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The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low
density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and
10wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and
feeder speeds (50, 100, and 150 rpm).These applied conditions are used to optimize the following properties: thermal conductivity,
crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through
artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The
tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for
the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the
above material properties before investing in development programs and actual manufacturing, thus significantly saving money,
time, and effort.

1. Introduction

The various forms and allotropes of carbon, such as carbon
nanotubes [1], carbon fibre [2], graphite [3, 4], graphene [5],
and graphene oxide, have attracted many researchers due to
their exceptional physical andmechanical properties, such as
high electrical conductivity and good thermal stability. This
combination of superior properties with the simplicity of pro-
duction of graphene-basedmaterials is important in different
applications such as electronic industry and sensors [6]. One
of the most widely used applications of these graphene-based
materials is in polymer composites with good mechanical,

thermal, gas barrier, and electrical properties compared to the
pure polymers [7].

Graphene-based composites can be processed into differ-
ent shapes that serve the required applications with available
processing methods. Graphene-based polymer composites
have attractedmany researchers in both academia and indus-
try [8]. Several polymers, such as epoxy [9], PMMA [10], PVA
[11], PS [12], and PP [13], were used as matrices to prepare
graphene nanoplatelets composites [14].

Graphene nanoplatelets (GNPs) are novel nanofillers that
consist of single or multiple graphitic planes and possess
exceptional properties with high mechanical strength and
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Figure 1: McCulloch and Pitts model of neuron.

chemical stability. GNPs have many advantages such as the
cost effectiveness and the extremely high-specific surface
area, which facilitates stress transfer at the composite inter-
face and provides higher reinforcement compared to carbon
nanotubes [6].

The performance and application of these polymer com-
posites can be restricted due to the aggregation of graphene
nanoplatelet sheets.

During the manufacturing of polymer composites, pro-
cessing parameters such as temperature, screw speed, and
wt% of the filler can influence the final properties of the
composites [15, 16]. The study of these processing-property
relationships is important to tailor the composites for spe-
cific applications. Generally, modeling these relationships
includes mathematical understanding resulting from exper-
imental data. This mathematical model can reduce the
experimental work which is very cost effective in designing
the composites. Artificial neural networks [17] are a class of
mathematical modeling that can be used to efficiently explore
and analyze the relationship between large sets of inputs
and outputs and have been extensively applied to materials
processing [18]. ANNs are well suited to approximate outputs
even when they are nonlinear functions of the inputs, so that
a generalized model can be built over the available data.

The basic and first model of ANN was proposed by
McCulloch and Pitts, as shown in Figure 1. It consists of a
neuron that computes the weighted sum of its input signals
and produces an output of 1 if the sum is above a threshold;
else it produces an output of 0. The threshold function
seen here is considered to be the activation function. Using
positive weights indicates excitatory synapses, and using
negative weights corresponds to inhibitory synapses. The
threshold function can be replaced by many other activation
functions such as piecewise linear, sigmoid, and Gaussian
functions.

The mechanical, electrical, and thermal properties of
graphene nanoplatelet composites can be strongly affected
by several parameters during their manufacturing process. It
would be a tedious task to experimentally determine the effect
of all the possible combinations of these parameters.

The present study focuses on the GNPs/LLDPE nano-
composites which were prepared by melt processing with
different extruder screw and feeder speeds. In this study
we calculate and predict thermal, electrical, and tensile
properties. Linear low density polyethylene (LLDPE) was
used as the polymer matrix due to the good balance between
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Figure 2: ANN architecture (prediction of required property).

rigidity and strength and relative ease of processing compared
to other types of PE. By modifying the chain structure of
the polymer by the reinforcement of nanoadditives (e.g.,
carbon additive), the mechanical properties of PE can be
enhanced and new conductive paths are arranged in the
material. Improvement in the electrical conductivity can also
be achieved which can be applied in electronic industry such
as static charge-dissipative materials.

An ideal solution is the implementation of a suitable
prediction method based on the available experimental
data points. To this end, we have developed an artificial
neural network model to predict the thermal conductivity,
crystallization temperature, degradation temperature, and
tensile strength for graphene nanoplatelet/polymer compos-
ites. Figure 2 shows the ANN architecture of inputs (speed
and composition of the additives) and outputs (predicted
property).

2. Experimental

2.1. Materials. LLDPE with MFI of 1.0 g/10min and density
of 0.918 g/cm3 was kindly provided by QAPCO (Qatar), in
powder form. LLDPE was mixed with a phenolic stabilizer
to improve its thermal stability during extrusion.

Graphene nanoplatelets grade C (C-GNP) supplied by
XG Sciences (USA) were used as a filler. C-GNP particles
of submicron platelets have thickness of few nanometers and
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Table 1: List of extruded samples codes.

Sample codes Extruder speed (rpm) Feeder speed (kg/h) % of graphene nanoplatelets % of LLDPE
LLDGNPC 1 50 50 0 100
LLDGNPC 2 100 100 0 100
LLDGNPC 3 150 150 0 100
LLDGNPC 4 50 50 1 99
LLDGNPC 5 50 50 2 98
LLDGNPC 6 50 50 4 96
LLDGNPC 7 50 50 6 94
LLDGNPC 8 50 50 8 92
LLDGNPC 9 50 50 10 90
LLDGNPC 10 100 100 1 99
LLDGNPC 11 100 100 2 98
LLDGNPC 12 100 100 4 96
LLDGNPC 13 100 100 6 94
LLDGNPC 14 100 100 8 92
LLDGNPC 15 100 100 10 90
LLDGNPC 16 150 150 1 99
LLDGNPC 17 150 150 2 98
LLDGNPC 18 150 150 4 96
LLDGNPC 19 150 150 6 94
LLDGNPC 20 150 150 8 92
LLDGNPC 21 150 150 10 90

the diameter is usually of about 2 micrometers. C-GNPs have
an average surface area of about 500m2/g.

2.2. Preparation of LLDPE/Graphene Nanocomposites Pellets.
1, 2, 4, 6, 8, and 10wt%C-GNP reinforced LLDPE composites
were processed in a twin screw extruder with three different
screw speeds and feeder speeds (50, 100, and 150 rpm).
The matrix material and graphene were mixed in a five-
stage Brabender twin screw extruder. The temperature of
the processing zones was in the range of 190–230∘C. Table 1
lists the sample codes and the various processing conditions
employed. The mixtures were fed into the hopper of the
extruder and then pushed through the various zones of the
extruder before being cooled inwater. Extruded sampleswere
hot-pressed in a compression molding machine (170∘C) to
produce sheet samples for mechanical testing.

2.3. Characterization

2.3.1. Thermal Properties

(1) Thermal Conductivity. The thermal conductivity of the
C-GNPs/LLDPE composites was measured by a Hot Disk
(Sweden) TPS 2500S instrument. The sample dimensions
were 5 cm × 2.5 cm with a thickness of 0.5 cm.

(2) Thermal Degradation Temperature. Thermogravimetric
analysis (TGA) of the C-GNPs/LLDPE composites was
done using a Perkin Elmer 6 under a nitrogen atmosphere

from ambient temperature to 700∘C at a heating rate of
10∘C/minute.

2.3.2. Crystallization Temperature (𝑇
𝐶
) and Crystallinity Per-

centage. The crystallization temperature was measured by
using Perkin Elmer Pyris 7 differential scanning calorimetry
(DSC) under nitrogen atmosphere, while maintaining a
constant heating and cooling rate of 10∘C/minute. The C-
GNPs/LLDPE composites were heated from room temper-
ature to 220∘C and held for 10 minutes at this temperature
before being cooled to room temperature again. The crystal-
lization temperature (𝑇C) was determined from the cooling
cycle of the DSC curves.

The degree of crystallinity was calculated according to the
following equation:

Degree of crystallinity

= [

(Specific enthalpy of melting)
(specific enthalpy for 100% crystalline PE 288 kJ/kg)

]

× 100.

(1)

2.3.3. Mechanical Testing. The tensile strength (fracture
point) of the LLDPE/graphene composites was measured
using a universal tensile testingmachine at room temperature
according to ASTM D638-10. Tensile strength of the five
samples was tested for each composition, and the average
value is reported.
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2.4. Artificial Neural Network

2.4.1. Prediction Methodology

Design and Training of Network. Our experimental platform
consists of the “Neural Network Toolbox” available in MAT-
LAB software package (version R2013a) [19]. The toolbox
supports supervised learning with feedforward, radial basis,
and dynamic networks as well as the unsupervised learning
with self-organizing maps and competitive layers. It provides
graphical tools for training neural networks to perform the
tasks of data fitting, pattern recognition, clustering, and time-
series prediction.

2.4.2. Neural Network Architecture. Basically, a neural net-
work consists of three types of neuron layers: input, hidden,
and output layers. In thewidely used “feedforward” networks,
signal flows only from input to output in contrast to the
“recurrent networks.”

2.4.3. Learning. The networks learn/update their weights to
achieve the desired outputs corresponding to the set of inputs
by minimizing the error between the network’s predicted
outputs and actualmeasured outputs.These errors are used to
update the weights starting from the output layer to the hid-
den layer and then to the input layer in the “backpropagation”
mode of algorithms [20]. Backpropagation learning with suf-
ficient number of hidden layers is successful in approximating
any nonlinear functions and hence proves its suitability in
signal prediction applications. But different initialization of
weights yields different networks. Several optimization algo-
rithms are used to optimize the weights, including gradient
descent, conjugate gradients, quasi-Newton, and Levenberg-
Marquardt.The twoparameters that are relevant to backprop-
agation learning are learning rate andmomentum factor [21].
The learning rate determines the change ofweights during the
training. A larger learning rate causes a large change and thus
it controls the learning speed. Momentum factor is used to
speed up the network training. It determines the proportion
of the previous weight changes that is to be added to the
current weight changes. Both parameters are very important
in determining learning speed and accuracy.

2.4.4. Activation Function. The activation functions are
responsible for producing the outputs when supplied with
weighted sumof input neurons [22]. Sigmoid activation func-
tions with variants such as logistic, hyperbolic tangent, and
arc tangent are the most commonly used. Feedforward net-
works usually comprise one ormore hidden layers of sigmoid
neurons followed by an output layer of linear neurons [19].
Multiple layers of neurons with nonlinear activation/transfer
function help learning effectively the nonlinear relationships
between input and output vectors. The linear output layer is
most often used for function fitting problems.

2.4.5. Performance Evaluation. Efficiency of designed neural
network in the prediction of the properties was evaluated in
terms of the following parameters.

(i) Mean Squared Error (MSE). It is calculated as the
average squared difference between the predicted
values and experimental data. Lower values indicate a
better fit. Ideal value is zerowhich represents no error.

(ii) Regression (R). It measures the correlation between
the predicted and experimental values. The ideal
value of 1 represents a close relationship whereas 0
represents a random relationship.

2.5. Experiments. For the simulation of neural network, we
have used our data set of 21 samples. Input parameters used
for the prediction are graphene content (wt%) and speed.
The predicted parameters are thermal conductivity, crystal-
lization temperature, thermal degradation temperature, and
tensile strength as described in Table 3. Separate neural
network was built for each predicted parameter. The data set
was split into three subsets as follows.

Training (50%). 11 samples were randomly selected for
network training.
Validation (25%). Five samples were used to deter-
mine network generalization and stop training when
generalization stops improving.
Testing (25%). Five samples were used for the inde-
pendent evaluation of prediction correctness after
training.

Choosing the optimal number of hidden layers and their
neurons is an important aspect of neural network based
predictions. Most function approximation problems produce
excellent results with single hidden layer [17]. The number
of neurons in the hidden layer increases the power of the
network but requires more computation and may cause
overfitting. We used different number of hidden neurons to
analyze their effects on the network’s performance.

3. Results and Discussion

3.1. Thermal Conductivity. Thermal conductivity is related to
the filler loading, its dispersion, and the interface between
the filler and the matrix. GNPs have high aspect ratio and
high surface area and are therefore expected to enhance
heat transfer at the C-GNPs/polymer interface and thus
improve the thermal conductivity of the composites.Thermal
conductivity of GNPs/LLPDE composites was measured as a
function of wt% of graphene and different speeds of extruder
screw and feeder as shown in Figure 3. Thermal conductivity
of GNPs/LLDPE composites increased with the increase of
wt% of graphene. The thermal conductivity of pure LLDPE
was 0.37w/m⋅K and that of the 10wt% GNPs/LLDPE com-
posites processed at 150 rpm speedwas 0.5 w/m⋅K,which rep-
resents an enhancement by 42% compared with pure LLDPE.
Thermal conductivity of 10 wt% GNPs/LLDPE composites
processed at 100 and 50 speeds was increased by 27% and
23%, respectively. These values are higher than the results
reported by Zhu et al. [23] for 10% of the hybrid fillers of
nitride particle and hollow glass microspheres even with the
surface modifications of the fillers (less than 0.5 w/m⋅K), but
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Figure 3: Effect of % of graphene on thermal conductivity of
LLDPE/C-GNPs composites at different screw/feeder speeds.

they are less than 0.6 w/m⋅K reported for the 10% of the high
thermal conductive additive Si

3
N
4
[24].

The increase in thermal conductivity upon C-GNPs addi-
tion in the LLDPEmatrix is due to the increase in the number
of conductive channels and pathways inside thematrix.Other
factors are the high aspect ratio and low interfacial thermal
resistance between the platelets and the matrix [25].

Thermal conductivity of C-GNPs/LLDPE (Figure 3) was
affected by the speed of extruder screw and feederwith higher
speed giving increased thermal conductivity, which can be
attributed to the better dispersion with the high speed. Lower
speeds result in keeping the additives encapsulated in the
matrix which means lower pathway networks.

This is similar to the results concluded by Zhang et
al. [26] who explained that multistage stretching extrusion
processing can improve the dispersion of the conductive
additive (BN particles) in the PE matrix.

Network trainingwas based on the Levenberg-Marquardt
algorithm. The various parameter settings for the training
are maximum number of epochs to train: 1000, minimum
performance gradient: 1−15, and maximum validation fail-
ures: 6. Mean square error (MSE) and regression (𝑅) coef-
ficients obtained for each setting of hidden neurons in the
prediction of thermal conductivity are shown in Supple-
mentary Table 1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/5340252. The selection of
11 hidden neurons gives the lowest MSE as well as high
correlation coefficient.

The resulting performance curve for network training
and the regression plot are shown in Figure 4. Figure 4(a)
shows the performance plot with MSE as the goal for
the training procedure. The best validation performance
occurred at 2 epochs.

The training stopped when the validation error increased
for 6 interactions which occurred at epoch 8. Test and
validation set error follows the same trend which indicates
the achievement of a good result. A linear regression between

the network output and the corresponding target is shown
in Figure 4(b) for training, validation, and testing and a
correlation coefficient 𝑅-value of 0.9 was obtained for the full
data set.

The experimental values are compared with the pre-
dicted values from ANN for thermal conductivity of C-
GNPs/LLDPE composites as shown in Table 4. From the table
it is observed that predicted values and experimental values
were very close to each other.

The mean relative error is very low, that is, 0.0258%,
between the experimental data and neural network predic-
tion, which implies a good agreement between simulation
and experimental results.

Figures 5(a) and 5(b) show experimental values andANN
outputs for thermal conductivity as a function of GNP wt%
and screw and feeder speed, respectively. The columns show
averagemeasured values with 5% confidence interval, and the
continuous line represents ANN output.These figures exhibit
the good agreement between experimental data and ANN
output.

3.2. Crystallization Temperature. DSC characterization was
carried out to quantify any changes in crystallization tem-
perature in the C-GNPs/LLDPE composites, and the results
are presented in Figure 6. The crystallization temperatures
of C-GNP/LLDPE composites were significantly higher than
pure LLPDE polymer indicating the nucleation effect of C-
GNPs on the LLDPEmatrix.The nucleating effect means that
the onset of crystallization shifts to higher temperatures and
crystallization starts earlier as the polymer is cooled down
from the melt. This is also supported by the literature, which
reports that graphene sheets can act as nucleating agents
that increase the crystallinity of polymers [27]. Figure 6
also shows that the crystallization temperature increases with
increasing C-GNPs wt%. 10wt% of C-GNPs has the highest
crystallization temperature for all used speeds. The result is
consistent with the literature [28] that the crystallinity of
LLDPE increases with the graphene content.

The influence of the extruder speed on the crystallization
temperature is not uniform, but generally a trend can be seen
of higher crystallization temperatures with high screw and
feeder speeds; this is likely due to the reduction in the number
of agglomerates in the composite and the creation of more
nucleation sites with the high shear rate.

Levenberg-Marquardt algorithm was used for training
the network. The various parameter settings during the
training were maximum number of epochs to train: 1000,
minimum performance gradient: 1−15, and maximum valida-
tion failures: 4. SupplementaryTable 2 shows theMSE and the
regression (𝑅) coefficients obtained for each setting of hidden
neurons in the prediction of crystallization temperature. The
sum of MSE for the training and test data indicates the
accuracy of prediction [29]. Supplementary Table 2 shows
that the selection of 4 hidden neurons gives the lowest MSE
and a high correlation coefficient. The resulting performance
curve for network training is shown in Figure 7(a) which is
drawn by usingMSE over the epochs and regression plots are
shown in Figure 7(b).
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Figure 4: Neural network for the prediction of thermal conductivity: (a) performance plot and (b) regression plot.
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The performance plot shown in Figure 7(b) indicates that
the best validation performance occurred at epoch 10. The
training stopped when the validation error increased for 6
iterations which occurred at epoch 16. Both the test and
validation set errors followed similar trends which indicates a
reasonable result.The regression plot (Figure 7(b)) shows the
variation of predicted properties byANNwith corresponding
experimental values, for each fraction of the data, namely,
training, validation, testing, and whole data. A linear regres-
sion between the network output and the corresponding
targets was shown in Figure 7(b). From this figure, correlation
coefficient value (𝑅-value) for all responses is 0.989, which
indicates a good match between the experimental data and
the ANNpredictions.More detailed comparison between the

experimental values and predicted values can be found in
Table 5.

The average relative error in predicting the crystallization
temperature of C-GNPs composites by the developed neural
network model is low (0.96%), which implies that predicted
results were in good agreement with experimental results.

Figure 8 shows the crystallization temperature of C-
GNPs/LLDPE composites as a function of C-GNP wt% and
of different extruder and feeder speeds. It can be seen from
the figures that the predicted profile shows a good agree-
ment with the experimental results. The figure shows that
the well-trained neural networks can predict crystallization
temperature as there is a functional relationship between the
variables. The prediction of crystallization temperatures of
polymer formulations is of great value in industrial develop-
ment of polymer formulations and their behavior duringmelt
processing.

3.3. Thermal Degradation Temperature. Figure 9 shows the
thermal degradation temperature of the LLPDE and C-
GNPs/LLDPE composites with varying C-GNPs wt% and
speed. LLDPE degrades at the lowest temperature, whereas
the degradation temperature of graphene nanocomposites
increases with increasing graphene content [28]. The results
show that the addition of GNPs has a strong effect on the
decomposition temperature of pure LLDPE and GNPs can
act as an effective thermal barrier which prevents the thermal
degradation of LLDPE. The LLDPE nanocomposite with
10wt% C-GNPs has the highest thermal stability in the range
of graphene composites tested. The enhancement in thermal
stability of the C-GNPs/LLDPE composite can be attributed
to the very high aspect ratio of GNPs which prevents the
emission of small gaseous molecules during thermal degra-
dation [30]. Addition of graphene nanoplatelets can form the
charred layers on the surface of the composites which disturb
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Figure 7: Neural network for the prediction of crystallization temperature: (a) performance plot and (b) regression plot.
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the oxygen supply to the material underneath [31], leading to
better thermal stability.

Similar results have been observed by other researchers,
who reported that graphene increased the thermal stability
of different kinds of polymers such as PP [32] and PS
[33] and that the thermal stability increased with graphene
content. Figure 9 also shows that increasing the extruder
speed increases the degradation temperature. This could be
due to better dispersion of the C-GNPs achieved at the higher
screw and feeder speeds, leading to a better thermal barrier
layer.

For training the network, Levenberg-Marquardt algo-
rithm was used in this study. Various parameters settings

were used during the training such as maximum number
of epochs to train: 1000, minimum performance gradient:
1−15, andmaximumvalidation failures: 5.MSE and regression
(𝑅) coefficients obtained for each setting of hidden neurons
in the prediction of degradation temperature are shown in
Supplementary Table 3.

The sum of MSE for the training and test data indicates
the accuracy of the ANN predictions [29]. The selection
of 5 hidden neurons achieved the lowest MSE and a high
correlation coefficient; this is shown in Supplementary Table
3. The resulting performance curve for network training and
regression plot are shown in Figure 10.

Figure 10(a) shows the performance plot including the
training, validating, and test errors. The best validation
performance occurred at epoch 10, where the validation error
is minimum. After epoch 10, both the test set error and
validation set error display similar trends, until the validation
was stopped at 16 epochs.

Figure 10(b) presents the result of regression plots for
training, testing, validation, and the full data set. The regres-
sion value of 𝑅 = 0.99 indicates that the predicted values
are very close to the ANN output and the model provides
accurate predictions. Further comparison of experimental
values and predicted values is provided in Table 6.

A low average relative error of 0.164%was obtained in the
prediction of the thermal degradation temperature of the C-
GNPs/LLDPE composites by the developed neural network
model. This very low error indicates that predicted results
have good match with the experimental results.

Figure 11 shows the predicted degradation temperature
of the LLDPE/C-GNPS composites with different C-GNPS
wt% with different screw and feeder speeds. Neural network
is accurate and the predicted profile shows a good agreement
with the experimental results.

3.4. Tensile Properties. The relationships between tensile
strength and C-GNPs wt% are shown in Figure 12. For
the screw and feeder speed of 50 rpm, the tensile strength
gradually increases with increasing C-GNP wt% and peaks at
4wt% C-GNPs loading with an increase of 20.27%. Further
increasing of C-GNPs wt% leads to a decrease in tensile
strength, and the tensile strength measured for 10wt% C-
GNPs is lower than that of the virgin LLDPE. For the speed
of 100 rpm, the variation of tensile strength of composites
followed a similar trend, but the peak is at 2 wt% C-GNPs
loading, corresponding to a total increase of 6.8% compared
to virgin LLDPE. The tensile strength shows the most signif-
icant enhancement (47.5% higher than virgin LLDPE) when
the speed is 150 rpm and C-GNP loading is 4 wt%, indicating
that there is a good efficient load transfer between graphene
platelets and the LDPE matrix under such condition. This
enhancement of the tensile properties was attributed to the
fast flow and higher shear rate [34] obtained at 150 rpm,
which corresponds to the highest interfacial interactions
between the additives and the matrix. With further increase
in C-GNP loading, the tensile strength for 150 rpm speed
drops dramatically to similar level as those for 50 and
100 rpm.
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Figure 10: Neural network for the prediction of thermal degradation temperature: (a) performance plot and (b) regression plot.



International Journal of Polymer Science 11

D
eg

ra
da

tio
n 

pe
ak

 te
m

pe
ra

tu
re

 (∘
C) 500

450

400

350

Speed (rpm)

150

100

50
% of graphene (wt%)

0
2

4
6

8
10

Figure 11: Predicted crystallization temperature of LLDPE/GNPs
composites as a function of C-GNPs wt% and different speeds of
LLDPE/GNPs composites. The measured data are plotted as black
points.

50 rpm
100 rpm
150 rpm

% of graphene
0 1 2 4 6 8 10

PE crystallites
C-GNP
Amorphous regions

Te
ns

ile
 st

re
ng

th
 (M

Pa
)

35

30

25

20

15

10

5

0
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with the schematic diagram of morphology of the C-GNPs/LLDPE
composites.

The crystallinity percentage was calculated from (1) as
shown in Table 2. The crystallinity percentage had the maxi-
mum value for the highest speed (150 rpm) at 4wt% of GNPs.
This table has a similar trend to the tensile strength which
indicates that the increase in the crystalline regions limits the
stretching of the chains in the amorphous regions and limits

Table 2: Crystallinity percentage of prepared composites at different
speeds.

C-GNPs wt% 𝑋
𝑐
% at 50 rpm 𝑋

𝑐
% at 100 rpm 𝑋

𝑐
% at 150 rpm

0 42.87 42.1 44
1 46.8 46.7 46.8
2 49.16 48.8 50.2
4 53.8 52 62.22
6 48.4 48.4 48.7
8 48.5 48.2 48.8
10 48.5 47.7 48.7

the transfer of the load to the GNPs as shown in the diagram
of the proposed morphology of the samples in Figure 12.

Levenberg-Marquardt algorithm was used for training
the network. The various parameter settings during the
training were maximum number of epochs to train: 1000,
minimum performance gradient: 1−15, and maximum valida-
tion failures: 6. The MSE and the regression (𝑅) coefficients
obtained for each setting of hidden neurons in the prediction
of tensile strength are shown in Supplementary Table 4.

The sum of MSE for the training and test data indicates
the accuracy of prediction [29]. The selection of 6 hidden
neurons gives the lowest MSE as well as a high correlation
coefficient which is shown in Supplementary Table 4. The
resulting performance curve for network training and regres-
sion plot are shown in Figure 13.

The performance plot in Figure 13(a) indicates that the
best validation performance occurred at epoch 9.The training
stopped when the validation error increased for 6 iterations
which occurred at epoch 15. Both the test and validation set
errors follow similar characteristics indicating achievement
of a reasonable result. The regression plot (Figure 13(b))
shows the variation of predicted properties by ANN with
corresponding experimental values, for each fraction of the
data, namely, training, validation,testing, and whole data.
A linear regression between the network output and the
corresponding targets is shown in Figure 13(b). From this
figure, correlation coefficient value (𝑅-value) for all responses
is 0.933 which indicates a good matching between the exper-
imental data and prediction of the neural network model. A
detailed comparison between the experimental and predicted
values is given in Table 7.

The average relative error in predicting the tensile
strength of nanocomposites by the developed neural network
model is found to be very low (0.0396), indicating that
predicted results matched the experimental results.

Figure 14(a) shows the comparison between experimen-
tal and predicted values from ANN for the LLDPE/GNPs
composites with different wt% of graphene.The figure clearly
shows that predicted values are in good agreement with the
experimental data.

Comparison of experimental and predicted values of
LLDPE/GNPs composites with different speeds was observed
in Figure 14(b). A good agreement between the predicted and
experimental values is seen according to the figure.
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Figure 13: Neural network for the prediction of tensile strength: (a) performance plot and (b) regression plot.
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Table 3: Experimental data set.

Sample
number

% of
graphene Speed Tensile strength

(MPa)

Thermal
conductivity
(w/m⋅K)

Degradation
temperature (∘C)

Crystallization
temperature (∘C) Data partition

1 0 50 21.5 0.37 476.12 109.18 Validation
2 0 100 23.27 0.37 476.72 109.43 Training
3 0 150 22.49 0.35 477 109.53 Training
4 1 50 22.4 0.38 479.36 112.13 Testing
5 1 100 23.05 0.37 479.73 112.88 Testing
6 1 150 23.7 0.41 480.2 113.05 Testing
7 2 50 23.7 0.39 480.7 112.43 Training
8 2 100 24.87 0.39 480.7 113.1 Validation
9 2 150 26.26 0.43 481.7 113.55 Training
10 4 50 25.86 0.39 481.73 112.95 Training
11 4 100 22.7 0.4 482.4 113.26 Training
12 4 150 33.13 0.437 483.7 113.54 Training
13 6 50 23.66 0.4 481.76 113.6 Training
14 6 100 22 0.41 483.11 113.8 Training
15 6 150 23.63 0.47 485.62 113.55 Validation
16 8 50 21.44 0.42 483.66 113.95 Training
17 8 100 20.52 0.42 485.42 114.1 Testing
18 8 150 21.47 0.477 486.64 114.5 Training
19 10 50 19.38 0.47 488.09 114.81 Validation
20 10 100 18.8 0.472 489.28 114.17 Validation
21 10 150 19.65 0.5 490 115 Testing

Table 4: Prediction results of thermal conductivity for test samples.

Sample number 4 5 6 17 21
Measured value
(thermal conductivity
(w/m⋅K))

0.38 0.37 0.41 0.42 0.50

Predicted value (thermal
conductivity (w/m⋅K)) 0.38 0.38 0.39 0.42 0.48

Table 5: Prediction results of crystallization temperature for test
samples.

Sample number 4 5 6 17 21
Measured value
(crystallization
temperature ∘C)

112.13 112.88 113.05 114.10 114.90

Predicted value
(crystallization
temperature ∘C)

111.92 112.81 113.02 114.05 114.70

4. Conclusions

Development of nanocomposite formulations and actual
manufacturing of these materials on melt processing equip-
ment can be costly and time consuming. Variables such
as additives wt% and speed of the extruder are two major
parameters that can affect the optimization of required
properties. The results in this study proved the ability of

Table 6: Experimental and predicted degradation temperature for
test samples.

Sample number 4 5 6 17 21
Measured value
(degradation
temperature ∘C)

479.36 479.73 480.20 485.42 490

Predicted value
(degradation
temperature ∘C)

478.60 479.12 479.40 485.26 491.66

artificial neural network to predict the complex relationship
between screw (and feeder) speed and wt% of GNPs filler
and the resulting thermal conductivity, crystallization tem-
perature, degradation temperature, and tensile strength of
the composite materials. The first three parameters have a
trend of increasing values with the increase of GNPs wt%
and the speed and reached 0.5 (w/m⋅K), 115∘C, and 490∘C,
respectively, for the 10wt% of GNPs at speed of 150 rpm due
to the uniformdistribution and increase in crystallinity inside
the composite.The tensile strength reached amaximumvalue
of 33.13MPa at 4wt% of GNPs and speed of 150 rpm; this can
be due to the existence of a sufficient amount of amorphous
chains that are stretched during the tensile tests and acted to
transfer the load to the GNPs.

The high correlation coefficients and small errors
obtained ensure the accuracy of the training process.
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Figure 14: (a) Experimental versus predicted values of tensile strength of LLDPE/GNPs composites as a function of % of graphene. (b)
Experimental versus predicted values of tensile strength of LLDPE/GNPs composites as a function of speed.

Table 7: Prediction results of tensile strength for test samples.

Sample number 4 5 6 17 21
Measured value
(tensile strength
(MPa))

22.4 23.05 23.7 20.52 19.65

Predicted value
(tensile strength
(MPa))

23.66 24.21 23.39 21.88 19.88

Moreover the good generalization capability of the network
model is indicated by almost uniform values of correlation
coefficient and mean square errors for training, validation,
and testing data sets. The well-trained ANN method used
in this study can be used to identify the relationships
between the processing parameters and properties of the
final products.
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