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We establish a logarithmic bound for oscillatory singular integrals with quadratic phases on the Hardy space 𝐻
1
(R𝑛). The

logarithmic rate of growth is the best possible.

1. Introduction

For 𝑛 ∈ N, let𝐾(𝑥) be aCalderón-Zygmund kernel onR𝑛 and
let 𝑃(𝑥) be a polynomial of 𝑛 variables with real coefficients.
Consider the following oscillatory singular integral operator:

𝑇
𝑃
: 𝑓 󳨀→ p.v.∫

R𝑛
𝑒
𝑖𝑃(𝑥−𝑦)

𝐾(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦. (1)

It is well known that 𝑇
𝑃
is bounded from 𝐿

𝑝
(R𝑛) to 𝐿

𝑝
(R𝑛)

when 1 < 𝑝 < ∞ and also from 𝐿
1
(R𝑛) to 𝐿

1,∞
(R𝑛). Addi-

tionally, 𝐿𝑝 → 𝐿
𝑝 and 𝐿

1
→ 𝐿

1,∞ bounds are dependent on
the degree of the phase polynomial 𝑃 only, not its coefficients
(see [1, 2]).

However, for 𝐻1
(R𝑛) → 𝐻

1
(R𝑛) boundedness of 𝑇

𝑃
, the

answers are not nearly as clear-cut. First, it was shown in [3]
that, in general, 𝑇

𝑃
may fail to be bounded on 𝐻

1
(R𝑛) and

when the coefficients of the first-order terms of 𝑃 vanish, 𝑇
𝑃

is bounded from 𝐻
1
(R𝑛) to itself with a bound independent

of the higher order coefficients of 𝑃.
More recent work can be found in [4, 5], including the

following.

Theorem 1 (see [5]). Let 𝑛 ∈ N, 𝑚 ≥ 2, and 𝑃(𝑥) =

∑
0≤|𝛼|≤𝑚

𝑎
𝛼
𝑥
𝛼 be a polynomial of degree 𝑚 in R𝑛 with real

coefficients. Let 𝐾 be a Calderón-Zygmund kernel and let 𝑇
𝑃

be given as in (1). Then, there exists a positive constant 𝐶 such
that

󵄩󵄩󵄩󵄩𝑇𝑃𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛)

≤ 𝐶(1 +
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
2≤|𝛼|≤𝑚

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/|𝛼|
)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛) (2)

for all 𝑓 ∈ 𝐻
1
(R𝑛). The constant 𝐶 may depend on 𝑛,𝑚, and

𝐾 but is independent of the coefficients {𝑎
𝛼
} of 𝑃.

In order to determine the optimal bound on
‖𝑇
𝑃
‖
𝐻
1
→𝐻
1 , an example was given in [5] to show that,

as ∑
|𝛼|=1

|𝑎
𝛼
|/ ∑

2≤|𝛼|≤𝑚
|𝑎
𝛼
|
1/|𝛼|

→ ∞, any bound on
‖𝑇
𝑃
‖
𝐻
1
→𝐻
1 must increase at least at the rate of

log(∑
|𝛼|=1

|𝑎
𝛼
|/ ∑

2≤|𝛼|≤𝑚
|𝑎
𝛼
|
1/|𝛼|

). This naturally leads to
the following question.

Does
󵄩󵄩󵄩󵄩𝑇𝑃𝑓

󵄩󵄩󵄩󵄩𝐻1(R𝑛)

≤ 𝐶
𝑛,𝑚

(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
2≤|𝛼|≤𝑚

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/|𝛼|
))

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛)

(3)

hold for all 𝑓 ∈ 𝐻
1
(R𝑛)?

In this paper, we will prove that the answer to the above
question is affirmative for all quadratic polynomials. Namely,
we have the following.
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Theorem 2. Let 𝑛 ∈ N and 𝑃(𝑥) = ∑
0≤|𝛼|≤2

𝑎
𝛼
𝑥
𝛼 be a

quadratic polynomial in R𝑛 with real coefficients. Let 𝐾 be a
Calderón-Zygmund kernel and let 𝑇

𝑃
be given as in (1). Then,

there exists a positive constant 𝐶 such that

󵄩󵄩󵄩󵄩𝑇𝑃𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛)

≤ 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
))

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛)

(4)

for all 𝑓 ∈ 𝐻
1
(R𝑛). The constant 𝐶 may depend on 𝑛 and 𝐾

but is independent of the coefficients {𝑎
𝛼
} of 𝑃.

We point out that 𝐶 denotes an absolute constant whose
value may change from line to line.

2. Some Definitions and Lemmas

Many of the tools we use are known. For readers who wish to
see the definitions and some of their properties, the following
references are suggested: [6–12].

For 𝑥 ∈ R𝑛 and 𝑟 > 0, let 𝐵(𝑥, 𝑟) = {𝑦 ∈ R𝑛 : |𝑦 − 𝑥| < 𝑟}

and |𝐵(𝑥, 𝑟)| denote the Euclidean volume of 𝐵(𝑥, 𝑟).
Let 𝜙 be a function in the Schwartz spaceS(R𝑛) such that

∫
R𝑛

𝜙(𝑥)𝑑𝑥 = 1. For each 𝑓 ∈ 𝐿
1

loc(R
𝑛
) and 𝑥 ∈ R𝑛, we let

𝑀
𝜙
𝑓 (𝑥) = sup

𝑠>0

󵄨󵄨󵄨󵄨(𝑓 ∗ 𝜙
𝑠
) (𝑥)

󵄨󵄨󵄨󵄨 , (5)

where 𝜙
𝑠
(𝑥) = 𝑠

−𝑛
𝜙(𝑥/𝑠).

Definition 3. For a nonnegative, locally integrable function𝑤

on R𝑛, the Hardy space𝐻1
(R𝑛) is given by

𝐻
1
(R

𝑛
) = {𝑓 ∈ 𝐿

1

loc (R
𝑛
) :

󵄩󵄩󵄩󵄩󵄩
𝑀
𝜙
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿1(R𝑛)

< ∞} , (6)

with ‖𝑓‖
𝐻
1
(R𝑛) = ‖𝑀

𝜙
𝑓‖
𝐿
1
(R𝑛).

Definition 4. A measurable function 𝑓 on R𝑛 is called 𝐻
1

atom if there exist 𝜁 ∈ R𝑛 and 𝑟 > 0 such that

supp (𝑓) ⊆ 𝐵 (𝜁, 𝑟) ; (7)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

≤
1

󵄨󵄨󵄨󵄨𝐵 (𝜁, 𝑟)
󵄨󵄨󵄨󵄨

; (8)

∫
R𝑛

𝑓 (𝑦) 𝑑𝑦 = 0. (9)

Lemma 5 (see [9, 10]). For each 𝑓 ∈ 𝐻
1
(R𝑛), there exist 𝐻1

atoms {𝑓]} and coefficients {𝜔]} such that

𝑓 = ∑

]
𝜔]𝑓],

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛)

≈ inf ∑
]

󵄨󵄨󵄨󵄨𝜔]
󵄨󵄨󵄨󵄨 .

(10)

Definition 6. A 𝐶
1 function 𝐾 : R𝑛 \ {0} → C is called a

Calderón-Zygmund kernel if the following are true:

(i) There exists 𝐶 > 0 such that

|𝐾 (𝑥)| + |𝑥| |∇𝐾 (𝑥)| ≤ 𝐴 |𝑥|
−𝑛 (11)

holds for all 𝑥 ∈ R𝑛 \ {0}.
(ii) For all 0 < 𝑎 < 𝑏,

∫
𝐵(0,𝑏)\𝐵(0,𝑎)

𝐾 (𝑥) 𝑑𝑥 = 0. (12)

Lemma 7. Let 𝑃(𝑥) = ∑
0≤|𝛼|≤2

𝑎
𝛼
𝑥
𝛼 for 𝑥 ∈ R𝑛 and 𝜆 ≥ 0.

Define operator 𝑈
𝑃,𝜆

by

(𝑈
𝑃,𝜆

𝑓) (𝑥) =
𝜒
𝐵(0,𝜆)

𝑐 (𝑥)

|𝑥|
𝑛

∫
𝐵(0,1)

𝑒
𝑖𝑃(𝑥−𝑦)

𝑓 (𝑦) 𝑑𝑦. (13)

Then, there exists 𝐶 > 0 independent of 𝑃 such that

󵄩󵄩󵄩󵄩𝑈𝑃,𝜆𝑓
󵄩󵄩󵄩󵄩𝐿1(R𝑛)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(𝐵(0,1)) (14)

holds for all 𝑓 ∈ 𝐿
∞
(𝐵(0, 1)) and 𝜆 ≥ (∑

|𝛼|=2
|𝑎
𝛼
|
1/2

)
−2.

Proof. We start by treating the more difficult case 𝑛 ≥ 2. The
other case, 𝑛 = 1, will be briefly considered later.

Write

∑

|𝛼|=2

𝑎
𝛼
𝑥
𝛼
=

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝑏
𝑗𝑘
𝑥
𝑗
𝑥
𝑘
, (15)

with 𝑏
𝑗𝑘

= 𝑏
𝑘𝑗

for 1 ≤ 𝑗, 𝑘 ≤ 𝑛. Then, there exist 𝑙, 𝑠 ∈

{1, . . . , 𝑛} such that

󵄨󵄨󵄨󵄨𝑏𝑙𝑠
󵄨󵄨󵄨󵄨 = max {󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑘

󵄨󵄨󵄨󵄨󵄨
: 1 ≤ 𝑗, 𝑘 ≤ 𝑛} . (16)

Thus, we have

2𝑛
4 󵄨󵄨󵄨󵄨𝑏𝑙𝑠

󵄨󵄨󵄨󵄨 𝜆 ≥ 𝜆( ∑

|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2

)

2

> 1. (17)

For 𝑥, 𝑦 ∈ R𝑛, let

𝑥
󸀠
= (𝑥

1
, . . . , 𝑥

𝑙−1
, 𝑥
𝑙+1

, . . . , 𝑥
𝑛
) ,

𝑦̃ = (𝑦
1
, . . . , 𝑦

𝑠−1
, 𝑦
𝑠+1

, . . . , 𝑦
𝑛
) .

(18)

Then, there are polynomials 𝑄
1
(⋅), 𝑄

2
(⋅) on R𝑛, 𝑄

3
(⋅), 𝑄

4
(⋅)

on R𝑛−1, and 𝑄
5
(⋅) on R𝑛−1 ×R𝑛−1 such that

∑

|𝛼|=2

𝑎
𝛼
(𝑥 − 𝑦)

𝛼

= −2𝑏
𝑙𝑠
𝑥
𝑙
𝑦
𝑠
+ 𝑄

1
(𝑥) + 𝑄

2
(𝑦)

+ 𝑥
𝑙
𝑄
3
(𝑦̃) + 𝑦

𝑠
𝑄
4
(𝑥
󸀠
)

+ 𝑄
5
(𝑥
󸀠
, 𝑦̃) .

(19)



Journal of Function Spaces 3

Let 𝑔(𝑥) = 𝑓(𝑥) for 𝑥 ∈ 𝐵(0, 1) and 𝑔(𝑥) = 0 if 𝑥 ∈ 𝐵(0, 1)
𝑐.

Then,

󵄩󵄩󵄩󵄩𝑈𝑃,𝜆𝑓
󵄩󵄩󵄩󵄩𝐿1(R𝑛)

= ∫
R𝑛\𝐵(0,𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑛

𝑒
𝑖𝑃(𝑥−𝑦)

𝑔 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥

|𝑥|
𝑛

= ∫
R𝑛\𝐵(0,𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑦̃∈R𝑛−1

𝑒
𝑖(𝑃(0)+∑

|𝛼|=1
𝑎
𝛼
𝑥
𝛼

+𝑄
1
(𝑥)+𝑥

𝑙
𝑄
3
(𝑦̃)+𝑄

5
(𝑥
󸀠

,𝑦̃))
(∫

𝑦
𝑠
∈R

𝑒
𝑖(−2𝑏
𝑙𝑠
𝑥
𝑙
𝑦
𝑠
−∑
|𝛼|=1

𝑎
𝛼
𝑦
𝛼

+𝑄
2
(𝑦)+𝑦

𝑠
𝑄
4
(𝑥
󸀠

))
𝑔 (𝑦) 𝑑𝑦

𝑠
)𝑑𝑦̃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥

|𝑥|
𝑛

≤ 𝐶∫
𝑥
󸀠
∈R𝑛−1

∫
𝑦̃∈R𝑛−1

∫
𝑥
𝑙
∈R

ℎ
𝑥
󸀠 (𝑥

𝑙
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑦
𝑠
∈R

𝑒
−𝑖(2𝑏
𝑙𝑠
𝑥
𝑙
)𝑦
𝑠𝑔
𝑥
󸀠
,𝑦̃
(𝑦
𝑠
) 𝑑𝑦

𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥
𝑙
𝑑𝑦̃ 𝑑𝑥

󸀠
,

(20)

where

𝑔
𝑥
󸀠
,𝑦̃
(𝑦
𝑠
) = 𝑒

𝑖(−∑
|𝛼|=1

𝑎
𝛼
𝑦
𝛼

+𝑄
2
(𝑦)+𝑦

𝑠
𝑄
4
(𝑥
󸀠

))
𝑔 (𝑦) ,

ℎ
𝑥
󸀠 (𝑥

𝑙
) =

𝜒
[𝜆
2
,∞)

(
󵄨󵄨󵄨󵄨𝑥𝑙

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨

2

)

(
󵄨󵄨󵄨󵄨𝑥𝑙

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑥
󸀠󵄨󵄨󵄨󵄨

2

)
𝑛/2

.

(21)

Since |𝑔
𝑥
󸀠
,𝑦̃
(𝑦
𝑠
)| = |𝑔(𝑦)| and supp(𝑔

𝑥
󸀠
,𝑦̃
) ⊆ [−1, 1], we have

󵄩󵄩󵄩󵄩𝑈𝑃,𝜆𝑓
󵄩󵄩󵄩󵄩𝐿1(R𝑛)

≤ 𝐶∫
𝑥
󸀠
∈R𝑛−1

∫
𝑦̃∈R𝑛−1

∫
𝑥
𝑙
∈R

ℎ
𝑥
󸀠 (𝑥

𝑙
)

⋅
󵄨󵄨󵄨󵄨󵄨󵄨
𝑔
𝑥
󸀠
,
𝑦̃ (2𝑏

𝑙𝑠
𝑥
𝑙
)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

𝑙
𝑑𝑦̃ 𝑑𝑥

󸀠

≤ 𝐶∫
𝑥
󸀠
∈R𝑛−1

∫
𝑦̃∈R𝑛−1

(∫
R

󵄨󵄨󵄨󵄨ℎ𝑥󸀠 (𝑥𝑙)
󵄨󵄨󵄨󵄨

2

𝑑𝑥
𝑙
)

1/2

⋅ (∫
R

󵄨󵄨󵄨󵄨󵄨󵄨
𝑔
𝑥
󸀠
,
𝑦̃ (2𝑏

𝑙𝑠
𝑥
𝑙
)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥
𝑙
)

1/2

𝑑𝑦̃ 𝑑𝑥
󸀠

= 𝐶
󵄨󵄨󵄨󵄨𝑏𝑙𝑠

󵄨󵄨󵄨󵄨

−1/2

∫
𝑥
󸀠
∈R𝑛−1

∫
𝑦̃∈R𝑛−1

(∫
R

󵄨󵄨󵄨󵄨ℎ𝑥󸀠 (𝑥𝑙)
󵄨󵄨󵄨󵄨

2

𝑑𝑥
𝑙
)

1/2

⋅ (∫
R

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑥
󸀠
,𝑦̃
(𝑦
𝑠
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑦
𝑠
)

1/2

𝑑𝑦̃ 𝑑𝑥
󸀠

≤ 𝐶
󵄨󵄨󵄨󵄨𝑏𝑙𝑠

󵄨󵄨󵄨󵄨

−1/2 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(𝐵(0,1))

⋅ (∫
|𝑥
󸀠
|≥𝜆

(∫
R

𝑑𝑥
𝑙

(
󵄨󵄨󵄨󵄨𝑥𝑙

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑥
󸀠󵄨󵄨󵄨󵄨

2

)
𝑛
)

1/2

𝑑𝑥
󸀠

+ ∫
|𝑥
󸀠
|<𝜆

(∫
|𝑥
𝑙
|≥√𝜆
2
−|𝑥
󸀠
|
2

𝑑𝑥
𝑙

(
󵄨󵄨󵄨󵄨𝑥𝑙

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑥
󸀠󵄨󵄨󵄨󵄨

2

)
𝑛
)

1/2

𝑑𝑥
󸀠
)

≤ 𝐶
󵄨󵄨󵄨󵄨𝑏𝑙𝑠

󵄨󵄨󵄨󵄨

−1/2 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(𝐵(0,1))

[
[
[

[

∫
|𝑥
󸀠
|≥𝜆

𝑑𝑥
󸀠

󵄨󵄨󵄨󵄨𝑥
󸀠󵄨󵄨󵄨󵄨

𝑛−1/2

+ 𝜆
(1−2𝑛)/2

∫
|𝑥
󸀠
|<𝜆

(∫

∞

1

𝑑𝑡

𝑡𝑛√𝑡 −
󵄨󵄨󵄨󵄨𝑥
󸀠/𝜆

󵄨󵄨󵄨󵄨

2

)

1/2

𝑑𝑥
󸀠
]
]
]

]

≤ 𝐶
󵄨󵄨󵄨󵄨𝑏𝑙𝑠

󵄨󵄨󵄨󵄨

−1/2 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(𝐵(0,1))

(𝜆
−1/2

+ 𝜆
−𝑛+1/2

∫
|𝑥
󸀠
|<𝜆

(1

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
󸀠

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)

−1/4

𝑑𝑥
󸀠
) ≤ 𝐶 (𝜆

󵄨󵄨󵄨󵄨𝑏𝑙𝑠
󵄨󵄨󵄨󵄨)
−1/2

⋅
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿∞(𝐵(0,1))
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(𝐵(0,1))

.

(22)

The treatment of the case 𝑛 = 1 only involves the Fourier
transform step of the preceding argument. Details are omit-
ted.

Lemma 8. Let 𝑛 ∈ N and 𝑃(𝑥) = ∑
0≤|𝛼|≤2

𝑎
𝛼
𝑥
𝛼 be a quadratic

polynomial in R𝑛 with real coefficients. Let 𝐾 be a Calderón-
Zygmund kernel satisfying (11)-(12) and let 𝑇

𝑃
be given as in

(1). Then, there exists a positive constant 𝐶 such that

󵄩󵄩󵄩󵄩𝑇𝑃𝑓
󵄩󵄩󵄩󵄩𝐿1(R𝑛)

≤ 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
)) (23)

for every𝐻
1 atom 𝑓 which satisfies (7)–(9) with 𝜁 = 0 and 𝑟 =

1. The constant 𝐶 may depend on 𝑛 and 𝐴 but is independent
of {𝑎

𝛼
}, 𝐾, and 𝑓.

Proof. By the uniform boundedness of 𝑇
𝑃
on 𝐿

2
(R𝑛) and (7)-

(8),

∫
𝐵(0,2)

󵄨󵄨󵄨󵄨𝑇𝑃𝑓 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ |𝐵 (0, 2)|

1/2 󵄩󵄩󵄩󵄩𝑇𝑃𝑓
󵄩󵄩󵄩󵄩𝐿2(R𝑛)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿2(R𝑛)
≤ 𝐶.

(24)

By (11), we have

∫
R𝑛\𝐵(0,2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇
𝑃
𝑓 (𝑥) − 𝐾 (𝑥) ∫

𝐵(0,1)

𝑒
𝑖𝑃(𝑥−𝑦)

𝑓 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥

≤ ∫
R𝑛\𝐵(0,2)

∫
𝐵(0,1)

󵄨󵄨󵄨󵄨𝐾 (𝑥 − 𝑦) − 𝐾 (𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦 𝑑𝑥

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿1(R𝑛)
∫
R𝑛\𝐵(0,2)

|𝑥|
−𝑛−1

𝑑𝑥 ≤ 𝐶.

(25)
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Let 𝜆 = (∑
|𝛼|=2

|𝑎
𝛼
|
1/2

)
−2. It follows from (11) and (7)-(8) and

Lemma 7 that

∫
R𝑛\𝐵(0,max{2,𝜆})

󵄨󵄨󵄨󵄨𝑇𝑃𝑓 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝐶 + ∫
R𝑛\𝐵(0,𝜆)

|𝐾 (𝑥)|

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐵(0,1)

𝑒
𝑖𝑃(𝑥−𝑦)

𝑓 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑥

≤ 𝐶 + 𝐶
󵄩󵄩󵄩󵄩𝑈𝑃,𝜆𝑓

󵄩󵄩󵄩󵄩𝐿1(R𝑛)
≤ 𝐶.

(26)

If 𝜆 ≤ 2, then (23) follows from (24) and (26).
Thus, we may assume that 𝜆 > 2. To finish the proof, it

suffices to show that

∫
𝐵(0,𝜆)\𝐵(0,2)

󵄨󵄨󵄨󵄨𝑇𝑃𝑓 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
)) .

(27)

We will establish (27) by discussing two cases.

Case 1 (∑
|𝛼|=1

|𝑎
𝛼
| ≥ 1/2). In this case, we have

∫
𝐵(0,𝜆)\𝐵(0,2)

󵄨󵄨󵄨󵄨𝑇𝑃𝑓 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝐶∫
𝐵(0,𝜆)\𝐵(0,2)

∫
𝐵(0,1)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

−𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦 𝑑𝑥

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿1(R𝑛)
∫
𝐵(0,𝜆)\𝐵(0,2)

|𝑥|
−𝑛

𝑑𝑥

≤ 𝐶 ln(
1

2 (∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2

)

2
)

≤ 𝐶(ln 2 + 2 ln(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
))

≤ 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
)) .

(28)

Case 2 (∑
|𝛼|=1

|𝑎
𝛼
| < 1/2). In this case, we let

𝑄 (𝑥) = 𝑃 (0) + ∑

|𝛼|=2

𝑎
𝛼
𝑥
𝛼
. (29)

It follows fromTheorem 1 of [3] that
󵄩󵄩󵄩󵄩𝑇𝑄𝑓

󵄩󵄩󵄩󵄩𝐿1(R𝑛)
≤ 𝐶. (30)

For 𝑥 ∈ R𝑛 and 𝑦 ∈ 𝐵(0, 1), we have
󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
𝑖𝑃(𝑥−𝑦)

− 𝑒
𝑖(∑
|𝛼|=1

𝑎
𝛼
𝑥
𝛼

+𝑄(𝑥−𝑦))
󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∑

|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨 . (31)

By (30)-(31) and

sup
0<𝑡<1/2

𝑡 ln(
1

𝑡
) =

1

𝑒
, (32)

we have

∫
𝐵(0,𝜆)\𝐵(0,2)

󵄨󵄨󵄨󵄨𝑇𝑃𝑓 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 ≤

󵄩󵄩󵄩󵄩𝑇𝑄𝑓
󵄩󵄩󵄩󵄩𝐿1(R𝑛)

+ ∫
𝐵(0,𝜆)\𝐵(0,2)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑇
𝑃
𝑓 (𝑥) − 𝑒

𝑖(∑
|𝛼|=1

𝑎
𝛼
𝑥
𝛼

)
𝑇
𝑄
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

≤ 𝐶 + 𝐶( ∑

|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1(R𝑛)

∫
𝐵(0,𝜆)\𝐵(0,2)

|𝑥|
−𝑛

𝑑𝑥

≤ 𝐶 + 𝐶( ∑

|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨) ln(

1

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
) = 𝐶

+ 𝐶( ∑

|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨)

⋅ [

[

ln(
1

∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

) + ln(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
)]

]

≤ 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
)) .

(33)

Thus, (27) holds in both cases.

3. Proof of Main Theorem

To finish the proof, we recall the following result concerning
Riesz transforms and Hardy spaces.

Lemma 9 (see [10, 13]). For 1 ≤ 𝑗 ≤ 𝑛, let 𝑅
𝑗
denote the 𝑗th

Riesz transform; that is,

𝑅
𝑗
𝑓 (𝜉) =

𝑖𝜉
𝑗

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑓̂ (𝜉) . (34)

Then, there exist 𝐶,𝐶
1
, 𝐶
2
> 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐻1(R𝑛)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻1(R𝑛) (35)

for 1 ≤ 𝑗 ≤ 𝑛, and

𝐶
1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛)

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿1(R𝑛)
+

𝑛

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿1(R𝑛)

≤ 𝐶
2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛)

(36)

for all 𝑓 ∈ 𝐻
1
(R𝑛).

We will now give the proof of Theorem 2.

Proof. For 𝑓 ∈ 𝐻
1
(R𝑛), let {𝜔]} be a sequence of complex

numbers and let {𝑓]} be a sequence of𝐻
1 atoms such that

𝑓 = ∑

]
𝜔]𝑓]. (37)
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For each ], let 𝜁] ∈ R𝑛 and 𝑟] > 0 such that supp(𝑓]) ⊆

𝐵(𝜁], 𝑟]) and ‖𝑓]‖∞ ≤ |𝐵(𝜁], 𝑟])|
−1

= |𝐵(0, 1)|
−1
𝑟
−𝑛

] . Then,

𝑟
𝑛

]𝑇𝑃𝑓] (𝑟]𝑥 + 𝜁])

= p.v.∫
R𝑛

𝑒
𝑖𝑃](𝑥−𝑦)𝐾] (𝑥 − 𝑦) (𝑟

𝑛

]𝑓] (𝑟]𝑦 + 𝜁])) 𝑑𝑦,
(38)

where 𝑃](𝑥) = 𝑃(𝑟]𝑥) and 𝐾](𝑥) = 𝑟
𝑛

]𝐾(𝑟]𝑥). Observe that,
for each ],𝐾] satisfies (11)-(12) with the same constant 𝐴 and
𝑟
𝑛

]𝑓](𝑟]𝑦 + 𝜁]) satisfies (7)–(9) with 𝜁 = 0, 𝑟 = 1. Since

𝑃] (𝑥) = ∑

0≤|𝛼|≤2

𝑟
|𝛼|

] 𝑎
𝛼
𝑥
𝛼
, (39)

by Lemma 8,

󵄩󵄩󵄩󵄩𝑇𝑃𝑓]
󵄩󵄩󵄩󵄩𝐿1(R𝑛)

= ∫
R𝑛

󵄨󵄨󵄨󵄨𝑟
𝑛

]𝑇𝑃𝑓] (𝑟]𝑥 + 𝜁])
󵄨󵄨󵄨󵄨 𝑑𝑥

= 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
)) ,

(40)

which implies that
󵄩󵄩󵄩󵄩𝑇𝑃𝑓

󵄩󵄩󵄩󵄩𝐿1(R𝑛)

≤ 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
))(∑

]

󵄨󵄨󵄨󵄨𝜔]
󵄨󵄨󵄨󵄨) .

(41)

It follows from Lemma 5 that
󵄩󵄩󵄩󵄩𝑇𝑃𝑓

󵄩󵄩󵄩󵄩𝐿1(R𝑛)

≤ 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
))

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛)

.

(42)

By the translation invariance of𝑇
𝑃
and (42) and (35), we have

𝑛

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑗
𝑇
𝑃
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿1(R𝑛)

=

𝑛

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑃
𝑅
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿1(R𝑛)

≤ 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
))

⋅ (

𝑛

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐻1(R𝑛)

)

≤ 𝐶(1 + log+(
∑
|𝛼|=1

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

∑
|𝛼|=2

󵄨󵄨󵄨󵄨𝑎𝛼
󵄨󵄨󵄨󵄨

1/2
))

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻1(R𝑛)

.

(43)

By applying (36), (42), and (43), we obtain (4).
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