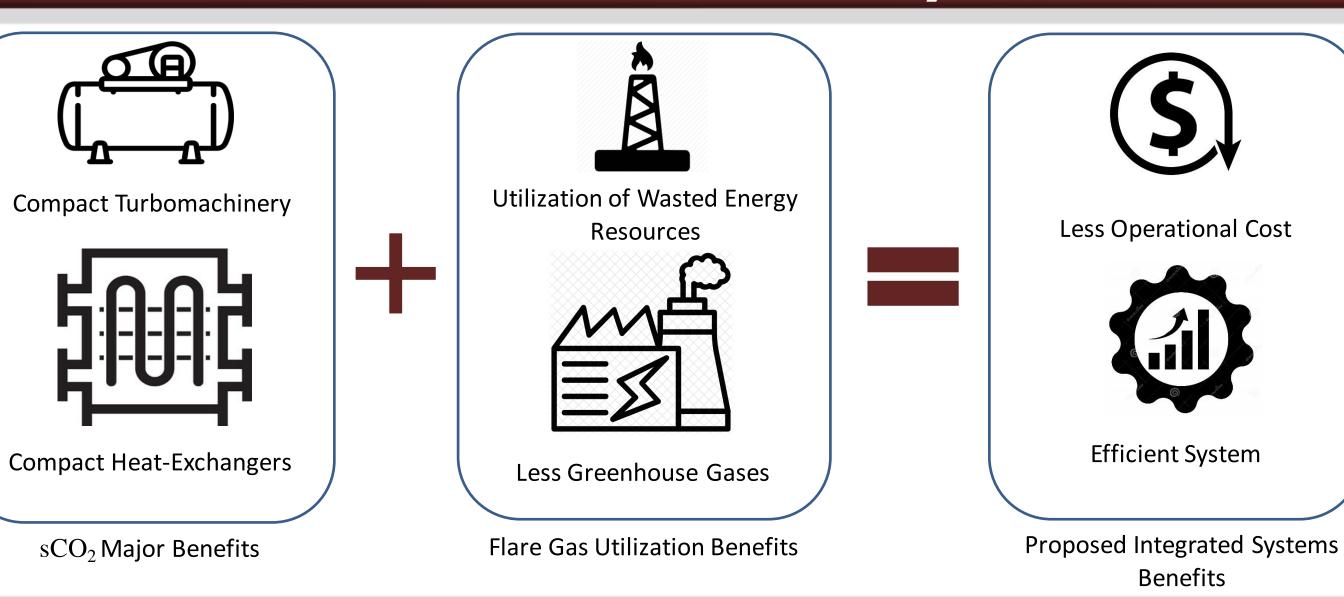
Flare Gas-to-Power Using Supercritical CO₂ Power Cycle – **Energy and Exergy Analyses**

Khaled M. Aboueata*, Ahmed K. Sleiti.

Department of Mechanical and Industrial Engineering, College of Engineering, Doha, Qatar

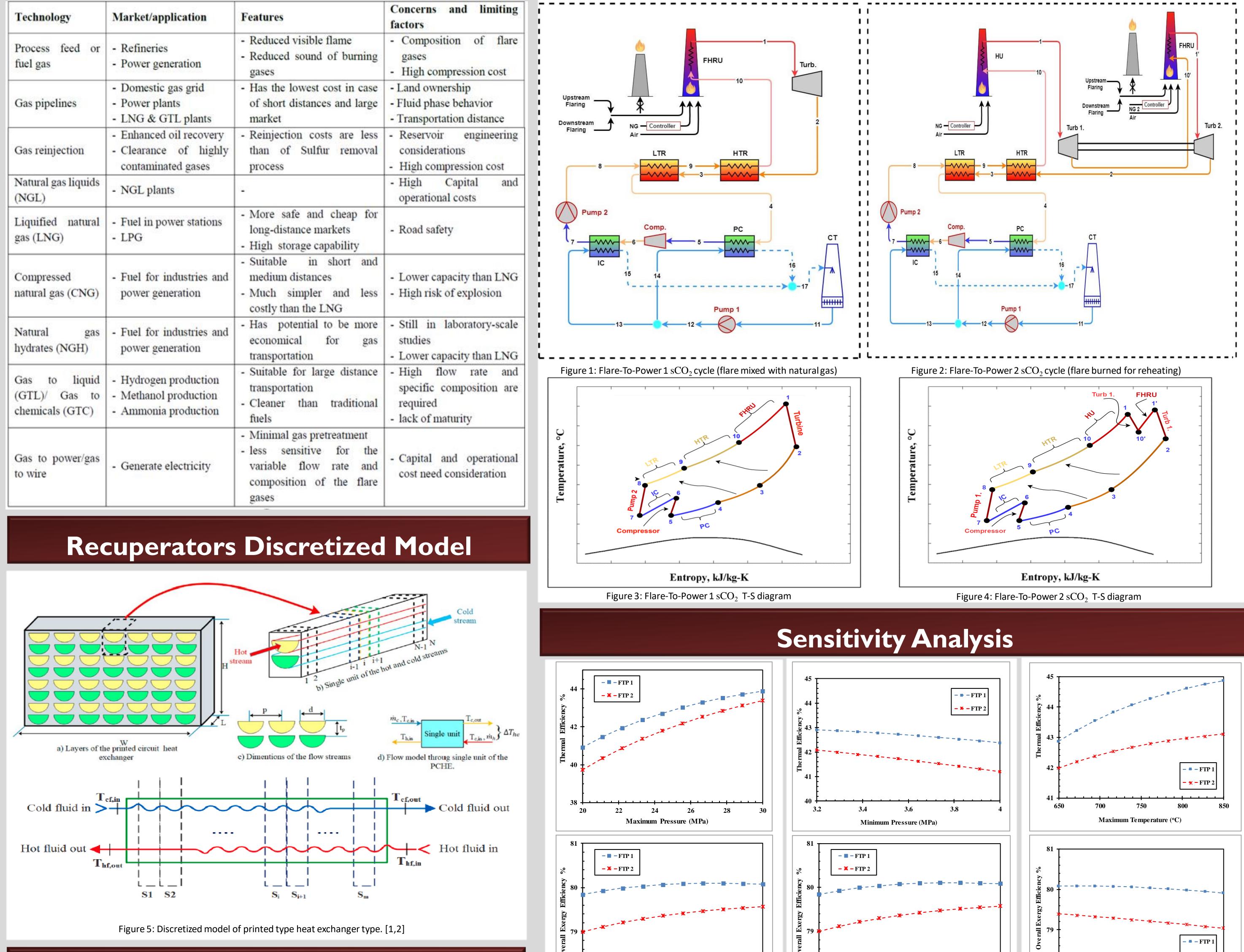

*ka1402945@qu.edu.qa

الصندوف القطري لرعاية البحت الماس A Qatar National Research Fund Member of Qatar Foundation

Abstract

Generating electricity from power cycle using supercritical carbon dioxide (sCO_2) as a working fluid is a step towards efficiency improvement in power production field. The huge amount of studies on this topic shows promising results of utilization low to medium grade heat of power generation. Several layouts, arrangements, and thermodynamical features were presented to improve the performance of the power cycle. A main property of such a power cycle that it utilizes a waste heat to produce electricity. One source of waste heat is flared gas in oil and gas industry, flaring process is considered as an extensive economic loss due to its high heating value. This flare gas is burned in industry due to several purposes, mainly safety and process needs. Utilization of flare gas in producing electricity through sCO₂ cycle is being proposed in this research. Where two cycles were proposed to study the performance of the cycle using flare gas as fuel. Flare To Power sCO2 (FTP1- sCO₂) cycle utilizing the flare gas mixed with natural gas to heat the working fluid of the cycle which sCO2. The second cycle (FTP2- sCO₂) flare gas is utilized in reheating process for the exhaust flow of a primary heated working fluid. The performance of the cycles is evaluated by implementing energetic, and exegetic analysis. The results of the study showed that FTP 1 has higher thermal and overall exergy efficiencies compared with FTP 2. Furthermore, the analysis showed that as maximum pressure increases thermal efficiency increase, the same behavior was found also while increasing T_{max} . The maximum thermal efficiency found to be 44.87% at $T_{max} = 850$ °C, $P_h = 25 MPa$, $P_l = 3.3 MPa$, $T_{min} = 32^{\circ}$ C, and $\dot{m}_{flare} = 0.18 kg/s$, for a 50 MW power capacity.

Benefit of the study



Category: Graduate Student

Flare Gas Recovery Technologies

Proposed Cycles

Technology	Market/application	Features	Concerns and limiting factors
Process feed or fuel gas	 Refineries Power generation 	 Reduced visible flame Reduced sound of burning gases 	 Composition of flare gases High compression cost
Gas pipelines	 Domestic gas grid Power plants LNG & GTL plants 	- Has the lowest cost in case of short distances and large market	 Land ownership Fluid phase behavior Transportation distance
Gas reinjection	 Enhanced oil recovery Clearance of highly contaminated gases 	 Reinjection costs are less than of Sulfur removal process 	 Reservoir engineering considerations High compression cost
Natural gas liquids (NGL)	- NGL plants		- High Capital and operational costs
Liquified natural gas (LNG)	 Fuel in power stations LPG 	 More safe and cheap for long-distance markets High storage capability 	- Road safety
Compressed natural gas (CNG)	- Fuel for industries and power generation	 Suitable in short and medium distances Much simpler and less costly than the LNG 	 Lower capacity than LNG High risk of explosion
Natural gas hydrates (NGH)	- Fuel for industries and power generation	- Has potential to be more economical for gas transportation	 Still in laboratory-scale studies Lower capacity than LNG
Gas to liquid (GTL)/ Gas to chemicals (GTC)	 Hydrogen production Methanol production Ammonia production 	 Suitable for large distance transportation Cleaner than traditional fuels 	 High flow rate and specific composition are required lack of maturity
		- Minimal gas pretreatment	

Design Parameters

Parameter	Range/ Design Value
Net Electrical Power \dot{W}_{net}	50 (MW)
Maximum Pressure P_h	20-30 / 25 (MPa)
Minimum Pressure P_L	3.2 – 4.0 / 3.3 (MPa)
Maximum cycle temperature T_{max}	650 – 850 / 650 (°C)
Minimum cycle temperature T_{min}	32 – 50 / 32 (°C)
Isentropic Efficiency of turbines η_t	90 %
Isentropic Efficiency of compressors $\eta_{Comp.}$	85 %
Efficiency of the generator η_g	95 %
Efficiency of the pumps	90 %
Flare gas flow rate \dot{m}_{FG}	0.18 (kg/sec)
Natural gas Lower Heating Value LHV _{NG}	50500 (kJ/kg)
Flare gas Lower Heating Value <i>LHV_{FG}</i>	25452 (kJ/kg)

Acknowledgment

This work was made possible by Graduate Sponsorship Research Award 2-0427-20026] from the Qatar National Research Fund (a member Foundation). The findings herein reflect the work, and are solely the resp of the authors.

	Overal O	Overal 0	$ \begin{array}{c} $
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	650 700 750 800 850
	Maximum Pressure (MPa)	Minimum Pressure (MPa)	Maximum Temperature (°C)
lue	Figure 6: Effect of Maximum Pressure	Figure 7: Effect of Minimum Pressure	Figure 8: Effect of Maximum Temperature
a)	 [1] A. K. Sleiti, W. A. Al-ammari, and K. M. Aboueata, "Flare gas- 2022, doi: 10.1016/j.fuel.2021.121808.[References to-power by direct intercooled oxy-combustion supercritical CO	D 2 power cycles," <i>Fuel</i> , vol. 308, no. August 2021, p. 121808,
	 2] A. K. Sleiti, W. A. Al-Ammari, and M. Al-Khawaja, "Integrated no doi: 10.1016/j.desal.2021.115032. 	ovel solar distillation and solar single-effect absorption systems,	" Desalination, vol. 507, no. November 2020, p. 115032, 2021,
	 [3] M. B. Elbeh and A. K. Sleiti, "Analysis and optimization of 10.1002/ese3.742. [4] A. K. Sleiti and W. A. Al-Ammari, "Energy and exergy analyses doi: 10.1016/j.fuel.2021.120557. [5] A. K. Sleiti, W. Al-Ammari, S. Ahmed, and J. Kapat, "Direct-fire analyses" for analyses 226 m. 120441, 2021. doi:10.4016/j.energy. 	of novel supercritical CO2 Brayton cycles driven by direct oxy-fed oxy-combustion supercritical-CO2 power cycle with novel pr	fuel combustor," Fuel, vol. 294, no. February, p. 120557, 2021,
	analyses," Energy, vol. 226, p. 120441, 2021, doi: 10.1016/j.e [6] A. K. Sleiti, W. A. Al-ammari, L. Vesely, and J. S. Kapat, "Therr cooling Thermoeconomic and optimization analyses of direc 114607, 2021, doi: 10.1016/j.enconman.2021.114607.		
	 [7] A. K. Sleiti and W. A. Al-Ammari, "Off-design performance ana 29, 2021, doi: 10.1016/j.renene.2021.08.047. [8] M. Nezhadfard and A. Khalili-Garakani, "Power generation as a 		
d [GSRA7-	10.1016/j.energy.2020.117940. [9] M. Pourmalek, S. Amanpour, M. Kuprat, and H. Schwarz, "A R		
r of Qatar sponsibility,	Eng. REEPE 2020, pp. 3–8, 2020, doi: 10.1109/REEPE49198.20 [10] H. Semmari, A. Filali, S. Aberkane, R. Feidt, and M. Feidt,	020.9059165. "Flare gas waste heat recovery: Assessment of organic rankir	
	absorption chiller," Energies, vol. 13, no. 9, 2020, doi: 10.339 [11] H. Al-Fehdly, W. ElMaraghy, and S. Wilkinson, "Carbon footpri		on of waste gas in generating electricity," Procedia CIRP, vol. 80,

pp. 389–392, 2019, doi: 10.1016/j.procir.2019.01.029.