
Abstract 

Generating electricity from power cycle using supercritical carbon dioxide (sCO2) as a working fluid is a step towards

efficiency improvement in power production field. The huge amount of studies on this topic shows promising results of

utilization low to medium grade heat of power generation. Several layouts, arrangements, and thermodynamical features

were presented to improve the performance of the power cycle. A main property of such a power cycle that it utilizes a

waste heat to produce electricity. One source of waste heat is flared gas in oil and gas industry, flaring process is

considered as an extensive economic loss due to its high heating value. This flare gas is burned in industry due to several

purposes, mainly safety and process needs. Utilization of flare gas in producing electricity through sCO2 cycle is being

proposed in this research. Where two cycles were proposed to study the performance of the cycle using flare gas as fuel.

Flare To Power sCO2 (FTP1- sCO2) cycle utilizing the flare gas mixed with natural gas to heat the working fluid of the

cycle which sCO2. The second cycle (FTP2- sCO2) flare gas is utilized in reheating process for the exhaust flow of a

primary heated working fluid. The performance of the cycles is evaluated by implementing energetic, and exegetic

analysis. The results of the study showed that FTP 1 has higher thermal and overall exergy efficiencies compared with

FTP 2. Furthermore, the analysis showed that as maximum pressure increases thermal efficiency increase, the same

behavior was found also while increasing 𝑇𝑚𝑎𝑥. The maximum thermal efficiency found to be 44.87% at 𝑇𝑚𝑎𝑥 = 850℃,
𝑃ℎ = 25𝑀𝑃𝑎,𝑃𝑙 = 3.3𝑀𝑃𝑎,𝑇𝑚𝑖𝑛 = 32℃, and ሶ𝑚𝑓𝑙𝑎𝑟𝑒 = 0.18 𝑘𝑔/𝑠, for a 50 MW power capacity.
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Figure 1: Flare-To-Power 1 sCO2 cycle (flare mixed with natural gas) Figure 2: Flare-To-Power 2 sCO2 cycle (flare burned for reheating)

Figure 3: Flare-To-Power 1 sCO2 T-S diagram Figure 4: Flare-To-Power 2 sCO2 T-S diagram 

Figure 5: Discretized model of printed type heat exchanger type. [1,2] 
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Figure 6: Effect of Maximum Pressure  Figure 7: Effect of Minimum Pressure  Figure 8: Effect of Maximum Temperature  


