Detecting Organic Nitrogen with 1H-15N HMBC Spectra

Haw-Lih Su1, Rajeesha Rajan2, Yoosef Mohammad Hiji3, Mohammad Ibrahim Ahmad Ibrahim1, and Mohammed Hussain S A Alsafran1,3

1 Central Laboratories Unit, Qatar University, Doha, Qatar
2 Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
3 Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar

hsu@qu.edu.qa

Faculty and PostDoc, Energy and Environment

Abstract

NMR spectroscopy has been the most important tool for the researches in organic/organometallic/polymeric chemistry, providing abundant information for the structure identifications, sample purities, and chemical dynamics. Because of its powerful functions, NMR spectroscopy has also been benefiting the studies of biomedical, pharmaceutical, agricultural, environmental, materials, and even forensic science.

Carbon, hydrogen, oxygen, and nitrogen are the most common elements in organic molecule. However, while 1H and 13C NMR spectra are frequently measured, 15N NMR spectra were relatively rare. This is due to the low gyromagnetic ratio and nature abundance of 15N isotope. Usually, 15N NMR spectra were obtained when the sample is in very high concentration or the nitrogen is enriched with 15N isotope, called isotope labelling.

Here we report a very useful method, using HMBC (Heteronuclear Multiple Bond Coherence) experiment to detect 15N NMR signals. HMBC is one of the 2D NMR techniques, measuring the through-bond correlations inside a molecule. 1H-15N HMBC actually collects a series of measurements of 1H NMR spectra. With a series of pulse sequence on 15N channel, the 1H NMR spectra would contain 15N NMR information, called coherence. Therefore, HMBC could take the advantage of 1H NMR signals with stronger intensities than 15N signals, providing the opportunity for the indirect measurement of 15N signals.

Introduction (NMR Principles and the Difficulty of 15N NMR Spectra Measurement)

![Zeeman Effect](image)

β-spin state $I = -1/2$ E_β

Magnetic field B_0 or Gyromagnetic Ratio γ

α-spin state $I = +1/2$ E_α

Energy difference between α- and β-spin states \sim radio frequency level $E_\beta - E_\alpha = \Delta E = h\nu = \gamma B_0/2\pi$

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>$\nu/2\pi$ (MHz. T$^{-1}$)</th>
<th>Nature abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>42.576</td>
<td>99.98%</td>
</tr>
<tr>
<td>13C</td>
<td>10.705</td>
<td>1.1%</td>
</tr>
<tr>
<td>15N</td>
<td>-4.316</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Boltzmann Distribution: $P_\alpha = e^{-\alpha\gamma B_0\nu}/(e^{\alpha\gamma B_0\nu} + e^{-\beta\gamma B_0\nu})$

Population difference $P_\alpha - P_\beta = \Delta P = \gamma B_0\nu/2$ NMR signal intensity \propto Population difference \propto $\gamma B_0\nu/2$

Intensity: 15N NMR signal \sim 1/7 of 13C signal \sim1/2466 of 1H signal

usually requires 15N isotopic labelling

Materials and Methods: 1H-15N HMBC Spectroscopy

Results

HMBC also tells the information of bond connections.

Conclusions

- Direct measurements of 15N NMR spectra are difficult because of low gyromagnetic ratio and nature abundance.
- HMBC takes the advantage of strong 1H NMR signal, providing opportunities to observe weak signals of heteronuclei.
- HMBC also provides bond connecting information for structure identification.

Acknowledgements

The research materials in this poster was made possible by QUCC-GAS-1-20/21 from the Qatar University internal grant. The supports from Department of Chemistry and Central Laboratories Unit, Qatar University are also appreciated.