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a b s t r a c t 

A time-domain second-order method is presented to simulate three-dimensional wave–body 

interaction. In the approach, Taylor series expansions are applied to the free surface boundary 

conditions, and a Stokes perturbation procedure is then used to establish the corresponding 

boundary value problem at first order and second order on the time-independent surfaces. A 

constant boundary element method, based on a Rankine source, is used to calculate the wave 

field at each time step. A proposed hybrid radiation condition, which is a combination of the 

multitransmitting formula and the damping zone, is studied to minimize the wave reflection, 

a stable integral form of the free-surface boundary condition is used to update the velocity po- 

tential on the free surface, and an auxiliary function is used to calculate high-order derivatives. 

The proposed model is first validated by linear irregular wave diffraction and is then applied 

to compute the second-order irregular Stokes wave diffraction with three wave components. 

It is shown that long time simulation can be performed with stability and accuracy and that 

the model can be used to simulate nonlinear irregular wave–structure interaction. 

© 2015 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

It is well known that second-order effects may be important for the nonlinear hydrodynamic problem arising in many aspects

of ocean engineering. Numerous studies have been published to date [1–7] . However, for the time-domain numerical simulation,

the solution generally requires truncation of the fluid domain at some finite distance. There is no exact nonreflecting boundary

condition for the truncated domain surface. For a long time simulation, an appropriate and effective radiation condition should

be imposed on the so-called artificial boundary to minimize any wave reflection. This is a common problem faced in the nu-

merical modeling of wave propagation. Various techniques have been developed to satisfy the radiation condition. Newman [8]

introduced a theoretical method to absorb reflected waves on the sides of the closed basin for a linear potential; however, it is

hard to apply the method to the analysis of the nonlinear case. Orlanski’s method [9] and the absorbing beach scheme [10] have

generally been implemented to model the open boundary. However, Orlanski’s method may produce incorrect phase velocity if

the mesh size is not sufficiently small near the open boundary. Clément [11] proposed a coupling method (piston-beach hybrid

absorber) to absorb the wave, whereas Boo [12] used a numerical scheme which combines an absorbing beach and the stretching

technique [13] to simulate the open boundary. Wang and Wu [7] imposed a radiation condition through a combination of the

damping zone and the Sommerfeld–Orlanski equation. Clamond et al. [14] introduced a numerical beach to damp the (scaled)
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Fig. 1. Definition sketch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tangential velocity at the free surface, with all the frequencies being damped with the same intensity. However, the efficiency of

the damping zone method strongly depends on the ratio between the width of the beach and the length of the wave. 

To find a more efficient and effective radiation condition to deal with the nonlinear irregular wave problem in the time

domain, a multitransmitting formula (MTF) [15] used as the radiation condition for a water wave field is introduced. It has

already been used in a finite element method to achieve the nonreflecting condition in the field of seismology by Liao [16] , and

has proven to be effective in the simulation of the earthquake waves. On the basis of the MTF method, the values of the diffracted

velocity potential at certain positions (named the “transmitting layers”) in the inner fluid domain [17] are obtained at each time

step. Then the velocity potentials on the artificial boundary at the present time step can be formulated by potentials at prior

time steps on the transmitting layers. In the MTF method, an artificial wave velocity is used to replace the actual wave velocity.

Usually, it is not necessary to make the artificial wave velocity equal to the actual wave velocity. As a result, the flexibility of the

method is very useful for dealing with the irregular wave problem. However, the MTF method can transmit waves only out of the

artificial boundary effectively when the artificial wave velocity is in a certain range of the given actual wave velocity. Numerical

tests in this work will show that a weak wave reflection from the open boundary is usually nonnegligible for irregular wave

diffraction by the MTF method. As such, an improvement in treating this radiation condition becomes essential. On examining a

variety of approaches, one finds that the hybrid method with a damping zone is an effective approach to eliminate the problem.

Fairly similar findings have also been shown by Xu [18] , Duan and Zhang [19] , and Zhang and Duan [17] . 

Theoretically, numerical calculation based on the boundary element method can benefit much from the MTF approach com-

pared with the damping zone approach [17] . Firstly, only one coefficient, named the “artificial velocity,” needs to be considered

in the MTF. The artificial velocity is a rough estimation of the actual wave velocity, which is usually fairly easy to obtain. Secondly,

fewer elements are needed to be distributed on the fluid boundary in comparison with the damping zone. Thirdly, the numerical

implementation is simpler than that of other radiation conditions. Finally, extension to nonlinear problems is possible—for ex-

ample, second-order nonlinear [18,20,21] and fully nonlinear [19] problems. The MTF method has also been successfully used for

simulation of harmonic wave radiation and diffraction [22,23] and irregular wave diffraction [24] . The first attempt to simulate

second-order irregular wave diffraction was published by Xu and Hamouda [25] . In their article, only the hybrid water wave radi-

ation condition to simulate the nonlinear wave–structure interaction was mentioned; however, the convergent study of artificial

water wave velocity applied in the MTF method and the hybrid condition was not presented, especially for the irregular wave

diffraction cases. In the present work, a detailed expression of two auxiliary functions and the integral form of the free-surface

boundary condition is introduced where the values of the velocity potential on the free surface are easily estimated at each time

step, and which shows excellent stabilities in our various numerical simulations for both linear and second-order cases. On the

basis of the linear water wave diffraction theory, the stability of the MTF method has been studied. Our hybrid model is first ver-

ified by the linear irregular wave diffraction and the results obtained are compared with the frequency-domain solution. We find

the effective length of the damping zone which suffices for the hybrid method. Next, the model is applied to the time-domain

computation of the second-order Stokes wave diffraction of a bottom-mounted circular cylinder at finite water depth and the

second-order irregular Stokes wave diffraction of a truncated cylinder at infinite water depth for both the high-frequency and

the low-frequency wave–structure interaction cases. The model has been found to be accurate and efficient. 

2. Mathematical formulation 

The reference system of Cartesian coordinates is defined with the ( x, y ) plane coinciding with the still water surface S F and

z pointing vertically upward from the still water level as shown in Fig. 1 . The body located at the center of the domain is rigid

and fixed, and the instantaneous wetted body surface is denoted by S H and its unit normal vector directed outward from the

fluid region is denoted by n . The seabed S is assumed to be horizontal along the plane at z = −h . Let t denote time and η be the
B 
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elevation of instantaneous free surface S IF relative to the still water surface S F . An artificial boundary S C is introduced, which

divides the fluid domain into the inner and outer regions. The incident waves are two-dimensional in the x - z plane and are

progressive in the positive x direction. 

As per the usual assumption of potential flow theory, the fluid is assumed to be incompressible and inviscid and the flow is

assumed to be irrotational. Then the fluid motion can be described by a velocity potential φ which satisfies Eq. (1) within the

fluid domain �f , 

∇ 

2 φ = 0 in �f ; (1)

and subject to the following boundary conditions: 

∂ φ/∂ n = 0 on S H , (2)

∂φ

∂z 
− ∂η

∂t 
− ∂φ

∂x 

∂η

∂x 
− ∂φ

∂y 

∂η

∂y 
= 0 on S IF , (3)

∂φ

∂t 
+ gη + 

1 

2 

| ∇φ| 2 = 0 on S IF , (4)

∂ φ/∂ z = 0 on S B , (5)

where g is the acceleration due to gravity. Eqs. (3) and ( 4 ) correspond to the kinematic and dynamic free surface boundary

conditions, respectively. In addition, a nonreflecting boundary condition is imposed on the artificial boundary ( S C ) as indicated

in Fig. 1 . This will be discussed further in Sections 2.2 and 2.3 . 

On the basis of the second-order theory for the weakly nonlinear problem, Eqs. (3) and ( 4 ) can be satisfied on the still water

surface ( z = 0) through a Taylor expansion as shown in Eqs. (6) and ( 7 ): (
∂φ

∂z 
− ∂η

∂t 
− ∂φ

∂x 

∂η

∂x 
− ∂φ

∂y 

∂η

∂y 

)
| z=0 + η

∂ 

∂z 

(
∂φ

∂z 
− ∂η

∂t 
− ∂φ

∂x 

∂η

∂x 
− ∂φ

∂y 

∂η

∂y 

)
| z=0 + · · · = 0 on z = 0 , (6)

(
∂φ

∂t 
+ gη + 

1 

2 

| ∇φ| 2 
)

| z=0 + η
∂ 

∂z 

(
∂φ

∂t 
+ gη + 

1 

2 

| ∇φ| 2 
)

| z=0 + · · · = 0 on z = 0 . (7)

Correspondingly, we can write: 

φ = ε φ(1) + ε 2 φ(2) + · · · , (8)

η = ε η(1) + ε 2 η(2) + · · · , (9)

where ε is a perturbation parameter which is usually related to the wave slope and the superscripts 1 and 2 denote the first-order

and second-order components of the velocity potential, respectively. The components are further split into φ(k ) = φ(k ) 
I 

+ φ(k ) 
D 

,

where φ(k ) 
I 

are the known incident potentials and φ(k ) 
D 

are the unknown diffracted potentials. Substituting Eqs. (8) and ( 9 ) into

Eqs. (1) –( 5 ), we find the governing equations for φ(k ) 
D 

(k = 1 , 2) become: 

∇ 

2 φ(k ) 
D 

= 0 in �(0) 
f 

, (10)

where �(0) 
f 

is the fixed fluid domain below z = 0. 

The boundary conditions based on the order of ε are shown in Eqs. (11) –( 13 ): 

∂φ(k ) 
D 

∂n 

= −∂φ(k ) 
I 

∂n 

on S (0) 
H 

, (11)

∂ 2 φ(k ) 
D 

∂ t 2 
+ g 

∂φ(k ) 
D 

∂z 
= f k on S F , (12)

∂φ(k ) 
D 

∂z 
= 0 on S B , (13)

where S (0) 
H 

is the body surface below the still water level. The terms f k in these equations are described in Eqs. (14) and ( 15 ): 

f 1 = 0 , (14)

f 2 = −
(

∂ 2 φ(2) 
I 

∂ t 2 
+ g 

∂φ(2) 
I 

∂z 

)
− 2 ∇ φ(1) · ∇ 

(
∂ φ(1) 

∂t 

)
+ 

1 

g 

∂ φ(1) 

∂t 
· ∂ 

∂z 

(
∂ 2 φ(1) 

∂ t 2 
+ g 

∂ φ(1) 

∂z 

)
. (15)
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The hydrodynamic forces F j on the body can be calculated by integration of the pressure over its wetted surface S (0) 
H 

. For the

second-order problem, the equation can be written as [4,7] : 

F = −ρ

∫ ∫ 
S (0) 

H 

(
∂ φ(1) 

∂t 
+ 

∂ φ(2) 

∂t 
+ 

1 

2 

∣∣∇ φ(1) 
∣∣2 + gz 

)
n d s + 

1 

2 

ρg 

∫ ∫ 
w 0 

( η(1) ) 
2 
n d w , (16) 

where w 0 is the mean waterline. The last term in Eq. (16) is due to the variation of S H with the water surface. To compare the

time-domain results with frequency-domain results, Eq. (16) can be further split into three components, as shown in Eq. (17) : 

F = F (1) + F (2) + F 0 , (17) 

where F (1) , F (2) , and F 0 are the first-order oscillatory wave force at the incident wave frequency, the second-order oscillatory wave

force at twice the wave frequency, and the second-order steady drift force, respectively. The second-order oscillatory wave force

is composed of two components F (21) and F (22) .The expressions for F (1) , F (21) , F (22) , and F 0 are given in Eqs. (18) –( 21 ), respectively:

F (1) = −ρ

∫ ∫ 
S (0) 

H 

∂ φ(1) 

∂t 
n d s , (18) 

F (21) = −1 

2 

ρ

∫ ∫ 
S (0) 

H 

∣∣∇ φ(1) 
∣∣2 

n d s + 

1 

2 

ρg 

∫ ∫ 
w 0 

( η(1) ) 
2 
n d w − F 0 , (19) 

F (22) = −ρ

∫ ∫ 
S (0) 

H 

∂ φ(2) 

∂t 
n d s , (20) 

F 0 = −1 

2 

ρ

〈∫ ∫ 
S (0) 

H 

∣∣∇ φ(1) 
∣∣2 

n d s 

〉
+ 

1 

2 

ρg 

〈∫ 
w 0 

( η(1) ) 
2 
n d w 

〉
. (21) 

2.1. Integral form of the free-surface boundary condition 

Researchers have adopted various schemes to evolve the free-surface conditions—for example, higher-order explicit methods 

(e.g., the Runge–Kutta method) and multistep methods (e.g., the Adams–Bashforth–Moulton method)—so that at each time step

the velocity potential on the free-surface can be obtained as the known quantity. However, in this work, we rewrite the boundary

conditions in an integral form and use an integral method as the time-integration scheme [17,18] ; this has given rise to excellent

stabilities in our numerical tests. 

We integrate each term in Eqs. (12) , ( 14 ), and ( 15 ) twice with respect to time in order to obtain the explicit form of φ(k ) 
D 

. One

example relationship is shown for illustration as presented in Eq. (22) : 

τ∫ 
0 

d τ1 

τ1 ∫ 
0 

f (t)d t = 

τ∫ 
0 

f (t)d t 

τ∫ 
t 

d τ1 = 

τ∫ 
0 

(τ − t) f (t)d t . (22) 

The diffracted velocity potential φD on the free surface given in Eq. (12) can be obtained as Eqs. (23) and ( 24 ) [26] : 

φ(1) 
D 

(p, t) = φ(1) 
D 

(p, 0) + 

t ∫ 
0 

∂φ(1) 
D 

(p, 0) 

∂τ
d τ − g 

t ∫ 
0 

(t − τ ) 
∂φ(1) 

D 
(p, τ ) 

∂z 
d τ, (23) 

φ(2) 
D 

(p, t) = φ(2) 
D 

(p, 0) + 

t ∫ 
0 

∂φ(2) 
D 

(p, 0) 

∂τ
d τ

−g 

t ∫ 
0 

(t − τ ) 
∂φ(2) 

D 
(p, τ ) 

∂z 
d τ −

t ∫ 
0 

∣∣∇φ(1) 
I 

(p, 0) 
∣∣2 

d τ

−
t ∫ 

0 

∣∣∇ φ(1) (p, τ ) 
∣∣2 

d τ + 

t ∫ 
0 

∣∣∇ φ(1) (p, 0) 
∣∣2 

d τ + 

t ∫ 
0 

∣∣∇φ(1) 
I 

(p, τ ) 
∣∣2 

d τ

+ 

1 

g 

t ∫ 
0 

(t − τ ) 
∂ φ(1) (p, τ ) 

∂τ
· ∂ 

∂z 

(
∂ 2 φ(1) (p, τ ) 

∂ τ 2 
+ g 

∂ φ(1) (p, τ ) 

∂z 

)
d τ

−1 

g 

t ∫ 
0 

(t − τ ) 
∂φ(1) 

I 
(p, τ ) 

∂τ
· ∂ 

∂z 

(
∂ 2 φ(1) 

I 
(p, τ ) 

∂ τ 2 
+ g 

∂φ(1) 
I 

(p, τ ) 

∂z 

)
d τ. (24) 
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Fig. 2. Radiation condition on the artificial boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The trapezoidal numerical integral method is used for the integration terms, and the solutions for 
∂ 3 φ(1) 

D 
(p,τ ) 

∂ z∂ τ2 and 

∂ 2 φ(1) 
D 

(p,τ ) 

∂ z 2 

can be found in Appendixes A and B , respectively. 

2.2. MTF on an artificial boundary 

Liao [15,16] has described and provided a general expression for one-way wave propagation and developed a system of local

nonreflecting boundary conditions using space-time extrapolation. Its original aim is to deal with the propagation of an earth-

quake wave out of the artificial boundary. 

The MTF method for diffracted velocity potential φD (hereinafter referred to as φ in the MTF) in a water wave field will be

introduced below. Let the x -axis be the normal to S C and point toward the outer region of the model, as shown in Fig. 2 . Suppose

that the intersection point 0 is on the artificial boundary under consideration and that j are the points away from point 0 along

its normal vector in the inner region. The distance between point j and point 0 is jC a 	t along the normal vector to the point 0 in

the inner region, where C a is an artificial wave speed and 	t is the time interval. 

The N th-order nonreflecting radiation condition on S C can be written as: 

ϕ 

p+1 
0 

= 

N ∑ 

j=1 

(−1) 
j+1 

C N j ϕ 

p+1 − j 
j 

, (25)

where integer p represents the time level and N is the order of the MTF method. The binomial coefficients C is described in

Eq. (26) : 

C N j = 

N! 

(N − j )! j ! 
. (26)

In this work, the second-order MTF method ( N = 2) will be considered. So Eq. (25) can be written as: 

φp+1 
0 

= 2 φp 
1 

− φp−1 
2 

, (27)

where the subscript 0 represents the point on the artificial boundary, and 1 and 2 are, respectively, the points which are C a 	t

and 2 C a 	t , away from point 0 along its normal vector in the inner region. 

To eliminate the effect of the frequencies, which are near to and including zero, a constant value γ 2 (additional factor) is

suggested. As such, Eq. (27) can be further written as: 

ϕ 

p+1 
0 

= 

2 

1 + γ2 

ϕ 

p 
1 

− 1 

(1 + γ2 ) 
2 
ϕ 

p−1 
2 

. (28)

On the basis of Eq. (28) , at each time step, the velocity potential on the artificial boundary can be obtained from those in the

fluid domain at previous time steps. Then, the MTF method can be used to solve the water wave problems with the boundary

element method, as shown in Fig. 3 . For more details on the MTF method applied to the earthquake wave and water wave fields,

see Liao [16] , Xu [18] , and Zhang and Duan [17] . 

2.3. Hybrid method with a damping zone 

The MTF method can transmit the wave out of the artificial boundary effectively only when the artificial wave velocity C a is

in the prescribed range [16–18] . Thus, another appropriate radiation condition should be coupled with the MTF on the artificial

boundary to minimize the wave reflection when we simulate wave–body interaction for an irregular wave [17–19] . Here, we will

use a combination of the MTF method and damping zone method (i.e., a hybrid method), as shown in Fig. 4 . The damping zone

method adopted is similar to the one used by Sclavounos and Nakos [27] . We rewrite Eq. (12) as: 

∂ 2 φ(k ) 
D 
2 

+ g 
∂φ(k ) 

D = f k + 2 gμη(k ) 
D 

− μ2 φ(k ) 
D 

, (29)

∂ t ∂z 
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Fig. 3. Multitransmitting formula (MTF) for an artificial boundary in the boundary element method. 

Fig. 4. The concept of the MTF and damping zone (DZ) method. 

 

 

 

 

 

 

where μ is the damping coefficient given by: 

μ(r) = 3 μ0 
[ r − ( R out − L ) ] 

2 

L 3 
, ( R out − L ) < r < R out , (30) 

where L is the length of the damping zone and r is the distance for the point under consideration to the nearest surface of the

cylinder, as shown in Fig. 4 . The damping zone starts from the edge of an inner free-surface boundary r = R out −L and ends at the

outer free-surface boundary r = R out . μ0 , used in Eq. (30) , is a constant value to control the strength of the damping coefficient. 

2.4. Integral equation and boundary element discretization 

The diffracted velocity potential on the surfaces of the fluid domain is expressed by the following boundary integral equation

based on the three-dimensional form of Green’s theorem: 

∫ ∫ 
S 

[
G · ∂φ(k ) 

D 
(q, τ ) 

∂ n q 
− φ(k ) 

D 
(q, τ ) 

∂G 

∂ n q 

]
d s q = 2 πφ(k ) 

D 
(p, τ ) . (31) 

Here p ( x,y,z ) is a field point and q ( ξ , η, ζ ) is a source point on the surface S of the domain and G ( p,q ) is the Green’s function. For

cases in which the seabed is horizontal, a Green’s function which contains the fundamental solution of the Laplace equation and

its images can be chosen to account for the symmetry about the seabed. In this manner, S can be excluded from the surface S ,
B 
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Table 1 

Basic parameters for linear incident wave diffraction. 

k λ (m) A C x (m/s) R out a h 

2.0 3 .14 1 2 .215 λ 1 .0 λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the mesh on the seabed does not need to be generated. The Green’s function is presented in Eq. (32) : 

G (p, (q, q ′ )) = 

2 ∑ 

k =1 

1 

r k 
, (32)

where r k is the distance between the field point and source point. q ′ is the image of q about the seabed. Thus, r k is given by

Eqs. (33) and ( 34 ): 

r 1 
2 = (x − ξ ) 2 + (y − η) 2 + (z − ζ ) 2 , (33)

r 2 
2 = (x − ξ ) 2 + (y − η) 2 + (z + 2 h + ζ ) 2 . (34)

Next, Eq. (31) can be solved by a numerical procedure in which S F , S 
(0) 
H 

, and S C are discretized into a finite number of panels.

The corresponding values of ∂ φD / ∂ n and φD are applied at the centroid of the panels. 

As such, Eq. (31) can be represented by Eq. (35) : 

nS (0) 
H ∑ 

j=1 

D i j φ
(k ) 
D jm 

−
nS (0) 

H 
+ n S F ∑ 

j= nS (0) 
H 

+1 

S i j 

(
∂φ(k ) 

D 

∂n 

)
jm 

−
nS (0) 

H 
+ n S F + n S C ∑ 

j= nS (0) 
H 

+ n S F +1 

S i j 

(
∂φ(k ) 

D 

∂n 

)
jm 

= 

nS (0) 
H ∑ 

j=1 

S i j 

(
−∂φ(k ) 

I 

∂n 

)
jm 

−
nS (0) 

H 
+ n S F ∑ 

j= nS (0) 
H 

+1 

D i j φ
(k ) 
D jm 

−
nS (0) 

H 
+ n S F + n S C ∑ 

j= nS (0) 
H 

+ n S F +1 

D i j φ
(k ) 
D jm 

i = 1 , 2 , . . . , (n S (0) 
H 

+ n S F + n S C ) , (35)

in which subscripts i and j denote the centroid of the i th and j th panels, respectively, n S (0) 
H 

, nS F , and nS C are the number of panels

on S F , S 
(0) 
H 

, and S C , respectively, and m represents the present time step. The matrix coefficients S ij and D ij on the collocation point

of the i th panel which are influenced by the j th panel are presented in Eqs. (36) and ( 37 ): 

S i j = 

∫ ∫ 
	Q j 

1 

r i j 

d S j + 

∫ ∫ 
	Q j ′ 

1 

r i j ′ 
d S j ′ , (36)

D i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 π + 

∫ ∫ 
	Q j ′ 

∂ 
∂ n j ′ 

( 1 
r i j ′ 

)d S j ′ , i = j, 

∫ ∫ 
	Q j 

∂ 
∂ n j 

( 1 
r i j 

)d S j + 

∫ ∫ 
	Q j ′ 

∂ 
∂ n j ′ 

( 1 
r i j ′ 

)d S j ′ , i � = j, 
(37)

where 	Q is the area of the j th panel. 

3. Numerical results and discussions 

3.1. Stability analysis of the MTF method based on linear wave diffraction 

Before we consider the case with second-order irregular wave diffraction, the model is first validated by simulation of linear

wave diffraction. The parameters for the incident wave are given in Table 1 , where k is the wave number, λ is the wavelength,

A is the wave amplitude, C x is the actual wave velocity, R out is the distance from the artificial boundary to the nearest structure

surface, a is the radius of cylinder, and h is the water depth. The model is applied to the bottom-mounted, vertical, circular

cylinder, as shown in Fig. 5. 

In this section, the numerical parameters of the MTF method, such as the additional factor and the artificial wave velocity will

be discussed. Firstly, the additional factor γ 2 , used in Eq. (28) , is investigated. The nondimensional diffracted wave potential on

the body surface is presented in Fig. 6 , where ka is 2.0. We can see that the additional factor ( γ 2 = 0, 0.001, and 0.5) obviously

affects the diffracted wave potential on the body surface, where the sampling point is located at ( x = 0.992 m, y = 0.087 m,

z = −0.079 m). We can find that the convergent result can be obtained when γ 2 is in the range [0.005, 0.05]. The same conclusion

can be found when we present the hydrodynamic force acting on the cylinder, as shown in Fig. 7 . We can see that the numerical

solution obtained by the present model agrees well with the analytical solution [28] while γ 2 is in the prescribed range. Because

of this, γ = 0.025 is adopted for the rest of our simulation. 
2 
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Fig. 5. Mesh of the bottom-mounted vertical cylinder. 

Fig. 6. Comparison of diffracted wave potential on the body surface ( x = 0.992 m, y = 0.087 m, z = −0.079 m) with different γ 2 at ka = 2.0. 

Fig. 7. Comparison of hydrodynamic force in the x direction with different values of the additional parameter γ 2 at ka = 2.0. 

 

 

 

 

 

 

 

 

To transmit the diffracted wave out of the artificial boundary efficiently and predict the hydrodynamic force acting on the

body accurately, the effect of the artificial wave velocity C a is investigated next. Fig. 8 shows the nondimensional diffracted wave

potential on the body surface for different C a . As presented in Fig. 8 , convergent results can be obtained when we set C a to 0.6 C x ,

1.6 C x , and 2.4 C x . The calculated nondimensional hydrodynamic force acting on the cylinder is presented in Fig. 9 . The results

show that good agreement can be obtained when the artificial wave velocity C a is taken to be close to the actual wave velocity

C x . Still, a reasonable range of C a is applicable, which facilitates flexibility in the implementation. Usually, good agreement can

be obtained when C a is in a certain prescribed range of C x (taken to be C a ∈ 0.6 C x -2.4 C x ). This suggests that we can use a different

artificial wave velocity to transmit the same outgoing wave out of an artificial boundary fairly efficiently. It implies and indicates
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Fig. 8. Comparison of the velocity potential on the body surface at ( x = 0.992 m, y = 0.087 m, z = −0.079 m) with different artificial wave speeds C a 

Fig. 9. Comparison of hydrodynamic force with different C a at ka = 2.0. 

 

 

 

 

 

 

 

 

that the present model can be used and is perhaps ideally suited for the simulation of nonlinear irregular wave diffraction in the

time domain. 

3.2. Linear irregular wave diffraction by the MTF method 

An irregular wave system is assumed to act on the bottom-mounted cylinder. The linear irregular incident wave potential

φ(1) 
I 

can be written as: 

φ(1) 
I 

= 

N ∑ 

i =1 

g A i 

ω i 

cosh [ k i (z + h )] 

cosh ( k i h ) 
sin ( k i x − ω i t + ε i ) , (38)

where A, ω, k , and ε are the incident wave amplitude, angular frequency, wave number, and random phase angle of wave com-

ponent number i , respectively. 

To investigate the linear irregular wave diffraction of a bottom-mounted vertical cylinder ( a = 7.5 m), a sea spectrum from

the International Towing Tank Conference, as shown in Fig. 10 , is used to generate the irregular wave. 

Here 

S ζ (ω ) = 

A S 

ω 

5 
e 

− B 

ω 4 
(
m 

2 / s 
)
, (39)

where A S = 8.10 × 10 −3 g 2 and B = 3.11/( h 1/3 ) 
2 . The wave amplitude A i can be expressed by the wave spectrum S ζ ( ω), and is

given by 

A i = 

√ 

2 S ζ ( ω i )	ω , (40)
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Fig. 10. Sea spectrum from the International Towing Tank Conference ( h 1/3 = 0.5 m). 

Fig. 11. Significant wave height h 1/3 = 0.5 m ( ω min = 1.109 rad/s, ω max = 5.714 rad/s). 

Table 2 

Basic parameters for linear irregular 

wave diffraction. 

h 1/3 5 m 

ω (rad/s) ω min ω max 

1% S ζmax 0.350 1.807 

C x (m/s) 28.0 5.4 

0.6 C x 16.817 3.257 

1.6 C x 44.846 8.686 

S ζ ( ω) max S ζ ( ω) max 

ω (rad/s) 0.562 

C a (m/s) 17.456 

 

 

 

 

 

 

 

 

where 	ω is a constant difference between successive frequencies. For simplicity, the irregular wave is approximated by other

regular waves in this example. In this work, the wave component is determined by the peak value S ζ max of the wave spectrum.

The wave components ω i are considered when S ζ ( ω i ) are greater than S ζ max /100. 

The phase angles ε i are randomly distributed between 0 and 2 π , and are constant with time. The frequency of the peak value

S ζ max is 0.562 rad/s, whereas the significant wave height of the irregular wave is 0.5 m. In the simulation, the artificial wave

velocity is equal to the actual wave velocity relative to the wave component of peak value S ζ max in the wave spectrum. The basic

parameters for the irregular wave diffraction are given in Table 2 . The numerical result generated is shown in Fig. 11 and shows

good agreement with the analytical solution. However, there are some disturbances when we performed a long time simulation,

as shown in Fig. 11 . This is because the MTF method cannot transmit all the outgoing wave components out of the artificial



G. Xu et al. / Applied Mathematical Modelling 40 (2016) 4 451–4 467 4461 

Fig. 12. Comparison of the MTF method and the hybrid method ( h 1/3 = 0.5 m and μ0 = 3.0). 

Fig. 13. Comparison of F x with different widths of the damping zone ( h 1/3 = 0.5 m). 

 

 

 

 

 

 

 

 

 

 

 

boundary. There are presumably some wave reflections due to the effective range of C a as described in Fig. 8 . (Because of this, we

need to explore another radiation condition coupled with the MTF, which will be discussed in Section 3.3 .) 

3.3. Linear irregular wave diffraction by the hybrid method 

As discussed in Sections 3.1 and 3.2 , the diffracted waves can effectively propagate away from the fluid domain by the MTF

method only when the artificial wave speed C a is in the prescribed range. Thus, another appropriate radiation condition should be

coupled with the MTF on the artificial boundary to minimize the wave reflection when we simulate the irregular wave problem,

which includes both high-frequency wave components and low-frequency wave components. Here, we will use a combination

of the MTF method and the damping zone method as described in Eqs. (29) and ( 30 ). 

The calculations are made with the two types of radiation condition (MTF method and hybrid method) imposed, and the

results are presented in Fig. 12 . It is clear the result has been greatly improved with the hybrid method; and the phenomena of

disturbance and reflection have but essentially disappeared. 

The relative width of the damping zone with respect to the wavelength should be large enough to minimize the effect of

short waves, which cannot be transmitted adequately by the MTF method. The numerical results obtained with different widths

of the damping zone are shown in Fig. 13 . We can see that it is not necessary to use a large damping zone to eliminate the short

wave reflection. In this work, we used L = 2 πC a 
2 /(2.4 2 g ) to obtain the necessary width of the damping zone; we found that

L = 2 πC a 
2 /(2.4 2 g ) suffices for the damping zone, and the results are as expected. 
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Fig. 14. Comparison of F x with different strengths of the damping coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

As the role of damping is another critical numerical issue, if the strength of the damping coefficient is too weak or too strong,

the outgoing waves may be reflected by the artificial boundary or the inner edge of the damping zone. It is therefore necessary to

investigate the sensitivity of the damping zone with regard to the parameters of the damping zone method. The results obtained

with different strengths of the damping constant ( μ0 ) are shown in Fig. 14 . It appears that μ0 = 3.0 is a reasonable choice.

Because of this, for the rest of the simulation, we set μ0 = 3.0. 

3.4. Second-order wave diffraction by the MTF method and the hybrid method 

To illustrate the numerical model and for comparison with frequency-domain solutions, a bottom-mounted, surface-piercing

vertical circular cylinder and a truncated surface-piercing vertical circular cylinder are applied. Before we consider the case of

second-order wave–body interaction in an irregular wave, we first undertake a simulation for second-order Stokes wave diffrac-

tion of a bottom-mounted cylinder at finite water depth (radius a = 1 m, depth h = a ). Generally, the incident wave and potential

are transient. For the periodic Stokes wave at finite water depth, they can be written as: 

ηI = ε η(1) 
I 

+ ε 2 η(2) 
I 

= A cos (kx − ωt) + 

k A 

2 

4 

cosh kh (2 + cosh 2 kh ) 

sinh 

3 
kh 

cos 2(kx − ωt) , (41) 

φI = ε φ(1) 
I 

+ ε 2 φ(2) 
I 

= 

gA 

ω 

cosh k (z + h ) 

cosh kh 

sin (kx − ωt) + 

3 ω A 

2 

8 

cosh 2 k (z + h ) 

sinh 

4 
kh 

sin 2(kx − ωt) , (42) 

where h is the water depth, ω is the wave frequency, and k is the wave number. h, ω, and k are linked by the dispersion equation

ω 

2 = gk tanh (kh ) . 

The amplitude of first-order and second-order forces is given in Figs. 15 and 16 , in which the results from Taylor and Hung

[2] are also given for comparison. It is seen that the agreement is very good. The time histories of the hydrodynamic force are

presented in Fig. 17 . We can see that the results are numerically very stable. 

Next, the model is applied to the computation of nonlinear forces on a truncated surface-piercing vertical circular cylinder

(radius a = 1 m, depth h = 6 m, draft d = 1.5 m). For the periodic Stokes wave at infinite water depth, they can be written as: 

φI = ε φ(1) 
I 

+ ε 2 φ(2) 
I 

= 

gA 

ω 

e kz sin (kx − ωt) , (43) 

ηI = ε η(1) 
I 

+ ε 2 η(2) 
I 

= A cos (kx − ωt) + 

1 

2 

A 

2 k cos [ 2(kx − ωt) ] . (44) 
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Fig. 15. The amplitude of the first-order hydrodynamic force versus ka . 

a

b

Fig. 16. The steady force (a) and the amplitude of the second-order double-frequency force (b) versus ka . 

 

 

For irregular incident Stokes waves with M wave components, we have: 

φ(1) 
I 

= 

M ∑ 

j=1 

g A j 

ω j 

e k j z sin ( k j x − ω j t) , (45)

φ(2) 
I 

= 

∑ 

ω j > ω l 

∑ 

ω j A j A l e 
( k j −k l ) z sin 

[
( k j − k l ) x − ( ω j − ω l ) 

]
. (46)



4464 G. Xu et al. / Applied Mathematical Modelling 40 (2016) 4 451–4 467 

Fig. 17. Time histories of hydrodynamic force. 

Fig. 18. Time histories of hydrodynamic force ( ka = 2.0). 

Fig. 19. Time histories of hydrodynamic force ( ka = 3.0). 

 

 

 

 

 

 

Figs. 18–20 show the corresponding time-history hydrodynamic force with ka = 2, 3, and 4, respectively. Among them, the

nonlinear effect can be found. Here, the artificial wave velocity is set to the corresponding first-order actual wave velocity, and

the amplitude A is related to the corresponding first-order wavelength (0.05 λ). The numerical results for the irregular wave

with three wave components ( ka = 2, 3, and 4, M = 3) are presented in Fig. 21 , where the artificial wave velocity is 1.566 m/s

and the length of the damping zone is fixed to 2 m. This has been found to give accurate results for long time computation,

and same conclusion can be found for the time-domain simulation of low-frequency wave–structure interaction as presented
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Fig. 20. Time histories of hydrodynamic force ( ka = 4.0). 

Fig. 21. Time histories of hydrodynamic force with three wave components ( ka = 2.0, 3.0, 4.0). 

Fig. 22. Time histories of hydrodynamic force with three wave components ( ka = 0.5, 1.0, 1.5). 

 

 

 

in Fig. 22 with three wave components ( ka = 0.5, 1.0, and 1.5, M = 3). We find that the proposed method is applicable to the

high-frequency and low-frequency cases, which is very conducive for solving the second-order wave–structure interaction. The

calculation also provides an indication that our proposed approach of simulating nonlinear irregular wave–body interaction is

feasible and by extension could be used to study the more complex nonlinear irregular random wave–body interaction. 
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7. Conclusions 

A three-dimensional time-domain Rankine panel method has been presented for the solution of the second-order diffraction

problem for an irregular wave. An integral form and two auxiliary functions were introduced to update the velocity potential

on the free surface. The basic parameters of the MTF method were investigated and the effective range of the additional factor

and the artificial wave velocity was obtained. The numerical results show that the MTF method can transmit waves out of a

truncated surface efficiently when the artificial wave velocity is taken to be close to the actual wave velocity. However, for

the irregular wave simulation, the weak wave reflection from the truncated surface with the MTF method cannot usually be

ignored, especially for the nonlinear case; thus, an effective hybrid water wave radiation condition, which is the combination

of the MTF and the damping zone, was used and was verified to be excellent. For the second-order (irregular) wave diffraction,

the hydrodynamic forces obtained were compared with frequency-domain solutions. The model gave accurate results for both

high-frequency and low-frequency wave–structure interaction. The present model can be applied to simulate nonlinear irregular

wave–body interaction, and the model is accurate and numerically very stable. 
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Appendix A. Solution for 
∂ 3 φ(1) 

D 
(p,t) 

∂ z∂ t 2 
in Eq. (24) 

To avoid use of the difference approximation to evaluate the term 

∂ 3 φ(1) 
D 

(p,t) 

∂ z∂ t 2 
in Eq. (24) , we used an auxiliary function and set

ψ 1 (p, τ ) = 

∂ 2 φ(1) 
D 

(p,τ ) 

∂ τ2 , which satisfies the Laplace equation within the fluid domain, 

∇ 

2 ψ 1 (p, τ ) = 0 in �(0) 
f 

, (A.1) 

and subject to the boundary conditions: 

∂ ψ 1 (p, τ ) 

∂n 

= 

∂ 

∂n 

(
∂ 2 φ(1) 

D 
(p, τ ) 

∂ τ 2 

)
= 

∂ 2 

∂ τ 2 

(
−M(τ ) 

∂φ(1) 
I 

(p, τ ) 

∂n 

)
on S (0) 

H 
, (A.2) 

ψ 1 (p, τ ) = −g 
∂φ(1) 

D 
(p, τ ) 

∂z 
on S F , (A.3) 

∂ ψ 1 (p, τ ) 

∂z 
= 

∂ 

∂z 

(
∂ 2 φ(1) 

D 
(p, τ ) 

∂ τ 2 

)
= 

∂ 2 

∂ τ 2 

(
∂φ(1) 

D 
(p, τ ) 

∂z 

)
= 0 on S B , (A.4) 

and that ψ 1 satisfies the second-order MTF on the artificial boundary. The Green’s function is G = 1 / r 1 + 1 / r 2 for the boundary

integral equation. 

Appendix B. Solution for 
∂ 2 φ(1) 

D 
(p,t) 

∂ z 2 
in Eq. (24) 

For the term 

∂ 2 φ(1) 
D 

(p,t) 

∂ z 2 
in Eq. (24) , we use an auxiliary function too and set ψ 2 (p, τ ) = 

∂φ(1) 
D 

(p,τ ) 

∂z 
, which also satisfies the

Laplace equation within the fluid domain, 

∇ 

2 ψ 2 (p, τ ) = 0 in �(0) 
f 

, (B.1) 

and subject to the following boundary conditions: 

ψ 2 (p, τ ) = 

∂ φ(1) (p, τ ) 

∂z 
on S (0) 

H 
, (B.2) 

ψ 2 (p, τ ) = 

∂ φ(1) (p, τ ) 

∂z 
on S F , (B.3) 

ψ 2 = 

∂ φ(1) (p, τ ) 

∂z 
= 0 on S B , (B.4) 

ψ 2 (p, τ ) = 

∂ φ(1) (p, τ ) 

∂z 
on S C , (B.5) 

Here, however, the Green’s function is G = 1 / r − 1 / r for the boundary integral equation. 
1 2 
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