stations via 

a master control center. Typically, SCADA comprises controlling and monitoring 

equipment, sensing and measuring schemes, and a two-way communication platform.  



  

35 

 

 

 

3.2 VVO Main Regulating Components 

  As previously mentioned, a key objective of VVO is to reduce losses of the 

distribution network. Generally, losses in a distribution network can be classified into 

two technical and non-technical losses. Figure 3-3 highlights the categorization of 

losses in a distribution network and a few examples for each type of loss. Most types 

of losses in a distribution network are technical losses since they depend on operational 

modes and network characteristics. Fixed technical losses do not vary with current 

changes, and it is found that they comprise approximately 25% to 30% of the technical 

losses [52]. On the other hand, since variable technical losses are proportional to the 

current squared, they comprise about 66% to 75% of the technical losses [143]. Since 

the technical losses contribute to higher losses, this thesis focuses on minimizing one 

of the variable technical losses, specifically, the active power loss in a distribution 

network. 

 

 

Figure 3-3. Classification of losses in a distribution network [52][143] 
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The main components and resources that can be utilized and integrated into the 

VVO algorithm are essential to be studied to achieve the loss minimization objective.  

As mentioned in previous chapters, voltage regulating components, such as VRs, are 

installed in the distribution feeders at specific nodes to regulate voltage levels and, such 

as OLTCs, are installed at the distribution transformers to adjust the downstream 

voltage level to the feeders based on load condition. Reactive power controlling 

components, like CBs, are installed at the distribution substation and/or distribution 

feeders to regulate reactive power flow. DERs existing at the network buses in the 

distribution network can also control reactive power flow by injecting/absorbing it. 

Thus, the utility-owned components and DERs are reviewed thoroughly in the 

following subsections. 

3.2.1 Voltage Controlling Components  

One way of adjusting the voltage level is by employing auto-transformers. It is 

considered a step-type regulating component. It is designed to regulate the line voltage 

between ±10% in 32 steps. Thus, each step can increase/decrease line voltage by 5/8%. 

The types of connection of the internal coils can be series or parallel. If coils are 

connected in series, the regulation range is ±10%, and if connected in parallel, the line 

voltage can be regulated up/down between ±5%.  

A step-type voltage regulating device comprises a tap changing part and a 

control part fitted with a control system. The controller sends commands to the tap 

changing part to adjust the tap's position based on the load condition. In addition to 

voltage level regulation, the controller also regulates the Bandwidth (BW) based on 

potential and current transformers measurements. Generally, the controller settings are 

voltage set point (represents the output voltage desired), bandwidth (shows the 

difference between the measured and desired voltages), and time delay (shows the 
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difference between the voltage exceeding BW limit time and the tap changing time). 

The tap starts to change when the difference between the set and measured voltages is 

greater than 50% of the BW value. In conventional voltage regulating devices, the time 

delay is typically between 10-20 seconds [157]. 

Some grids employ a voltage regulating device named Auto-Booster. It is a 

single-phase device comprised of four tap steps, where each step has a 1.5%-2.5% 

regulation range. Therefore, it has 6%-10% of regulation [157].  

The most common components used to regulate and maintain voltage levels 

within the acceptable ranges are the VRs and LTCs. VRs adjust the primary winding 

taps to regulate the secondary voltage. While tap changers are employed to regulate 

downstream voltage. Distribution transformers can be equipped with offload tap 

changer type on the primary side or OLTC on the secondary side. No-load tap changers 

are also a type of distribution transformer tap changer; however, they need to be 

disconnected from the circuit to adjust taps. This thesis utilizes OLTC in solving the 

VVO problem.  

The structure of a high voltage rating OLTC is shown in Figure 3-4. It comprises 

a diverter switch and a tap selector. First, based on the network voltage needs, a tap is 

pre-selected offline. The diverter switch then adjusts the tap position online. Currently, 

the switching time of the diverter switch is between 40-60 ms, and the total operation 

time of the OLTC is 3-10 seconds [158]. Low voltage rating OLTC employs a selector 

switch mechanism. 

According to the tap mechanism, the OLTCs can be classified as either resistive-

/reactive-based oil types. Both types of classifications can be either OLTC based on 

switch selector mechanism or diverter switch with tap selector. 
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Figure 3-4. Structure of an OLTC [158] 

 

3.2.2 Reactive Power Controlling Components  

Shunt capacitors are the common reactive power controlling device utilized in 

distribution grids to regulate voltage by controlling the reactive power flow. In 

distribution networks, the size of a shunt capacitor ranges from 50 to 400 kVar, and 

with the banking feature employed, they can supply 300 to 1800 kVar [157]. CBs, 

generally, are installed in different locations on a distribution feeder as required. They 

can control the reactive power flow of a local load, group of loads, or a feeder branch. 

Consequently, they can improve voltage profiles, reduce feeder losses, and reduce 

maximum kVA demand. Typically, the type of CB mostly installed in distribution 

networks is a pole-mounted CB. Figure 3-5 shows the CB structure of the pole-mounted 

type. 
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Figure 3-5. Structure of a pole-mounted CB [157] 

 

Standard [159] gives the main specifications of a CB. They are designed to 

operate continuously in severe environmental circumstances. The tolerable average and 

annual temperatures are 46 and 65 ◦C for isolated and single row capacitors, 

respectively, and 40 and 25 ◦C for metal-enclosed or multiple row capacitors, 

respectively. Generally, CBs must operate uninterruptedly without exceeding 135% of 

their kVar, 180% of their RMS current, 110% of their peak voltage, and 120% of their 

RMS voltage. It is worth noting that the size of a CB is proportional to the frequency 

of the system. 

In this thesis, switchable shunt CBs are utilized at different locations to regulate 

voltage by controlling the reactive power flow at different time intervals. Generally, 

CBs need to be equipped with adequate control systems to send commands to 

open/close kVar. The main control parameters of CBs are temperature since kVar 

increases with the increase of temperature, kVar control since kVar demand increases 

with an increase in load, current since it is proportional to kVar demand, the voltage to 

regulate voltage and switch time to be able to switch CBs in different load conditions.  

3.2.3 Distributed Energy Resources  

a. Photovoltaic  
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PV penetration has been increasing rapidly, aiming to reduce the dependence 

on fossil fuel resources and reduce conventional power plants' carbon emissions.  

However, its major concern is that its generation is dependent on weather conditions. 

Therefore, the output is very stochastic and variable. Although weather forecasts can 

be performed with acceptable accuracy and can anticipate PV generation accurately, 

sudden clouds can disrupt its output.  The generation of a PV can increase/decrease by 

15% of its capacity per minute with fast fluctuating cloud coverage [160]. 

Subsequently, the integration of PVs at the distribution level introduced significant 

challenges in operating and controlling the distribution network. 

As much as technical limitations permit, utilities aim to increase PV penetration 

levels in the distribution network. Thus, the more accurately the concerns regarding PV 

integration are studied and evaluated, the higher the penetration level that can be 

considered into the network without risking technical and operational limitations. PVs 

are used for different operational aims. The utilization of PVs in distribution networks 

can assist in satisfying the high demand and, at the same time, present itself as an 

environmentally friendly alternative to fossil fuel resources. It has recently been proven 

that PV systems support the distribution network with real power and support the grid 

by supplying/absorbing reactive power. The amount of output reactive power of a PV 

depends on its real power generation at that specific time and the apparent rating power 

of its interface-inverter.   

PVs can operate in two different modes, as demonstrated in Figure 3-6. 

Generally, during the daytime, they operate on the border between quadrants I and II, 

where P>0 and Q=0, which implies that they only inject active power. However, they 

can operate in a mode where they can inject active power while absorbing reactive 

power (quadrant II) or injecting reactive power (quadrant I). At nighttime, they can also 
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support the distribution network by operating at quadrant I or II, where P = 0 and Q > 

0 or Q < 0, respectively.  

 

 

Figure 3-6. PV capability curve 

 

b. Electric Vehicle Charging Stations  

The introduction of advanced technology of EVs such as vehicle to grids 

(V2Gs) adds technical challenges to planning and controlling the distribution network. 

However, it also brings new opportunities as it can also be utilized to support the 

network. New studies showed that their advanced interface-inverters could provide 

reactive power control [132]-[136]. Utilizing such technologies with reactive power 

capabilities significantly affects several aspects of energy conservation, active and/or 

reactive power optimization, and control schemes for ADNs. Since they can be utilized 

in the V2G mode as a reliable reactive power source, the required reactive power and 

the capacity and number of operations of CBs and OLTCs in a distribution network will 

be affected. Thus, they can help minimize reactive and/or active power losses and 

conserving network energy consumption when employed. 

Generally, EVs can be categorized based on their technology and their charging 

levels [134]. Figure 3-7 illustrates the classifications of EVs. High penetration of 

different types of EVs at different locations can lead to significant fluctuations in 

demand and load profile of a distribution network. Several researchers tried to study 
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and predict the trajectory of these fluctuations based on different EV level penetrations 

[161]-[163]. 

 

 

Figure 3-7. EV charging classifications [134] 

 

When an EV supplies reactive power to the network, it affects the kW's overall 

value, load rise, and system overcompensation issues. It could increase the distribution 

feeder’s capacity. Thus, reduce power loss and improve voltage profile provided that 

there is no overcompensation in reactive load. Also, it could lead to a rise in voltage. 

Consequently, there will be an increase in loads, which can be higher/lower than the 

reduction losses. Thus, the system’s overall kW input might increase/decrease. The 

aforementioned points are covered within the power flow that runs in the VVO 

algorithm. 
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EV charging stations can adopt different modes of operation [161]-[163]. The 

operating modes of their AC/DC inverters are shown in Figure 3-8. Mostly, EVs operate 

on the boundary between the I and IV quadrants, where P>0 and Q=0. This implies that 

EVs mostly consume active power from the grid. However, it is possible for an EV to 

operate in a mode wherein it still absorbs active power for charging and, at the same 

time, supplies reactive power to the network, quadrant IV [132]. Consequently, EV 

charging stations can help improve voltage profile, minimize power loss, and increase 

feeder capacity.  

 

 

Figure 3-8. Operating modes of EV charging stations [161]-[163] 

 

Generally, the bidirectional charger topology requires minimal adjustments to 

support the grid with reactive power [134]. Single-phase inverters' ability in injecting 

reactive power has been verified in [164],[165]. Based on the mentioned studies, it 

would be possible for the inverter to inject reactive power if the dc-link capacitor's 

voltage rate increased by at least 3%. It is also demonstrated that the capacitor dc link's 

current ripple rate is robust enough for inverters to function in capacitive mode. It is to 

be noted that inverter losses might inconsiderably increase in capacitive operation mode 
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compared to the charger's normal mode. However, the input inductor current and the 

EV battery are not affected [134]. An EV can supply reactive power to the grid through 

the capacitor dc-link without engaging the battery. Consequently, EVs' battery life will 

not be affected by reactive power support. 

Moreover, research studies showed that EV charging stations could inject 

reactive power even if no EVs are connected to the charging station [164]. During 

charging mode, the quantity of reactive power supplied by an EV charging station to 

the network is constrained by the consumed active power and the charger power limit, 

as shown in Figure 3-8. Therefore, if an EV is consuming the maximum P from a 

charging station, the station will not be able to inject reactive power. However, the 

charger can be rated 10%-20% higher than the maximum real power consumed during 

charging for the EV charging station to support the grid at different operating conditions 

[134]. 

This thesis evaluates EV charging stations' utilization in supplying/absorbing 

reactive power to/from the grid on the set of VVO objectives. Further, the proposed 

VVO algorithm seeks to find the optimal reactive power amount injected/consumed for 

each EV charging station.   

c. Battery Energy Storage Systems  

BESSs can provide distribution networks several benefits in different aspects 

regarding the quality, control, and stability reliability at transformer/feeder levels in the 

network. Generally, BESSs are integrated to smooth the intermittent behavior of other 

DERs, like PVs, wind farms, and EVs. It also aids the integration of these DERs into 

the grid. BESS can provide voltage regulation by consuming/injecting active and/or 

reactive power through their inverters' four-quadrant modes. Utilizing BESS can 

decrease the installation and number of CBs and OLTCs, leading to cutting down costs 
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and enhancing utility-owned components' lifetime.  

Typically, a BESS is employed in distribution networks to improve power 

quality, smoothing DER’s stochastic outputs, reactive power support, frequency 

regulation, voltage regulation, peak shaving, etc. The main components of a BESS are 

a four-quadrant inverter located in the grid inverter panel, a battery management system 

(BMS) of mostly lithium-ion batteries, and control systems in the breaker and meter 

panel, such as energy management system (EMS) and thermal management system 

(TMS). Figure 3-9 demonstrates the main components of a BESS. As EV charging 

stations, BESSs and DGs' key difference is that it can exchange reactive and active 

powers through its four-quadrant inverters bi-directionally.  

 

 

Figure 3-9. Main components of a BESS [166] 

 

The principle operation of BESSs is simple. They store energy in their batteries, 

and based on the network's active and reactive demands, they supply/consume active 

and reactive powers. Since they can deliver power for a short time during discharging, 

they are considered backup power. Typically, BESS's discharging time is usually 1-3 

hours at each operating cycle, and the charging time is less than two times the discharge 

time. Its discharging power is equal to the rated power, while the charging power is less 
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than or equal to the rated power. Thus, the discharge time can be obtained by dividing 

the rated energy and rated power [167].  

In general, there are three operation modes for a BESS: charging, discharging, 

and standby. Its discharge could be active/reactive inductive, fully active, and 

active/reactive capacitive based on the four-quadrant diagram of Figure 3-8. VVO can 

guide BESSs to discharge during heavy load time since their main tasks are peak 

shaving. VVO will also benefit since the demand will decrease. Usually, BESSs charge 

during the light load period. During charging, they consume active power, which 

slightly increases the active power loss. However, since the power loss is low at the 

light load period, the BESS charging mode's impact on the system is insignificant.  

In the standby mode, BESSs are typically disconnected from the network; 

however, they are on standby and available to be connected back when the network 

requires their support. Based on Figure 3-8, while in standby mode, BESS can 

inject/absorb reactive power (Q > 0 or Q < 0, P = 0). This is an interesting operation 

mode for BESS that could be created in the future. For example, a control command 

can be sent to a BESS in standby mode from the VVO to be integrated into the network 

and supply reactive power. However, this mode requires further economic and technical 

investigations. Overall, BESSs support the distribution networks in local control, feeder 

optimization, and energy management. Subsequently, benefit VVO objectives.  

It is worth noting that the new IEEE standards specify that DERs can provide 

voltage regulation, subject to the system operator's approval, through adjusting reactive 

power output. 

3.3 Summary 

Based on the aforementioned study of components and resources in this chapter, 

from the VVO point of view, it can be concluded that DERs, like EVs and BESSs, are 
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favored when compared to CBs and OLTCs since they can supply active and reactive 

power. They are also preferred compared with DGs, like PVs, as their output is 

controlled and not stochastic. Therefore, in this thesis, the main volt/var voltage 

regulating and reactive power compensation components and resources utilized for 

performing the proposed VVO are CBs and OLTCs, along with PVs, EVs, and BESSs.  
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PART I: CONVENTIONAL OPTIMIZATION-BASED VOLT/VAR 
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CHAPTER 4 : THE TWO-TIMESCALE VOLT/VAR OPTIMIZATION MODEL 

The formulation of the VVO’s different objectives and constraints in the 

different timescales is the first step towards obtaining the solution. In this chapter, the 

VVO problem is formally defined, and the optimization technique used in solving it is 

studied. Further, the framework of the proposed VVO algorithm is emphasized. 

4.1 Proposed VVO Problem Formulation 

In an ADN with high penetration of DERs, the variations in the voltage profile 

have mainly slow- and fast-varying components. The slow components are primarily 

due to the changing nature of the demand. While the intermittent outputs of the DERs 

are responsible for the fast-varying components in the voltage profile. Hence having an 

objective to regulate the voltage profile based on VVO requires a solution that considers 

two timescales to solve the optimization problem under minimum system losses 

effectively. Furthermore, this solution should consider the system operator preference 

that optimizes the changes in settings of distribution system assets to enhance their 

lifetime. Thus, we view the optimization problem's solution in two stages, I and II, that 

match the two timescales. Due to the slow time response in demand change, the 

standard switch-based CBs and OLTCs are the primary resources utilized in stage I, 

and their response is optimized on ℎ basis [139]. The objectives of this stage are to 

reduce system losses while minimizing the number of setting changes. This stage 

provides the means for the system operators to input their preference setting 

adjustments of CBs and OLTCs to preserve the assets' lifetime. The fast inverter-based 

DERs are the primary sources that are optimized in stage II. Their reactive power 

outputs are controlled and optimized based on an ℎ/𝑛𝑛 timescale.  

4.1.1 Stage I: ℎ Time-Resolution Multi-Objective Formulation 

In this first stage, power losses in lines are minimized while reducing the 
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number of setting adjustments, i.e., increasing/decreasing the setting positions of CBs 

and OLTCs over 24 hours. Here, the problem is presented as a multi-objective 

optimization with two conflicting objectives as formulated in (4-1) and (4-2), where the 

control variables are 𝑠𝑠𝑚𝑚, 𝑠𝑠𝑛𝑛, 𝑄𝑄𝑥𝑥𝑃𝑃𝑃𝑃, 𝑄𝑄𝑥𝑥𝐸𝐸𝐸𝐸 and 𝑄𝑄𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. 

minimize𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: 

𝑚𝑚𝑚𝑚𝑚𝑚∑ ∑ 𝑃𝑃𝑠𝑠𝑠𝑠𝑘𝑘,𝑡𝑡 − 𝑃𝑃𝑒𝑒𝑒𝑒𝑘𝑘,𝑡𝑡
𝑛𝑛𝑛𝑛
𝑘𝑘=1

24
𝑡𝑡=1   

 

(4-1) 

minimize 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎:  

𝑚𝑚𝑚𝑚𝑚𝑚∑ [𝛼𝛼 .  𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽 .  𝑡𝑡𝑡𝑡𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]24
𝑡𝑡=1   

 

(4-2) 

The implemented procedure in minimizing control actions (voltage variation or reactive 

power injected) is emphasized using 𝛼𝛼 and 𝛽𝛽  weights presented in (4-2).  

Furthermore, a set of comprehensive grid-related and resources-related 

constraints need to be considered: 

• Bus Voltage and Current Magnitudes’ Constraints:  

The voltage of each node of the network has to be in the permissible range, and the 

current flowing in the network branches cannot exceed a specific value according to the 

ANSI [50] standard. Therefore, voltages and currents are constrained by (4-3) and (4-

4), respectively. 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ �𝑉𝑉𝑖𝑖,𝑡𝑡� ≤ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (4-3) 

�𝐼𝐼𝑖𝑖,𝑡𝑡� ≤ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 (4-4) 

• Active and Reactive Power Balance Constraint:  

Based on the optimal power flow equations, the active and reactive powers at each node 

in the network must balance (4-5) and (4-6) illustrate the considered balance constraints 

of the active and reactive powers. 

∑ 𝑃𝑃𝑖𝑖,𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ 𝑃𝑃𝑖𝑖,𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ 𝑃𝑃𝑥𝑥,𝑡𝑡
𝐸𝐸𝐸𝐸 𝐸𝐸

𝑥𝑥=1 = 𝑅𝑅
𝑖𝑖=1

𝐿𝐿
𝑖𝑖=1   (4-5) 
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𝑃𝑃𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + ∑ 𝑃𝑃𝑥𝑥,𝑡𝑡
𝑃𝑃𝑃𝑃 𝑉𝑉

𝑥𝑥=1 ± ∑ 𝑃𝑃𝑥𝑥,𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵

𝑥𝑥=1   

∑ 𝑄𝑄𝑖𝑖,𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + ∑ 𝑄𝑄𝑖𝑖,𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑅𝑅
𝑖𝑖=1

𝐿𝐿
𝑖𝑖=1 ± ∑ 𝑄𝑄𝑥𝑥,𝑡𝑡

𝐸𝐸𝐸𝐸 ± ∑ 𝑄𝑄𝑥𝑥,𝑡𝑡
𝑃𝑃𝑃𝑃 𝑉𝑉

𝑥𝑥=1 ±𝐸𝐸
𝑥𝑥=1

∑ 𝑄𝑄𝑥𝑥,𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵

𝑥𝑥=1  +  ∑ 𝑄𝑄𝑥𝑥,𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀

𝑥𝑥=1   
(4-6) 

• Feeder Thermal Limit Constraint:   

Due to the thermal limits of the network branches' material, there is a limitation for the 

maximum kVAs that can be transferred through them. It is important to note that 

exceeding the maximum value can damage the branches. The maximum kVA for a 

branch is constrained by (4-7). 

𝑆𝑆𝑓𝑓,𝑡𝑡 ≤ 𝑆𝑆𝑓𝑓,𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 (4-7) 

• System Power Factor (PF) Constraint:  

In a distribution network, the PF of a node in the network needs to be maintained within 

allowed limits by operators as given in (4-8). 

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ≤ �𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡� ≤ 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 (4-8) 

• Capacitor Banks Constraints:  

For CB constraint, it is considered that the setting of an individual capacitor is 𝑞𝑞𝑠𝑠,𝑡𝑡, 

therefore the output of a CB is obtained by (4-9). The CBs are considered discrete control 

variables, and their reactive output power is constrained by (4-10). 

𝑄𝑄𝐶𝐶𝑎𝑎𝑎𝑎,𝑖𝑖,𝑡𝑡 = 𝑞𝑞𝑠𝑠,𝑡𝑡 .𝑄𝑄𝑐𝑐 (4-9) 

0 ≤ 𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖,𝑡𝑡 ≤ 𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖,max (4-10) 

• On-Load Tap Changer Constraints: 

Transformer taps are considered as discrete variables where each transformer tap-step 

levels-up/-down voltage in a specific range. The output voltage and the tap position of 

an OLTC should satisfy (4-11) and (4-12), respectively. 

𝑉𝑉0,𝑡𝑡 = 𝑉𝑉𝑆𝑆 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇.𝑇𝑇𝑡𝑡 (4-11) 
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𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇𝑖𝑖,𝑡𝑡 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (4-12) 

• Photovoltaic Constraint:  

The reactive power supplied or absorbed by a PV unit is constrained by (4-13). 

�𝑄𝑄𝑥𝑥,𝑡𝑡
𝑃𝑃𝑃𝑃� ≤ ��𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃�
2
− �𝑃𝑃𝑥𝑥,𝑡𝑡

𝑃𝑃𝑃𝑃�2 (4-13) 

• Electric Vehicle Charging Stations Constraints:  

Due to physical constraints, the active power of an EV cannot exceed the charging limit 

[168] and should satisfy (4-14). Moreover, the reactive power an EV charging station 

can supply/absorb is constrained as given by (4-15). 

0 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑖𝑖,𝑡𝑡 ≤ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚 (4-14) 

�𝑄𝑄𝑥𝑥,𝑡𝑡
𝐸𝐸𝐸𝐸� ≤ ��𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸�
2
− �𝑃𝑃𝑥𝑥,𝑡𝑡

𝐸𝐸𝐸𝐸�2 (4-15) 

• Battery Energy Storage System Constraints:  

The reactive power supplied or absorbed by a BESS unit is constrained by (4-16). In 

addition, an individual BESS unit should satisfy energy level constraints (4-17) -(4-20) 

[169]. 

�𝑄𝑄𝑥𝑥,𝑡𝑡
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵� ≤ ��𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�
2
− �𝑃𝑃𝑥𝑥,𝑡𝑡

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�
2
 (4-16) 

𝐸𝐸𝑥𝑥,𝑡𝑡 + 𝑃𝑃𝑥𝑥,𝑡𝑡
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎η𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∆𝑡𝑡 +

𝑃𝑃𝑥𝑥,𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∆𝑡𝑡
η𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= 𝐸𝐸𝑥𝑥,𝑡𝑡+1 
(4-17) 

0 ≤ 𝑃𝑃𝑥𝑥,𝑡𝑡
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑃𝑃𝑥𝑥,𝑡𝑡

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚 (4-18) 

𝑃𝑃𝑥𝑥,𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑥𝑥,𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 0 (4-19) 

𝐸𝐸𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐸𝐸𝑖𝑖,𝑡𝑡 ≤ 𝐸𝐸𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 (4-20) 

4.1.2 Stage II: ℎ/𝑛𝑛 Time-Resolution Single Objective Formulation  

The purpose of the second stage is to minimize further the voltage deviation of 

the network buses over 24 hours, considering ℎ/𝑛𝑛 time-resolution. Thus, it is a single-
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objective optimization problem as formulated in (4-21) where the control variables are 

𝑄𝑄𝑥𝑥𝑃𝑃𝑃𝑃, 𝑄𝑄𝑥𝑥𝐸𝐸𝐸𝐸 and 𝑄𝑄𝑥𝑥𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. 

min∑ ∑ (𝑉𝑉𝑝𝑝,𝑡𝑡 − 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟)2𝑅𝑅
𝑝𝑝=1

93
𝑡𝑡=1   (4-21) 

The constraints of this stage are the same grid constraints given by (4-3) -(4-8), and the 

DERs constraints given by (4-13) -(4-20).  

In summary, the optimization algorithm consists of two stages. Stage I, on an 

ℎ basis, aims to simultaneously minimize power loss in lines by (4-1) and the number 

of control actions of CBs and OLTCs by (4-2) subject to the constraints (4-3) to (4-20). 

This stage limits voltage deviation within the standard boundaries and provides means 

for the system operator direct input in setting standard switched devices. Stage II aims 

to minimize the voltage deviation on an ℎ/𝑛𝑛 basis by (4-21), subject to the constraints 

in (4-3) -(4-8) and (4-13) -(4-20), which results in further reductions in system losses.  

4.2 Solutions for the VVO Problem 

In solving VVO, the optimization solver is an essential aspect of achieving 

appropriate voltage regulation and minimum active power losses. Many methods have 

been explored in the literature [170]-[185]. Depending on parameters, variables, and 

system complexity, the VVO problem can be categorized as a: 

• Multi-objective Optimization: based on the fact that it requires optimizing more 

than one objective simultaneously subject to defined constraints.  

• Mixed Integer Non-linear Programming (MINLP): Since the VVO problem is 

required to handle non-linear systems as it aims to conserve energy consumption 

and minimize grid loss. Moreover, it is required to deal with integer variables such 

as CBs (on/off), VRs, and OLTCs (positions). Thus, the formulation of the VVO 

problem may have nonlinearities. 

As previously mentioned, several optimization approaches can be used in VVO 
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problem solvers. Since it is challenging to examine all of such approaches, an effort is 

directed towards finding an effective technique for the proposed VVO algorithm with 

adequate reliability, accuracy, and convergence time. Heuristics and meta-heuristic 

approaches are considered to provide VVO problems with precise solutions most of the 

time since they do not force large or real assumptions on the problem [186]-[188]. 

Furthermore, they have a large enough search space for candidate solutions, which 

leads to precise optimizations. However, the computational time is affected.  

One of the optimization techniques employed to solve VVO problems is 

Bender’s decomposition technique [189]. Its working principle is based on 

decomposing the high-dimensional optimization problems with many constraints into 

smaller sub-problems having less constraints, i.e., master and slave. Bender’s 

decomposition approach can be a valid candidate for the VVO problem since the VVO 

problem comprises disparate constraints and objectives. Also, it can be beneficial in 

large distribution networks.  

A stochastic optimization technique, such as Particle Swarm Optimization 

(PSO), is a meta-heuristic approach widely used in the power system. It can provide 

distribution networks with fast solutions. The accuracy, simplicity of working principle, 

and speed encourage to employ it in problems related to distribution networks [170].  

Another extensively employed approach in distribution network optimizations 

such as VVO is the meta-heuristic genetic algorithm (GA) approach [173]. It has been 

proven that it can solve optimization problems with adequate precision and 

convergence time. Determinations of mutation and crossover steps in GA significantly 

affect the accuracy of the optimization. Moreover, a realistic value of initial populations 

should be chosen since a large initial population increases the computation time.   

In summary, each of the aforementioned optimization approaches has its 
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advantages and disadvantages based on the topology and condition of the distribution 

network and the operator requirements in terms of accuracy and convergence time. 

Bender’s decomposition technique can solve the VVO problem with acceptable 

accuracy and speed. However, creating weak bender cuts can affect its performance. 

Furthermore, this approach's complexity drove employing it only in large-scale 

optimization problems where it is recommended to divide the problem into sub-

problems [190]. On the other hand, PSO has several advantages, including simple 

implementation, insensitive to design variables scaling, a straightforward concept, 

dealing with few parameters, derivative-free, and having a robust global search 

algorithm. However, the major drawback of PSO is that it tends to converge fast to local 

optimums. GA is another approach to have an easy working concept. It defeats other 

approaches in distribution network applications and performs adequately since 

distribution network optimization problems can be easily defined as chromosomes and 

fitness functions. 

Moreover, GA can be easily transferred to other levels of the system model. It 

can also solve the VVO problem optimally in adequate time. In this thesis, the GA 

technique is employed to solve the proposed VVO problem, and it is further detailed in 

the following subsection.  

4.2.1 Genetic Algorithm Features and Components  

GA is a heuristic optimization technique that is based on evolutionary principles 

[191]. To achieve the optimized solution, it goes through four main vital steps:  

1) Initialization: An initial population is randomly generated, representing 

hundreds/thousands of possible search space solutions. Its value depends on the size 

and nature of the optimization problem.  
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2) Selection: a portion of the initial population is chosen to form the new generation. 

Typically, the solutions are selected based on the given fitness function. Thus, the 

formulation of the fitness function affects the quality of the solution.  

3) Genetic operator: The second population is generated from the previously chosen 

set by adopting the crossover and mutation operators.  

4) Convergence criteria: the condition that the GA process considers algorithm 

convergence (stop iterating). The criteria differ based on the tackled problem. 

Generally, when successive iterations do not generate improved results, the 

algorithm converges to the optimum.  

To generate results, GA optimization performs decoding, evaluates fitness 

function, and runs reproduction, crossover, and mutation. After the population size is 

defined, the initial population is generated. Populations have to be encoded as binary 

numbers in order for chromosomes to be identified. It is essential to highlight that the 

length of chromosomes significantly affects GA optimization. Briefly, optimized 

results of GA depend on 11 parameters: encoding of chromosomes, fitness function, 

initial population, population size, elitism preserving rate, coding method, mutation 

operation and its rate, crossover operation and its rate, termination criterion, length of 

chromosomes, and parent selection operation.  

The most critical parameters are reproduction, crossover, and mutation. GA is 

considered an encoded process and uses the load flow solving solution to simplify the 

defined objective and constraints functions. Thus, the complexity of heavy 

mathematical formulations is avoided. Although the initial population is randomly 

generated, the continuous evaluation of fitness function assures the optimum solution's 

achievement. It is safe to say that the local optima can be successfully avoided by 

adequately tuning the GA optimizer parameters. Since the VVO problem involves 
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optimizing more than one variable simultaneously, a multi-objective GA (MOGA) 

approach is employed. 

4.2.2 Multi-objective Genetic Algorithm 

Multi-objective optimization is the mechanism of optimizing more than one 

conflicting objective simultaneously.  It does not have a single solution, as in a single 

optimization problem. However, it finds a set of non-dominated or Pareto optimal 

solutions demonstrated in a Pareto Front. A solution is defined as a non-dominated 

solution if none of the objective functions can be improved without sacrificing other 

objectives [192]. Figure 4-1 presents a Pareto Front for two objectives. The green 

solutions represent feasible solutions for the two objectives, yet not optimal, where 

yellow solutions are non-feasible solutions, and the blue solutions represent the non-

dominated solutions. 

 

 

Figure 4-1. Pareto front for two objectives [192] 

 

Elitist non-dominated sorting genetic algorithm (NSGA-II) is a development of 

the multi-objective GA approach. It is an evolutionary algorithm that is widely used in 

solving constrained multi-objective optimization problems. The NSGA-II algorithm 
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proposed in [192] enhances the convergence properties by introducing the idea of 

elitism to non-dominated sorting GA.  

The sorting approach requires computing two parameters: 1) the domination 

count 𝑛𝑛𝑖𝑖, which represents the number of solutions that dominate solution 𝑖𝑖, 2) the 

domination set 𝑠𝑠𝑖𝑖, which represents the set of solutions that solution 𝑖𝑖 dominates. The 

first non-dominated set of solutions is the solutions with 𝑛𝑛𝑖𝑖 = 0. Then, from this set, 

each solution with 𝑛𝑛𝑖𝑖 = 0 is visited and the domination count of each member 𝑘𝑘 of its 

set 𝑠𝑠𝑖𝑖 is reduced by one. Thus, solution 𝑖𝑖 is removed from the domination set 𝑠𝑠𝑘𝑘. All 

members having 𝑛𝑛𝑞𝑞 = 0 is saved in a separate list 𝐾𝐾, where 𝐾𝐾 represents the second set 

of non-dominated optimal solutions. This process is then performed for each member 

of 𝐾𝐾 to obtain the third non-dominated set. This procedure is repeated until all non-

dominated sets of solutions are identified [193].  

The computation of crowding distance requires the population of each objective 

to be sorted in ascending order first. With each objective being normalized, the total 

crowding distance is the summation of separate distance values for each objective.  The 

crowded comparison operator >𝑐𝑐 ensures a uniform spread out of the set of optimal 

solutions. Assuming that every individual has two entities; rank and distance, the >𝑐𝑐 

for two individuals 𝑚𝑚 and 𝑛𝑛 is defined as: 

𝑚𝑚 >𝑐𝑐  𝑛𝑛       𝑖𝑖𝑖𝑖 

( 𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 )        𝑂𝑂𝑂𝑂         (𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴𝐴𝐴𝐴𝐴 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 > 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 )   

Thus, a better solution than another, it has to have a better non-dominated front; higher 

rank. In the case of having the same rank, it requires better crowding distance.  

The main steps of the NSGA-II approach are; first, as previously explained, an 

initial population is randomly generated based on the objective and constraints. The 

fitness function is then evaluated. Next, selecting individuals in the population is 
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performed based on ranking and crowding distance (an indication of an individual's 

closeness to its nearest neighbors). The crossover and mutation operators then run to 

generate the offspring (new population). The parent and children populations are 

combined, and based on the elitism and crowding distance, the individuals are selected 

[193]. If one of the convergence criteria is met, the algorithm stops and prints the Pareto 

Front with the non-dominated solutions. Otherwise, a new population is generated. A 

flowchart illustrating the NSGA-II algorithm is given in Figure 4-2. 

 

 

Figure 4-2. Flowchart of the NSGA-II algorithm [193] 

 

4.2.3 Interior Point Method  

One of the techniques used in solving large-scale nonlinear convex single 

optimization problems with many design variables is the interior point (barrier) method 

(IPM). It is known for its simplicity in mathematical modeling. It is based on the 

concept of iteratively approaching the optimal solution from the interior of the feasible 

set [194]. To force the optimal unconstrained value to be in the feasible space and avoid 
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the violation of constraints, the objective function is augmented by a barrier term.  

The algorithm uses one of the two main types of steps at each iteration to solve 

the optimization problem: a direct step and a conjugate gradient (CG) step that uses a 

trust region. By default, the IPM takes the direct step first. If it cannot, it takes the CG 

step. When it does not take the direct step, the approximate problem is not locally 

convex near the current iterate. A flowchart illustrating the IPM algorithm employed is 

given in Figure 4-3.  

 

 

Figure 4-3. Flowchart of IPM algorithm [194] 

 

4.3 Proposed VVO Algorithm Framework 

In the proposed algorithm, stage I involves solving a nonlinear multi-objective 

optimization problem considering an ℎ  based time resolution. Stage II comprises 

solving a single nonlinear optimization problem based on an ℎ/𝑛𝑛 time resolution. 

Figure 4-4 highlights the algorithm's main steps and the slow and fast stages' 

implementation procedures. 
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Figure 4-4. Main steps of the proposed two-timescale VVO algorithm 

 

4.3.1 Stage I: Within the ℎ Time-Resolution 

The data required to solve stage I's optimization problem are the network 

topology, forecasted load demand, EV charging station demand, expected generation 

of DERs, and the BESSs charging/discharging schedules with an ℎ time resolution. The 

outputs of this stage are the day-ahead power loss and the settings of the CBs and 

OLTCs with an ℎ time resolution. These settings are kept constant and used in stage II. 

The nonlinear multi-objective problem in stage I is solved in three steps to ensure 

reaching an optimal solution considering the operator’s preferences. These steps 

include a global search algorithm, system operators' engagement step, and a local search 

algorithm. 

Step 1: Global search: A global search procedure is first used to explore the design 

space, assuming the settings of the CBs and OLTCs are not known. This paper uses a 

MOGA [195],[196] to coordinate the settings of the CBs and OLTCs based on ℎ time 
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resolution and simultaneously solve (4-1) and (4-2) subject to (4-3)-(4-12). The solution 

to this step is the Pareto front, as it shows the boundary of the solution of the multi-

objective problem in the objective space [197]. This boundary highlights all the non-

dominated optimal solutions of the two objectives: power loss and the number of CBs 

and OLTCs adjustments. 

Step 2: Operator preference: The operators' engagement in the VVO problem is 

included by considering their preferences for the range of power loss and the number 

of CBs and OLTCs adjustments. This gives the operators the capability of choosing the 

zone of solutions based on the network condition. The operator expertise and preference 

are reflected in single or multiple options extracted from the Pareto optimal solutions 

that resulted in step 1. These solutions are selected as candidate solutions for further 

optimization in step 3. 

Step 3: Local search: The local search is used to achieve the optimal solution using an 

initial guess, the candidate solutions preferred by the operator in step 2. The multi-

objective problem is converted to a single objective problem using the ε-constraint 

method. Where one of the objectives is selected, and the other objective acts as a 

restriction constraint. In this application, the power loss minimization in (4-1) is taken 

to be the single objective function to be solved, and the control actions objective 

function in (4-2) is transferred to the constraints of the optimization problem, as given 

in (4-22).  

∑ [𝛼𝛼. 𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽. 𝑡𝑡𝑡𝑡𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]24
𝑡𝑡=1 ≤  ε  (4-22) 

where ε ranges between the upper and lower bounds of the control actions objective 

function, defined by the operator, in an equidistant manner.  

 For solving a large-scale nonlinear optimization problem, the paper uses the 

interior point method (IPM) [198],[199] to further minimize the power loss in the 
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network by controlling the reactive power output of the DERs based on ℎ time 

resolution. 

4.3.2 Stage II: At the ℎ/𝑛𝑛 Time Resolution 

In this stage, the IPM [198],[199], is used to reduce the network voltage 

deviations by controlling the reactive output power of the DERs. The data required to 

solve the optimization problem of stage II is similar to stage I data yet in an ℎ/𝑛𝑛 time 

resolution, in addition to the CBs and OLTCs settings obtained from stage I. Moreover, 

the key outputs of stage II are the network bus voltages and the reactive output power 

of each DER on an ℎ/𝑛𝑛 time resolution. 

4.4 Summary 

The proposed VVO algorithm is formulated as a two-timescale algorithm to 

handle fast and slow varying demand components. The slow timescale, with ℎ time 

resolution, is comprised of 3 steps. Step 1 aims to simultaneously optimize power loss 

and number of control actions as given in (4-1) and (4-2), respectively, subject to 

constraints (4-3) to (4-20). This step utilizes utility-owned assets using MOGA. In step 

2, the optimization problem is transferred from multi-objective to single objective using 

the epsilon constraint method considering (4-1) as the objective function, which is then 

further optimized in step 3 utilizing DERs along with the utility-owned assets using 

IPM. While the fast time scale, with ℎ/𝑛𝑛, time resolution, aims to optimize voltage 

deviation as given in (4-21) using IPM and utilizing reactive output power of DERs 

subject to constraints (4-3) -(4-8) and (4-13) -(4-20). 
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CHAPTER 5 : THE TWO-TIMESCALE VOLT/VAR OPTIMIZATION SOLUTION 

This chapter first demonstrates the tested network along with the parameter 

settings and the assumptions made of the two examined case studies.  It presents the 

different studied scenarios in this thesis and guides to code implementation of the 

different timescales. Then, it examines the impact of the proposed algorithm in reducing 

the power losses and the voltage variations in the tested network, considering the 

different cases for both case studies. The proposed VVO algorithm is implemented on 

a gradually modified ADN. The system losses are monitored during the three steps of 

stage I.  The enhancement in voltage profile variation results from the two stages of the 

VVO algorithm is evaluated. 

5.1 Test System Description and Parameter Settings  

IEEE 33-bus system is a radial distribution network widely used for testing in 

power system-related problems. It consists of 33 buses (1 slack bus and 32 PQ busses) 

and 32 transmission lines with a value of 12.66 kV rated voltage, load size of 3.715 

MW and 2.3 MVar, one transformer with a maximum real power of 10 MW and 

maximum and minimum reactive power is 10 MVar and -10 MVar, respectively. The 

data of the standard IEEE 33-bus system is provided in Appendix A. 

To test and validate the proposed conventional optimization-based VVO 

scheme, the algorithm is tested on two different case studies with a different number of 

resources, their locations and ratings.    

5.1.1 Case Study A 

The proposed algorithm is tested on a modified IEEE 33-bus system that 

includes CBs, OLTCs, and DERs, as in Figure 5-1. The parameter settings of the system 

are presented in Table 5-1. The following assumptions are made: 

• 6 CBs are installed on buses 2, 7, 12, 20, 23, and 29.  
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• One OLTC is installed at the substation transformer located at bus 1 with ± 5% 

range and 20 tap positions.  

• 4 PVs are located at buses 8, 13, 22, and 24, with an inverter rating of 1.5 MVA. 

• BESSs are located at buses 16 and 30 with an inverter rating of 1 and 1.5 MVA, 

respectively. 

• EV charging stations are at buses 9, 14, and 21, with an inverter rating of 0.3, 0.3, 

and 0.2 MVA, respectively. 

 

 

Figure 5-1. Case study A modified IEEE 33-bus system  

 

Table 5-1. Case Study A System Parameters  

Parameter Value 

Peak demand load 8.0 +2.6 MVA 
Substation voltage (𝑉𝑉𝑆𝑆) 1.04 p.u (12.67 kV) 
𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖,max 300 kVar 
𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 0.05 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 -10 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 10 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 0.95 p.u 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1.05 p.u 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃 1.5 MVA 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1,2 1 MVA, 1.5 MVA 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸1,2,3 0.3 MVA, 0.3 MVA, 0.2 MVA 
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The demand of the plug-in electric vehicle (PEV) depends on various aspects: 

location of the charging station, number of PEVs charging, the capacity of the battery, 

charging level, as well as the start of charging time and state of charge of the battery 

that varies based on different driving behaviors of PEVs. Using accurate data, EV 

patterns are generated. The varying demand for each EV charging station is shown in 

Figure 5-2(a). The residential day-ahead forecasted active and reactive power demand 

is shown in Figure 5-2(b). The reactive power is estimated by randomly varying the 

load power factor (PF) between 0.8 – 0.95 along the day. The load of PEVs charged at 

home is assumed as a part of the residential load. The forecasted PVs and BESSs 

generation profiles are estimated, as shown in Figure 5-2(c). 

 

 

Figure 5-2. Case study A input data (a) EV charging stations power demand, (b) 

forecasted demand load, and (c) forecasted DER data 

  

Furthermore, DERs inverters' capability and PQ operating range are assumed to 

be optimal; inverters’ full capacity is utilized. Thus, the limit of injection/absorption of 

reactive power of PVs, EV charging stations, and BESSs is only constrained by (4-13), 
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(4-15), and (4-16), respectively. The limit of the absolute amount of reactive power that 

DERs’ inverters can provide is shown in Figure 5-3. 

 

 

Figure 5-3. Case study A Q limitation of DERs 

 

5.1.2 Case Study B 

The VVO algorithm is evaluated on a modified IEEE 33-bus system that 

includes CBs, OLTCs, and DERs, as in Figure 5-4. The considered parameter settings 

of the system are presented in Table 5-2. The following assumptions are made:  

• Three CBs are installed on buses 11, 20 and 29 with 1800kVar and 4 stages each  

• One OLTC is installed at the substation transformer located at bus 1 with ± 5% 

range and 20 tap positions 

• Four PVs are located at buses 8, 13, 22, and 24 with an inverter rating of 1.5 MVA. 

• Two BESSs are located at buses 16 and 30 with an inverter rating of 1 MVA and 

1.5 MVA, respectively.  

• Three EV charging stations are at buses 9, 14, and 21 with an inverter rating of 0.5 

MVA. 



  

68 

 

 

 

Figure 5-4. Case study B modified IEEE 33-bus system 

 

Table 5-2. Case Study B System Parameters 

Parameter Value 

Peak demand load 9.5 +j5.5 MVA 
Substation voltage (𝑉𝑉𝑆𝑆) 1.04 p.u (12.67 kV) 
𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖,max 1800 kVar 
𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 0.05 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 -10 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 10 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 0.95 p.u 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1.05 p.u 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃 1.5 MVA 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵1,2 1 MVA, 1.5 MVA 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸1,2,3 0.5 MVA 
 

The varying demand for each EV charging station is shown in Figure 5-5(a). 

The residential day-ahead forecasted active and reactive power demand is shown in 

Figure 5-5(b). Similar to case study A, the reactive power is estimated by randomly 

varying the load power factor (PF) between 0.8 – 0.95 along the day, and the load of 

PEVs charged at home is assumed as a part of the residential load. The forecasted PVs 

and BESSs generation profiles are estimated, as shown in Figure 5-5(c). The capability 

of DERs inverters and their PQ operating range is assumed to be optimal; inverters’ full 
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capacity is utilized. Thus, the limit of injection/absorption of reactive power of PVs, 

EV charging stations, and BESSs is only constrained by (4-13), (4-15), and (4-16), 

respectively. 

 

 

Figure 5-5. Case study B input data (a) EV charging stations power demand, (b) 

forecasted demand load, and (c) forecasted DER data 

 

5.2 Simulated Cases  

Four cases are simulated and compared with a base case. The proposed 

algorithm results in optimizing the power losses are compared in the four simulated 

cases, and case 4 is used to demonstrate the algorithm's effectiveness in optimizing the 

voltage deviation. Figure 5-6 highlights the simulated cases. 

• The base case (C0) is considered a reference case in the study, without the VVO 

algorithm. The system is simulated in the presence of the DERs without CBs and 

OLTC.  

• Case 1 (C1) and case 2 (C2) are compared in terms of the number of control actions 

of the switch-based settings. The system in C1 and C2 has inverter-based PVs only 
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and switch-based CBs and OLTC. A higher weight is assigned for CBs in C1 (𝛼𝛼 =

0.8 and 𝛽𝛽 = 0.2), and higher weight for the OLTC is considered in C2 (𝛼𝛼 = 0.2 and  

𝛽𝛽 = 0.8).  

• Case 3 (C3) considers a system with inverter-based BESSs and PVs only and 

switch-based CBs and OLTC. A higher weight is considered for the OLTC (𝛼𝛼 =

0.2 and  𝛽𝛽 = 0.8).  

• Case 4 (C4) considers a system with inverter-based BESSs, EV charging stations 

and PVs, and switch-based CBs and OLTC (𝛼𝛼 = 0.2 and  𝛽𝛽 = 0.8). The proposed 

multi-objective algorithm is applied to the system considering three reference 

voltages 

 

 

Figure 5-6. VVO studied cases 

 

5.3 Code Implementation  
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This thesis considers the slow time resolution ℎ to be an hour and 𝑛𝑛 to be 4. 

Thus, stage I and stage II are solved based on hourly and 15-minute time resolutions, 

respectively. The VVO algorithm is implemented in MATLAB utilizing MATPOWER. 

MATPOWER is an open-source MATLAB package that incorporates simulation tools 

for solving optimal power flow and power flow problems based on buses, branches, 

and transformer matrices [200]. It is used to solve the power flow problem, with 

Newton-Raphson (NR) methodology, to obtain line losses and bus voltages. 

5.3.1 Stage I: Hourly Basis  

The objective function is to find the optimal dispatch of CBs and OLTCs in 

stage I; step 1, and reactive power of DERs in stage I; step 3 and stage II for the 24 

hours for the given constraints. The tested network contains 6 CBs, and for each CB, 

the solution should contain 24 values representing the status of the CBs at each hour of 

the day. Thus, the total number of variables for CBs is 6*24=144, and for OLTCs is 

1*24=24 since the tested network has one transformer.  Subsequently, the total number 

of variables in stage I; step 1, is 168. The output is the optimization vector variable 

comprising of setting positions (integer) for each CB and OLTC at each hour of the 

day.  The main steps of the developed algorithm are presented in Figure 5-7. 

As previously mentioned, the evaluation of objective functions depends on the 

variables generated by the MOGA optimizer, and the fitness value of selected 

individuals requires decoding. For CBs, the value generated by MOGA can take integer 

values between 0 and 20, and for OLTC, since it is a 20-tap transformer, the value 

generated is between -10 and +10. These integer values are then decoded, and the load 

flow is solved for each individual of the population while respecting the defined 

constraints. Before running load flow every hour, the active and reactive demand and 

the DERs data are updated. The NR load flow runs for every hour of the day to develop 
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all possible power loss profiles. The MOGA optimizer determines the non-dominated 

solutions for power loss and the number of control actions based on the solved load 

flow. 

 

 

Figure 5-7. Flowchart of stage I; step 1 of the developed algorithm 
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The MOGA optimizer runs and generates several positions of OLTCs and 

settings of CBs. For every population generated, the power loss and number of control 

actions are calculated. It evaluates the objective functions and finds the non-dominated 

solutions that do not violate the given constraints. If the convergence criteria are met, 

it prints the optimized settings of CBs and OLTCs otherwise, it generates a new 

population and reevaluates the objective function until one of the convergence criteria 

is met.    

In the MOGA optimization, the population size is set to 400 to avoid local 

minima and keep it under reproduction. The elite count is set to 20. For the selection 

function, the binary tournament approach is chosen. To provide the MOGA suitable 

time for convergence before termination, the generation is set to 600. Stall generation 

is set to 400 and function tolerance to 0.0001. The algorithm will terminate when the 

objective function value is less than the function tolerance. 

In stage I, step 3, the objective is to reduce power loss further. Depending on 

the utilized DERs, the total number of variables is n*24. For instance, in C4, all the 

DERs are utilized, 4 PVs, 2 BESSs, and 3 EV charging stations along with the CBs and 

OLTC. Thus, the total number of variables is 168+ (9*24) =384. The output is the 

optimization variable comprising the amount of reactive power (continuous) 

supplied/absorbed by DERs each hour of the day. The main steps of the algorithm of 

stage I; step 3 are similar to stage I; step 1. However, instead of running the MOGA 

optimizer, the IPM optimizer runs to find optimal output reactive power for each DER 

at each hour. Based on the operator preference range, only the candidate solutions are 

further optimized to achieve a higher reduction in power loss. The CB and OLTC 

settings are fixed at this point and used in stage II. 
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In the IPM optimizer, the initial guess for all DERs is set to 0 MVar and for the 

CBs, and OLTC is the solution with the lowest number of control actions from the 

candidates’ solutions. The maximum function evaluation is set to 5000, maximum 

iterations are set to 2000, and tolerance function and tolerance constraints are set to 

0.0001.  

5.3.2 Stage II: 15-min Basis 

In stage II, the optimization problem is formulated with 15-min time resolution 

to minimize bus voltage deviations using the reactive output power of all existing 

DERs; therefore, the total number of variables is 9*93=837. The output is the 

optimization variable comprising the amount of reactive power (continuous) 

supplied/absorbed by DERs at each 15-min of the day. The main steps of the developed 

algorithm for this stage are similar to stage I; step 3. The CB and OLTC settings for 

every 4 timesteps (1 hour) are known from the previous step, and the initial guess for 

all DERs is set to 0 MVar. In this stage, the maximum function evaluation is set to 

5000, maximum iterations are set to 3000, and tolerance function and tolerance 

constraints are set to 0.0001.  

5.4 Proposed two-timescale results and discussions 

5.4.1 Stage I: Hourly basis 

In step 1, the MOGA optimization is implemented to solve the multi-objective 

optimization problem. The goal is to minimize power loss in lines and the number of 

control actions by controlling the setting positions of the CBs and OLTCs. Figure 5-8 

and Figure 5-9 show the Pareto front from solving (4-1) and (4-2) for both case studies, 

respectively. The solution represents the relationship between the number of control 

actions in switch-based devices and system line losses. The global search algorithm is 

implemented in the two cases; C1 and C2. The defined weights in C1 for setting change 

of CBs 𝛼𝛼=0.8 and OLTC 𝛽𝛽=0.2 results in a minimum number of 18 and 23 control 
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actions for both case studies, respectively. This weight selection presents a significant 

difference compared with C2 system with selected weights of 𝛼𝛼 = 0.2 and 𝛽𝛽=0.8 and 

results in a minimum of 35 and 20 control actions for both case studies, respectively. 

Table 5-3 and Table 5-4 lists the number of control actions of each CB and OLTC for 

the two case studies, respectively. 

System operators' experience is included in the VVO problem's solution by 

considering the operator preference range (OPR) extracted from the Pareto front. As 

indicated in Table 5-3, for case study A, the minimum number of control actions based 

on C1-OPR and C2-OPR are 18 and 35. While, for case study B, the minimum number 

of control actions based on C1-OPR and C2-OPR are 23 and 20, as highlighted in Table 

5-4. The OPR is affected by the weights 𝛼𝛼 and 𝛽𝛽 assigned for CBs and OLTC. It can 

be seen that for case study A, the Pareto front of C1 shows optimal solutions having a 

lower number of control actions compared with the Pareto front of C2. In C1, the weight 

of the number of setting changes of CBs is higher than the weight of the OLTC, and the 

number of CBs is more significant than the OLTCs in the modified tested network. 

Thus, it leads to a lower total of control actions. However, for case study B, the Pareto 

front of C1 showed optimal solutions having approximately the same number of control 

actions compared with the Pareto front of C2. Hence, the difference between the total 

number of control actions in C1 and C2 depends on the number of CBs and OLCTs in 

the network. However, the same conclusion will be deduced; the type of asset, CB or 

OLTC, having higher weight will be more optimized than the other.   

 

Table 5-3. Number of Control Actions of CBs and OLTC for C1 & C2 – Case Study A 

Case # CB1 CB2 CB3 CB4 CB5 CB6 Tap Total 

C1 2 4 1 1 1 1 8 18 
C2 7 7 4 4 6 4 3 35 
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Figure 5-8. Case study A Pareto front solutions of C1 and C2 

 

Table 5-4. Number of Control Actions of CBs and OLTC for C1 & C2 – Case Study B 

Case # CB1 CB2 CB3 Tap Total 

C1 3 2 2 16 23 
C2 5 2 5 8 20 

 

 

Figure 5-9. Case study B Pareto front solutions of C1 and C2 

 

Furthermore, the selection of OPR depends on the operators' experience in 
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defining system assets condition and the power quality level expected by end-users. In 

general, the minimum number of control actions for C1 is lower than C2. A large 

number of CBs switching results in transient phenomena that affect distribution 

transformers and other system assets. However, many OLTC switching actions 

(increment or decrement) may degrade and damage the voltage regulating device, hence 

disabling the substation transformer. The total number of control actions of the OLTC 

is lower in C2 compared to C1. In this application, the importance of the lifetime of the 

OLTC, which may affect the whole system, is given high priority, and hence the Pareto 

front of C2 is used as the solution of step 1 in stage I and selected for implementation 

in the other cases. The system operator defined C2-OPR of 35-40 control actions and a 

range of 0.069-0.073 MW in power loss for case study A. While, for case study B, the 

system operator defined C2-OPR of 20-26 control actions and a range of 0.0533-0.0539 

MW in power loss. 

In step 3, the IPM optimization code is developed to minimize the power loss 

further, while the number of control actions is considered a constraint. The ε-values 

range from 35 to 40 and 20 to 26 for both case studies, respectively, and the optimal 

solution with the lowest number of control actions is taken as the initial guess. Figure 

5-10 and Figure 5-11 show the day-ahead power loss curves estimated by Stage I of the 

proposed algorithm considering the modified system with the cases mentioned above 

for the two case studies. Figure 5-10(a) and Figure 5-11(a) show the power loss of C0 

after step 1 of stage I of C2 and after step 3 of stage I of C2. The results of C2, C3, and 

C4 after step 3 are illustrated in Figure 5-10(b) and Figure 5-11(b). Table 5-5 and Table 

5-6 highlight the day-ahead power loss values and the peak power loss and their 

percentage improvement for the different studied cases of both case studies, 

respectively.  



  

78 

 

For case study A, it can be noted from Figure 5-10 and Table 5-5 that the global 

algorithm reduces the day-ahead power loss to 0.07 MW (approximately 28%) with a 

peak of 0.36 MW and that the local algorithm controlling the reactive output power of 

PVs further reduces it to 0.065 MW (step 3 of C2) with a peak of 0.33 MW. The 

utilization of reactive power of BESSs and EV stations and the PVs reduces the power 

loss more by approximately 8% (C4) and the peak by 11%. While, for case study B, the 

day-ahead power loss is reduced to 0.05 MW (approximately 24%) with a peak of 0.12 

MW after the global algorithm. While, the local algorithm utilizing the reactive output 

power of PVs further reduces the power loss to 0.04 MW with a peak of 0.11 MW. The 

utilization of reactive power of BESSs and EV stations along with the PVs reduces the 

power loss more by approximately 11% and the peak by 18%. Thus, the three steps of 

stage I achieve better results with all DERs in the network. 

 

 

Figure 5-10. Case study A power loss during different stages for C0 and C2-C4 
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Table 5-5. Case Study A Performance Evaluation of Stage I – Power Loss 

Case # 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙    

(MW) 

% 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

Improvement 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

(MW) 

% 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

Improvement 

C0 0.098  0.498  
C2; Step 1 0.071 28.3 0.357 28.3 
C2; Step 3 0.065 33.8 0.329 33.9 
C3; Step 3 0.064 35.1 0.316 36.5 
C4; Step 3 0.063 36.2 0.303 39.2 

 

 

Figure 5-11. Case study B power loss during different stages for C0 and C2-C4 

 

Table 5-6. Case Study B Performance Evaluation of Stage I – Power Loss 

Case # 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 (MW) % 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 

Improvement 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 (MW) % 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 

Improvement 

C0 0.070389   0.14422  
C2; Step 1 0.053809 23.6 0.12177 15.6 
C2; Step 3 0.048726 30.7 0.11206 22.3 
C3; Step 3 0.047119 33.1 0.10180 29.4 
C4; Step 3 0.046040 34.6 0.09580 33.6 

 

The impact of the three steps on the network bus voltages is also investigated. 

The maximum and minimum network voltages along the day are monitored and 
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evaluated during the different steps of stage I. Figure 5-12 and Figure 5-13 illustrates 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 of the network during different stage-I steps of the proposed algorithm 

and for different cases for both case studies. Figure 5-12(a) and Figure 5-13(a) 

illustrates the  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 of C0 and as extracted after step 1 and step 3 of C2 system. 

The voltage variations violate the maximum and minimum standard boundaries in C0. 

However, implementing the global and local algorithms impose bus voltage variations 

to be localized within the acceptable region for the C2 case. No under/overvoltage 

violations are detected during stage I, step 1. The  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 of the network 

voltages after step 3 of C2, C3, and C4, are shown in Figure 5-12(b) and Figure 5-13(b). 

The local search algorithm shows a reduction in the voltage variations. This reduction 

is more clearly detected in the minimum voltages, as shown in Figure 5-12(b) and 

Figure 5-13(b). Table 5-7 and Table 5-8 highlight the values of maximum and minimum 

voltages in the network of the two case studies for the different studied cases. 

 

  

Figure 5-12. Case study A maximum and minimum network voltages after stage I 
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Table 5-7. Case Study A Performance Evaluation of Stage I – Max. & Min. Voltages 

Case # 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚(p.u) 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚(p.u) 

C0 1.054 0.9418 
C2; Step 1 1.04873 0.96538 
C2; Step 3 1.05000 0.97213 
C3; Step 3 1.04911 0.98117 
C4; Step 3 1.04892 0.98331 

 

 

Figure 5-13. Case study B maximum and minimum network voltages after stage I 

 

Table 5-8. Case Study B Performance Evaluation of Stage I – Max. & Min. Voltages 

Case # 𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 (p.u) 𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 (p.u) 

C0 1.0529 0.9420 
C2; Step 1 1.0494 0.9828 
C2; Step 3 1.0457 0.9973 
C3; Step 3 1.0459 0.9998 
C4; Step 3 1.0455 1.0000 

 

5.4.2 Stage II: 15-minute basis 

The IPM optimization solution is developed to schedule the reactive output 

power of the intended DERs in 15-minute time resolution. Based on the results of stage 

I, the goal of this stage is to minimize network bus voltage deviations with respect to a 

reference voltage considering C4. The maximum and minimum network voltages are 
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examined with different values of 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟; 0.98 p.u, 1.0 p.u and 1.02 p.u for the two case 

studies. Figure 5-14 shows stage II results of the network's maximum and minimum 

voltage profiles along the day for case study A  considering three reference voltages. It 

can be noted that as 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 increases, the maximum deviation between 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 in 

the network voltages decreases. For all the system cases, the maximum and minimum 

voltages remain within the standard range for all three 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 values. Figure 5-16(a), (b) 

and (c)  shows results of voltage deviation of the network along the day after Stage II 

optimization compared with C0 voltage deviation, considering the three reference 

voltages, respectively. As can be seen, there is a significant reduction in voltage 

deviations utilizing the DERs. Figure 5-16(d) illustrates the voltage deviation curves of 

the three reference voltages. It is also noted that as 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 increases, the voltage deviation 

decreases implying higher reduction of maximum deviation between 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  in 

the network voltages. 

Stage II results of the scheduled reactive output power of the 4 PVs, 2 BESSs, 

and 2 EV stations are shown in Figure 5-15 and Figure 5-17 for the two case studies, 

respectively. The estimated reactive output power profile is illustrated for different 

reference voltages based on the demand and generation, DER’s number, location, and 

inverter rating assumptions made in each case study. Table 5-9 and Table 5-10 presents 

the maximum utilization in the percentage of supplied/absorbed reactive power of each 

DER from its maximum capacity in the day for the two case studies. It can be noted 

that overall, as 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 increases, the reactive power support from the DERs increase. It is 

essential to highlight that each DER's utilization is affected by other factors, like their 

location in the network and load demand and generation assumptions. 
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Figure 5-14. Case study A maximum and minimum network voltages after stage II 

 

 

Figure 5-15. Case study A reactive output power of DERs of stage II 

 

Table 5-9. Case Study A Maximum Utilization of DERs in the Day In % - Based on 

Information in Table 5-1 and Figures 5-1 and 5-2. 

Vref 0.8 p.u 1.0 p.u 1.02 p.u 

PV1 38.5 50.4 94.6 
PV2 13.8 49.3 80.0 
PV3 17.7 46.0 100.0 
PV4 38.5 48.6 98.6 
BESS1 25.9 64.8 75.0 
BESS2 12.0 33.3 59.3 
EV1 32.0 53.3 83.3 
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EV2 14.5 41.3 100.0 
EV3 19.7 39.4 78.9 

 

 

Figure 5-16. Case study B voltage deviation profiles of network before optimization 

and after stage II considering a) Vref= 1.02 p.u; b) Vref= 1.0 p.u; c) Vref= 0.98 p.u; 

and d) voltage deviation curves of the three considered Vrefs. 

 

 

Figure 5-17. Case study B reactive output power of DERs of stage II 
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Table 5-10. Case Study B Maximum Utilization of DERs in the Day In % - Based on 

Information in Table 5-2, Figure 5-4 and Figure 5-5. 

Vref 0.8 p.u 1.0 p.u 1.02 p.u 

PV1 42.7 48 53.3 
PV2 26.7 27.8 33.3 
PV3 27.7 29 34.6 
PV4 21.9 24.6 28.5 
BESS1 20.1 21.4 25.2 
BESS2 22.5 19.8 30 
EV1 59.2 63.4 74.8 
EV2 46.4 52.2 58 
EV3 48.4 59.8 68.1 

 

The system operator engagement in the VVO algorithm can also contribute to 

defining the potential buses for DERs investment. Figure 5-18 and Figure 5-19 show 

the voltage profile of three system buses with different reactive power resources for 

case studies A and B, respectively. Bus 18 is the farthest bus from the substation and 

has no var source. The base case minimum voltage is violated during the maximum 

load condition. However, the interaction with CBs, OLTC, and DERs brought the 

minimum voltage close to 1.0 p.u. Bus 22 is connected to a PV, and its voltage profile 

shows a nearly steady value at 1.04 p.u. Bus 29 is connected to a CB and shows a 

voltage variation within the standard boundaries. 
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Figure 5-18. Case study A voltage profiles of buses 18, 22, and 29 after different stages 

 

 

Figure 5-19. Case study B voltage profiles of buses 18, 22, and 29 after different stages 

 

5.5 Evaluation and Validation 

Considering case study A, to evaluate the reduction in losses and voltage 

limitation of stage I, two parameters are introduced; 𝐸𝐸𝑃𝑃𝑃𝑃 and 𝐸𝐸𝑉𝑉𝑉𝑉[201]. Where, 𝐸𝐸𝑃𝑃𝑃𝑃 and 

𝐸𝐸𝑉𝑉𝑉𝑉 represents the evaluation index of reduction in power loss and voltage limitation, 

obtained using (5-1) and (5-2), respectively. 

𝐸𝐸𝑃𝑃𝑃𝑃 = ∆𝑃𝑃>0
24

  (5-1) 
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𝐸𝐸𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

  (5-2) 

Where ∆𝑃𝑃 > 0 is the number of hours where the difference of power loss in C0 and C4 

is greater than 0, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the number of hours in C0 where voltage violation 

existed, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the number of hours in C4 where the voltage limit is 

satisfied. Table 5-11 and Table 5-12 illustrates the obtained performance indices based 

on the tested data. Table 5-11 shows that the proposed algorithm successfully reduced 

the power loss at all hours of the day with a maximum amount of 0.1954 MW. 

Moreover, from Table 5-12, it can be deduced that stage I of the proposed algorithm 

limited all bus voltages in the network to be within the permissible range.  

 

Table 5-11. Performance of Reduction In Power Loss -Stage I 

 𝑨𝑨𝑨𝑨𝑨𝑨.∆𝑷𝑷  𝑴𝑴𝑴𝑴𝑴𝑴.∆𝑷𝑷  ∆𝑷𝑷 > 𝟎𝟎  

Power loss (MW) 0.0402  0.1954 100% 
 

Table 5-12. Performance of Voltage Limitation – Stage I 

 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨  𝑬𝑬𝑽𝑽𝑽𝑽  

No. of hours 2 24 8.33% 
 

Besides, to evaluate the minimization of voltage deviation of stage II based on 1.0 

p.u reference voltage, 𝐸𝐸𝑉𝑉𝑉𝑉,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐸𝐸𝑉𝑉𝑉𝑉,𝑚𝑚𝑚𝑚𝑚𝑚 are introduced, representing the evaluation 

index of voltage deviation for the minimum and maximum voltage and obtained using 

(5-3) and (5-4), respectively. 

𝐸𝐸𝑉𝑉𝑉𝑉,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚.∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶2

  (5-3) 

𝐸𝐸𝑉𝑉𝑉𝑉,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚.∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶2

  (5-4) 

Where 𝑚𝑚𝑚𝑚𝑚𝑚.∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is the difference between the minimum voltage in the network of 

C2 and C4, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶2 is the minimum voltage in the network of C2, 𝑚𝑚𝑚𝑚𝑚𝑚.∆𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is the 
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difference between the maximum voltage in the network of C2 and C4 and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶2 is 

the maximum voltage in the network of C2. Table 5-13 highlights the obtained indices. 

It can be deduced that the minimum voltages are more affected than the maximum 

voltages. This could be because, based on data used, there are higher minimum voltage 

violations and more hours in the day than the maximum voltages.   

 

Table 5-13. Performance of Voltage Deviation - Stage II 

 𝑨𝑨𝑨𝑨𝑨𝑨.∆𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎  𝒎𝒎𝒎𝒎𝒎𝒎.∆𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎  𝑬𝑬𝑽𝑽𝑽𝑽,𝒎𝒎𝒎𝒎𝒎𝒎  𝑨𝑨𝑨𝑨𝑨𝑨.∆𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎  𝒎𝒎𝒎𝒎𝒎𝒎.∆𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎  𝑬𝑬𝑽𝑽𝑽𝑽,𝒎𝒎𝒎𝒎𝒎𝒎   

Voltage 
deviation 
(p.u) 

0.0158 0.0392 4.2% 0.0063 0.0222 2.1% 

 

The network's real and reactive power mismatches are assessed to validate the 

proposed algorithm's effectiveness and efficiency. Figure 5-20 shows the mismatch 

curves and the total generation (from grid and DERs), total demand (residential and EV 

stations load), and the obtained losses. It can be noted that the real and reactive power 

mismatch is zero, which proves the accuracy of the algorithm load flow solutions.   

 

 

Figure 5-20. Real and reactive power mismatches of the developed algorithm 
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5.6 Summary  

The proposed conventional optimization-based VVO algorithm is examined in 

two case studies. The algorithm is tested on a modified IEEE 33-bus system, where 

CBs, OLTCs, and DERs are added at different buses with different sizes in the two case 

studies. For both case studies, the algorithm is tested on 5 cases; without optimization, 

with importance given to CBs condition and PVs, with importance given to OLTCs 

condition and PVs, with importance given to OLTCs condition and PVs & BESSs, with 

importance given to OLTCs condition and PVs & BESSs & EVs. In stage I, MOGA 

and IPM approaches are used at step 1 and step 3, respectively, and in stage II, the IPM 

approach is employed.  

The performance of the algorithm is examined in minimizing power loss, the 

number of control actions, and bus voltage deviations. Stage I results demonstrated the 

importance of weight factor 𝛼𝛼 and 𝛽𝛽 in considering the conditions of the utility-owned 

assets, CBs, and OLTCs. Moreover, the three-step methodology showed higher power 

loss reduction, by approximately 33% and 35% in case studies A and B, respectively, 

compared to if only the multi-objective step is considered (step 1 of stage I).  Further, 

it is illustrated through cases 2 to 4 that the utilization of all existing DERs in the 

distribution network achieves higher power loss minimization, where a further 3% and 

5% of power loss reduction is attained in case studies A and B, respectively. Also, stage 

I formulation restricted the bus voltages to be within the permissible range. In addition, 

stage II results showed a reduction in bus voltage deviations through scheduling the 

reactive output powers of DERs, where the difference between the maximum and 

minimum voltages in the network is observed to be minimized. The two examined case 

studies showed that overall, increasing the reference voltage demands a higher 
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contribution from the DERs. Additionally, statistical analyses are performed to evaluate 

and validate the proposed VVO algorithm. It is validated that the proposed algorithm 

successfully minimized power loss in lines and the number of utility-owned assets’ 

control actions, simultaneously at stage I and bus voltage deviations at stage II.  

5.7 Limitations  

Even though the proposed conventional optimization-based VVO scheme 

demonstrated good performance and successful minimization of power loss and voltage 

deviation, several weakness points were realized in the optimization methodology. 

First, the optimization performed is day-ahead, which is based on forecasted data. 

Hence, not suitable for real-world applications. Therefore, a real-time optimization 

technique is required to achieve more reliable and accurate results. Moreover, DERs 

are stochastic in nature. To achieve more accurate solutions, their uncertainty and 

intermittent aspects have to be considered in solving the VVO problem. Thus, it is 

crucial for the VVO scheme to be capable of managing uncertainties of DERs’ 

intermittent outputs, as well as active and reactive demands.  

Further, developing an optimization technique that is adaptive and can handle 

changes in distribution network parameters due to aging and other factors like ambient 

temperature is vital. Also, the optimization is model-based. Thus, the performance of 

the VVO scheme is highly dependent on the model. In other words, if the model is not 

precise, the optimization results will not be realistic. For instance, the model dynamics 

have to be represented with high precision by knowing all the environment information, 

which limits its application on large-scale and real-life systems. This calls for a more 

efficient and intelligent solution, such as machine learning approaches, especially 

reinforcement learning (RL) [202]- [204]. 
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CHAPTER 6 : REINFORCEMENT LEARNING 

As has been previously highlighted, to overcome the shortcomings of the 

developed conventional optimization-based VVO approach, a DRL-based VVO 

scheme is proposed to more efficiently mitigate the challenges introduced in ADNs. 

Firstly, this chapter starts with describing the RL framework and its preliminaries.  It 

then introduces DRL and provides a brief description of its fundamentals.   

6.1 Reinforcement Learning Framework  

Reinforcement Learning [90] is an area of machine learning motivated by 

behaviorist psychology, which examines artificial agents' performance decision-

making in an environment to reach a specific objective. The decision-making element 

in an RL problem is the agent, and everything the agent interacts with is called the 

environment. Specifically, the agent has to take actions sequentially to control a 

dynamic system, the environment. The environment is described by its dynamics, 

states, and function that define the state’s evolution based on the agent's actions. The 

RL agent-environment interaction is done following discrete time steps, i.e., i.e., 𝒕𝒕 =

𝟎𝟎,𝟏𝟏,𝟐𝟐, …. At each timestep, the agent receives the current environment state 𝓼𝓼𝒕𝒕 ∈ 𝓢𝓢 

where 𝓢𝓢 is the set of states and based on it selects an action 𝓪𝓪𝒕𝒕 ∈ 𝓐𝓐 where 𝓐𝓐 is the set 

of actions. After executing the action chosen by the agent, the environment moves to a 

new state 𝓼𝓼𝒕𝒕+𝟏𝟏 and the agent receives a scalar value, termed reward 𝓻𝓻𝒕𝒕+𝟏𝟏that evaluates 

the correctness of its chosen action and consequently how far it is from the objective. 

Figure 6-1 displays the framework of RL and agent-environment interaction.  
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Figure 6-1. Reinforcement learning framework [90] 

 

To achieve the defined objective, the agent has to learn a strategy to select the 

actions based on its interaction with the environment. This is known as a policy. Also, 

the states of a system define the required information that aids in predicting the 

evolution to the next state of the environment given an executed action. Thus, an RL 

agent's goal is to learn a policy and, based on it, select the proper actions, given an 

observed current state of the environment, in such a way that over time the expected 

sum of obtained rewards is maximized. The associated states, actions, and rewards 

differ from an RL problem to another; however, the framework remains the same. The 

continuous agent-environment interaction process makes decision-making behavior a 

step-by-step process. Most reinforcement learning tasks can be decomposed into 

sequences between initial and terminal states of agent-environment interactions, where 

a sub-sequence is called an episode. Upon reaching a terminal state, the environment is 

reset to the initial state. 

6.2 Markov Decision Process  

A preliminary to better understand RL's concept is first to comprehend its 

mathematical foundation, Markov Decision Process (MDP). An RL problem is 

formulated as an MDP. MDPs are defined by a 5-tuple (𝓢𝓢,𝓐𝓐,𝓟𝓟,𝓡𝓡,𝜸𝜸), where 𝓢𝓢 is the 

set of states, ∀𝓼𝓼 ∈ 𝓢𝓢; 𝓐𝓐 is the set of actions, ∀𝓪𝓪 ∈ 𝓐𝓐; 𝓟𝓟 ∶  𝓢𝓢 x 𝓐𝓐 x 𝓢𝓢 → [𝟎𝟎,𝟏𝟏] is the 

Markovian transition model which represents the probability that an action 𝓪𝓪 in state 𝓼𝓼 
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at time 𝒕𝒕 is chosen will transition the system at time 𝒕𝒕 + 𝟏𝟏 to state 𝓼𝓼′, that is 𝓹𝓹𝒂𝒂(𝓼𝓼,𝓼𝓼′) =

𝓹𝓹(𝓼𝓼𝒕𝒕+𝟏𝟏 = 𝓼𝓼′ | 𝓼𝓼𝒕𝒕 = 𝓼𝓼,𝓪𝓪𝒕𝒕 = 𝓪𝓪); 𝓡𝓡 ∶  𝓢𝓢 x 𝓐𝓐 x 𝓢𝓢 →  ℝ is the reward function, where 

𝓡𝓡𝒂𝒂(𝓼𝓼,𝓼𝓼′) represents the agent's immediate reward after executing an action that 

transitioned the environment states from 𝓼𝓼 to 𝓼𝓼′; 𝜸𝜸 is the discount factor, where 𝜸𝜸=[𝟎𝟎,𝟏𝟏) 

denotes the balance between the future and current rewards. An essential property of 

MDPs is the Markov property [91], which states that the state transitions depend only 

on the recent action and state of the system and are independent of the prior 

environment actions and states, that is 𝓹𝓹(𝓼𝓼𝒕𝒕+𝟏𝟏 = 𝓼𝓼′ ,𝓻𝓻𝒕𝒕+𝟏𝟏 = 𝓻𝓻| 𝓼𝓼𝒕𝒕,𝓪𝓪𝒕𝒕) for all 𝓼𝓼′, 𝓻𝓻, 𝓼𝓼𝒕𝒕 

and 𝓪𝓪𝒕𝒕.  

Let 𝓡𝓡� ∶  𝓢𝓢 x 𝓐𝓐 →  ℝ indicate the expected reward of a state-action pair (𝓼𝓼,𝓪𝓪), 

accordingly: 𝓡𝓡� (𝓼𝓼,𝓪𝓪) = 𝔼𝔼[𝓡𝓡 | 𝓼𝓼,𝓪𝓪] = ∑ 𝓡𝓡𝒔𝒔′∈ 𝓢𝓢 (𝓼𝓼,𝓪𝓪, 𝓼𝓼′)𝓹𝓹(𝓼𝓼′ | 𝓼𝓼,𝓪𝓪), where 𝔼𝔼[∙] 

represents the expectation operator. Then, the total discounted reward from time instant 

𝒕𝒕 and forward, known as the return, becomes 𝑮𝑮𝒕𝒕 = ∑ 𝜸𝜸𝒕𝒕′−𝒕𝒕𝑹𝑹𝒕𝒕′
∞
𝒕𝒕′=𝒕𝒕 . 

A deterministic policy 𝝅𝝅 is defined as the mapping from 𝓢𝓢 to 𝓐𝓐; 𝓪𝓪 =

𝝅𝝅(𝓼𝓼),∀𝓼𝓼 ∈ 𝓢𝓢,∀𝓪𝓪 ∈ 𝓐𝓐. Then, the action-value function, which indicates the expected 

return when taking action 𝓪𝓪 in state 𝓼𝓼 following the policy 𝝅𝝅, can be defined as 

𝑸𝑸𝝅𝝅(𝓼𝓼,𝓪𝓪) =  𝔼𝔼[𝑮𝑮𝒕𝒕| 𝓢𝓢𝒕𝒕 = 𝓼𝓼,𝓐𝓐𝒕𝒕 = 𝓪𝓪;  𝝅𝝅]. The action-value function indicates, for a 

given policy 𝝅𝝅, the effectiveness of the state-action pair (𝓼𝓼,𝓪𝓪). The optimal action-

value function then becomes the maximum action-value function overall policies; 

𝑸𝑸∗(𝓼𝓼,𝓪𝓪) = 𝒎𝒎𝒎𝒎𝒎𝒎𝝅𝝅 𝑸𝑸𝝅𝝅(𝓼𝓼,𝓪𝓪). Let 𝑸𝑸∗(∙,∙) express the optimal action-value function, the 

optimal policy is 𝝅𝝅∗ = 𝒂𝒂𝒂𝒂𝒂𝒂 𝒎𝒎𝒎𝒎𝒎𝒎𝓪𝓪 𝑸𝑸∗(𝓼𝓼,𝓪𝓪). Subsequently, 𝑸𝑸∗(𝓼𝓼,𝓪𝓪) satisfy the 

Bellman optimality equation in (6-1) [205]. 

𝑸𝑸∗(𝓼𝓼,𝓪𝓪) = 𝓡𝓡� (𝓼𝓼,𝓪𝓪)

+  𝜸𝜸 � 𝓹𝓹(𝓼𝓼′ | 𝓼𝓼,𝓪𝓪)
𝒔𝒔′∈ 𝓢𝓢

𝒎𝒎𝒎𝒎𝒎𝒎𝓪𝓪′∈𝓐𝓐𝑸𝑸∗(𝓼𝓼′,𝓪𝓪′) 
(6-1) 
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Hence, if (6-1) is solved, the optimal policy 𝝅𝝅∗ can be easily obtained. When 

both states and actions are discrete, the action-value function can be depicted in the 

form of a table encompassing all possible pairs of (𝓼𝓼,𝓪𝓪)  ∈  𝓢𝓢 x 𝓐𝓐. In known transition 

probabilities 𝓟𝓟, the MDP can be solved using value iteration and policy iteration 

algorithms [205]. However, in the real world, the transition probabilities 𝓟𝓟 and the 

rewards 𝓡𝓡 are unknown. Therefore, the MDP can be solved using RL algorithms. In 

other words, RL represents an extension and generalization over MDPs. 

6.3 Deep Reinforcement Learning  

DRL combines the perceived role of deep learning with the decision-making 

feature of RL. It is an artificial intelligence (AI) approach closer to human thinking and 

is regarded as real AI. Figure 6-2 illustrates the framework of DRL. Deep learning gets 

the target observation information from the environment and provides the state 

information in the current environment. The reinforcement learning then maps the 

current state to the corresponding action and evaluates values based on the expected 

return [87], [91].  

 

 

Figure 6-2. Deep reinforcement learning framework [91] 
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The journey from RL to DRL has gone through a long development process. In 

classical tabular RL, e.g., Q-learning approach, for small-scale state and action spaces, 

the representation of approximate value functions as arrays or tables is efficient. In this 

case, the methods can often find the exact optimal value functions and the optimal 

policies [54]. However, conventional RL approaches suffer from a difficult design issue 

when they come to real-world implementations. In problems comprising large-scale 

continuous state and/or action spaces, traditional RL algorithms suffer from ‘curse of 

dimensionality’. Using deep neural networks (DNNs) compact low-dimensional 

depictions of high-dimensional inputs can be achieved to overcome the curse of 

dimensionality [80], where the approximate value functions are represented as a 

parameterized functional form with a weight vector instead of a table. Based on the 

capability to learn levels of abstractions from data, DRL can handle complex tasks with 

less previous knowledge [54], [60]. 

6.4 Reinforcement Learning Taxonomy  

There are several ways of categorizing RL algorithms. RL algorithms have two 

major classes: whether it relies on an environment model during training; model-free 

or model-based. Model-based RL approaches first learn the characteristics of the 

environment, 𝓹𝓹(𝓼𝓼𝒕𝒕+𝟏𝟏 | 𝓼𝓼𝒕𝒕,𝓪𝓪𝒕𝒕) and 𝓻𝓻( 𝓼𝓼𝒕𝒕,𝓪𝓪𝒕𝒕) if not known already, then use them to 

find the optimal policy. The RL agent searches in the state-action space and selects the 

proper action based on the state of the environment it receives. However, learning the 

environment's actual model is typically time-consuming, has large computational 

complexity, and usually a challenging task in some cases. Also, an accurate model of 

the environment might not lead to better results [87]. On the other hand, a model-free 

algorithm does not rely on learning the environment's model, and it aims to learn the 

optimal policy through the agent-environment interactions and maximize the rewards 
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received. They are less computationally complex compared to model-based 

approaches. Moreover, in real-world cases, it is often easier to learn policies than a 

model. There are three types of model-free approaches: value-based, policy-based, and 

actor-critic. 

The value-based approaches, also known as action-value approaches, rely on 

optimizing a specific action-value function dependent on the environment's states 

without explicitly representing policies. Optimizing the action-value function in an 

iterative scheme results in an improved policy that the agent can follow. The value 

function for state 𝓼𝓼 when following policy 𝝅𝝅 is 𝑽𝑽𝝅𝝅(𝓼𝓼) as defined in (6-2), and the state-

action function that indicates the effect of taking a particular action on the environment 

is 𝑸𝑸𝝅𝝅(𝓼𝓼,𝓪𝓪) as defined in (6-3). The action is selected based on the evaluation of the 

state-action pairs ( 𝓼𝓼𝒕𝒕,𝓪𝓪𝒕𝒕). This approach is known as Q-learning. 

𝑽𝑽𝝅𝝅(𝓼𝓼) = 𝔼𝔼𝝅𝝅�∑ 𝜸𝜸𝒌𝒌∞
𝒌𝒌=𝟎𝟎 𝓡𝓡𝒕𝒕+𝒌𝒌+𝟏𝟏�𝓼𝓼𝒕𝒕 = 𝓼𝓼� (6-2) 

𝑸𝑸𝝅𝝅(𝓼𝓼,𝓪𝓪) ←  (𝟏𝟏 − 𝜶𝜶)𝑸𝑸𝝅𝝅(𝓼𝓼,𝓪𝓪) + 𝜶𝜶(𝓡𝓡 (𝓼𝓼,𝓪𝓪) + 𝜸𝜸 𝒎𝒎𝒎𝒎𝒎𝒎𝒂𝒂′𝑸𝑸𝝅𝝅(𝓼𝓼′,𝓪𝓪′))  (6-3) 

Where 𝒌𝒌 is the number of steps in an episode, and 𝜶𝜶 is the learning rate, which controls 

the agent's adeptness in the dynamic environment.  

In contrast to value-based approaches, policy-based approaches explicitly 

represent a policy by its weights, independent of a value function. The main focus of 

this approach is to find the best parameters 𝜽𝜽 of the policy, as defined in (6-4). 

𝝅𝝅𝜽𝜽(𝓼𝓼,𝓪𝓪) = 𝕡𝕡[𝓪𝓪|𝓼𝓼,𝜽𝜽] (6-4) 

This approach has the advantage of dealing with high-dimensional or continuous action 

and/or state spaces. They also show the ability to learn stochastic policies. However, 

they exhibit tendencies to converge to local optima. Also, assessing policies can be 

inefficient and has higher variances [202].  

The third model-free approach is actor-critic. This approach maintains two sets 
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of parameters distinctly, separating the policy (named actor) and the action-value 

function (named critic). The actor’s role is to update and maintain an action selection 

policy, while the critic's role is to estimate value functions associated with the actor’s 

policy. It calculates the expected reward of being at state 𝓼𝓼 and following policy 𝝅𝝅. In 

other words, the critic evaluates the effectiveness of policy 𝝅𝝅𝜽𝜽 for selected parameters 

𝜽𝜽. This approach has the advantage of requiring minimal computational effort when 

selecting actions. This is since the policy is separated. Thus, there is no need to search 

to select an action at each step of the episode. Figure 6-3 shows the taxonomy of the 

popular RL algorithms.  

 

 

Figure 6-3. Reinforcement learning taxonomy [54] 

 

Another feature of an RL algorithm is being on-policy or off-policy. An on-

policy approach requires the policy 𝝅𝝅 to be learned from experience sampled from it. 

This means that the target policy and the policy used for action selection are the same. 
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In this case, the exploration needs to be built into the policy, determining policy 

improvement speed. The experience of on-policy approaches is in the form of 

(𝓼𝓼,𝓪𝓪,𝓻𝓻,𝓼𝓼′,𝓪𝓪′). In contrast, the off-policy approaches attempt to learn the target policy 

from a behavior policy that the agent follows for action selection. In other words, it 

works with 2 different policies; the behavior policy is different from the target policy. 

This is considered an advantage since it can utilize one policy for learning and the other 

for exploration. Thus, the agent can improve the target policy while exploring. The 

experience of off-policy approaches is in the form of (𝓼𝓼,𝓪𝓪,𝓻𝓻, 𝓼𝓼′). 

6.5 Summary  

To overcome raised concerns in ADNs more efficiently, RL approaches have 

been proposed. RL is a machine learning approach that learns from scratch based on 

agent-environment interactions. The main RL elements include environment states, 

which describe the status of the environment, the action selected by the agent, and the 

reward, which can be considered an evaluation of the action chosen. In applications that 

involve high dimensional continuous state and/or action spaces, the traditional RL 

algorithms suffer from the “curse of dimensionality”, which makes them inefficient in 

practical cases. Subsequently, DRL approaches have emerged to overcome this issue. 

DRL combines artificial neural networks with the RL concept, where the agent employs 

NNs as value or policy function approximators. This increases the efficiency and 

applicability of the algorithm in real cases. Hence, the only difference between Q-

learning and DQN is the agent’s brain.  

The first step towards solving the DRL-based VVO problem is formulating it 

as an MDP by defining the main elements that include state and action spaces, as well 

as, formulating the reward function. The aforementioned points are presented in the 

next chapter.  
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CHAPTER 7 : THE DRL-BASED VOLT/VAR OPTIMIZATION SCHEME 

Firstly, in this chapter, the two-timescale VVO problem is formulated as an 

MDP to be solved using an RL algorithm. The principles of the proposed RL approach 

are depicted, and its workflow is described. Also, this chapter provides a description of 

the tested network and illustrates the learning setup of the proposed TD3 algorithm. It 

then demonstrates the learning performance of the TD3 agent. Finally, it presents the 

comparison between the conventional optimization and TD3 based VVO approaches in 

minimizing power loss and bus voltage deviations for ADNs.     

7.1 VVO Problem Formulation as MDP  

For simplicity, the DRL-based VVO algorithm is designed to minimize the 

active power loss in lines at the slow scale and minimize the bus voltage deviation in 

the faster scale while satisfying certain constraints based on the utilized VVO resources. 

The considered VVO resources are CBs, OLTCs, and DERs, like PVs, BESSs, and EV 

charging stations. A DRL-based VVO formulation based on a two-timescale is 

proposed. Based on the fact that the time response of utility-owned assets is larger than 

DERs [9], the CBs and the OLTCs are utilized at a slow timescale, 𝜏𝜏, and the DERs are 

coordinated at a faster timescale, 𝑡𝑡. That way, the utility-owned assets will handle the 

slow demand and generation variations, and the DERs will manage the fast demand and 

generation variations, such as DERs' intermittent outputs. Figure 7-1 illustrates the two-

timescale segregating the control of the different VVO resources to achieve the defined 

objectives.  
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Figure 7-1. Two-timescale segregating for controlling the different VVO resources 

 

Accordingly, at the slow timescale, the CBs and OLTCs are utilized to minimize 

the power loss in lines as formulated in (4-1) while satisfying grid constraints (4-3)-(4-

8), CB constraints (4-9), (4-10), as well as, the OLTC constraints in (4-11), (4-12). 

Whereas the fast timescale aims to minimize bus voltage deviation, as formulated in (4-

21), by coordinating the reactive output power of DERs, while satisfying grid 

constraints in (4-3)-(4-8) and DERs constraints in (4-13)- (4-20). 

In formulating the VVO DRL-based problem as an MDP, the controller is 

denoted as the agent that decides on the utilized VVO resources' actions. The agent 

interacts with the environment, the distribution network, in a sequence of discrete-time 

steps to maximize the rewards. In the context of the proposed VVO DRL based 

algorithm, the states, actions, and rewards are defined as follows: 

1) State Space 

The information required by the agent to make decisions are set as the state of 

the VVO problem. Accordingly, the state space is defined to be 𝓢𝓢 = [𝑷𝑷   𝑸𝑸  𝑷𝑷𝑷𝑷  𝑩𝑩  𝑬𝑬𝑬𝑬]. 

Where 𝑷𝑷 and 𝑸𝑸 are the total real and reactive power injections, 𝑷𝑷𝑷𝑷 is the active power 

generation by the PV, 𝑩𝑩 is the active power supply/absorbed by the BESS, and 𝑬𝑬𝑬𝑬 is 

the active power demand by the EV charging stations. Thus, at time step 𝒕𝒕, the state 

vector is 𝓼𝓼𝒕𝒕 = [𝒑𝒑𝒕𝒕   𝒒𝒒𝒕𝒕  𝒑𝒑𝒑𝒑𝒕𝒕  𝒃𝒃𝒕𝒕  𝒆𝒆𝒆𝒆𝒕𝒕], which encompasses continuous variables. Note 
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that the state vector's size will depend on the number of DERs in the distribution 

network. 

2) Action Space 

The utilized VVO resources are utility-owned assets and DERs. Thus, the action 

space is defined to be 𝓐𝓐 = [𝑪𝑪𝑪𝑪  𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶  𝑸𝑸𝑸𝑸𝑸𝑸  𝑸𝑸𝑸𝑸  𝑸𝑸𝑸𝑸𝑸𝑸]. Where 𝑪𝑪𝑪𝑪 and 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 are 

the setting positions of the CB and the OLTC, and 𝑸𝑸𝑸𝑸𝑸𝑸, 𝑸𝑸𝑸𝑸, and 𝑸𝑸𝑸𝑸𝑸𝑸 are the reactive 

output power via smart inverters of the PV, BESS, and EV charging stations. Thus, at 

time step 𝒕𝒕, the action vector is 𝓪𝓪𝒕𝒕 = [𝒄𝒄𝒄𝒄𝒕𝒕   𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒕𝒕  𝒒𝒒𝒒𝒒𝒒𝒒𝒕𝒕  𝒒𝒒𝒃𝒃𝒕𝒕  𝒒𝒒𝒒𝒒𝒒𝒒𝒕𝒕], which 

encompasses discrete and continuous variables. Note, the action vector's size will 

depend on the number of VVO resources considered to contribute to achieving the 

objectives. 

3) Reward function 

The reward function can be formulated following two broad approaches: shaped 

reward and sparse reward [206]. The sparse reward approach gives the agent a positive 

reward if no constraints are violated and zero rewards otherwise. Even though the 

sparse rewards are simpler in designing, they do not encourage the RL agent to learn 

and may require more training to converge. Thus, to motivate the RL agent and achieve 

the two timescales' objective, the shaped reward formulation is followed.  

The objective at the slow timescale is to minimize the total power loss in lines, 

thus, to give the agent a positive reward based on the power loss calculated from the 

load flow at each timestep, the positive reward, 𝑟𝑟𝑝𝑝, is as formulated in (7-1). It 

encourages the agent to minimize power loss since as power loss decreases, the agent 

will receive higher rewards. Furthermore, to penalize the agent if any of the constraints 

are violated, a negative value is subtracted from the positive reward. The minimum and 

maximum voltage constraints are adopted through, 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, (7-2) and, 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, (7-3), where 
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the penalty's value depends on how far the minimum and maximum voltages from the 

permissible limit. Hence, if constraints are less violated, a lower value will be 

subtracted from the positive value, and the agent will receive higher rewards. 

Accordingly, the total reward received at the slow timescale 𝜏𝜏 is given in (7-4). 

𝒓𝒓𝒑𝒑 = 𝑵𝑵(𝟏𝟏 − 𝒑𝒑𝒕𝒕) (7-1) 

𝒓𝒓𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = �−𝑴𝑴(𝟎𝟎.𝟗𝟗𝟗𝟗 − 𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎)          𝒊𝒊𝒊𝒊  𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 < 𝟎𝟎.𝟗𝟗𝟗𝟗
       𝟎𝟎                            𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

 (7-2) 

𝒓𝒓𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = �−𝑴𝑴(𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 − 𝟏𝟏.𝟎𝟎𝟎𝟎)          𝒊𝒊𝒊𝒊 𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎 > 𝟏𝟏.𝟎𝟎𝟎𝟎
       𝟎𝟎                            𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

 (7-3) 

𝑹𝑹𝝉𝝉 = 𝒓𝒓𝒑𝒑 + 𝒓𝒓𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 + 𝒓𝒓𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 (7-4) 

Where 𝑁𝑁 and 𝑀𝑀 are constants to scale up the positive and negative terms. 

Similarly, the fast timescale's total reward function (7-7) comprises a positive 

reward that imitates the voltage deviation objective, as formulated in (7-5), and negative 

terms that mimic each constraint. The additional constraint in the fast timescale is the 

DERs’ reactive output power restriction, 𝑟𝑟𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞, which is comprehended by (7-6). The 

𝑟𝑟𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 term is employed for each DER in the distribution network. 

𝒓𝒓𝑽𝑽𝑽𝑽 = 𝑭𝑭(𝟏𝟏 − 𝑽𝑽𝑽𝑽) (7-5) 

𝒓𝒓𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒 = �−𝑮𝑮[|𝑸𝑸| −�𝑺𝑺𝟐𝟐 − 𝑷𝑷𝑽𝑽𝟐𝟐]          𝒊𝒊𝒊𝒊 |𝑸𝑸| > �𝑺𝑺𝟐𝟐 − 𝑷𝑷𝑽𝑽𝟐𝟐
      𝟎𝟎                           𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

 (7-6) 

𝑹𝑹𝒕𝒕 = 𝒓𝒓𝑽𝑽𝑽𝑽 + 𝒓𝒓𝒗𝒗𝒗𝒗𝒊𝒊𝒊𝒊 + 𝒓𝒓𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 + 𝒓𝒓𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒 (7-7) 

Where 𝐹𝐹 and 𝐺𝐺 are constants to scale up the positive and negative terms and 𝑉𝑉𝑉𝑉 is the 

summation of the difference of network bus voltages from the reference voltage 

computed by (𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟)2. 

7.2 Twin-Delayed Deep Deterministic Policy Gradient (TD3) RL Algorithm 

As previously mentioned, if all transition probabilities are known, 𝑸𝑸∗(𝓼𝓼,𝓪𝓪) can 

be easily derived, using (6-1), and subsequently the optimal policy 𝝅𝝅∗. However, in 
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practical distribution systems, obtaining those transition probabilities is unfeasible. 

This calls for approaches that do not need the data of transition probabilities, instead 

estimates them. RL can support model-free approaches, where the RL agent can learn 

𝝅𝝅∗ by approximating 𝑸𝑸∗(𝓼𝓼,𝓪𝓪) without requiring an accurate model of the environment. 

Q-learning is the widely known and simple model-free RL approach [207]. It stores and 

updates the Q-values using a lookup table. However, Q-learning only supports discrete 

state and action spaces [208]. While, in the context of the VVO problem, both state and 

action spaces are continuous. Also, discretizing them will introduce a dimensionality 

issue [209]. This calls for RL model-free approaches that can support continuous action 

and state spaces, such as deep deterministic policy gradient (DDPG) and twin-delayed 

deep deterministic policy gradient (TD3). 

The TD3 algorithm is an off-policy, model-free, actor-critic RL approach. It is 

built on the DDPG algorithm, which utilizes deep NNs instead of a table as in Q-

learning. The NN acts as a function estimator, resulting in an improved generalization 

for high dimensional continuous state and action spaces. However, if the utilized RL 

approach overestimates the Q-values, the NN training will be unstable. Also, the 

estimation errors accumulate over time, leading to suboptimal policy updates or cause 

divergence. The TD3 algorithm addresses this issue by employing two critic networks 

that separate action selection updates and Q-values updates [210], which reduces the 

overestimation bias of the value function. Thus, the TD3 algorithm gives better 

performance and enhanced training speed than other DRL algorithms [210]. Indeed, 

TD3 applies several techniques to DDPG to overcome the overestimation issue.  

The first technique is the double Q-learning [210], where the TD3 learns two 

Q-functions instead of one. Thus, it utilizes two critic networks and an independent 

actor-network. It simultaneously updates the two critics 𝑄𝑄∅1 and 𝑄𝑄∅2 using the recursive 
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Bellman equation in (7-8). 

𝑸𝑸𝝅𝝅(𝓼𝓼𝒕𝒕,𝓪𝓪𝒕𝒕) = 𝒓𝒓(𝓼𝓼𝒕𝒕,𝓪𝓪𝒕𝒕) +  𝜸𝜸 𝑸𝑸𝝅𝝅(𝓼𝓼𝒕𝒕+𝟏𝟏,𝝅𝝅(𝓼𝓼𝒕𝒕+𝟏𝟏)) (7-8) 

The mean-squared Bellman error function is used, in approximating the optimal Q-

function, to signify how closely 𝑄𝑄∅1 and 𝑄𝑄∅2 satisfy the Bellman equation as in (7-9) 

and (7-10). It considers the smaller Q-value to develop the targets in the Bellman error 

loss functions, hence, reduces the Q-values overestimation bias issue. 

𝑳𝑳(𝜽𝜽𝒊𝒊,𝑹𝑹) = 𝔼𝔼(𝒔𝒔,𝒂𝒂,𝒓𝒓,𝒔̀𝒔)~𝑹𝑹 �𝑸𝑸𝜽𝜽𝒊𝒊(𝒔𝒔,𝒂𝒂) − 𝒚𝒚(𝒓𝒓, 𝒔̀𝒔)�
𝟐𝟐

, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐 (7-9) 

𝒚𝒚(𝒓𝒓, 𝒔̀𝒔) = 𝒓𝒓(𝒔𝒔,𝒂𝒂) + 𝜸𝜸 𝐦𝐦𝐦𝐦𝐦𝐦𝒊𝒊=𝟏𝟏,𝟐𝟐 𝑸𝑸𝜽𝜽𝒊𝒊�𝒔̀𝒔,𝝅𝝅𝝋𝝋′(𝒔̀𝒔) + 𝝐𝝐� (7-10) 

Where 𝑄𝑄∅1 and 𝑄𝑄∅2 are the value functions for two current networks under the same 

state and action.  

 The second technique is the target policy smoothing [210], where a small 

Gaussian noise component, 𝜖𝜖, is added to the target action. This practice avoids over-

fitting on the narrow spikes of Q-values. Subsequently, policy optimization is achieved 

by training the actor-network to select the action that maximizes the expected Q-

function by  𝒎𝒎𝒎𝒎𝒎𝒎𝝋𝝋 = 𝔼𝔼𝒔𝒔~𝑹𝑹[𝑸𝑸𝟏𝟏�𝒔𝒔,𝝅𝝅𝝋𝝋(𝒔𝒔)�]. Using the gradient ascent of the expected 

return 𝛁𝛁𝜽𝜽𝑱𝑱(𝜽𝜽), the actor network’s parameters are updated only with respect to actor 

parameters [206], as provided in (7-11). 

𝛁𝛁𝝋𝝋𝑱𝑱(𝝋𝝋) ≈ 𝔼𝔼𝒔𝒔~𝑹𝑹[𝛁𝛁𝒂𝒂𝑸𝑸𝜽𝜽𝟏𝟏(𝓼𝓼,𝓪𝓪)|𝒂𝒂=𝝅𝝅(𝒔𝒔)𝛁𝛁𝝋𝝋𝝅𝝅𝝋𝝋(𝒔𝒔)] (7-11) 

Delayed policy update [210] is the third technique, where the TD3 updates the 

actor-network less frequently than the critic networks. Hence, the model does not 

update the policy unless its value functions are updated sufficiently. This allows the 

network to be more stable before it is used to update the policy network. This practice 

will result in value estimates with lower variance, which improves NN learning stability 

and leads to a better policy. Further, the training stability is enhanced by adopting the 
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soft target update strategy [208], where the target networks’ parameters are updated to 

trail the changes in the critic and actor networks at a slow pace by some portion 𝜏𝜏 as in 

(7-12) and (7-13). 

𝜽𝜽𝒊𝒊′ ← 𝝉𝝉𝜽𝜽𝒊𝒊 + (𝟏𝟏 − 𝝉𝝉)𝜽𝜽𝒊𝒊′,      𝒊𝒊 = 𝟏𝟏,𝟐𝟐 (7-12) 

𝝋𝝋′ ← 𝝈𝝈𝝈𝝈 + (𝟏𝟏 − 𝝈𝝈)𝝋𝝋′ (7-13) 

7.3 The Workflow of the Proposed TD3 Algorithm 

This section describes the workflow of the proposed TD3 algorithm to learn the 

optimal action generation policy. The algorithm's architecture is given in Figure 7-2, 

and the pseudocode is provided in Algorithm 1. 

 

 

Figure 7-2. Architecture of proposed TD3 algorithm 

 

 

 

 

 



  

107 

 

Algorithm 1 TD3 learning process 

1: Randomly initialize two critic networks 𝑸𝑸𝜽𝜽𝒊𝒊 and actor-network 𝝅𝝅𝝋𝝋 with 
random weights 𝜽𝜽𝒊𝒊(𝒊𝒊 = 𝟏𝟏,𝟐𝟐) and 𝝋𝝋 

2: Initialize target networks 𝜽𝜽′𝒊𝒊𝜽𝜽𝒊𝒊(𝒊𝒊 = 𝟏𝟏,𝟐𝟐) and 𝝋𝝋′𝝋𝝋 
3: Initialize relay buffer 𝑴𝑴 
4: For episode =1, 𝑬𝑬 do 
5:   Obtain initial state 𝓼𝓼𝒕𝒕 
6:     For 𝒕𝒕 = 𝟏𝟏, 𝑹𝑹 do 
7:       Generate an action 𝓪𝓪𝒕𝒕 [𝓪𝓪𝒕𝒕 = 𝝅𝝅(𝓼𝓼𝒕𝒕) + 𝜺𝜺(𝜺𝜺 ∼        𝑵𝑵(𝟎𝟎,𝝈𝝈))] 
8:       Execute action 𝓪𝓪𝒕𝒕 
9:       Obtain the reward 𝒓𝒓𝒕𝒕 and observe the next state 𝓼𝓼𝒕𝒕+𝟏𝟏 
10:       Store transition <𝓼𝓼𝒕𝒕, 𝓪𝓪𝒕𝒕, 𝒓𝒓𝒕𝒕, 𝓼𝓼𝒕𝒕+𝟏𝟏> in 𝑴𝑴 
11:       Sample mini-batch of 𝑵𝑵 transitions from 𝑴𝑴 
12:       Compute  
13:          𝓪𝓪� = 𝝅𝝅𝝋𝝋′(𝓼𝓼𝒕𝒕+𝟏𝟏) + 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 (𝑵𝑵(𝟎𝟎,𝜹𝜹′),−𝒄𝒄, 𝒄𝒄). 
14:          𝒚𝒚𝒕𝒕 = 𝒓𝒓𝒕𝒕 + 𝜸𝜸 𝐦𝐦𝐦𝐦𝐦𝐦 (𝑸𝑸𝜽𝜽𝟏𝟏(𝓼𝓼𝒕𝒕+𝟏𝟏,𝓪𝓪�),𝑸𝑸𝜽𝜽𝟏𝟏(𝓼𝓼𝒕𝒕+𝟏𝟏,𝓪𝓪�)) 
15:       Update 𝜽𝜽𝒊𝒊(𝒊𝒊 = 𝟏𝟏,𝟐𝟐) by minimizing the loss: 

16:          𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳(𝜽𝜽𝒊𝒊) = 𝟏𝟏
𝑵𝑵
∑ �𝒚𝒚𝒕𝒕 − 𝑸𝑸𝜽𝜽𝒊𝒊(𝓼𝓼𝒕𝒕,𝓪𝓪𝒕𝒕)�

𝟐𝟐
, (𝒊𝒊 =           𝟏𝟏,𝟐𝟐)𝑵𝑵

𝒕𝒕=𝟏𝟏  
17:       If 𝒕𝒕 mod 𝒌𝒌 then 
18:       Update 𝜽𝜽𝝅𝝅 using the sampled gradient: 
19:       𝛁𝛁𝝋𝝋𝑱𝑱(𝝋𝝋) ≈ 𝟏𝟏

𝑵𝑵
∑ 𝛁𝛁𝒂𝒂𝑵𝑵
𝒋𝒋=𝟏𝟏 𝑸𝑸𝜽𝜽𝒊𝒊(𝓼𝓼𝒕𝒕,𝓪𝓪𝒕𝒕)|𝒂𝒂=𝝅𝝅𝝋𝝋�𝒔𝒔𝒋𝒋�𝛁𝛁𝝋𝝋𝝅𝝅𝝋𝝋(𝒔𝒔𝒋𝒋) 

20:       Update the target networks: 
21:        𝜽𝜽𝟏𝟏′ ← 𝝈𝝈𝜽𝜽𝟏𝟏 + (𝟏𝟏 − 𝝈𝝈)𝜽𝜽𝟏𝟏′ and 𝜽𝜽𝟐𝟐′ ← 𝝈𝝈𝜽𝜽𝟐𝟐 + (𝟏𝟏 −         𝝈𝝈)𝜽𝜽𝟐𝟐′ 
22:        𝝋𝝋′ ← 𝝈𝝈𝝈𝝈 + (𝟏𝟏 − 𝝈𝝈)𝝋𝝋′ 
23:       End if  
24:     End for 
25:   End for 

 

The architecture of the algorithm consists of two processes, the observation and 

the training processes. In the observation process, a replay buffer, 𝑀𝑀, having a fixed 

size cache, is first initialized. Transitions of <𝓼𝓼𝒕𝒕, 𝓪𝓪𝒕𝒕, 𝒓𝒓𝒕𝒕, 𝓼𝓼𝒕𝒕+𝟏𝟏> are sampled from the 

agent-environment interactions, based on the exploration policy, and stored in the 

replay buffer. Each time slot represents a single step. Hence, in the VVO context, a 

transition represents VVO results at time slot 𝒕𝒕  based on the timescale. A randomly 

initialized actor-network with exploration noise is first used to take the actions – 

settings of CB and OLTC/ reactive output power of DERs-, 𝓪𝓪𝒕𝒕 = 𝝅𝝅(𝓼𝓼𝒕𝒕) + 𝜺𝜺(𝜺𝜺 ∼

𝑵𝑵(𝟎𝟎,𝝈𝝈)). 𝓼𝓼𝒕𝒕 is the TD3 agent’s observation of the real and reactive power of the 



  

108 

 

distribution network at the beginning of time slot 𝒕𝒕, as passed from time slot 𝒕𝒕 − 𝟏𝟏. The 

TD3 agent uses the 𝓪𝓪𝒕𝒕 to examine the effect of different actions for the time slot 𝒕𝒕. 

When time slot 𝒕𝒕 is finished, the TD3 agent receives the immediate reward, 𝒓𝒓𝒕𝒕, which 

resembles the computed active power loss and voltage deviation of this time slot. 

Meanwhile, the agent realizes the statistics of time slot 𝒕𝒕 for the next state 𝓼𝓼𝒕𝒕+𝟏𝟏. These 

steps are repeated until the transitions of one day are collected, stored in the replay 

buffer.  

The training process is comprised of an evaluation network and a target 

network. The evaluation network includes one actor-network and two critic networks. 

Where the evaluation actor-network represents the policy model that generates the set 

points of the CBs, OLTC, and the DERs, and the two evaluation critic networks 

generate the Q-values given state 𝓼𝓼𝒕𝒕 and action 𝓪𝓪𝒕𝒕. The target network comprises one 

target actor-network and two target critic networks, which helps update the evaluation 

critic networks. The network parameters of the actor and critic networks in the 

evaluation network are updated based on the training and using soft target updates, the 

parameters of the networks in the target network are copied from the networks of the 

evaluation networks.   

Algorithm 1 illustrates the details of the TD3 algorithm. An 𝑵𝑵 transitions are 

sampled from the replay buffer to form a mini-batch. Training the NN using mini-

batches assures that the sampled transitions are identically and independently 

distributed, enabling efficient optimization of network parameters. The mini-batch is 

then fed to the networks for updating their parameters, where 𝓼𝓼𝒕𝒕 is fed to the evaluation 

actor-network, 𝝅𝝅𝝋𝝋(𝓼𝓼𝒕𝒕), to generate the action, where 𝝋𝝋 denotes the parameters of the 

evaluation actor-network. 𝝅𝝅𝝋𝝋(𝓼𝓼𝒕𝒕) is input to the evaluation critic networks along with 

𝓪𝓪𝒕𝒕 to compute the Q-values, 𝑸𝑸𝜽𝜽𝟏𝟏(𝓼𝓼𝒕𝒕,𝝅𝝅𝝋𝝋(𝓼𝓼𝒕𝒕)), and 𝑸𝑸𝜽𝜽𝟐𝟐(𝓼𝓼𝒕𝒕,𝝅𝝅𝝋𝝋(𝓼𝓼𝒕𝒕)), respectively. 
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Where 𝜽𝜽𝟏𝟏, and 𝜽𝜽𝟐𝟐 represents the parameters of the evaluation critic networks, 

respectively. Using the deterministic policy gradient, as shown in line 19 of Algorithm 

1, the evaluation actor-network parameters are updated. The evaluation critic networks' 

parameters are updated by minimizing the network’s loss functions based on the TD 

error, as shown in line 16 in Algorithm 1. The two target critic networks use the 𝒓𝒓𝒕𝒕 of 

the transition sample and the action 𝓪𝓪� from the target actor-network to compute the Q-

values of both critic networks, 𝑸𝑸𝜽𝜽𝟏𝟏(𝓼𝓼𝒕𝒕+𝟏𝟏,𝓪𝓪�) and 𝑸𝑸𝜽𝜽𝟐𝟐(𝓼𝓼𝒕𝒕+𝟏𝟏,𝓪𝓪�), respectively. 

Subsequently, the target network parameters are copied from the corresponding 

networks of the evaluation network using a formula provided in lines 21 and 22 in 

Algorithm 1.  

When the network parameters are updated, the TD3 agent reenters the 

observation process, collects new transition samples in the replay buffer, and repeats 

the training process's procedure. After training 𝑬𝑬 steps, the optimal action generation 

policy for controlling the VVO resources is obtained.  

7.4 DRL-based VVO results and discussions  

7.4.1 Case study description 

The proposed two-time scale VVO TD3 based algorithm is tested on a modified 

IEEE 33-bus system, as illustrated in Figure 7-3. Two CBs are installed at buses 12 and 

29, each with a rating of 1.8 MVar and four switching stages. Two PV units are installed 

at buses 8 and 24 with an inverter rating of 0.6 MVA. A BESS unit and an EV charging 

station are installed at buses 16 and 21, with an inverter rating of 0.5 MVA, 

respectively. Also, one OLTC is installed at bus 1 with maximum, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, and minimum, 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, setting positions of 10 and -10, and  𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡=0.005. The considered minimum, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 

and maximum, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, voltage limits are 0.95 p.u and 1.05 p.u, respectively, and 

substation voltage, 𝑉𝑉𝑠𝑠, 1.0 p.u. 
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Figure 7-3. Modified IEEE 33-bus system - testing RL 

 

The modified IEEE 33-bus system's real power injections are constructed based 

on historical data from [211]. The dataset is composed of electricity demand profiles of 

randomly selected 200 households from the 2009 RECS dataset of the United States' 

Midwest region. The residential power consumption profiles have been generated with 

modeling approaches in [212], [213] and validated using metering data of one year with 

10-minute time resolution. The reactive power injections are estimated by randomly 

varying the load power factor (PF) between 0.8 – 0.95 along the day. The aggregated 

data are scaled up such that the maximum real and reactive demand over the year for 

the modified IEEE 33-bus system is 6.7 + 2.7 MVA. The selection of these ratings is 

chosen such that the voltage magnitudes at some time instants fall outside the 

permissible range. Also, an ideal PV real power generation profiles are assumed, and 

an adequate charging and discharging profile of the BESS unit is generated. In addition, 

the profile of the EV charging station of 10-minute time resolution is constructed from 

348 EVs associated with the 200 households that compromise charging infrastructure 

of Level 1 (1920 W) and Level 2 (6600 W) from [211].    

One-week data is randomly sampled out to validate and test the proposed TD3 

algorithm, and the remaining data are used as the training dataset.  
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7.4.2 Numerical analysis – Learning setup 

The adopted NN for the TD3 agent consists of one actor-network and two critic 

networks, each having two fully connected hidden layers with 400 and 300 nodes, 

respectively. For all hidden layers, the rectified linear (ReLU) activation units are 

employed. For the critic networks, the input layers' size is the state and action vectors' 

size. Since 4 DERs are utilized – 2 PVs, 1 BESS, and 1 EV charging station- the size 

of the state vector becomes [6,1], and the utilized VVO resources are 2 CBs, 1 OLTC, 

2 PVs, 1 BESS, and 1 EV charging station. Accordingly, the size of the action vector 

becomes [7,1]. The output of each critic network is the Q-value, which is a single linear 

unit. For the actor-network, the output and input layers' size are the state and action 

vectors' size, respectively. A hyperbolic tangent (tanh) activation unit is adopted in the 

actor-network after the output. The created neural network architecture is provided in 

Figure 7-4. Adam optimizer [214] is employed to optimize the critic and actor networks' 

parameters with a learning rate of 0.001. The discount factor, minibatch size, 

experience buffer length, and the target smooth factor are chosen to be 0.99, 256, 

100000, 0.005, respectively. The target policy is smoothed by adding Gaussian noise 

of (0, 0.55) to the target network's chosen action and clipped to (-0.5, 0.5). For the 

policy's exploration model, an uncorrelated additive Gaussian noise of (0, 0.55) with a 

0.1 standard deviation and zero mean is added to the action space. Table 7-1 

summarizes the TD3 parameters of the adopted TD3 algorithm.   
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(a) (b) 

Figure 7-4. Neural network architecture a) critic architecture, b) actor architecture 

 

Table 7-1. Setting Parameters of TD3 

Parameter Value 

Size of hidden layers 400, 300 
Activation function of hidden layers ReLU 
Minibatch size 256 
Experience buffer length 100000 
Target smooth factor 0.005 
Learning rate 0.001 
Discount factor 0.99 
Maximum and minimum value of exploration 1, 0.1 
Epsilon decay rate 0.005 
Gradient decay factor 0.99 
Squared gradient decay factor 0.999 
Exploration model variance decay rate 0.0001 
Target policy smooth model variance decay rate 0.0001 
Scaling constants of reward functions: N, M, F, G 25, 35, 65, 45 

 

We consider the slow time resolution, 𝜏𝜏, to be an hour and the fast timescale, 𝑡𝑡, 

to be 10-minute. Thus, the proposed two-timescale DRL-based VVO is solved based 

on hourly and 10-minute resolutions, solving (7-4) and (7-7), respectively. 

MATPOWER MATLAB package is utilized to solve the exact load flow at each time 

step. Thus, the power loss and voltage deviation calculations are based on the Newton-
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Raphson method.  

7.4.3 Numerical analysis – Learning performance  

The learning performance of the proposed TD3 RL algorithm is examined. 

Figure 7-5 demonstrates the episode reward -blue curve- and the average rewards of 

successive 40 episodes -red curve- of the learning process. Figure 7-5 shows that the 

agent was violating constraints for the first few episodes, which resulted in a small 

reward value. This is due to limited positive learning experiences in the earlier learning 

phase and that the action policy is not yet optimized. In other words, at the beginning 

of the training process, the action policy is incapable of satisfying VVO constraints and 

minimizing power loss and voltage deviation at the same time. 

 

 

Figure 7-5. Learning process of the proposed TD3 agent 

 

However, during the training process, the TD3 agent gradually obtains higher 

rewards most of the time. Nevertheless, it shows that the obtained rewards are not 



  

114 

 

stable, implying that the agent is still violating constraints; however, close to the 

constraints' limits. Also, the average reward curve shows continuous increments. 

Approximately at episode 8000, the TD3 agent exhibited a stable performance 

indicating that it optimized the action policy successfully. Thus, it can be concluded 

that the proposed TD3 algorithm enabled the distribution network to self-learn, 

controlling the different VVO resources for the different objectives. 

7.4.4 Numerical analysis – VVO performance  

 The trained TD3 agent is then used to solve the two-timescale VVO problem. 

To illustrate the proposed VVO TD3 based algorithm's effectiveness, it is compared 

with one of the traditional optimization algorithms, GA. Both algorithms' performance 

is analyzed and compared in terms of power loss reduction at the slow timescale and 

voltage deviation at the fast timescale based on the defined objectives of the VVO 

problem. 

GA is developed to solve the same VVO problem. The considered function 

tolerance, constraint tolerance, elite count, population size, maximum generations, and 

maximum stall generations are 1e-8, 1e-8, 50, 500, 20000, and 100, respectively.  

Figure 7-6 illustrates the hourly power loss curves of one day using the proposed 

and GA algorithms. As can be seen, the proposed TD3 algorithm shows better 

minimization of power loss in the distribution network, which resulted in less total 

power loss for the day. Table 7-2 illustrates the total power loss and the peak loss of the 

day of both algorithms. 
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Figure 7-6. Comparison of the proposed VVO TD3 based algorithm and GA – power 

loss 

 

Figure 7-7 shows the voltage deviation profiles, considering 1.0 p.u as the 

reference voltage, of the proposed and GA algorithms. Figure 7-7 shows that the 

proposed TD3 algorithm outperforms the GA and achieves less voltage deviation along 

the day. Table III demonstrates the maximum voltage deviation of the network buses 

along the day of both algorithms. Thus, it can be deduced from Figure 7-6, Figure 7-7, 

and Table 7-2 that the trained TD3 agent demonstrated effective control of the different 

utilized VVO resources, which resulted in better VVO performance. 

 

Table 7-2. Statistical Analysis of Proposed and GA Algorithms 

Algorithm Ploss (MW) Ppeak (MW) VDmax (p.u) 

GA 0.1792 0.3176 0.0752 
Proposed – TD3 0.1298 0.2556 0.0451 
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Figure 7-7. Comparison of the proposed VVO TD3 based algorithm and GA – voltage 

deviation 

 

7.4.5 Numerical analysis – Computation time 

Numerical analyses are carried out to examine the proposed two-timescale TD3 

algorithm's computational efficiency for controlling the VVO resources. The algorithm 

training and testing are performed on a GPU of a machine equipped with a 36 GB and 

Intel(R) i9-9980XE 3.00 GHz CPU and 24576 MB GPU memory. The training phase's 

executive time is approximately 70 hours, while the execution and testing took 0.2 

seconds. This figure is considered to be promising for real-time implementation 

required in power systems. On the other hand, the computation time of GA is 

approximately 4 hrs. Furthermore, the proposed TD3 algorithm is competitive at 

managing problems with high dimensional continuous action and state spaces in active 

distribution networks. 

7.5 Summary  

When formulating the RL problem as an MDP, the environment is the 
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distribution network, and the RL agent learns via interacting with it. The defined state 

space consists of network variables required by the agent to take actions: demand and 

generating figures. The action space includes the reactive control assets/resources of 

the network, including CBs, OLTCs, and DERs. The third element is the reward 

function, where it consists of positive and negative terms. The positive terms imitate 

each timescale's target objective function, and the negative terms denote violating 

constraints. The formulated total reward function for the slow and fast timescales are 

(7-4) and (7-7), respectively. The formulated MDP is then solved using the proposed 

TD3 algorithm, an off-policy, model-free, actor-critic approach.  

The TD3 agent is then trained on a modified IEEE 33-bus system that includes 

CBs, OLTCs, and DERs, using one-year real-world data. The proposed TD3 agent's 

NN architecture consists of one actor-network and two critic networks, each having 2 

ReLU hidden layers with 400, 300 nodes, respectively. Based on the utilized VVO 

resources, the state and action vector sizes are [6,1] and [7,1], respectively. The 

combination of hyperparameters that best suited the proposed VVO algorithm is 

defined. From the episode reward curve, it is observed that at the beginning, the agent 

violated constraints, which lead to low reward values. However, as training progressed, 

the reward is maximized, indicating better performance in minimizing voltage 

deviation and power loss. The performance of the TD3-based VVO approach compared 

with the conventional optimization-based VVO approach demonstrated improved 

realization of VVO objectives in both timescales.  
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CHAPTER 8 : THESIS CONCLUSION AND FUTURE WORK 

This chapter gives a brief on the work conducted in this thesis regarding the 

VVO problem formulation and key results and analysis. It also provides probable future 

recommendation aspects for improving and enhancing VVO algorithms' performance 

for ADNs with high penetration of DERs.   

8.1 Summary  

Although the integration of DERs of RESs, BESSs, and EVs aided in network 

planning, operation, and maintenance, their increasing penetration led to the 

transitioning of the distribution network from passive to active distribution networks 

and introduced technical challenges. However, recently, it has been proven that DERs 

can support the network by supplying/absorbing reactive power via their interface-

inverters. Thus, existing DERs in the distribution network can help overcome the 

challenges in control problems that include VVO. Thus, this thesis has focused on 

coordinating conventional volt/var devices and inverter-based resources to solve the 

VVO problem for active distribution networks with high penetration of DERs. The 

summary of the two proposed approaches in this thesis is as follows: 

Part I- A non-linear multi-objective two-timescale VVO algorithm is proposed. 

The proposed methodology coordinates existing conventional switching-based CBs and 

OLTCs with inverter-based resources such as PVs, BESSs, and EV charging stations 

to improve voltage profile and reduce losses. A two-stage algorithm with different time 

resolutions is implemented. Stage I is formulated as a three-step methodology, where 

the first step aims to minimize active power loss in transmission lines and the number 

of adjustments of conventional volt/var assets simultaneously and limit voltage 

variation within the standard boundary. In this stage, the asset lifetime is considered in 

step 2 by incorporating the system operator preference for setting switching-based CBs 
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and OLTCs. Coordinating both standard and inverter-based DERs volt/var devices is 

achieved in this stage by optimizing the reactive power of inverter-based DERs given 

a slow time resolution that matches standard volt/var switching-based devices to further 

minimize active power loss in step 3. The second stage of the multi-objective 

optimization algorithm is formulated in a higher-time resolution to provide an 

additional decrease in network bus voltages deviations and system losses. This 

operation enhancement is achieved by defining the optimal scheduling of the reactive 

output power in a higher time resolution that matches the inverter-based DERs.  

The proposed methodology is developed and evaluated through simulation of 

various cases on a modified IEEE 33-bus system. The time resolution for the proposed 

algorithm is selected to match the switching-based and inverter-based devices. One 

hour and 15-minute time resolutions are applied in this application. Results show that 

voltage deviation and active power loss are better minimized when optimally 

coordinating and utilizing all existing standard and DERs resources. The optimizing 

algorithm reduces system losses by 36% and the peak power by 39%, as well as it limits 

the voltage deviation within the standard boundary. The system operator experience in 

setting standard volt/var devices is considered, and thus enhancing the lifetime of 

distribution assets, CBs, and OLTCs. 

Part II- In the second part of the thesis, a model-free two-timescale DRL-based 

algorithm is proposed to solve the VVO problem for ADNs. The proposed algorithm 

coordinates different VVO resources at different timescales to take into consideration 

their response time. The slow timescale -one hour- minimizes active power loss in lines 

using CBs and OLTCs, while the faster scale -10 min.- aims to minimize bus voltage 

deviations by scheduling the reactive output power of PVs, BESSs, and EV charging 

stations. The VVO problem is modeled as MDP and solved using a DRL approach that 



  

120 

 

supports continuous action spaces. The numerical analysis of the proposed TD3 

algorithm is conducted on a modified IEEE 33-bus system. The TD3 agent is trained 

with real-world data, and its performance is analyzed and compared with a conventional 

optimization approach. Eventually, the trained TD3 agent can effectively control the 

different VVO resources when facing other demand and generation circumstances. 

Results and analyses demonstrate promising results of the proposed DRL approach for 

VVO.    

8.2 Contributions 

In literature, researchers focused on solving various consequent aspects of high 

penetration of DERs in ADNs like over/under voltage violations, sudden over/under 

generations, and reactive power control and dispatch. Tackling such challenges 

increased the contribution of conventional volt/var assets, like CBs and OLTCs, which 

affects their lifetime and conditions. In this thesis, the number of control actions of the 

conventional volt/var assets is considered one of the objectives to be minimized. Also, 

the different assets' condition is considered by assigning different weight factors for 

them where the greatly affected assets can be given higher priority to be less utilized.  

Moreover, in this thesis, in addition to the utilization of conventional volt/var 

assets, different DERs like PVs, BESSs, and EV charging stations are coordinated along 

with the conventional assets to minimize power loss and voltage deviation. Further, to 

ensure the achievement of the optimal solution of power loss reduction, the formulation 

of its stage in the proposed algorithm minimizes power loss twice through a 3-step 

methodology. The proposed algorithm also considers the utility operator preference 

range of the network power loss and conventional volt/var assets’ control actions. It 

also considers the time response of the utilized resources, conventional volt/var assets 

and DERs, by formulating the VVO algorithm to be a two-timescale algorithm where 
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it utilizes the resources having faster time response at a higher time resolution.  

In addition to the conventional optimization-based VVO scheme, a two-

timescale VVO algorithm using a DRL approach is proposed. The approach coordinates 

the utility-owned assets and inverter-interface resources, aiming to minimize active 

power loss and bus voltage deviations on the slow and fast timescales, respectively. The 

proposed DRL algorithm, named twin-delayed deep deterministic policy gradient 

(TD3), supports continuous action spaces. Thus, it can effectively manage the reactive 

output powers of the DERs. Further, the proposed approach is a model-free RL 

algorithm that does not depend on a specific optimization model. It is essential to 

highlight that the DRL algorithm is a real-time approach, unlike the conventional 

optimization algorithm, where a day-ahead optimization is performed. 

8.3 Future Work 

Based on the work performed in this thesis, to propose a VVO scheme that 

further increase the efficiency, accuracy and reliability of ADNs, several future work 

considerations related to VVO problem formulation and optimization methodology can 

be recommended as follows: 

• VVO problem formulation related: 

- Additional objectives: expand the VVO problem to encompass other 

operational and security objectives and constraints. An objective of 

conservative voltage reduction (CVR) can be added to enhance network 

operation further.  

- Weight factors selection: in the proposed algorithm, the selection of weight 

factors of the conventional volt/var assets, alpha and beta, in step 1 of stage I is 

done manually by the utility operators. Their selection can be done in a smart 

way by having an algorithm that detects the criticality and conditions of the 
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assets.  

- Meshed distribution network: the proposed conventional optimization and 

DRL-based VVO algorithms in this thesis have been examined on a radial 

distribution network. As a future research point, the proposed algorithms' 

performance can be investigated for other distribution network topologies, such 

as meshed networks.  

• Optimization methodology related:  

- Multi-agent: in the proposed DRL algorithm, a single agent is adopted for 

controlling VVO assets/ resources of both the slow and fast timescales. The 

development of a multi-agent DRL algorithm can enhance the training 

performance and accelerate training time. One agent can be responsible for 

coordinating utility-owned assets on the slow timescale, and another agent 

schedules the reactive output power of DERs on the faster timescale. 

- Scalability: the proposed conventional optimization and DRL- based VVO 

algorithms have been tested only on the IEEE 33-bus system. Further studies 

could be carried out to investigate their performance and computational time for 

larger-scale networks. 

- Computational requirements: another crucial research line in DRL is the 

requirements of computing resources. In ADNs, as the number of utility-owned 

assets and DERs increases, the size of the state and action vectors will 

exponentially increase. Hence, training time will increase. A topic that could be 

further studied is the range of computational requirements for high dimensional 

data that will be adequate for ADNs.  

- Training acceleration: another research point could be to investigate possible 

ways, other than computing resources, to reduce the training time of the DRL 
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algorithm. For example, the approach of MDP formulation; selection of states, 

actions, and reward formulation.  
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APPENDIX 

Appendix A: Data of standard IEEE 33-bus system. 

%% bus data 
%   bus_i   type    Pd  Qd  Gs  Bs  area    Vm  Va  baseKV  zone    Vmax    
Vmin 
bus = [  %% (Pd and Qd are specified in kW & kVAr here, converted to MW & 
MVAr below) 
    1   3   0   0   0   0   1   1   0   12.66   1   1   1; 
    2   1   100 60  0   0   1   1   0   12.66   1   1.1 0.9; 
    3   1   90  40  0   0   1   1   0   12.66   1   1.1 0.9; 
    4   1   120 80  0   0   1   1   0   12.66   1   1.1 0.9; 
    5   1   60  30  0   0   1   1   0   12.66   1   1.1 0.9; 
    6   1   60  20  0   0   1   1   0   12.66   1   1.1 0.9; 
    7   1   200 100 0   0   1   1   0   12.66   1   1.1 0.9; 
    8   1   200 100 0   0   1   1   0   12.66   1   1.1 0.9; 
    9   1   60  20  0   0   1   1   0   12.66   1   1.1 0.9; 
    10  1   60  20  0   0   1   1   0   12.66   1   1.1 0.9; 
    11  1   45  30  0   0   1   1   0   12.66   1   1.1 0.9; 
    12  1   60  35  0   0   1   1   0   12.66   1   1.1 0.9; 
    13  1   60  35  0   0   1   1   0   12.66   1   1.1 0.9; 
    14  1   120 80  0   0   1   1   0   12.66   1   1.1 0.9; 
    15  1   60  10  0   0   1   1   0   12.66   1   1.1 0.9; 
    16  1   60  20  0   0   1   1   0   12.66   1   1.1 0.9; 
    17  1   60  20  0   0   1   1   0   12.66   1   1.1 0.9; 
    18  1   90  40  0   0   1   1   0   12.66   1   1.1 0.9; 
    19  1   90  40  0   0   1   1   0   12.66   1   1.1 0.9; 
    20  1   90  40  0   0   1   1   0   12.66   1   1.1 0.9; 
    21  1   90  40  0   0   1   1   0   12.66   1   1.1 0.9; 
    22  1   90  40  0   0   1   1   0   12.66   1   1.1 0.9; 
    23  1   90  50  0   0   1   1   0   12.66   1   1.1 0.9; 
    24  1   420 200 0   0   1   1   0   12.66   1   1.1 0.9; 
    25  1   420 200 0   0   1   1   0   12.66   1   1.1 0.9; 
    26  1   60  25  0   0   1   1   0   12.66   1   1.1 0.9; 
    27  1   60  25  0   0   1   1   0   12.66   1   1.1 0.9; 
    28  1   60  20  0   0   1   1   0   12.66   1   1.1 0.9; 
    29  1   120 70  0   0   1   1   0   12.66   1   1.1 0.9; 
    30  1   200 600 0   0   1   1   0   12.66   1   1.1 0.9; 
    31  1   150 70  0   0   1   1   0   12.66   1   1.1 0.9; 
    32  1   210 100 0   0   1   1   0   12.66   1   1.1 0.9; 
    33  1   60  40  0   0   1   1   0   12.66   1   1.1 0.9; 
]; 
  
%% generator data 
%   bus Pg  Qg  Qmax    Qmin    Vg  mBase   status  Pmax    Pmin    Pc1 Pc2 
Qc1min  Qc1max  Qc2min  Qc2max  ramp_agc    ramp_10 ramp_30 ramp_q  apf 
gen = [ 
    1   0   0   10  -10 1   100 1   10  0   0   0   0   0   0   0   0   0   
0   0   0; 
]; 
  
%% branch data 
%   fbus    tbus    r   x   b   rateA   rateB   rateC   ratio   angle   
status  angmin  angmax 
branch = [  %% (r and x specified in ohms here, converted to p.u. below) 
    1   2   0.0922  0.0470  0   0   0   0   0   0   1   -360    360; 
    2   3   0.4930  0.2511  0   0   0   0   0   0   1   -360    360; 
    3   4   0.3660  0.1864  0   0   0   0   0   0   1   -360    360; 
    4   5   0.3811  0.1941  0   0   0   0   0   0   1   -360    360; 
    5   6   0.8190  0.7070  0   0   0   0   0   0   1   -360    360; 
    6   7   0.1872  0.6188  0   0   0   0   0   0   1   -360    360; 
    7   8   0.7114  0.2351  0   0   0   0   0   0   1   -360    360; 
    8   9   1.0300  0.7400  0   0   0   0   0   0   1   -360    360; 
    9   10  1.0440  0.7400  0   0   0   0   0   0   1   -360    360; 
    10  11  0.1966  0.0650  0   0   0   0   0   0   1   -360    360; 
    11  12  0.3744  0.1238  0   0   0   0   0   0   1   -360    360; 
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    12  13  1.4680  1.1550  0   0   0   0   0   0   1   -360    360; 
    13  14  0.5416  0.7129  0   0   0   0   0   0   1   -360    360; 
    14  15  0.5910  0.5260  0   0   0   0   0   0   1   -360    360; 
    15  16  0.7463  0.5450  0   0   0   0   0   0   1   -360    360; 
    16  17  1.2890  1.7210  0   0   0   0   0   0   1   -360    360; 
    17  18  0.7320  0.5740  0   0   0   0   0   0   1   -360    360; 
    2   19  0.1640  0.1565  0   0   0   0   0   0   1   -360    360; 
    19  20  1.5042  1.3554  0   0   0   0   0   0   1   -360    360; 
    20  21  0.4095  0.4784  0   0   0   0   0   0   1   -360    360; 
    21  22  0.7089  0.9373  0   0   0   0   0   0   1   -360    360; 
    3   23  0.4512  0.3083  0   0   0   0   0   0   1   -360    360; 
    23  24  0.8980  0.7091  0   0   0   0   0   0   1   -360    360; 
    24  25  0.8960  0.7011  0   0   0   0   0   0   1   -360    360; 
    6   26  0.2030  0.1034  0   0   0   0   0   0   1   -360    360; 
    26  27  0.2842  0.1447  0   0   0   0   0   0   1   -360    360; 
    27  28  1.0590  0.9337  0   0   0   0   0   0   1   -360    360; 
    28  29  0.8042  0.7006  0   0   0   0   0   0   1   -360    360; 
    29  30  0.5075  0.2585  0   0   0   0   0   0   1   -360    360; 
    30  31  0.9744  0.9630  0   0   0   0   0   0   1   -360    360; 
    31  32  0.3105  0.3619  0   0   0   0   0   0   1   -360    360; 
    32  33  0.3410  0.5302  0   0   0   0   0   0   1   -360    360; 
]; 
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Appendix B: Publications. 

In the period of this thesis research, several publications have been prepared, 

which can be listed as follows: 

Publications under review: 

1) Journal paper titled “Performance Assessment of Two-timescale Multi-objective 

Volt/Var Optimization Scheme Considering EV Charging Stations, BESSs, and 

RESs in Active Distribution Networks” submitted to Electric Power System 

Research (EPSR) on 26th November 2020.   

Publications in preparation: 

2) Journal paper titled “Model-Free Deep Reinforcement Learning in Two-Timescale 

Volt/Var Optimization with Continuous Action Spaces for Active Distribution 

Networks” to be submitted to IEEE transactions on Smart Grid. 

3) Journal paper titled “Implementation of Deep Reinforcement Learning for Power 

System Applications on MATLAB Using Reinforcement Learning Toolbox” 

4) Conference paper titled “Performance Analysis of Deep Reinforcement Learning 

Schemes for Power System Applications” 
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