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The purpose of this article is to find the minimum norm solution of maximal monotone operators and
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1. Introduction

1.1. Problem statement

Let #H be a real Hilbert space. Its inner product and norm are denoted by (-, -) and || ||, respectively. Let
Ci(i =1,---,N) be the nonempty closed convex subset of H. Suppose the intersection of {C;}}¥, denoted
by D is nonempty, i.e., D = ﬂf\il C; # (). The prototype of the problem of image recovery can be stated as
follows. The original (unknown) image z! is known a priori to belong D; given only the metric projections
Pc; recover 2T by an iterative scheme. This problem is referred to as the convex feasibility problem (CFP),
see for instance [I, [4, [5] [7, (10, [18]. One effective approach for solving (CFP) is algorithmic iteration. In this
article, our purpose is to find the common fixed points or/and zero points of two nonlinear mappings by
using algorithmic approach. Next, we recall some existing results in the literature.

*Corresponding author
Email addresses: zhumath@126.com (Xinhe Zhu), yaozhsong@163. com (Zhangsong Yao), abhamdi@qu.edu.qa
(Abdelouahed Hamdi)

Received 2015-10-10



X. Zhu, Z. Yao, A. Hamdji, J. Nonlinear Sci. Appl. 9 (2016), 2136-2148 2137

1.2. Existing results
Let T = aol + Zivzl anlBnFPe, + (1 — pp)I] where P, (n=1,---,N) is the metric projection of H onto

Cry {an} € (0,1), N, = 1 and {8,} C (0,2).
Iteration 1.(Picard’s iteration) Initialization xg € H and iterative step

Tpy1 = Txpn,Vn € N. (1.1)

Crombez [8] proved that the sequence {z,} generated by (l.1) converges weakly to an element of (D =
) ﬂf\il Ci.

Let (H D)C # 0 be a closed convex set. Let S,T : C — C be two nonlinear mappings. We use F(S) and
F(T) to denote the set of fixed points of S and T', respectively. In [I5], Takahashi and Tamura proved that
the following Das and Debata’s iteration converges weakly to 2t € (D =)F(S)n F(T).

Iteration 2.(Das and Debata’s iteration [9]) Initialization x; € C and iterative step

Tp+1 = /ann + (1 - Bn)S(anxn + (1 - an)Txn)yvn S N7 (12)

where S and T are two nonexpansive mappings and {ay,} C (0,1) and {8,} € (0,1) are two iterative
parameters.

Let A : C — H be an inverse strongly monotone mapping with coefficient @ > 0. Let B : H — H be
a maximal monotone mapping. we denote by (A + B)~10 zero points of A + B, by JZ = (I + AB)~! the
resolvent of B for A > 0. For finding z € (D =)F(S) N (A + B)~'0, Takahashi, Takahashi and Toyoda [14]
constructed the following iteration.
Iteration 3. Initialization z; € C and iterative step

Tn+l = Brnn + (1 - /Bn)S(O‘nx + (1 - an)‘])i(xn - )\nAa:n)),Vn €N, (1'3)

where the parameters {\,} C (0,2«), {a,,} C (0,1) and {5,} C (0,1).

Subsequently, Takahashi, Takahashi and Toyoda proved the strong convergence of the sequence {z,} to
xt € (D =)F(S) N (A+ B)~'0 provided the domain of B is included in C and the parameters satisfy the
conditions:

(1) 0 <a <A, <b<2aand limy, o0 (Angr1 — Ap) = 0;
(1) limy ooy =0 and ), a, = 00;
(7it) 0<c< B, <d< 1

One purpose of this article is to extend the above algorithm to a general case in which S is a strict

pseudo-contraction.

1.8. Minimization problem

At the same time, in the practical problem, it is always needed to find minimum norm solution. A
typical example is the least-squares solution to the constrained linear inverse problem ([12]) which is stated
below.

Example 1.1. Let H; and Hs be two real Hilbert spaces. Let A : H1 — Hs2 be a bounded linear operator.
For given b € Hs, finding 2 € C such that
Azt =b. (1.4)

Note that (1.4]) can be reduced to solve the minimization problem of finding a point zT € T such that

T = i . 1.5
z! = argmin ]| (1.5)

It is clear that (1.5) is equivalent to zf = Pp(0). This indicates that one can use projection technique



X. Zhu, Z. Yao, A. Hamdji, J. Nonlinear Sci. Appl. 9 (2016), 2136-2148 2138

to find the minimum norm solution. In this respect, there are a large number references in which the
projection technique is applied to find the minimum norm solution of some nonlinear operators, see e.g.,
12, 3, 191 20, 21].

Remark 1.2. We observe that the above algorithm ([1.3) can also find the minimum-norm solution z' € (D =
YE(S)N (A+ B)~10 provided 0 € C. However, if 0 ¢ C, then this algorithm (1.3)) does not work to find the
minimum-norm solution.

A natural problem arise in the mind if we can find the minimum norm solution without using the
projection technique. This is our another purpose of this article. We will devote to find the minimum norm
solution zt € (D =)F(S) N (A + B)~'0 where S is a strict pseudo-contraction. We suggest the following
algorithm: for initialization =y € C, let the sequence {x,} be generated by

Unt1 = Oty + SpSuy, + 5nJ£L((1 — &n)un — pinAuy),¥n > 0.

We will show the above algorithm converges strongly to ' = Prsyna+ 3)710(0) which is the minimum-norm
element in F(S)N (A+ B)~10.

2. Preliminaries

2.1. Notations

Throughout this paper, we assume that H is a real Hilbert space equipped up its inner product (-, -) and
norm | - ||. Let (H D)C # 0 be a closed convex set.
e A self-mapping ¥ on C is said to be nonexpansive if

1w — Tul | < flu— o,

for all u,uf € C.
e A mapping ¥ : C — C is said to be strictly pseudo-contractive if

1w — Cal||? < flu—uf* + &) (1 = ©)u — (1 - ©)u|?, (2.1)

for all u,u’ € C and for some constant x € [0,1). In this case, we always say that W is a s-strict pseudo-
contraction.

Remark 2.1. Tt is obvious that (2.1)) equals
1—
(u = wul = uf) < flu—uf|P = == = )u— (1= 0l (2.2)
for all u,uf € C.

e A single-valued mapping G : C — H is said to be inverse strongly monotone if
(Gu — Gul,u —ul) > ¢||Gu — Gu'|)? (2.3)

for some ¢ > 0 and for all u,u’ € C. Subsequently, we call G is (-inverse strongly monotone.

Remark 2.2. From (2.3), we deduce that ||Gu— Gul||||u —ul|| > (Gu— Gul,u—ul) > ¢||Gu— Gul||?. Thus,
|Gu — GuT|| < 1/¢||u — uf|| for all u,u’ € C. That is, G is 1/¢-Lipschitz continuous.
Let W : H — 2™ be a multi-valued mapping. We denote by dom (W) the effective domain of W, i.e.,
dom(W) ={u e H : Wu # 0}.
e IV is said to be monotone if
(x—2"u—ul) >0

for all z, 2" € dom(W), uw € Wz and u! € Waf.
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A monotone mapping W on H is said to be maximal iff its graph is not strictly contained in the graph
of any other monotone mapping on H. We use W~'0 to denote the set of zero points of W, that is,
W=L0) = {u € H:0 € Wu}, see [6] and [11].

Let W be a maximal monotone mapping on H and let A be a positive constant. Now we know that
(I +AW)~1, the resolvent of W is a single-valued mapping from H onto dom(W) which is denoted by J}".
That is, J}¥ = (I + AW)~L.

2.2. Lemmas
Next, we collect several useful lemmas which will be cited in the next section.
Lemma 2.3. Properties of the resolvent JXV are listed as follows.

(i) (Firmly-nonezpansive) || JVu — JVul||? < (JVu — JVul,u — ul), Vu,ul € C.
(ii) F(JV)=wW~10, VA > 0.
(ii7) (Resolvent identity) YA > 0 and Y > 0, we have the following identity

JWat = J}f’(%x* +(1- g)Jf\’VxT),VxT €H. (2.4)

Lemma 2.4 ([22]). Let H be a real Hilbert space. Let (H D)C # 0 be a closed convex set. Let R : C — H be a
p-strict pseudo-contraction. Set U =~yI+(1—~)R, Vv € (0,1). Then, F(U) = F(R) and U is nonezpansive
when v € [p,1).

Lemma 2.5 ([16]). Let H be a real Hilbert space. Let (H D)C # 0 be a closed convex set. Let U : C — H
be an inverse strongly monotone mapping with coefficient o > 0. Then, we have

I(I = sU)a = (I =sU)a!|? < ||z = 27| + < (s = 20)|Uz — Uzl||?, v, 2t € C.
Especially, I — U is nonexpansive when 0 < ¢ < 2a.

Lemma 2.6 ([22]). Let H be a real Hilbert space. Let (H D)C # () be a closed convex set. Let R:C — C be
a A-strict pseudo-contraction. Then I — R is demi-closed at 0, i.e.,

{xn;xec = 1z € F(R).

T, — Rz, — 0

Lemma 2.7 ([13]). Let X be a Banach space. Let {u,} C X and {v,} C X be two bounded sequences
satisfying un+1 = (1 — 0p)vp + dptn, ¥Yn > 0 where {6,} C (w1, wsz) C (0,1) is a real sequence. Then,

lim sup,,_, oo (||Unt1 — Unll = |Jtuns1 — unl|) < 0 implies that limy, o0 ||t — vy|| = 0.

Lemma 2.8 ([17]). Let {o,} C [0,+00), {Un} C (0,1) and {n,} be three real number sequences. Suppose
{on}, {On} and {n,} satisfy the following three conditions

(Z) Ont+1 < (1 - ﬂn)gn + MVn,
(i) Yo7y Oy = 00,
(4i1) Hmsup, oo <0 or > 07 [npdy] < .

Then lim,, oo 05, = 0.

3. Algorithm and Convergence

Let H be a real Hilbert space. Let (H D)C # 0 be a closed convex set. Let A : C — H be an inverse
strongly monotone mapping with coefficient & > 0 and let B : H — 2™ be a maximal monotone mapping
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with its resolvent JB (I +pB)~t. Let S : C — C be a strict pseudo-contraction with coefficient x € [0, 1).
Our objective is to find 2T € F(S)N (A4 B)~! such that its norm is minimal in F(S)N (A + B)~'. Our
means is to use algorithmic approach. Now, we first introduce our algorithm.

Algorithm 3.1. Initialization xg € C and iterative step
Up41 = Onln + Uy + 5nJ£l((1 — &) Un — pinAuy),¥n > 0, (3.1)
where {pn} C (0,2a) and {&,}, {on}, {sn} and {6,} are four real number sequences in (0,1).

Theorem 3.2. Suppose F(S) N (A+ B)~10 # 0 and dom(B) C C. Assume that the following restrictions
are satisfied.

(1) on+sn+6n =1 foralln >0,
(1) limy oo & =0 and ), & = 00,
(791) op € [c,d] C (K,1) and 0 < liminf,, o ¢, < limsup,, oo sn <1 — K,
(1v) (1 — &) < pn <b(1 = &,) where [a,b] C (0,2a) and limy, o0 (tn+1 — pn) =0,
)

Snt1 _ Sn : On+1 _ O _
('U hmn—>00(1 K—0pn4+1+K0n+1 l—ﬁ—on—l-nén) =0 and llm”_)m(l—n—an+1+n5n+1 l—ﬁ—an—l-nén) =0.

Then the sequence {un} generated by (3.1)) converges strongly to ¥ = Pp(s)n(a4B)-10(0) which is the mini-
mum norm element in F(S) N (A + B)~10.

Proof. Let any u' € F(S)N (A + B)~'0. Then, we have u' = in(u]L — ppAut) = JL <£nuJr + (1= &) (uf —

pnAut /(1 — §n))) for all n > 0. Since Jf is nonexpansive for all > 0, we deduce

Hj;i«l — &n)un — pinAun) — UTH
= |72 (1 = &) (un — pn A /(1 = &) = T2 (Guut + (1 = &) (ul = pnAu’ /(1= &,)))|

< (1 = &) (un — pmAun /(1= &))) = Eaut + (1 = &) (ul — pnAu’/(1 = &)))| (3.2)
= [|(1 = &) ((un — pnAun /(1 = &) — (UT - F‘nAUT/(l —&))) + gn(—uT)H
Noting that the norm || - || is convex and the mapping A is a-inverse strongly monotone, we obtain

H(l )(( ﬂnAun/(l - fn)) ( - :unAuT/(l - 571))) + én(_uT)HQ
< (1 =&)ll(un — pnAun /(1 = &) — (u - ,UnAuT/(l - én))HQ + anuTHQ

= (1= &) (un = u) = prn (A = Auh) /(1 = &) 2 + &l

_ (1_gn)(||un—uw2 12”2 (A — Ay — ) + o Tl du, — | ) (3.3)
+ &l

< (1= ) (o = 1 = T2 A, — A + ufglfn)z"‘*“" — Auf[?) + & fluf P

= (1= &) (Jlun = 1P+ 25 = 200 = Gn)e) A — AWP) o+ " P

By condition (iv), we derive that pu, — 2(1 — &,)a < 0 for all n > 0. Thus, from and (3.3), we obtain
172 (1= &n)tn — pnAuy) — ul||?
<(1-¢&) (Hun —ul|?+ (15#)2(% —2(1 = &n)a)[|Aun — AUTllz) + Enllul? (3.4)
< (1= &n)llun — | + &l
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Applying (2.1 and (2.2)), we obtain

lon (un — uT) + ¢ (Suy — uT)H2 = UgHun — uTHz + CzHSun — uTHz + 20,6, (Suy — ul, uy — uT)
< o llun — ul[|® + Allun — uT” + &l|un — Sun|?]
11—k

+ 20060 || un — UTHQ - | un — SunHQ] (3.5)

= (on + gn)QHUn - UTH2 + [921"3 — (1 = K)onsnlllun — S“n||2
= (on + gn)QHUn - UTHZ + Sul(on +sn)k — onlllun — SunH2
< (on+ g71)2““71 - “T||27

which implies that
llon (un — UT) + 6n(Sun — UT)H < (on + sn)llun — UTH (3.6)

Note that I — u, A/(1 — &,) is nonexpansive by Lemma From (3.2)), we have

Han((l —&n)un — pnAun) — UTH

< = &) ((un — pnAun /(1 = &)) = (ul = pnAu®/(1 = &) + &a(—ul)]| (3.7)
< (1= &)l (un — pnAun /(1 = €1)) = (uf = pp Aul /(1 = €))| + &a ||

< (1= &n)llun — ul || + &allul.

By (3-1) and (B.7), we get

|tn+1 — UTH = |lon(un — UT) + Sn(Sup — UT) + 5n(<]fn((1 —&n)Uun — pinAup) — UT)”
< lon(un — UT) + Sn(Sun — UT)H + 5n||J;ﬁ((1 — &n)un — pinAup) — UTH
< (on + ) llun — UTH + 60 (1 — &n)llun — UTH + §nHUTH

= (1= 8n&n) [t — ul|| + 8,800
< max{||u, — uf ||, [[uf]]}.

By induction, we have
41 = ul | < max{|lzo — wl], lu’]]}.

So, {u,} is bounded. We also deduce that {Au,} is bounded according to the Lipschitzian continuity of A.
Set x, = (1 — &) up — pnAuy, and y, = anmn for all n > 0. It is easy to see that {z)}, {Jf;un}, {Su,} and
{yn} are all bounded.

can be rewritten as

Upi1 = (Un — 1’%" >un + 1 Sn (ﬁun +(1- /@)Sun) + Onyn, for all n > 0. (3.8)

— K - K

Observe that K c
. n n 5 =1
(On =g ) F T, T 0n
and i K
0 < liminf(o, — —) < limsup(o, — ——) < 1.
n—00 — K N—00 11—k

Set upt1 = (00 — 7% )un + (1 — 0y + %) 2,, for all n > 0. It follows that

1-k
~ (o0 — 20) ~ (ou )
Un+2 On+1 T—g JUn+1  Un+l On — 1_5/)Un
An+1 — Zn = RSnt1 o KSn

1 —opt1 + 725 l—op+ 2%



X. Zhu, Z. Yao, A. Hamdji, J. Nonlinear Sci. Appl. 9 (2016), 2136-2148 2142

T (Rungr + (1= 8)Sung1) + Ong1yns
H§n+1

1—opt1+
2 (K, + (1 — H)Sun) + 8nln

1—op+ %

_ 5n+1(yn+1 - yn) + 5n+1 _ 5n y
1— Onil 4 H§n+1 1— Onil i n€n+1 1— On + ngn n
M
1—
Sn41 Sn_
1 11—k
+ <1 _ O’n_l'_l,:_ H;CnJ,»l - 1 _ O.n + K(n >(K/un —'I_ (]. - K/)Sun).
Applying Lemma we deduce that kI + (1 — k)S is nonexpansive. Hence, we get
onss — 2| < 2zt = ol S N —
i B 1= o1 + 520 1—op + {2 |77
Sn+1
1
+ 1_ Un-‘,—l:’ H§n+1 [K(un+1 — up) + (1 = £)(Supt1 — Sun)|
Snt1 Sn_
11—k 1—k
— 1—k)Su
+ 1— Ol n I€§n+1 1— On + % H"iun +( H) nH
- ) 0
< On+1|Yn+1 yn” n+1 _ n 3.9
1 — Opt1 + H§n+1 1 — Opi1 + §n+1 1— n+ f{gn ||ynH ( )
M _Sn_
11—k 11—k
- 1—k)S
o — T e+ (1= Sl
Sn+1
1—
. —
Notice that
lYn+1 — ynll = I|J pnﬂfﬁn-&-l J an
B
< #n+1$”+1 - Jﬂn+1xn|| + ” 10— |
< a1 = @all + 1 T2, 20 — T2 an
= (I - Nn+1A)un+l - (I — fint1A)Un + (i — pnt1) Atn + Entin — Ent1tn ||
B
T2 20— Tl
< I - Mn+1A)Un+1 - (- Mn+1A)UnH + |1 — pn || Aug |
+ &allunll + Enprllwnsall + 197, 20 — T @all.

By the assumption, p,4+1 € (0,2a). Thus I — p,+1A is nonexpansive. So, we have
1L = png1A)tin 1 = (I = pnp1 A)un | < JJungs — ual-

Applying the property of the resolvent (2.4), we have

B _ B Hn B
J/»Ln+l J#n <Mn+1 o+ (1= L1 )Junﬂ ”)
It follows that
B |l yB ( Hn B B
H /—L7L+1 J CL'nH HJ ( Lint1 Tp + (1 - Lint1 )J,U«n+1 ) B J;Ufnxn
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<H( +(1— JB )—x
Hn+1 o+ ( ,unJrl) pn1 "

|Mn+1 - ,Un| B
< —J Tl
o = Tl

So,

[Yn-+1 = Ynll <luntr = unll + [pns1 = palll Aunll + &nllunll + &t lluntall

|Mn+1—,un|” _JB

- Hn+1 pn 1l

Substituting the last inequality into (3.9)) to deduce

5n+1 + §n+1 5n+1 On
Z —znll < U Un || + —
o = 2l <o s =l + | ey —
Sn+1 _Sn_
11—k 1—k
1—-k)S
+ 1_ Oni1 I N§n+1 1 — o + ngn ”Kx'U:n + ( /4}) U/TLH
|[Hn+1 — pin
+ |1 — palllAunl + &nllunll + €t l[uniall + = N Sl R |
n
Since 5 . +1
+1+ 5
0< —" <1,
1—0pi1 + ”“"“
5n+1 571 . (]. - H)én—i-l (]. - Ii)(;n
RS +1 ng - - 07
l—opi1+ 12 1—an+ Ko ]k — 01+ KOpy1 1 — K —op + KOy
§1n+;<1; i _ (1 — K)Snt1 _ (I —K)sn =0

1 —opyr + 2 1—0n—|—“§" 1l —K—0Opy1 + KOpr1 1 — Kk — 0y + KOy
+ + +

(by condition (v)), & — 0, pint1 — pn — 0 and liminf,_, p, > 0, we obtain

limsup(|[2n+1 — 2nll = [Unt1 — ual]) <0
n—0o0

This together with Lemma imply that

lim ||zp, — uy,|| =0.

n—oo
Therefore,

. o B KSn o
7}1_%0 [unt1 — un| = nh_)ngo(l On T 17 R)”Zn un|| = 0.
From and (| ., we have
112 RSn 112 Sn 112
[uns1 = l]" < (o0 = 7= lun =Ml + = lIwun + (1 = &) Sun — ']

+5n||J5lazn7uT||2
< (on + sn)llun — qu||2 + 5nHJ,ifEn - uTH2

< 5,{ (1= ) (2255 0 — 201~ €04 — 40

+llun = u'|® + EnlluTIIZ} + (00 + ) lun —ul|®

(3.10)

(3.11)



X. Zhu, Z. Yao, A. Hamdji, J. Nonlinear Sci. Appl. 9 (2016), 2136-2148 2144

6TLTL
= (1= G Jun — w2+ 25 (1 — 201 = n)er) [ A — Aul

+ Gnénlu|.
It follows that
5n,U/n
—nrn_(9(1 — - Au, — Aut|)?
< un = w12 = Jfngr — T ||* + 6n&nllul]®

< (| — Ml = s = a1 = wnl] + Snallul .

Since limy, 00 & = 0, limy, o0 ||Unt+1 — up|| = 0 and lim inf,, @ "g”) (2(1 = &) — pyp) > 0, we deduce
lim || Au, — Au'|| = 0. (3.12)
n—oo

Using Lemma we have
12 @ = a2 = T3 20 = T2 (uf = i Aul)|?
< (xp — (uf — ppAul), J}ixn —ul)

1
= 5 (llen = (af = A+ 178, = o P

\KléﬁﬁmmAAﬂnﬁmAﬂU%ixdp)
1
_2

wm—mW—ﬁw—Mm%—meﬂ.

Ql—@mmn—uw2+@muw1+u B g — ul 2

It follows that

17 @ — a2 < (1= &) [Jun — uf || + &aluf|?
— (1 = &a)un — 2w — pin( Ay, — pp Au)|?
= (1= &)llun — u > + &l | = [|(1 = &a)un — T2 2n|?
+ 200 (1 = &u)un — J2 2, Auy — Aul) — pi2 || Aup, — Aul|?
< (1= &)llun — ot + &l > = (1 = &a)un = T2 2l
+ 24 |(1 = &n)un — ynan”Aun - AUTH-

&n)
(

This together with imply that
41 = w2 < (on + s)llun — ul[? + (1 = &) l[un — ul | + 6,80 [[ul||?
— 0nl(1 = &n)un — Ji za®
+ 200, | (1 = &n)un — I || Aun — Aul]
= (1= 0n&n)llun — ul |2 + 8,80l [* = 6| (1 = &a)un — T
20108l (1 = &) — JB 2ol Aur, — Auf .

Hence,

Sull (1 = &n)un =I5 zal® < flun — wl? = flunsr — ul|* = Snéallun — ul | + nén ||
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+ 2460 [ (1 = &n)un — J;]iwnHHA“n - AUTH
< (llun = u"ll + lfunsr = wl ) l[unsr = unll + Gnénllu
+ 2400 |[ (1 = &n)un — J£$n|H|Aun - AUTH'

i

By assumptions (i) and (4i), we get limsup,,_, ., 0, < 1. Since |Jun11—un| — 0, & — 0 and ||Au, — Aul|| —
0, we deduce
lim [|(1 = & )un — J2 2|l = 0.

n—oo
This implies that
lim |up — ypl = lm |Ju, — Ji((l —&n)un — pnAuy)|| = 0. (3.13)
n—oo n—oo

Observe that

un — Sun|| < ||tunt1 — unll + ||tnt1 — Suy|
< tunt1 = unl| + onllun — Sunl| + 0nllyn — unll-

Then,

1
lun = Sunl| < 37— ([unt1 = unll + dnllyn — ual)) (3.14)

n

— 0.

Since F(S)N (A + B)~10 is convex, Pp(s)n(a+B)-10(0) exists and is unique which is denoted by 7, i.e.,
T = Pp(s)n(a+B)-10(0).

Set v, = U, — ll—hén (Au, — AZ) for all n > 0. In |D we choose ul = #. From (3.12), we get
||Au, — AZ|| — 0. Next, we first prove limsup,,_, .. (Z,v, — Z) > 0. Let {v,,} be a subsequence of {v,} such
that

limsup(z, v, — Z) = lim (Z, v,, — T).
n—00 1—00

Since {up} is bounded and |Au, — AZ|| — 0, we deduce that {v,} is bounded. Thus, there exists a
subsequence {vm.j} of {vy,} such that Un;, = w € C. It is easy to check that {umj} and {ynij} also converge
weakly to w. From (3.14)), we have

J

Applying Lemma, to (3.15), we deduce w € F(S).
Let v € Bu. Then, we have

im [|up, — Suy, || =0. (3.15)
—00 J J

—&n Yn

1
(1 - gn)un - MnAUn S (I + unB)yn = Up — Aun ——c Byn.
Hn Un,
Since B is monotone, we have, for (u,v) € B,
1 —
<7€nun—Aun—y—n—v,yn—u> >0
Hn Hn

(1 = &n)un — pin Aty — Yn — pn¥, Yp — u) > 0
1

$<Aun + v, Yp — U) < 7<un —Yn,Yn — ’U,> - €i<UN7yn - ’U,)
Hn Hn
1

=>(Aw +v,y, —u) < ;<un ~ Yn, Yn — U) — €7n<un>yn —u) + (Aw — Aup, yn — u)
n mn

1 §
= (Aw+v,yn =) < =llun = ynllliyn — vl + /T”HunllHyn — ull + [[Aw = Aug|[[[yn = u]-
n

n
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It follows that

1 §
(Aw +v,w = u) <—l[un = yallllyn = wll + == [[un]|[lyn — ull
M Hn

n

+ [[Aw — Auy||||yn — ul| + (Aw + v, w — yy). (3.16)

Since Auy, is strongly convergent and w,, is weakly convergent to w, we have lim,,_, o0 (uy, —w, Au, — Aw) = 0.
By the inverse strong monotonicity of A, we have

ol A, — Awl]? < (uy, — w, Au, — Aw) — 0.
So, Au, — Aw. Hence, from (3.16[), we derive
(Aw + v, w —u) <0.

By the maximal monotonicity of B, we obtain immediately that —Aw € Bw. Therefore, 0 € (A + B)w.
Hence, we have w € F(S) N (A + B)~'0. Noting that & = Pp(s)n(a+B)-10(0), we get (T,w — Z) > 0.
Therefore,

limsup(z,v, — Z) = lim (Z,v,, —2) = (T, w—T) > 0.
n—00 J—00 J

From (3.11)), we have

|tn+1 — sz < (on + sn)llun — 53H2 + 5n||J5n$n - 53”2
2

Hn ~ Hn ~ ~
< Op|[(1 — §n)((un -1 anun) —(Z— . §nAal:)) — &t
+ (o0 + n)llun — 57”2
2
- 26,0 - &) (8 (o - {2 ) = @ - (oD 4 211 @)

+ (o0 + Sn)lJun — CEHQ

< (o0 + ) lun — 7P + %((1 &) un — P

1- gn
< (1 - 6n£n)”un - j||2 + 5n§n[_2(1 - fn)<j7vn - 53> + §n||j||2]

91— 5n><a:~,un — (A — AT - x> +€3||93"H2>

It is easy to check that > (1 —0,,)&, = 0o and limsup,, . (—2(1 — &,)(F, v, — ) + &, Z]|?) < 0. Applying
Lemma to (3.17]), we conclude that u,, — . This completes the proof. O

Corollary 3.3. Let H be a real Hilbert space. Let (H D)C # 0 be a closed convex set. Let A :C — H be
an inverse strongly monotone mapping with coefficient o > 0 and let B : H — 2™ be a mazimal monotone
mapping such that dom(B) C C. Let S : C — C be a nonerpansive mapping. Suppose F(S)N(A+B)~10 # 0.
For given xy € C, let the sequence {u,} C C be generated by

Upt1 = Oplp + SpSU, + 5nJ£1((1 — &) Uun — pinAuy),¥n > 0, (3.18)

where {u,} C (0,2a), {&,} € (0,1), {on} C (0,1), {sn} C (0,1) and {6,} C (0,1) satisfy the following
conditions

(1) on+<n+ =1 for alln > 0;
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(1) limy oo & =0 and ), &, = 00,

(tit) oy, € [e,d] C (0,1) and 0 < liminf, oo ¢, < limsup,,_, oo sn < 1;
)
)

a(l —&,) < pn < b(1 —&,) where [a,b] C (0,2a) and limy, oo (tn+1 — pn) = 0;

On1 O, )
1—0nt1  1—op

(tv

Sn+1 _ Sn
1—0opn41 l—on

(v) limy, 00 ( ) =0 and limy, oo ( =0.

Then the sequence {u,} generated by (3.18) converges strongly to ¥ = Pp(g)n(a+p)-10(0)-

Corollary 3.4. Let H be a real Hilbert space. Let (H D)C # () be a closed convex set. Let A : C — H be
an inverse strongly monotone mapping with coefficient o > 0 and let B : H — 2™ be a mazimal monotone
mapping such that dom(B) C C. Let JB (I+pB)~! be the resolvent of B for . Suppose (A+ B)~10 # 0.
For given xg € C, let the sequence {un} C C be generated by

Upt1 = Oplp + (1 — Un)an((l — &) Un — pnAuy),¥n > 0, (3.19)
where {pn} C (0,2a), {&,} € (0,1) and {o,} C (0,1) satisfy the following conditions

(1) limp o &n =0 and ), &, = oo;
(i7) op € [c,d] C (0,1);
(13i) a(l —&,) < pn < b(1 —&,) where [a,b] C (0,2q) and limy,—yo0 (fint+1 — fin) = 0.

Then {un} generated by (3.19) converges strongly to T = P44 )-19(0).
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