
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

PRIVACY-PRESERVING DECENTRALIZED INTRUSION DETECTION SYSTEM FOR

IOT DEVICES USING DEEP LEARNING

BY

ALIYA TABASSUM

A Dissertation Submitted to

the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

PhD in Computer Science

January 2022

© 2022 Aliya Tabassum. All Rights Reserved.



COMMITTEE PAGE

The members of the Committee approve the Dissertation of

Aliya Tabassum defended on 22/11/2021.

Dr. Mohsen Guizani
Dissertation Supervisor

Dr. Aiman Erbad
Dissertation Co-Supervisor

Dr. Abdelaziz Bouras
Committee Member

Dr. Wadha Lebda
Committee Member

Dr. Cagatay Catal
Committee Member

Dr. Mohamed Mahmoud
Committee Member

Approved:

Dr. Khalid Kamal Naji, Dean, College of Engineering

ii



ABSTRACT

Tabassum, Aliya, PhD: January: 2022, Doctorate of Philosophy in Computer Science

Title: Privacy-preserving Decentralized Intrusion Detection System for IoT Devices

using Deep Learning.

Supervisor of Thesis: Mohsen Guizani, Aiman Erbad.

The convergence of advanced networking, breakthrough distributed systems tech-

nologies, and smart services has rapidly expanded the threat landscape for IoT devices.

Researchers have been looking into lightweight and adaptive technologies to solve the

problems of cybersecurity in dynamic smart IoT systems, as these domains are increas-

ingly targeted by cyber-criminals. In most of the scenarios, a peripheral defense, Intru-

sionDetection System (IDS) is proved effective to protect IoT devices. However, existing

intrusion detection techniques have centralized designs with repetitive pre-processing

steps, privacy leaks due to raw data exchange, and computationally expensive workloads

for the resource constrained IoT devices. In this dissertation, we propose using Deep

Learning (DL) and relevant distributed Artificial Intelligence (AI) techniques to develop

an efficient and secure distributed IDS model. First, we demonstrate that effective

pre-processing of input data greatly reduces the burden on the classifier and enhances

accuracy in incremental distributed learning. The first contribution in this dissertation

proposes a novel pre-processing technique, which ensures privacy of data of the IoT

devices, eliminates redundancies, and selects unique features by following innovative

extraction techniques. Our privacy-preserving incremental AI-based IDS can tackle

zero-day attacks, particularly mutations of existing attacks. Second, the data imbalance

iii



issues in intrusion detection can degrade the model accuracy, particularly in rare classes.

To this end, Generative Adversarial Network (GAN) is effective in data augmentation to

balance the available training data. The second contribution in this dissertation models

the proposed distributed IDS in an innovative manner using Federated Learning (FL),

which minimizes the data sharing to enhance privacy and performance. Our approach

“FEDGAN-IDS” uses FL and GAN to effectively detect cyber threats in smart IoT sys-

tems. This is achieved by distributing the GAN network over IoT devices for training

the model using local data and handling the model’s distribution using FL. Overall, this

dissertation proposes a privacy-preserving distributed IDS for IoT devices suitable for

real-time protection scenarios. We evaluate our work using accuracy, delay, and other

critical criteria using multiple datasets, such as NSL-KDD and KDD99. The model

performs better and converges faster than the state-of-the-art standalone IDS models.

iv



DEDICATION

To my husband for his support and trust in me. To my beloved children Abdul Rahman

and Amatunnoor, and my mother for their love.

v



ACKNOWLEDGMENTS

All praise to Allah the Almighty who grant me all the blessing, the strength and

endurance to complete this study.

I would like to sincerely thank my Thesis supervisors, Dr. Mohsen Guizani and Dr.

Aiman Erbad, for encouraging me to deliver my best and assisting me at every single

step. I am grateful for their positive approach and excellent guidance throughout my

thesis. I owe a debt of gratitude, as this journey would not have been possible without

their inspiration and critiques. I would also like to thank Dr. Amr Mohamed for his

invaluable insight and feedback at critical times. My great honour is also bestowed upon

all those faculty members who taught me various courses during my PhD and bolstered

my knowledge.

Not least of all, I would like to express my unrestrained appreciation to husband,

Mohammed Zubair and my family for their indispensable support during this entire

phase. I extend my acknowledgement to my friends and colleagues who held me up on

several occasions.

vi



TABLE OF CONTENTS

DEDICATION ........................................................................................................... v

ACKNOWLEDGMENTS.......................................................................................... vi

LIST OF TABLES ..................................................................................................... ix

LIST OF FIGURES ................................................................................................... x

Chapter 1: Introduction.............................................................................................. 1

Motivation.............................................................................................................. 3

Thesis Objectives and Contributions ..................................................................... 4

Thesis Overview .................................................................................................... 7

Chapter 2: Background and Related Work ................................................................ 8

Intrusion Detection System.................................................................................... 8

IDS Placement Strategies................................................................................... 9

Intrusion Detection System Approaches................................................................ 10

Signature-based Detection ................................................................................. 10

Specification-based Detection............................................................................ 11

Anomaly-based Detection .................................................................................. 12

Intrusion detection approaches based on Artificial Intelligence ............................ 13

IDS using Machine Learning ............................................................................. 13

IDS using Deep Learning .................................................................................. 15

Generative Adversarial Network............................................................................ 16

Chapter 3: Challenges of Intrusion Detection System for IoT devices...................... 18

Intrusion Detection in Streaming IoT Data ............................................................ 18

vii



Data Pre-processing and Incremental Learning..................................................... 20

Privacy-preserving Decentralized Models ............................................................. 22

Data Imbalance Issues in Model Training ............................................................. 25

Chapter 4: Parallel Pre-processing of Data on IoT Devices for Intrusion Detection. 26

System Model ........................................................................................................ 27

Notations ............................................................................................................ 28

Distributed Architecture......................................................................................... 29

Generative Network............................................................................................ 30

Bridge Network................................................................................................... 31

Classifier Network .............................................................................................. 32

Detailed Design...................................................................................................... 32

Generative Network: Pre-processing Phase ...................................................... 33

Bridge Network: Comparison Phase ................................................................. 38

Classifier Network: Classification Module ........................................................ 39

Experimental Results ............................................................................................. 40

Dataset ............................................................................................................... 41

Pre-processing Task ........................................................................................... 42

Classification Task ............................................................................................. 46

Incremental Learning Module ........................................................................... 47

Time Complexity ................................................................................................ 50

Chapter 5: FEDGAN-IDS: Privacy-preserving IDS using FL and GAN.................. 54

System Model ........................................................................................................ 55

viii



Proposed Framework ............................................................................................. 57

Distributed IDS using GAN................................................................................ 57

Federated Learning Framework......................................................................... 59

FEDGAN-IDS Algorithm...................................................................................... 60

Problem Formulation ......................................................................................... 60

Phase 1: Local Generator Training................................................................... 63

Phase 2: Local Discriminator Training ............................................................ 63

Phase 3: Central Model Update ........................................................................ 65

Phase 4: Model Parameters Dissemination....................................................... 66

Performance Evaluation ......................................................................................... 66

Data Set.............................................................................................................. 67

Federated Learning with and without GAN ....................................................... 67

FEDGAN-IDS Multiclass Classification............................................................ 73

Chapter 6: Conclusion ............................................................................................... 77

Scalability .......................................................................................................... 79

Chapter 7: Future Work ............................................................................................. 80

Publications................................................................................................................ 83

References .................................................................................................................. 84

ix



LIST OF TABLES

Table 4.1. Similarities of the Features Reconstructed. .............................................. 46

Table 4.2. Results Summary. ..................................................................................... 53

Table 5.1. Notations................................................................................................... 62

Table 5.2. Binary Classification................................................................................. 75

Table 5.3. Multiclass Classification using NSL-KDD Dataset. ................................ 75

Table 5.4. Multiclass Classification using KDD99 Dataset. ..................................... 76

x



LIST OF FIGURES

Figure 1.1. IoT Application Areas. ............................................................................ 2

Figure 2.1. Non-deep and Deep Neural Networks..................................................... 15

Figure 2.2. GAN Network. ........................................................................................ 17

Figure 3.1. Federated Learning Approach................................................................. 24

Figure 4.1. System Scenario. ..................................................................................... 28

Figure 4.2. Distributed Architecture for Pre-processing and Incremental Learning. 31

Figure 4.3. Complete Training Process Flow............................................................. 33

Figure 4.4. RMSE Scores of the Features on Real-time Dataset............................... 43

Figure 4.5. RMSE Scores of the Features on NSL-KDD Dataset............................. 44

Figure 4.6. RMSE Scores of the Features on KDD 99 Dataset................................. 44

Figure 4.7. Sparse AutoEncoders Reconstruction Loss versus Threshold. ............... 45

Figure 4.8. Accuracy of the Proposed Model. ........................................................... 48

Figure 4.9. Full Classification Report of the Proposed Model. ................................. 49

Figure 4.10. Accuracy before and after retraining for the Two Categories of

Attacks. ...................................................................................................................... 50

Figure 4.11. Time Taken for Pre-processing Task. .................................................... 51

Figure 4.12. Time Taken for the Classification Task. ................................................ 52

Figure 5.1. System Model.......................................................................................... 56

Figure 5.2. FEDGAN Architecture............................................................................ 58

Figure 5.3. The Test Accuracy of a Local Model after Final Global Update of

FED-IDS and FEDGAN-IDS. ................................................................................... 69

xi



Figure 5.4. FED-IDS and FEDGAN-IDS Model Loss.............................................. 70

Figure 5.5. Model Convergence of Fed-IDS and FEDGAN-IDS.............................. 70

Figure 5.6. FED-GAN-IDS Test Accuracy on Local Discriminators at G_Iteration

3 with Local Test Data. .............................................................................................. 72

Figure 5.7. FED-GAN-IDS Test Accuracy on Local Discriminators at G_Iteration

3 with different Datasets. ........................................................................................... 73

Figure 5.8. FED-IDS Binary Classification Test Accuracy at each Global Iteration. 74

Figure 5.9. FEDGAN-IDS Binary Classification Test Accuracy at each Global

Iteration. ..................................................................................................................... 74

Figure 5.10. FEDGAN-IDS Multiclass classification. .............................................. 75

xii



CHAPTER 1: INTRODUCTION

Internet of Things (IoT) consist of Internet Protocol (IP) connected heterogeneous

tiny objects in a hybrid network, which sense and communicate with internal or external

entities to perform a certain service. It is a system of interconnected computing devices,

humans and objects with unique identifiers capable of transferring information without

human-human interaction and human-computer interaction. IoT technologies include

Radio-Frequency Identification (RFID), Machine-to-Machine (M2M) communication,

Wireless Sensor Networks (WSN), and Low power Wireless Personal Area Networks

(LoWPAN). The Internet of Things has changed the perception of life in every sector

of our life. The number of IoT devices is increasing everyday, and transforming the

traditional objects into smart, and intelligent that can coordinate for decision making.

The number of IoT devices surpassed the human population in 2010, and it is recorded

7 billion in 2018 [1]. Moreover, researchers predict that in 2025 this number may reach

22 billion with the expected economy generated by various IoT application domains to

have a value between 4 and 11 trillion dollars [2]. Figure 1.1 shows the various IoT

application areas, which include: smart power-grid, smart retail, smart supply chain,

smart agriculture, smart industry, smart transportation, smart health, smart wearables,

smart housing & buildings, and smart city.

Research demonstrates the power of IoT systems, anticipating a world with automatic

detection and control of smart environments, such as the consequent unlocking of a

door on the approach by an identified member while staying locked for unidentified

individuals [3]. Nowadays, IoT devices are embedded with AI and Machine Learning

(ML) techniques to ease the tasks of humans, making IoT devices, as intelligent agents,

capable of decision making and performing actions on their own. IoT devices have

1



Figure 1.1: IoT Application Areas.

become so sensible and discerning that they are capable of envisioning the life-cycle,

capability and efficiency of any product in any field. These devices are conspicuous,

locatable, addressable and controllable through the Internet. IoT devices are capable of

monitoring heart impulse and reporting abnormal heart rate and can be used to monitor

the level of insulin in the body [4]. IoT devices are also being adopted in automobile

industries with built-in sensors to alert the drivers when the tire pressure is low to avoid

accidents [5].

Though IoT devices are rapidly being adopted worldwide, there are many privacy

and security issues in different layers of the IoT architecture [6]. A report published by

Hewlett-Packard Development Company (HP), as a part of the Open Web Application

2



Security Project (OWASP), has shown that security aspects are not taken into consider-

ation while manufacturing these devices [7] [8]. These security threats are concerning

and create obstacles to the services that IoT systems provide. The significant security

challenges in IoT devices include privacy, data storage, secure communication, authenti-

cation and access control [9]. Applying appropriate defense mechanism, e.g., mitigation

is necessary to thwart the cyberattacks before causing a great impact on the devices and

end-users. Although the ever-increasing attacks cannot be mitigated fully, real-time

network activity monitoring using an IDS, strong access control, and authentication can

be adopted to prevent and detect attacks.

Motivation

The security of IoT devices is critical since the IoT networks are different fromCyber

Physical Systems (CPS) andWireless Sensor Networks (WSNs). These intelligent smart

devices bring the risks from industrial control system space to different application

domains affecting real life, leading to significant attention from researchers and security

specialists all over the world. A shift to digital transactions in different applications

mandates a shift in our mindset to secure all these transactions as they traverse small IoT

sensors. The longer-range wireless communications, and resource constraints of battery,

processor and memory makes the systems more complex. The privacy and security of

IoT applications are concerned with confidentiality, integrity, and availability of the

information and/or services. Meeting these security goals is significant for modern

organizations to ensure trust, and to guarantee the safety of data [10]. Finance, usability,

resources and many other factors influence the level of security mechanisms that are

implemented in an IoT device. Every sector has to implement the security best practices

3



appropriate to their needs. The traditional mechanisms for cyber attacks detection,

especially for known attacks are effective in certain situations but cannot be applied to

its variants or absolute unknown attacks. The devastating attacks against IoT devices

mandate a peripheral defense, IDS to ensure reliable and secure networking in IoT

devices.

Security challenges, like undeveloped network standards, resource constraints such

as power capacity, limited storage and low computational capability, prevent the de-

ployment of various security solutions in IoT devices. Besides, with the increase in the

number of devices, newer attacks are emerging. In literature, there are many IDSmodels

have been proposed using AI techniques. However, the existingML, especially DLmod-

els are computationally heavy and based on a strong assumption that the traffic samples

available are sufficient, labelled and useful for model training [11]. IDS demands robust

and improved techniques to survive against cutting-edge malicious attacks. Neverthe-

less, the zero-day attacks, groundbreaking attack techniques and eccentric hackers make

any IDS outdated with the novel attacks. To defend against such disruptive malicious

activities, the IDS needs continuous improvement at the pace of the variability in the

traffic patterns. Therefore, we aim to propose a real-time IDS for IoT devices that is

suitable for its resource restrictions and efficient in identifying attacks accurately.

Thesis Objectives and Contributions

The goal of this research is to develop an IDS for IoT systems to detect popular

security threats with lower False Positive (FP) and True Negative (TN) rates. We aim to

develop a real-time and effective IDS that learns the normal network activity from the

regular network usage and creates a model using DL. The network traffic is monitored

4



intelligently based on the developed model and is categorized as malicious or benign.

The research questions that are addressed in this dissertation are as follows: (1) What

are the challenges and issues of existing IDS models that need to be solved? (2) How

pre-processing tasks affects the DL model training? Is it possible to capture newer

features from the incoming IoT traffic using efficient pre-processing techniques? To

address this, a favourable pre-processing technique for DL model training is proposed

such that it captures newer features from the incoming traffic. (3) What are the affects of

a centralized IDS on the time and computational complexity of themodel? After analysis

of these critical metrics, we distribute the intrusion detection process on different neural

networks. (4) How can we identify the rare classes samples efficiently? Which of the

existing AI techniques can be used to preserve the privacy of data in decentralized way?

For this, we design a privacy-preserving and scalable intrusion detection method using

FL and GAN to overcome centralization and data imbalance issues, respectively.

We begin this dissertation by studying various intrusion detection models to identify

the appropriate approach for protecting IoT networks. Existing anomaly-based and DL

based approaches are examined to address the limitations and issues of the latest IDS

models. Then, we build an IDS using heuristic pre-processing techniques and incre-

mental learning. The proposed distributed IDS reduces the overhead on the centralized

Edge classifier such that the subsequent latency between pre-processing and decision

making phases is minimum. The main contributions of this work are summarized as

follows:

1. We propose a efficient pre-processing technique for IoT devices using DL, such

that the detection process has less computational complexity without consuming

much resources or degrading the network performance. Our proposed parallel pre-

5



processing technique utilizes the computational power and memory resources of

the IoT devices to ensure the security and privacy of the raw data. Sharing the pre-

processing task among IoT devices reduces computational resources and delays

at the source, and gives comparable performance to the centralized classification

task.

2. An incremental learning model is proposed to update the classifier seamlessly

with emerging features in order to detect new attacks. Our incremental model

gives better accuracy than other approaches.

3. A comprehensive evaluation of the incremental intrusion detection model using

different experiments with standard datasets and real-time IoT traffic for Denial

of Service (DoS) attack detection is provided. We also perform decision time

analysis for the classification process and compare it to other centralized models.

In the second phase, we model the proposed IDS using FL and GAN to tackle data

imbalance and privacy issues. The contributions to this end are as follows:

1. We designed a novel distributed GAN-based intrusion detection model for

smart IoT systems. The GAN generated synthetic data augments the data on an

IoT device to train the intrusion detection model individually. The GAN network

solves the problem of limited, missing and imbalanced data on the IoT devices.

2. Wehave proposed a privacy-preserving FL framework allowingmultiple smart

IoT devices contribute to building a global intrusion detection model. Each device

trains its single model on its own data and synthetic local data generated by the

local GAN and transfers the model parameters to the global model. The local and

generated data of each device are not shared with other IoT devices. This task

6



ensures data privacy by performing the data pre-processing and model building at

each device. The global model performs parameters aggregation and distributes

the updated model to IoT devices.

3. We developed a binary and multiclass classification intrusion detection classi-

fier after multiple FL rounds of communication with available IoT devices in the

network.

4. Finally, we evaluated the performance of the distributed intrusion detection

model in terms of accuracy and other metrics with two standard datasets; NSL-

KDD and KDD99.

Thesis Overview

The structure of the rest of the dissertation is as follows: Chapter 2 provides back-

ground and related works, in which we discuss the types of IDS and existing intrusion

detection models in the literature. In Chapter 3, we elaborate on existing IDS and its

challenges, specifically for IoT devices. Chapter 4 presents a heuristic pre-processing

technique using incremental learning that reduces computational overhead for intrusion

detection model. In Chapter 5, we explain our privacy-preserving intrusion detection

model using FL and GAN. Finally, the dissertation is concluded with future research

directions and conclusions in Chapters 6 and 7, respectively.

7



CHAPTER 2: BACKGROUND AND RELATED WORK

Intrusion Detection System

IDS monitor and protect a network from malicious activities or policy violation.

Intrusion detection is the process of detecting unauthorized access and intrusions in the

network and information systems [12]. Intruders can be internal or external. Internal

intruders are the legitimate users who try to escalate privileges in order to access

unauthorized data or services, whereas, external intruders are the people outside the

network who attempt to gain access to the network and/or information systems. There

are two types of IDS: network-based intrusion detection system (NIDS) and host-based

intrusion detection system (HIDS).

Network-based IDS is connected to one or multiple network segments and monitors

inbound and outbound traffic for malicious activities. Traditional NIDS mechanism is

challenging and restrictive to be applied to IoT devices due to heterogeneous connectiv-

ity, constrained resources, and limited power. The nodes in traditional systems monitor

inbound and outbound traffic without any resource or bandwidth constraints. In IoT

devices, many NIDS mechanisms have been developed using attack signatures but the

False Positive rates are higher, i.e., false alarms and unknown attacks cannot be identified

[13]. Host-based IDS is connected to any component like computer device, node, or a

router to monitor network traffic on that particular device. Unlike NIDS, HIDS scans

operating system processes, file system modifications, and system calls [14]. HIDS is

deployed on a specific device and protects that device from internal and external attacks.

Nowadays, IDS is designed to protect devices and also networks. The hybrid way of

combing HIDS and NIDS helps to protect the entire IoT system, which is chosen as per

8



the need of the system.

The principal challenge in IDS is the identification of anomalous patterns in the

network. Sometimes, a benign behavior is detected as malicious and vice versa. The

number of FP and TN should be minimum to reduce the error rate in anomaly detection

[15]. This challenge emerges due to the complexity of the networks that are connected

and numerous devices that are interacting and exchanging information in IoT systems.

These abundant distributed devices that are connected through the Internet also give

different ways to launch Distributed Denial of Service (DDoS) attacks, making them

unusable for a point in time or crashing the devices. Unlike user-driven computer

networks, IoT networks are object-driven, so it is difficult to apply conventional computer

networks IDS mechanisms to IoT networks. Therefore, specialized mechanisms are

needed to monitor, secure, and manage IoT devices and networks from evolving threats

and vulnerabilities.

IDS Placement Strategies

The placement of the IDS is significant to ensure higher rates of detection. Here, we

have provided different ways of placing an IDS in an IoT network.

1. Centralized: In this case, the IDS is placed at any centralized component either

at the border of the node or at any host. When the IDS is placed at the border

router, it is able to analyze all the traffic between the node and the Internet, while

the traffic across the border router is left unmonitored. Moreover, when a part of

the network is compromised, the centralized IDS may not monitor those nodes

during the attack.

2. Distributed: In this mechanism, an optimized IDS is placed at each physical object

9



meeting the resource constraints of the nodes in IoTs. A distributed lightweight

IDS is proposed using the packet payloads and attack signatures in which the IDS

is placed in various places to cover the whole network monitoring [16]. To reduce

the number of matches, auxiliary shifting and early decisions are adopted. Lee et

al. have proposed a anomaly-based model with distributed IDS, which proved to

be successful to some extent in detecting intrusions [17].

3. Hybrid Approaches: This scenario integrates the different IDS approaches with

the placement strategy to maximize the advantages and minimize the limitations.

Hybrid IDS placement bolsters the performance when centralized and distributed

schemes are combined together.

From all the abovemethods, a hybrid approach, which suits the situation and network

structure can be adopted. It is impractical to design a hybrid approach specifically for

each different scenario. Hence, researchers have focused on ML and AI techniques,

specifically on DL algorithms to design accurate IDS for IoT networks.

Intrusion Detection System Approaches

IDS approaches are categorized into signature-based, anomaly-based, specification-

based, and hybrid based on the detection approach. This section discusses the different

types of IDS approaches.

Signature-based Detection

This approach recognizes anomalous patterns based on the signatures of the attacks

stored in the internal database of IoT devices or IDS. Whenever an attack signature

10



matches with the database, an alert is triggered. This process is very effective and fast

for identifying known attacks. However, it is difficult to detect new attacks or the attacks

for which signatures are not stored or even variants of known attacks[18]. Deploying any

IDS in IoT devices on the low capacity nodes and low power networks is highly difficult

and challenging. In signature-based methods, both the cost of storing the signatures in

the databases and the computational cost of running learning algorithms for checking

each signature are high. A signature-based IDS, Intrusion Prevention System (IPS),

and Network Security Monitoring (NSM) method using Suricata Engine are adapted for

(IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) based networks

[19]. An improvement to this mechanism is developed to reduce the computational cost

of comparison between attack signatures and network packet payloads [16]. However,

the signature-based approach is unsuitable for zero-day attack scenarios.

Specification-based Detection

This method sets guidelines for the expected behavior of the network components

like nodes, routing tables, and protocols. The purpose is similar to anomaly detection,

i.e., when the behavior is deviated from the specification, it is considered an intrusion.

However, unlike anomaly detection, this approach needs a security expert to define the

specifications for the elements and this procedure guarantees lower False Positive rates.

No learning algorithms are needed, but the challenge is that the different specifications

required for different platforms or environments [20]. One such approach is implemented

to tackle denial of service attack in which the maximum capacity of each middleware

layer is defined beforehand and if the number of requestsmatches or exceeds the capacity,

an alert is triggered to the network administrator [21]. One of the specification-based

11



approaches is proposed for Routing Protocol for Low-Power and Lossy Networks (RPL)

where the behavior of the protocol is fed into a finite state machine to monitor the

network intrusions and malicious behavior [22]. As an extension work by Le et al.

[23], simulation trace files are used to generate finite state machines. Most of the

manually deciding specification approaches are highly dependent on the expertise of the

security team and network administrator. Inappropriate specifications result in higher

false alarms and in turn, increase the risk of network security.

Anomaly-based Detection

Anomaly-basedmodel detects unknown attacks and often relies onML algorithms to

create a model of trustworthy ‘good’ traffic activity, and then, compares network activity

against this model. Sometimes, the previously unknown complex legitimate activity is

classified as malicious, i.e., False Positive. The ML techniques and statistical methods

used for matching algorithms are heavy to be suitable for deploying on low capacity

nodes, which is one of the challenges that needs to be considered. The authors in [24]

have proposed an anomaly-based method for detecting botnets based on the average

of three metrics: TCP control fields sum, number of connections for each sensor, and

packet length. They analyzed the nodes behavior for identifying anomalous activity and

considered energy consumption of the node as a parameter. They established models

of conventional energy consumed by the nodes in normal routing and if any node is

abnormal in power consumption, then it is removed from the 6LoWPAN routing table

[17]. Another anomaly detection mechanism for resource constrained IoT devices is

proposed by Summerville et al. [25]. The authors claim that the protocols in IoT

devices are simple leading to similar network payloads. They perform feature selection

12



using bit-pattern matching. Likewise, one of the efficient methods is devised in 2015

by Pongle et al. for detecting wormhole attacks in IoT networks, which consumes

very low power and energy [26]. The approach is based on the number of packets

shared between nodes. If the packet exchange rate is high compared to the normal

behavior, then an alert is triggered. However, defining a model based on few features

is not efficient as it detects only defined attacks and results in higher FP rates for other

behaviors, creating obstacles for normal network activity. Anomaly-based detection

with appropriate feature extraction and lightly loaded learning techniques are suitable

for current IoT networks. Anomaly-based detection integrated with DL techniques

can be classified into supervised, unsupervised, and semi-supervised learning-based

detection.

Intrusion detection approaches based on Artificial Intelligence

Artificial Intelligence has been used extensively to solve security problems as it

has the capability to learn, deduce, and decide based on cognitive functions of pattern

recognition. In this section, we present IDS approaches using various AI techniques in

literature.

IDS using Machine Learning

The effectiveness of ML techniques in fraud detection, image recognition, and

text classification has encouraged security researchers to employ these algorithms for

anomalous pattern detection and identify abnormal behaviors to enhance the security of

IoT networks [27]. The ML algorithms rely on patterns from data sets taken as inputs.

For this reason, ML is applied even in conventional methods of attack detection such as

13



signature-based and anomaly-based in traditional Internet networks [28]. ML algorithms

have been used for data processing and management in IoT devices to extract useful data

from the voluminous data [29]. An ML-based distributed attack detection method for

IoT devices in Fog networks is implemented using Extreme Learning Machine (ELM)

classifier integrated with Semi-Supervised Fuzzy C-Means for efficient detection in

lesser time [30]. This approach is tested using popular NSL-KDD dataset. Similarly,

Shiven et al. [31] have proposed an integrated IDS using ML and anomaly-based

detection approach. This method provides security as a service incorporating different

communication protocols and monitors inbound-outbound traffic. It easily adapts to

different network topologies and does not require any special hardware for the setup in

the network.

Among the methods of developing IDS using ML that are discussed in literature,

only few have been evaluated in real-time, specifically for IoT. Most of these intru-

sion detection models using intelligent techniques are customized for Wireless Sensor

Networks or for the traditional Internet architecture. Moreover, ML techniques are inef-

fective in detecting attack variants and nowadays, some attack types are being modified

several times to hide its actual signatures or behavior. Therefore, DL is recommended

for IDS for hidden parameters extraction capability, which enables it to easily identify

multiple variants of attacks. Also, these methods collect data at centralized unit to make

informed decisions [32], which is not a recommendable solution as it threatens privacy.

Nevertheless, new directions of AI using DL have a decentralized and distributed way

of processing, analytics, and decision making on big data [33].

14



IDS using Deep Learning

IoT systems support a diverse protocol stack, which causes numerous zero-day

attacks to emerge. It is harder for a traditional ML mechanism to detect the small

mutations of attacks over time. DL is considered as a major step forward in Artificial

Intelligence. It is inspired by the ability of the human brain to adapt to circumstances

and deduce from past experiences. DL methods are known for their success of high-

level feature extraction capability in big data due to its deep structure of layers. The

hidden layers of Deep Neural Network (DNN) are shown in Figure 2.1. DNN layers

can identify hidden patterns from the training data and completely rely on recognizing

the true face of any variant. Deep networks are far better than the shallow ML methods

in attack detection with high accuracy [34]. DL is a resilient approach for current IoT

networks to detect small variants of the attacks. Besides, the compression capabilities

and unsupervised pretraining are the key features of DL, making it possible to be

deployed on IoT constrained networks IDS.

Figure 2.1: Non-deep and Deep Neural Networks.

Sakurada et al. [35] have adopted DL network, called AutoEncoder (AE), for

15



anomaly detection, where the normal network behavior is self-learned by the auto-

encoders. The approach recorded abnormal (different) results for the same dataset

during training. This model can be enhanced by choosing appropriate hyper parameters

for the network. Another distributed intrusion detection approach using DL is proposed

for Social Internet of Things (SIoT) [36]. The authors have shown that the distributed

IDS in Fog network is more scalable than the centralized cloud. This method can be

evaluated by using various datasets, payload data, and algorithms for comparisons and

future enhancements using existing models.

Generative Adversarial Network

GAN was initially introduced by Ian GoodFellow [37] for estimating generative

models. The GAN network is computationally heavy, as the architecture consists of

two deep neural networks called the generator (G) and the discriminator (D). In the

traditional GAN network, G and D are tightly coupled to reach a target learning rate.

The generator is trained to produce artificial data while the discriminator is trained to

differentiate the original and generated data. The two networks run in parallel to improve

their performance gradually. After n iterations, the generator learns to output data close

to the original data and the discriminator learns to identify the source of the data, i.e.,

real input or generator sample. This is like a min-max player game framework, which

can be represented by the function below.

min
G

max
D

= [Ex∼Pdata
[logDi(x)] + Ez∼Pz [log(1−Di(Gi(z)))]] (2.1)

Gi(z) is the synthetic data that the generator produces and the discriminator output

is Di[0, 1], which shows the probability that the data is real or duplicate. The objective

16



of the generator is to minimize the probability of identifying the source of data by

the discriminator, i.e., (1 − Di(Gi(z)) while the discriminator try to maximize the

probability of source identification, i.e., (1−Di(Gi(z)) andDi(x). These networks are

powerful in data augmentation, data simulation, anomaly detection, image generation,

and text-to-image translation [38]. The architecture of GAN is shown in Figure 2.2.

Figure 2.2: GAN Network.

Mostly, the GAN has been used in its typical network composed of two neural

networks. The input of the generator is a noise signal, which is a random vector of size k

that follows a normal distribution and outputs data similar to the training data. The input

to the discriminator is fed from either the generator or training sample to differentiate

it. Some of the recent researches [39] [40] have modified the GAN architecture into a

distributed framework to improve its convergence rate.

17



CHAPTER 3: CHALLENGES OF INTRUSION DETECTION SYSTEM FOR IOT

DEVICES

In this chapter, we review the challenges to develop an IDS for IoT devices. We also

enlist the limitations of the existing IDS models in the literature.

Intrusion Detection in Streaming IoT Data

Classification of streaming data is difficult due to the dynamic nature of the incoming

traffic. This is a major problem in ML and DL applications. The learning algorithms

are trained at one time but need to be retrained due to the continuously evolving nature

of data. retraining requires huge time overhead, computational resource requirements,

and memory footprint due to the large scale IoT datasets arriving in real-time from the

environment. Whilemany learning algorithms canworkwith the raw input features, their

performance degrades as the number of samples grow. The performance degradation

and the inability to classify is due to the high number of features that have to be processed

for decision making, which is referred to the "curse of dimensionality" [41].

Feature selection is one of the approaches to reduce input features, i.e., values given

to the classifier. Usually, feature selection techniques analyze each variable indepen-

dently. Sometimes, the variables that do not provide any information individually, give

useful information when they are combined with the other variables. Therefore, feature

extraction methods are proposed to construct meaningful features or to extract high-level

information from the raw features [42]. One such way is data compression in which the

number of bits that represent the data are reduced. AEs are unsupervised neural net-

works that perform data compression. AE is a simple neural network that reconstructs

input into output with the least possible distortion, i.e., the output is close to the input.

18



It applies backward propagation, similar to Artificial Neural Network (ANN), to set the

target values to be equal to the inputs. AEs can be used for supervised or unsupervised

learning as it can handle data that is unlabelled but labeled data has more information

that can be used.

AEs are efficient in reducing noise, dimensionality reduction, and learning important

features in the data while reconstructing the input, i.e., pretraining. The learned features

reveal the non-linear properties of the data. Extracted features provide a good discrimi-

native ability for the classification task [43]. The input features are crucial parameters for

efficient intrusion detection. Different features change the detection performance of the

intrusion detection model. There are standard algorithms for dimensionality reduction,

such as Principal Component Analysis (PCA), but AE gives higher efficiency due to the

deep extraction of non-linear properties of the features. AE gives a representation of the

output at each layer, giving multiple transformations at different dimensions of the input

parameters. Data projections and visualizations using AE are more accurate than PCA

and other dimensionality reduction techniques. In addition, outlier’ identification is a

by-product of any AE technique. PCA, LDA, and other standard ML feature extraction

(data reduction methods) are used as they can be implemented easily. However, these

methods are less capable in modeling the nonlinear structures of data, compared to the

DL methods, especially in large datasets. The compressed representation of data with

deeper AE networks can improve model performance [44].

One of the hybrid feature-extraction methods is proposed by merging Sparse Au-

toEncoders (SAE) and PCA to extract low-level features and is applied to various

classifiers [45]. The results prove that the large numbers of nodes in hidden layers and

deep information extraction from features are two critical parameters for achieving high

19



performance [46]. Traditional AEs fail to inspect relationships of data samples. They

generate new features by minimizing only the reconstruction loss of the data. To resolve

this problem, we minimize the reconstruction loss for data and relationships between

data features.

We have investigated various AE networks that may fit into our problem. Among

all, we chose SAEs, as it allows us to activate a selected number of nodes, which is

the first requirement for this research challenge. We merge correlated features into one,

where we have to activate and de-activate nodes and merge them by clustering into one.

Besides, SAE consists of a single hidden layer, which can be deployed on any of the

IoT device irrespective of its resource constraints. The loss function of the network

is constructed by penalizing the activations within the layer [47]. SAE is efficient in

encoding the input data by approximating minimum error, which guarantees less loss

of information, and extraction of the best feature representation. From the literature

[48], even with the simplest algorithm, it is possible to extract useful features and

achieve higher performance by focusing on the hyper-parameter choices rather than on

the complexity of the algorithm. We have incorporated these choices diligently after

experimenting with various values on the SAE.

Data Pre-processing and Incremental Learning

Recently researchers have shown much interest in incremental learning algorithms

[49], also referred to Transfer Learning [50], Online Learning [51], and FL [52] to adapt

to the complex real environments. Existing supervised incremental learning algorithms

are Learn++ [53], incremental SVM [54], and incremental Support Vector Machines

(SVMs) that is proposed to incrementally learn from a reduced number of support

20



vectors [55]. Incremental learning based on user-provided labels or pairwise constraints

is not suitable for dynamic data. Using streaming data, it is not always possible to label

all the arriving data. If the streaming data is available at time-stamp t, the labeling

of those samples either manually or automatically by any method may occur at time-

stamp t+1, which is challenging and time-consuming. Some researchers have proposed

semi-supervised algorithms to resolve this issue by using Bayesian learning, Subspace

learning [56], Clustering [57], and Classification techniques [58]. Fitting unlabelled

data based on an inappropriate model misleads the learning process and degrades the

performance.

A distributed self-governingmodel is proposed where the decision is taken locally on

the data collection devices, i.e., the positioning of the hierarchical processing layers on

the IoT devices. Distributed processing mitigates the latency between the data transfer

and decision making [59] as well as helps the resource-limited devices to meet the

demands of the DL solutions for video/ image classification. This model is unsuitable

to be applied for intrusion detection as the raw data should be shared among the IoT

devices for decision making and thus it does not guarantee the privacy requirements.

Most of the incremental learning techniques proposed in literature assume that the

data is labeled, which is not practical and makes the IDS incapable of dealing with

new attacks [60][54]. Some of the incremental semi-supervised algorithms have been

proposed to dealwith unlabelled data [61]. Nevertheless, these algorithms do not achieve

good performance during the testing phase because of the repetitive pre-processing, high

computational demands, and high memory consumption, as the huge amount of data is

transferred from IoT devices to cloud/edge platforms where the IDS is placed to provide

various services. The streamed IoT data is big and heterogeneous with a mix of data

21



with known and unknown labels arriving chunk by chunk, which may overwhelm the

classifier and lead to slow classification [62]. Therefore, the accuracy of incremental

DL models can decrease. The response time, i.e., latency between the IoT data and the

DL classification has to be synchronized to handle the vast amount of real-time traffic.

The operational stability of the IoT IDS might also get compromised when there is a

delay between the IoT domain and DL models detecting intrusions [63].

To sum it all up, the accuracy reduction is not the only problem with the existing

incremental IDS algorithms. The processing time, memory consumption, and decision

time are high when deployed in a real-time IoT network, where the traffic patterns are

dynamic. Sometimes, the classifier is jammed or gives incorrect results. Only a classifier

with short response time and high accuracy can ensure the security of the network. To

meet the requirements of quick and correct response from the DL model, there has to

be a shift from the traditional way of data transfer from the IoT devices.

Privacy-preserving Decentralized Models

In this section, we review some of the recent studies focusing on intrusion detection

based on FL. Research indicates that IDS gained enormous attention and usage in every

domain of IoT environments, right from smart homes, healthcare systems to Cyber-

Physical Systems (CPS). Numerous IDS models have been developed based on DNNs.

For example, Yang et al. [64] modeled a zone partitioning IDS to identify known and

unknownmalicious activities inCPS through various zones that have been compromised.

Likewise, Yang et al. in 2020 [11] have designed an IDS based on Convolutional Neural

Network (CNN) for SCADA networks. Among DLmodels, CNN is highly used to build

strong IDS as the convolutional architecture analyzes the features closely to differentiate

22



minor changes. One of the challenges in improving accuracy of DL based intrusion

detection models is optimal features that can be obtained by appropriate pre-processing

techniques. Otoum et al. [65] have proposed an IDS using hybrid pre-processing

techniques to select optimal features for training an efficient model. The model achieves

high accuracy and is able to identify anomalous traffic patterns.

Most of these models are trained at a centralized entity, which is not only computa-

tionally expensive (time and processing) but also threatens the privacy of the data [14].

Though central models trained using ML or DL give higher accuracy, it overburdens the

classifier with huge traffic from all over the IoT devices in the network. Besides, there

is a request-response delay between the classification and the IoT data. Therefore, there

is a shift towards distributed, decentralized, and similar approaches for IDS. Gajewski

et al. have proposed a distributed IDS for smart homes [66]. The data of all IoT devices

is collected on a home gateway (HG) of the Internet Service Provider (ISP) and the IDS

is built in two levels in a distributed fashion. Level one is the IDS at the HG, which

analyzes the traffic of all IoT devices and gives alerts while level two is the Network-IDS

provided by the ISP, which re-analyzes any malicious alerts by the IDS at HGs.

Nevertheless, decentralized models proposed in literature transfer the original data

to other devices, i.e., other IoT device, Edge node or cloud, which makes the data

vulnerable to attacks and leaks. Recently, FL is adopted for IDS to address centralization

and isolated data issues [67] [68]. FL is a collaborative training platform for building

a shared global model. It is a distributed ML approach involving Edge computing that

preserves local data privacy. In this process, each available client, i.e., IoT device trains a

model locally on its private dataset and sends the model updates to a central server. The

central server aggregates the parameters from all the clients and send back the updated

23



model [69]. The training process of an FL model is shown in Figure 3.1.

Figure 3.1: Federated Learning Approach.

FL trains the model locally, so it does not share the data with other devices ensuring

data privacy. Nguyen et al. [70] have proposed a self-learning on-device IDS using FL

for IoT devices. They modeled the IDS as an anomaly detection module that generates

alerts about any communication deviation from the regular pattern in the IoT devices.

Likewise, Yulin et al. [71] have designed IOTDefender, an IDS framework for 5G IoT

devices using FL. The model is built in collaboration with all available IoT devices by

transferring the parameters without privacy leakage. The model achieved 91% average

accuracy with lesser FP rate than other unified DL models. Another intrusion detection

model is built by [72] using Gated Recurrent Units (GRUs), which also uses regular

federated architecture by sharing computed weights with the central server. IoT devices

participate in model training using its local data and send the learned weights to the

central server, which uses ensembles to aggregate the parameters. However, models

trained using FL give poor performance and higher false alarm rates, if there is limited

training data. Considering these arguments, we investigate intrusion detection models

24



built using GANs.

Data Imbalance Issues in Model Training

Seo et al. [73] have proposed a GAN-based driver safety system to reduce the

false alarm rates in Vehicular Networks by augmenting the training data. In a fully

decentralized way, Ferdowsi et al. [74] have designed an adversarial network to identify

anomalies in IoT devices. This model aims to conceal the user’s local data, i.e., IoT

private data by using a single generator in the network and a discriminator network on

each IoT device. However, the central generator collects the data distributions of all IoT

devices in the network. Using a central generator for data analysis is a major bottleneck

for scalability and request response. There are many GAN based intrusion detection

models and federated intrusion detection models, but none of them is designed using

GAN in a federated scenario for intrusion detection. We engage GAN in our model to

synthesize training data to improve the model’s accuracy by augmenting synthetic data.

The data augmentation ensures less FP rates and better learning for minor class samples

[75]. And, FL distributes the workload by enabling multi-party on-device learning.

This ensures the privacy of data while allowing the data available in each device to be

used in the training process.

25



CHAPTER 4: PARALLEL PRE-PROCESSING OF DATA ON IOT DEVICES FOR

INTRUSION DETECTION

Any IDS involves twomajor steps: pre-processing and classification [76]. InML, the

pre-processing step extract or select features from the network traffic and send them to

the classifier. Traditional ML algorithms can either select the features manually or using

a predefined feature selection algorithm. Sometimes, the feature selection can cause

the classification models to underfit or overfit, affecting the accuracy when dealing with

big data. The traditional feature selection and classification algorithms do not perform

well on big real-time data as it is heterogeneous with a huge noise and other irrelevant

information. This needs efficient pre-processing to extract meaningful data for training.

Another major reason where researchers fail to train models on real-time traffic is the

unavailability of real-time traffic data sets. Besides, organizations do not share real data

for training purposes due to privacy and security concerns. Moreover, using real-time

data from different sources for training is vulnerable to manipulation attacks where the

attacker injects malicious traffic patterns to corrupt the training model. Considering

these problems, we propose a novel pre-processing technique using DL to extract less

number of useful features to reduce the overhead on the classifier model. We use AEs

with non-negativity constraints in order to help us extract high-level meaningful features.

We pre-process the raw data on IoT devices using the AE network to ensure data privacy.

Since classical ML models suffer from a lack of scalability and low detection rate in

large distributed IoT nodes. We chose DL network that can extract features automatically

and provide adequate representation [77]. Moreover, the attack patterns change with

time and newer features arrive in the network. Researchers have adopted incremental

feature learningmodels to retrain themodel in order to cope upwith the emerging attacks

26



[78]. Likewise, we utilize our pre-processing technique using incremental learning in

a distributed fashion to capture newer features. Once the newer features are captured,

the classifier model is retrained to identify newer traffic patterns. The whole intrusion

detection process is distributed in three networks designed for different tasks. When the

raw data is sent directly to the classifier, various privacy concerns and confidentiality

issues arise [79]. Data is vulnerable to be intercepted or reverse engineered by some

adversaries, which may lead to privacy and security threats. We send the pre-processed

data to the classifier, which is different from the raw input, to guarantee data privacy.

Also, the risk of reverse-engineering the data decreases because the data processing is

distributed over multiple distributed networks. In addition, we capture real-time IoT

traffic to test our pre-processing and classification models.

System Model

We study a smart home consisting of various IoT devices, such as medical sensors,

home appliances, and utilities as shown in Figure 4.1. To be more concrete, we consider

the new medical applications that are becoming significant in our homes, such as early

diagnosis and real-time patient monitoring. Real-time monitoring using vital signs and

automated emergency response reduces the dependency of the patient-caregiver and

decreases the healthcare costs. Different wearable IoT sensors interact with each other

for communication using different protocols. The amount of traffic is large and the data

is flowing continuously. The nature of the data is confidential and needs to be secured.

This diverse environment provides a potential attacking surface and the attacker may

manipulate the traffic patterns. If the manipulated patterns are not detected at the early

stages, it may lead to the unavailability of the system. If an adversary compromises the

27



Figure 4.1: System Scenario.

smart home IoT health system network by attacking any one of the wearable IoT sensors,

for instance, the vital signs can be changed threatening the life of a patient. An attacker

may gain control of the whole network by compromising devices through performing

different types of attacks. To protect the smart home against such malicious activities,

we propose an IDS framework, where the data pre-processing is done on the available

IoT devices and classification is done on the Edge device. To speed up the classification

and minimize the input of the classification model, we pre-process the data on the IoT

devices so that less data is sent to the remote classifier.

Notations

In this chapter, we denote Fi for input traffic, i.e., feature set from an IoT device,

where each value is denoted as xi, which is unprocessed. After pre-processing, the

values are denoted as x̂i and the whole set of pre-processed values from an IoT device

28



is denoted by Gi. The total number of IoT devices in the smart home health system is

denoted by p, the number of input traffic, i.e., unprocessed is denoted by n and after

processing the number is denoted by m. The final optimal set of features used for

training is denoted by H and after every update, we denote it by H ′. Based on these

notations, Ci defines the nodes of the generative network with hidden layers as hli with

weight matrix and biases denoted byW and b, respectively.

Distributed Architecture

The proposed distributed architecture is inspired by a method based on incremental

semi-supervised learning on streaming data for video classification, which consists of

three layers [80]. The first layer learns features from the incoming streaming data,

the third layer regularizes the network by building similarity constraints. These two

layers are connected by a bridge layer. Likewise, our model is segregated into three

deep networks, namely, generative network, bridge network, and a classifier network.

The tasks that are implemented in these networks are pre-processing, comparison and

classification, respectively. The detection process is distributed over these networks

right from pre-processing of the incoming streaming data to the classification results.

The proposed IDS identifies DoS attacks in IoT home network scenarios. The reason

for selecting a DoS attack is because it generates huge traffic, which may shutdown or

overwhelm the classifier before it could categorize the attack and notify the attack

detection. It is considered to be the most possible attack in IoT devices due to their

resource constraints, and especially for IoT health devices, it can be devastating if the

device is shutdown. So, we have targeted DoS, and its categories of attacks. As our

model is incremental, it can be retrained for many other attack identification tasks. In the

29



following subsections, we provide a detailed explanation of the tasks of each network.

Generative Network

In this network, huge traffic, i.e., either normal or malicious events are captured

from different IoT devices. We build a layer of SAE on each IoT device to analyze

traffic within the device. The collected raw data from each IoT device is recorded and

pre-processed for unique feature identification. All AEs pre-process independently and

unique features are extracted from the incoming traffic from each of the IoT devices

simultaneously. Here, the unique features mean the features without redundancies and

similarities. Similar features are merged based on the proposed heuristics. Once unique

features are extracted on each IoT device, the useful features are sent to the bridge

network for further analysis and recording of incremental features. The bridge network

is separated from the classifier network, but both are deployed on one Edge device.

The networks and their tasks are illustrated in Figure 4.2, which shows three networks,

generative, bridge, and classifier. The generative network takes the incoming traffic from

the IoT devices as an input. Let us assume that the incoming traffic on each IoT device

is {x1, x2, x3, ........xn}, we refer to it as input set of values F . The input set of values

of each of the IoT device is referred to {F1, F2, F3, .....Fp}, where ’p’ is the number of

IoT devices in the smart home health system. Each input set of values are pre-processed

to extract unique features. The input set of values F1 = {x1, x2, x3, ........xn} on IoT

device 1 are converted to G1 = {x̂1, x̂2, x̂3, ........x̂m}, which are the unique extracted

features. Likewise, {G1, G2, .....Gp} are all sent to the bridge network.

We propose a heuristic algorithm for feature extraction from the streaming IoT

data and automatically compare features for duplicity and fuse it into informative deep

30



Generative network 

Input 
 

Bridge network 
         

                   Classifier Network 

 

 

 

                  

                                                     Classification 

Input       

 

    Comparison 
 

  Pre-processing 

 

F1 

G1

1 

F2 

G2 

G1

1 

G2 

H 

CLASSIFIER Initial pre-processed data 

Features recorded for 

re-training purpose 

Sparse Auto Encoders 

Sparse Auto Encoders 

Figure 4.2: Distributed Architecture for Pre-processing and Incremental Learning.

features. The algorithm is elaborated in the next subsection in Algorithm 1.

Bridge Network

The bridge network receives unique feature sets {G1, G2, ...Gp} from all IoT devices.

It forwards those values to the classifier network for classification results. Apart from

this, it analyzes the received feature sets by comparing them to the existing features on

which our classifier model is trained. After which, it records any new feature and forms

a new filter in the network. The working of this network is explained in Algorithm 2

in the next section. Bridge network construction is similar to the AE layers on the IoT

devices. This network can be either placed on a sub-edge node such as IoT Hub or

the same node as the classifier. In our case, we have placed it on the same device as

31



that of the classifier. From Figure 4.2, {G1, G2, .....Gp} are sent to the classifier, where

the classification results are given as Anomaly or Normal. Besides, {G1, G2, .....Gp}

are processed through the filters of the bridge network to know if any new features are

recorded from the incoming traffic and is named as a new feature set ’H’. This is used

for retraining purposes.

Classifier Network

Inspecting every packet is time-consuming and computationally expensive in stream-

ing data to identify intrusions. We pre-process packets diligently to send only useful

data to the classifier. We used a CNN model to detect the intrusions over the network,

which has higher accuracy and bigger data handling capability [81]. CNN helps to

reduce false alarms and thus unnecessary service visits of the network administrator

to identify if it is a real attack. It has multiple levels of abstraction that discriminate

features easily without overfitting the model. In this network, classification is executed

with faster response time to alleviate the latency between IoT data pre-processing and

IDS decision making. The classifier network gives results after processing the feature

sets from the bridge network. The activations are connected to small regions of the

neurons and not in a fully connected manner.

Detailed Design

The intrusion classification process is carried out in three phases in the distributed

deep networks as shown in Figure 4.3 and explained below.

32



Transformation

Normalization

Autoencoders

Input 

traffic

Convolutional Neural Network

Figure 4.3: Complete Training Process Flow.

Generative Network: Pre-processing Phase

We train a deep SAE network on IoT devices for feature extraction using ReLU

activation function. We usedAEs as it detects rare events, i.e., outliers, and extracts high-

level features, which are helpful to identify newer attacks. We perform the following

steps in the pre-processing phase. Initially, the data is adjusted in one format and

normalized so that we get improved results with our classifier. This is applied in both

cases, Training and Testing.

33



Feature Transformation and Normalization

The incoming traffic is transformed into one format, for example, the text values

are converted into numbers. Then, the transformed features are normalized using the

Z-score function.

Z(i) =
(v(i)-µ)

σ
(4.1)

where µ is the mean of the n values for a given feature (v(i), i{∈ 1, 2, 3, . . . n}) and σ

is the standard deviation.

Unique Feature Extraction and Fusion

Extracting the right features is often a complex and difficult task, which can be

solved by using deep neural networks [82]. In this process, we use some heuristics that

cluster and merge features by agglomerative clustering and reduction of hidden layer

size. The most popular type of clustering techniques are agglomerative, hierarchical

and K-means [83], among which hierarchical clustering is better except in terms of time

complexity. In our technique, we aim to utilize the benefits of agglomerative clustering

and also reduce the time it takes for this process. The two major tasks feature extraction

and merging, are explained as follows:

• To extract a high-level unique feature set, we try to reduce the number of filters in

the SAE network while preserving the sparsity. To eliminate redundant features

from the network, we add a non-negative weights constraint to the network. The

separation capability and sparsity of hidden layers is increased by utilizing ReLU

activation function and a penalty factor. Traditional AEs fail to consider the rela-

tionships between the data samples. In our network, we consider reconstruction

34



loss of relationships by evaluating the correlation and similarity between data

features and by filtering weak and trivial relationships, which helps in identifying

similar features for the merging process.

• For feature fusion, the filters, i.e., nodes of the SAE network, that are identical, are

merged usingAgglomerative clustering. Average similarity threshold is calculated

before themerging decision usingminimal distance between two data features, and

those are merged based on Agglomerative clustering. This deep neural network

approximates the input vector with the minimum possible error. The minimal

distance between two features is calculated using equation (4.2), whereW is the

weight of that feature.

M̂ = argmin{xi, xi+1}d(Wxi ,Wxi+1
) (4.2)

Algorithm 1 illustrates the process of feature extraction and fusion.

We begin with the original filters, i.e., nodes of the SAE network. Let us assume

it as Ci. Likewise, we have n number of nodes {C1, C2, C3, .......Cn}. Each node on

the SAE collects some incoming traffic, which we assume as {x1, x2, x3, .....xn}. At the

beginning step, we check for correlation among the features and then initialize the weight

and biases of the network (W, b). We model the SAE network in such a way that extracts

high-level features with the least loss of information by minimizing the reconstruction

error. We calculate the reconstruction loss every time by back-propagation until we

reach the least value. Next, we add non-negative weight constraint to the network to

eliminate redundant features, which also guarantees less reconstruction error, extraction

of distinct features, and an increased sparsity. Then, we apply agglomerative clustering

35



Algorithm 1 Feature Extraction and Fusion
Input: x1, x2, x3, x4, ............., xn
Output: Unique useful feature set = x̂1, x̂2, x̂3, ........x̂m
1: while corr (xi, xi+1) ≤ 90 do
2: initialize W and b
3: initialize minRL
4: while RL ≤ minRL do
5: /**Begin Training**/
6: W, b = Train_AE (dataset, W, b, iterations)
7: /**Compute reconstruction loss **/
8: RL = reconstruction loss (dataset, W, b)
9: L1 + KL
10: /**Backpropagation - Minimize RL **/
11: minRL = RL
12: /**using ReLU activation function **/
13: Control penalty term
14: Add non-negative weight constraint
15: /** calculate threshold for similarity/ weak relationships **/
16: Initialize threshold T
17: T = argmin{xi, xi+1} d (Wxi ,Wxi+1

)
18: if function(xi, xi+1) ≤ T then
19: Add x̂i& ˆxi+1 to feature set
20: else
21: Merge (xi, xi+1) as x̂i
22: end if

on the two most similar nodes Ci and Cj until the similarity is greater than the chosen

threshold of distancing measure. We regularize the network to avoid over-fitting the

data. The nodes Ci to Cn take input values from xi to xn on each of the IoT device and

applies Algorithm 1 to convert those values into unique values x̂i to x̂m. Each hidden

layer computation is defined as [hli(x) = f(wTi .X+ bi)]. The ReLU activation function

that is designed to obtain a better representation of the input features is represented as

[hli(X,W, b) = ReLU(wTi .X + bi)]. We incorporate the ReLU activation function that

increases separation capability and also the penalty factor is controlled to increase the

36



sparsity of hidden layers. The following three components control the network, which

are the major components in the objective function of the SAE:

1. Reconstruction error over the entire dataset that has to be minimized. The recon-

struction error is formulated as below for SAEs.

L(W, b)

=
1

m

m∑
k=1

|| σ(W (2)σ(W (1)x(k) + bx) + bh)− x(k) ||22 (4.3)

2. Regularizer to prevent overfitting by reducing the magnitude of the weights to

make sure that they are close to zero and non-negative. We incorporate L1

Regularization in our loss function, which is shown as follows:

L(x, x̂) + λ
∑
i

| a(h)
i | (4.4)

3. Kullback Leibler Divergence: It defines relative entropy, which is a standard

measure of the difference between the two distributions used to regularize the

encoder. We add this as an extra penalty term to increase sparsity between the

nodes.

L(x, x̂) +
∑
j

KL(ρ | ρ̂j) (4.5)

ρ is a sparsity parameter that denotes the average activation of a neuron over a

collection of samples, which is calculated as follows:

ρ̂j =
1

m

∑
i

[a
(h)
i (x)] (4.6)

The sparsity parameter is used to make some of the hidden nodes inactive, which

in turn increases the sparsity between the nodes of the hidden layer.

37



Bridge Network: Comparison Phase

The bridge network is made up of filters on which our model is trained using SAEs.

The bridge network takes input from the generative network using all IoT devices and

transfers the same input to the classifier network. At the same time, it compares that

input with the filters of the AE network that we formed initially. If ever the incoming

features from the generative network do not match any of these filters, then a new filter is

added to this network. It means a new feature has been added to our feature set on which

we can categorize attacks. After which, we use this new set of features for retraining.

The output of generative network SAEs is fed as input to the AE of the bridge network.

Assume that the model is trained initially on a set of features {x1, x2, x3, ...., xm},

then we form filters {f1, f2, ...., fm} based on these features on which the model is

trained. Let us consider the features arriving from various IoT devices after extraction

are {x̂1, x̂2, x̂3, x̂4, ...., x̂n}. The following algorithm explains the working of the bridge

network.

In the testing phase, this algorithm takes input values from all IoT devices and

the input values are checked by passing them through the filters of the SAE network.

The FILTER function, which is called in Algorithm 2, describes the task of new filter

addition in the bridge network. A minimum distance is calculated for each of the

features based on each filter. If that minimum distance is satisfied, then the feature

characteristics are similar to the filter. So, we do not consider that feature as new

and the value returned to the algorithm is 0. We set the minimum distance by cosine

distance measure, which is used to identify the similarities of feature characteristics by

calculating the normalized inner product [80]. If ever the cosine distance is higher than

38



Algorithm 2 Incremental retraining module
Input: x(1)1, x(2)2, x(3)3, ........, x(n)n
Output: Decision: Yes / No
1: while corr (x̂i, yj) ≤ 90 do
2: procedure FILTER(x̂1, x̂2, x̂3, x̂4, ............., x̂n)
3: while i ≤ n & j ≤ m do
4: if argmin(x̂i, f [j]) then
5: return 0
6: else
7: return 1
8: end if
9: end procedure
10: /**Check new feature**/
11: if (newFeature!=0) then
12: Retrain = 1
13: else
14: Retrain = 0
15: end if

the minimum value calculated, then it is considered as a new feature and added as a

new filter to the network. That gives a new set of features, which are used for retraining

purpose.

Classifier Network: Classification Module

In the training and testing process, we apply a distributed strategy with three different

networks. When all the networks training is completed for the first time, the CNNmodel

is fine-tuned with a small learning rate. We apply the drop-out before the output layer to

avoid overfitting. We model the network traffic patterns as time-series data. The input

structure of the first layer in our network depends on the number of inputs received. We

convert the 1-dimensional feature vector into axb two-dimensional feature matrix. The

network is composed of a 2D convolution layer, a 2D pooling layer and a fully connected

39



layer with a 3x3 matrix of the convolutional kernel.

The specifications of the CNN used in the experiment are as follows:

• The 1-dimensional input (xm) is converted into a matrix axb, i.e., in the case

of NSL-KDD, after the pre-processing phase, 24 features are converted into 3x8

matrix.

• The first convolutional layer consists of a kernel size = 3x3, step size = 1 and

32 convolutional kernels. Followed by a 2x2 pooling layer and ReLU activation

function. After which, two fully connected layers and one drop out layer is used

for regularization. The final output layer is built using softmax activation to give

out two classes: anomaly or normal.

• The average classification loss is determined between the predicted label ŷ and the

actual label y by the cross-entropy function. The output label is a binary vector

with softmax activation to get one label out.

Experimental Results

In this section, we discuss the performance of the proposed method in reducing the

complexity of pre-processing and classification tasks. We also describe the datasets

used to test our model. Then, we compare the proposed method with related existing

approaches. Besides, we evaluate the model by varying the hyper-parameters. Initially,

we focused on feature extraction and later, detection accuracies of the CNN classifier for

different datasets. All experiments are performed on the devices acting as the generative,

bridge, and classifier networks with the following configurations: Intel(r) Core i7 CPU

@3.40GHz and a 64GB of RAM running 64-bitWindows connected in a home network

40



of various smart IoT devices. We have used standard datasets and also real-time data

generated from the various devices connected in the smart home IoT health system. The

data of each IoT device is pre-processed separately and then sent to the second network,

i.e., bridge for comparison and recording the future incremental features. Then, the same

data values are transferred to network three for the classification. The time duration is

the time elapsed for various tasks, which is recorded in seconds and milliseconds. The

time duration is measured for the pre-processing task and also, for the entire training of

the deep neural network.

Dataset

1. KDD 99 CUP is the most widely used dataset for intrusion detection training

and testing purposes. Although many criticize this dataset for having redundant

records that result in biased classification, we have used this dataset for evaluating

our model [84] to ensure that our pre-processing technique is efficient in elimi-

nating redundancies and also, to record the time that our model takes for different

datasets.

2. NSL-KDD dataset is proposed to overcome issues of KDD 99 [84] and is consid-

ered as a benchmark dataset for intrusion detection. Experimental results using

NSL- KDD dataset demonstrate that our method achieves higher accuracy than the

other incremental models proposed in the literature for DoS attack identification.

3. We collected the realistic traffic generated by smart IoT devices. We have collected

2 GB of data by passing normal traffic and also, launching the attacks. The data

collected is a combination of benign and malicious traffic. The performed attacks

41



are DoS, Ping of the Death and Smurf. These attacks are launched one after the

other to test if our incremental model is efficient in recording newer features from

different types of attacks.

We evaluate three of the significant areas of our proposed methodology; pre-

processing task, classification task and incremental learning.

Pre-processing Task

The first input vector of the AE is the incoming traffic from the real-time IoT

networking or the standard datasets described above. For each dataset, we divided it

into three parts: training, validation, and testing with 60%, 20%, 20% data samples in

each part, respectively. Because our proposed model is distributed, we pre-process the

input data on different AE networks, i.e., IoT devices in the training and testing phase.

In the case of NSL-KDD dataset, we used 30,000 training examples for DoS attack

detection with 41 features, which are consisted normal and DoS attack samples in a

balanced ratio. The next step is to split this dataset into training, testing, and validation

parts. After which, we divided the input, i.e., 41 features on three different AE pre-

processing networks with 15, 15, and 11 features on each of the networks. Likewise,

we split the feature sets of KDD 99 and the real-time IoT dataset on three different AE

networks.

Network performance with different constraints

We plot the Root Mean Square Error (RMSE) of the pre-processing network, i.e.,

SAE network to record the loss of information after the initial task of learning features.

The results given in Figure 4.4, 4.5 and 4.6 indicate that for change in each parameter

42



of the network the results are different. In these three figures, SAE represents normal

SAE using sigmoid activation function while NSAE and T-P-NSAE represent SAE with

ReLU activation by incorporating non-negativity, and threshold and penalty constraints

in the network, respectively. We have tested RMSE score in a step by step procedure by

applying each of our constraints that we used in Algorithm 1. It is understood that RMSE

score without any constraints for each iteration is very high, whereas it is decreasedwhen

we included the non-negativity constraint and it is reached at its lowest that we could

achieve by incorporating similarity threshold measure using Agglomerative clustering

and penalty factor. With the three datasets, we achieved fewer scores after the application

of all of the constraints discussed previously.

0

1

2

3

4

5

6

1 2 3 4 5 6

R
M
SE

Iterations

Real-time dataset

SAE NSAE T-P-NSAE

Figure 4.4: RMSE Scores of the Features on Real-time Dataset.

43



-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6

R
M

SE

Iterations

NSL KDD

SAE NSAE T-P-NSAE

Figure 4.5: RMSE Scores of the Features on NSL-KDD Dataset.

-1

0

1

2

3

4

5

6

7

1 2 3 4 5 6

R
M
SE

Iterations

KDD 99

SAE NSAE T-P-NSAE

Figure 4.6: RMSE Scores of the Features on KDD 99 Dataset.

44



Reconstruction loss of network with a change of threshold

Now we look at the features learned from our pre-processing scheme on three differ-

ent datasets, i.e., NSL-KDD, KDD99, and real-time IoT traffic. We plot reconstruction

error versus similarity threshold to evaluate the performance of our model in extracting

unique features. We begin the similarity threshold from 15 which is calculated from

the heuristic from algorithm 1, and altered it until we reached the lowest reconstruction

loss on the data. This comparison is a deciding factor for the value of the threshold that

we determined for our algorithm using the Agglomerative clustering technique. Figure

4.7 shows the initial value of the reconstruction loss of the network that we obtained

when we used 15 as the threshold. For simplicity, we converted the threshold value

into natural numbers. Later, we tested by increasing and decreasing the threshold value

to evaluate the performance of the network. In three cases, we increased the threshold

gradually and fixed at 20 while training the model.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

15 16 17 18 19 20

J(
SA

E)

Threshold

NSL KDD KDD 99 Real-time

Figure 4.7: Sparse AutoEncoders Reconstruction Loss versus Threshold.

45



Table 4.1: Similarities of the Features Reconstructed.

NSL-KDD ≤
Min(fi, fj)

KDD99 ≤
Min(fi, fj)

Real-time ≤
Min(fi, fj)

f1, f2 X f1, f2 X f1, f2 X
f1, f3 X f1, f3 X f1, f3 X
f1, f4 X f1, f4 X f1, f4 X
f2, f3 X f3, f2 X f4, f2 X
f5, f6 X f9, f8 X f11, f12 X
f9, f6 X f12, f14 × f13, f17 ×
f1, f9 X f13, f17 X f10, f12 X

Features dissimilarity

We evaluated the quality of the extracted features by the distance measure. We

chose some random features from different datasets and evaluated their similarity using

the cosine distance. We calculate the cosine distance between features for evaluating

the similarity of the features [80]. Table 4.1 shows that the distance between the

reconstructed features is less than the minimal cosine distance defined for evaluating the

uniqueness of the features. From the table, we infer that more than 90% of the features

generated are unique with no similarities.

Classification Task

In the classification task, Accuracy, Precision, Recall, F1 score, and ROC curves of

the model are employed as the evaluation metrics. Precision is the ratio of the number

of correctly identified samples to the total number of identified samples. It evaluate

how good our model is in identifying the input samples while the recall is the ratio of

correctly identified samples to the actual correct samples. These two metrics are highly

beneficial in benchmarking DL models. We have divided the dataset into three parts:

46



training, validation, and testing so that we validate the data to avoid overfitting. We have

also regularized the CNN by incorporating L2 regularization and dropout layers. We

evaluate the performance of our classifier model in the following way.

We plot the classification accuracy of our model in the training and testing phases.

Figure 4.8 shows the accuracy and the full classification report is shown in Figure 4.9

obtained by applying our pre-processing technique and Convolutional Neural Network

classifier. It can be seen that our proposedmodel performance is better compared tomost

of the attack detection DL models for all the three datasets, with the highest accuracy

of 99% for NSL-KDD and KDD99, and in between 96% - 97% for real-time IoT traffic

for DoS attack detection. The accuracy that we achieved on real-time traffic like this

is because the incoming IoT raw data is imbalanced, which affects the classification

results. Apart from this, the precision, recall, F1 and AUC scores are uniform with the

accuracy results. Training and testing loss are another significant metrics that have to

be checked to ensure that our model does not overfit the data and also, to confirm that it

has acceptable biases and variances. For our model, we have obtained less value in the

testing phase when compared to the training phase, so we conclude that our model does

not overfit.

Incremental Learning Module

Once the data arrives from the first network, network two, i.e., bridge network

records those data values and checks if it fits in the filters on which the bridge network

is made. If any value does not match the filter characteristics based on the heuristic

that we have explained in Algorithm 2, then that new value is formed as a new filter.

The model is then retrained based on new and old values. To experimentally check the

47



NSL-KDD KDD99
Real-IOT
traffic

Train 99.87 99.53 96.3

Test 99.9 99.78 96.99

99.87
99.53

96.3

99.9 99.78

96.99

94

95

96

97

98

99

100

101

A
cc
u
ra
cy

Dataset

Figure 4.8: Accuracy of the Proposed Model.

heuristic proposed, we launched ping of the death attack in IoT smart home environment.

The data collected during this attack is passed to the pre-processing networks. After

the pre-processing phase and deep feature extraction by our technique, we finalized six

unique features for that attack identification. In the next stage, we have launched Smurf,

i.e., another category of DoS attack. Applying the same pre-processing technique, we

found 11 features that are useful in this category of attack identification. When these

features are passed to the bridge network, it filtered them into 9 features, which are

useful in both attacks identification. The model accuracy and performance before and

48



NSL-KDD KDD99 Real-IOT traffic

Precision 0.997 0.99 0.95

Recall 0.989 0.952 0.893

F1-score 0.991 0.974 0.917

AUC Scores 0.9901 0.98 0.94

0.997
0.99

0.95

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Dataset

Figure 4.9: Full Classification Report of the Proposed Model.

after retraining with the newer features are shown in Figure 4.10.

Initially, the model that is trained using the NSL-KDD feature set is tested against

the data collected for Ping of the Death attack. The model recorded 85% accuracy for

classification of this attack while the pre-processing and comparison phase, i.e., on the

bridge network gave a different set of unique features from the data collected during the

ping of the death attack. This unique set of features are added as new FILTERS in the

bridge network and the CNN classifier is retrained using the new set of final features.

After the retraining, the accuracy of testing is increased to 94.8% for the same attack.

Moreover, the data collected for another attack, Smurf, is also tested using the initial

trained model on NSL-KDD, which gave 78% of accuracy and is increased to 95.5%

after retraining with the features extracted and finalized through generative and bridge

49



85.36
78.21

94.8 95.5

0

20

40

60

80

100

120

Ping of Death Smurf

A
cc

u
ra

cy

Attack

without With retraining

Figure 4.10: Accuracy before and after retraining for the Two Categories of Attacks.

networks. The increase in detection accuracy suggests that the incremental model for

recording the newer features is appropriate for identifying the different types of newer

attacks that the model is unaware of.

Time Complexity

After testing the performance of the improved feature extraction technique, we also

measure the time taken by our technique in a centralized way and in a distributed way,

i.e., in parallel by sharing the input vectors among three AE networks. We record the

time during training and testing phases to ensure that it is suitable for real-time scenarios.

The training complexity of AEs is determined by the complexity of the network structure

50



(the type of perceptrons). In our case, we use the Multi Layer Perceptron (MLP) with

one hidden layer of k number of nodes, and thus the encoder and decoder have time

complexity of O(m.(n+k)) [85] in the pre-processing phase, where n is the number of

input nodes. We performed experiment on a dual-core CPU machine with four logical

processors, at an average speed of 2-3 GHZ. In the NSL-KDD dataset, we used 30,000

training examples of 41 features divided into three sets. The results are shown in Figures

4.11 and 4.12 in the centralized and distributed way for pre-processing and classification

tasks.

NSL-KDD KDD99 Real-IOT traffic

Train-Centralized 2830 3094 1568

Train-Distributed 1439 1590 821

Test-Centralized 1756 1908 982

Test-Distributed 676 789 463

0

500

1000

1500

2000

2500

3000

3500

M
ill

is
ec

o
n

d
s

Dataset

Time for pre-processing task

Figure 4.11: Time Taken for Pre-processing Task.

A single training epoch involving the pre-processing steps takes on average 1.4

seconds on NSL-KDD in the distributed setting, whereas for KDD99, it takes 1.59

seconds and for the real-time traffic, it takes 0.8 seconds. The input units of the AE are

51



NSL-KDD KDD99
Real-IOT

traffic

Train-Centralized 4430 4560 3547

Train-Distributed 2433 2710 1620

Test-Centralized 2213 2561 1529

Test-Distributed 873 986 599

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

M
ill

is
ec

o
n

d
s

Dataset

Time for total classification

Figure 4.12: Time Taken for the Classification Task.

as per the input values of the dataset and real-time values collected from IoT devices. We

also compared the performance against the pre-processing technique in the centralized

way. The bar graph in Figure 4.11 illustrates that the time taken for training and

testing phase by centralized, i.e., traditional pre-processing is higher for all the datasets,

i.e., either standard or real-time IoT traffic. Confirming that the distributed/ parallel

pre-processing method is more suitable as it takes less time and computations.

We record the time taken for the classification task in the training and testing phases.

For the classification task, we tested the time elapsed for the whole processes in a

centralized way and in a distributed way. Figure 4.12 shows that the distributed model

of the pre-processing and classification tasks takes less time than the conventional

52



centralized way. Finally, we compared the time complexity of our model with those

of the existing models. One such CNN-based model is developed using Accelerated

DNN structure, which is trained on quad-core processors with 8 threads in a parallel

mode, which makes the execution much faster. According to their proposed mechanism,

their model gave three times faster performance by training the DNN model in parallel

mode on a quad-core processor. In our case, we have used a dual-core CPU without any

accelerator [86]. The time duration recorded suggests that the time taken for our model is

less when compared to that model, using the same hardware resources. Sending properly

pre-processed informative data to the classifier saves a lot of time and computations in

the training and testing phases. The summary of the results is provided in Table 4.2

Table 4.2: Results Summary.

Dataset / Details NSL-KDD KDD99 Real-time data

Total samples 50,000 50,000 50,000
Training split 60% 60% 60%
Testing split 20% 20% 20%
Validation split 20% 20% 20%
Total number of features 41 41 23
No. of IoT devices 3 3 3
Features split 15, 15, 11 15, 15, 11 9, 8, 7
Extracted no. of features from each 11, 6, 7 7, 12, 6 3, 4, 2
Total no. of features extracted 24 25 9
Improvement in Time complexity (Train) 49% 48% 47%
Improvement in Time complexity (Test) 50% 48% 52%

53



CHAPTER 5: FEDGAN-IDS: PRIVACY-PRESERVING IDS USING FL AND GAN

The particularity of DL systems in iterative learning followed by back propagation on

big datamandates parallel or distributed training to reduce the computational complexity

and ensure data privacy. Most of the IDS models using DL face the problem of data

transfer among the IoT devices or with the Edge node on which the IDS classifier is

placed. Some advancements like "parameter server" approach considered training the

neural networks on a shared dataset without data transfer [87]. The parameter server

framework introduced by Google [88], utilizes one or more central servers managing

multiple workers and their updated states for parallel processing. The worker networks

train on their local share of data and communicate their weights to a central server.

Parameter server framework involves shared data storage. At the beginning of each

iteration, the worker machines download the data from the storage for training. Whereas

in FL, the data resides on each worker and the central server does not keep track of

any individual worker. Only the model gradients are sent from the workers to ensure

privacy.

Similarly, FL trains DL models on a set of active clients [69] [89]. FL is similar

to parameter server framework with a little distinction that clients undergo many local

iterations, i.e., local training between each global update, i.e., interaction with the central

node. Because of numerous iterations and updates, only one subset of the devices is

selected at each round. Also, some of the workers may become inactive after some

rounds. At the beginning of each round, the active clients synchronize the local model

updates with the central server. FL models are trained locally by devices and only the

model updates are shared with the central server [90]. However, it is challenging to

build a good FL model with the limited amount of data in each device.

54



A recent successful discovery inML is the various applications ofGANs, particularly

in generating synthetic data to increase the number of data samples and to fix under-

sampling problems [91]. FL has been applied on discriminative models successfully,

but there are various on-going investigations on the application of generative networks

in FL. Although some of the efforts have been made in modeling GANs in federated

settings [92] [93], much efforts are needed to model it for real scenarios. A typical GAN

architecture consists of two tightly coupled DNNs, a generator and a discriminator.

Nevertheless, it can be structured in a distributed fashion adopting a similar method

applicable to regular DNNs. We model a GAN network in a federated setting, where

local generators and discriminators are synchronized periodically by a central generator

and discriminator with continuous improvement by exchanging gradients and model

upgrades. We aim to augment the existing data with similar samples to increase the

number of samples, especially from rare classes to fix data imbalance issues.

System Model

In the case of smart home e-health systems, IoT devices are the source of data. Hence,

FL suits best as the on-device data is more pertinent and sensitive. In order to show

the application of the proposed framework, we consider the following system model.

Consider a smart IoT system scenario, such as a smart home, e-healthcare system, or

an ambulance enabled with smart IoMT devices, as shown in Figure 5.1. Parts of the

data from the IoT devices are sent to the Edge device or to the external network, cloud

servers, for further processing and analysis. Any health data could be sent via the cloud

to the medical practitioner or other participants.

The components of the system that we aim to secure are as follows:

55



1. IoT devices or Clients: The source of data generation, which needs to be protected

against privacy and security threats.

2. Edge Node: The Edge Node is a mediator between the cloud and the IoT devices.

It serves as a central entity for FL and needs protection to secure the model and

also, data residing on the Edge node.

Figure 5.1: System Model.

The system is composed of a set of N IoT devices i.e., clients or worker machines,

each consists of a local dataset Bn of size m and the number of features d that are

transmitted through it. All the devices in that particular network follow a probability

distribution Pdata(x), where x is Non-IID (Independent and Identically Distributed) i.e.,

time-series data, health records, temperature monitoring, or financial data. A set of data

is said to be IID if the probability distribution of all random variables is same. In this

56



scenario, the probability distribution of the data on each IoT device may be different.

The entire dataset of all active agents is denoted as B = ∪Nn=1B
n, where Bn is the local

dataset of each IoT device n. We aim to build an IDS to protect the IoT devices and

Edge device from internal i.e., within the network and external attacks. Apart from

attacks that target IoT devices, there are some attacks targeted towards the network. If

we build a model by collecting all the data at one place, we endanger the privacy of the

critical data on those devices. Besides, data centralization increases the communication

overhead and the data can also be easily manipulated at one central entity. Thus, the

local datasets in each worker should remain in place and should not be sent for training

on other devices.

Proposed Framework

In this section, we first introduce distributed GAN setup for intrusion detection and

adaption of FL. The complete architecture of our model is shown in Figure 5.2. Our

approach is inspired by MDGAN [94] and FL-GAN [95] models, which are proposed

for distributed datasets and privacy-preserving application, respectively.

Distributed IDS using GAN

We build a distributed IDS on IoT devices using GAN. Each IoT device has two

networks, namely, generator and discriminator. The generator is a deep neural network

that analyzes the local traffic of the IoT device and generates a similar traffic pattern.

The synthetic data and original traffic of the IoT device are combined and provided to the

discriminator network for training a classification model. The discriminator is a CNN

that identifies malicious traffic patterns in the samples fed to it. Among DL models,

57



Figure 5.2: FEDGAN Architecture.

CNNs have gained huge success in the identification of malicious traffic in time-series

data [96] [34]. Each IoT device builds its own local model on the discriminator network.

The DNN networks give higher accuracy with a good amount of training data. With that

motivation, we incorporate a generator network that generates similar traffic on each

local worker and that augments the available data to train the discriminator used in the

IDS. A central generator Gc and discriminator Dc is hosted on an Edge server in the

smart home network. Likewise, local generators Gn and discriminators Dn are hosted

by workers. The central generator and discriminator hold the initial parameters w and

θ respectively Gc
w, Dc

θ. Each worker starts training its generator Gn with the initial

parameter w0, which is initially received from the central generator on its local dataset

Bn. Similarly, the local discriminatorsDn are trained with the initial parameter θ on its

local dataset and data generated by the local generatorBn+XGn . The initial architecture

58



and parameters of the local generators and discriminators may be changed after their

first local epoch. To improve the performance i.e., accuracy of the FL algorithm, we

have used GAN.

Federated Learning Framework

In conventional FL, a subset of existing devices participate in FL. Each device

downloads the central model and updates it based on its local data. Then, each device

sends its updated model to the central model. The server aggregates these local models

to construct an improved i.e., updated model. Likewise, the proposed federated structure

aims to collectively build a distributed IDS. There are two central models: a generator

and a discriminator. Initially, the central models select parameters: weights (w, θ),

learning rate (αg, αd), batch size b, penalty coefficient (λ) and decay rate. Then, a

ping message is sent to select the active devices in the network to send the parameters.

Finally, the parameter sets of the generator and the discriminator are sent to initiate a

training epoch.

There are numerous challenges for the efficient training of our model. The coupling

between a generator and a discriminator requires organized strategies between the clients

i.e., devices and dictates that the computational load on the devices be rational. Initially,

each generator creates synthetic data by analyzing the probability distribution of the

local traffic on the device. The discriminator takes the input from the local device

and the local generator to train its network for intrusion detection. After completion

of local iterations on two deep neural networks, the gradients are transferred to the

central networks. The local model’s parameters are aggregated by the central model

and then the updated central model is shared with and adopted by the end devices. The

59



central generator and discriminator collect the gradients from all local Gn and Dn and

aggregate them. The updated gradients are communicated back to the local networks

on the devices. The local generators receive the updated gradients to build a new model

in order to improve the quality of samples generated. The local discriminators improve

its detection accuracy by the updated gradients from the central discriminator.

FEDGAN-IDS Algorithm

It is a Federated Generative Adversarial framework for training an IDS across dis-

tributed IoT devices to preserve the privacy of the Non-IID data. In our algorithm, a

global communication round trains the local generators and discriminators on each IoT

device that are periodically synchronized via a central generator and discriminator on

the Edge that aggregates and transmits the new parameters to all local generators and

discriminators.

Problem Formulation

We formulate the intrusion detection problem for multivariate time series as follows:

In the first phase, the GAN model is trained based on the time-series dataset of each

IoT device, X-input, and generates ”similar” samples XG that "look like the dataset".

We model the generator function as Gw: Rl → X. R and l are fixed. Likewise, the

function representing the discriminator is Dθ: X → [0,1] where Dθ(x) defines the

probability such that x is a normal sample while θ is the parameter of the discriminator.

According to the parallel theory [97], the model passing through various clients by

exchanging the model parameters does not expose the privacy of other clients. The

local generators analyze the local traffic and generates similar traffic pattern, but only

60



the gradients of the local generators are transferred to the central generator. So, the

output of the local generators on each client guarantees differential privacy as per the

explanation provided in [95]. In every global communication round the parameters

need to be exchanged among the clients, which gives the communication complexity

for one round as (|w| + |θ|). The number of parameters passed also depends upon the

number of generators and discriminators active in a communication round. So, the total

communication complexity for all rounds is N.(|w|+ |θ|). One major advantage of the

proposed framework is the Edge device, which is placed nearby to the IoT devices that

ensures better communication efficiency. The notations used in this chapter are given in

the Table 5.1.

61



Table 5.1: Notations.

Notation Description

Dn Local discriminator
Gn Local generator
Dc Central discriminator
Gc Central generator
N = 1, 2, 3..., n All devices or clients in the network
St = 1,2,3....,m Available client/active set
wt Generator parameter at iteration t
θt Discriminator parameter at iteration t
K Synchronization interval
i..... I Local training epochs
t = 0,1,2,.... E Global training epochs
Bn Local dataset on a device
`ng Loss of generator of client n
`nd Loss of discriminator of client n
En
g Error feedback of client n on generator

En
d Error feedback of client n on discriminator

bn batch size local
dn Size of dataset (feature set size) on a device
mn Number of samples in a dataset on a device
αd Learning rate of discriminator
αg Learning rate of generator
λ Penalty Coefficient

A global communication round is composed of four phases:

• Phase 1 – Local Generator Training

• Phase 2 – Local Discriminator Training

• Phase 3 – Aggregate parameters at central model

• Phase 4 - Model Parameters Dissemination

62



The detailed explanation of each of these phases is provided in the below subsections.

Phase 1: Local Generator Training

The training begins from the local generators. Initially the local generator receives

parameters (w0 andαg) from the central generator to begin training. Each local generator

captures the real data distribution from the IoT device and generates similar traffic

patterns. The number of local generators is equal to the number of available users

i.e., IoT devices in the network. The generator is improved gradually with every local

iteration. For training this network, we have used data samples from NSL-KDD dataset.

The number of samples is denoted by m and the number of features is denoted by d.

The training goes on for I local iterations with respect to the sample generation loss `g.

The outcome of this network is a similar set of traffic pattern XG. The operation of the

local generator is explained in Algorithm 3. After completion of local iterations, the

gradients of generator network and error feedback En
g is sent to the central generator.

Error feedback of generator reports its amount of error in data generation on each device.

The generated synthetic traffic is mixed up with the real data of IoT and fed to the local

discriminator for training.

Phase 2: Local Discriminator Training

Step 2 in the process of training is the discriminator training for I local iterations. The

operation of this step is given inAlgorithm4. The number of local discriminators is equal

to the number of users i.e., IoT devices in the network. Local discriminator is trained on

original traffic and generated traffic of the local generator to enhance the training process

with enough number of samples. The data is pre-processed before training the intrusion

63



Algorithm 3 Local Generator
Input: Receive w0 from the central generator. Receive Bn from local device. Set local

iterations (I)
Output: Synthetic data from each generator
1: procedure LocalGenerator(Bn, wt)
2: for i←− 1 to I do
3: Zi←−GAUSSIAN NOISE (b)
4: Xn

G←− Gn(wt, z) | z ε zi
5: Calculate wni

wni ⇐= Adam((
1

m

m∑
i=1

∆wL
i + n), wi, αg) (5.1)

6: Calculate En
g

En
g ⇐=

∂B(Xn
G)

∂xi
|xiε(xnG) (5.2)

7: Calculate Lng
8: end procedure
9: Send : wi, En

g to the central generator

detection model. Local discriminator incorporates weights, biases, the penalty term and

L2 regularization to overcome the problem of overfitting. The outcome of the network is

the classification of the sample as attack or normal for a discriminator network designed

for binary classification while for multiclass classification network it gives outcome as

per the class of attack category. We also record the training and testing accuracy along

with the loss of the discriminator `d. After the training process i.e., local iterations

of each client, the discriminator computes an error feedback ED. The computation of

this function is explained in Algorithm 4. Discriminator error feedback reports its false

positive and true-negative rate in anomaly detection process.

64



Algorithm 4 Local Discriminator
Input: Receive θ0 from the central discriminator. Receive Xn

G from local generator of
the device. Bn local dataset from the device. Set local iterations (I)

Output: Normal or Anomaly
1: procedure LocalDiscriminator(Bn, Xn

B, θt)
2: for i←− 1 to I do
3: Dn = Xn

G+Bn

4: Disc Learning (Jdisc, Dn)
5: Update discriminator by ascending the stochastic gradient

θni ⇐= Adam(∆θ
1

m

m∑
i=1

−D(Gθ(z)), θ, αd) (5.3)

6: Calculate En
d

En
d ⇐=

∑
T.N + F.P (5.4)

7: Calculate Lnd
8: end procedure
9: Send : θni , En

d to the central discriminator

Phase 3: Central Model Update

Algorithm 5 demonstrates the training of this phase. The central generator and

discriminator receive the parameters (wt, θt) and the error feedback EG ED from all

client models. The parameters received undergo federated averaging and gradients

calculation to get the updated model parameters to be sent to all active clients. The

two central networks broadcast wt+1, θt+1 to all clients. We perform E global iterations

until a satisfactory accuracy is achieved on all discriminators. The central models try to

minimize the error feedback of generators and discriminators at each global iteration.

65



Algorithm 5 Central GAN
Input: Initialize θ0 for Dn. Initialize w0 for Gn. Set Global iterations (E). Set the

learning rate η at each iteration α(η) and b(η) synchronization interval Kt.
Output: Updated parameters
1: for t = 1,2,...,E do
2: Set of available clients: m
3: for m ε st do
4: → Local generator (wt)
5: → Local generator (θt)
6: /** Each Client trains locally in parallel **/
7: if (t mod K) = 0 then
8: clients transfer gradients to central server

wt+1
∆
=

m∑
n=1

P nW n
t (5.5)

θt+1
∆
=

m∑
n=1

P nθnt (5.6)

9: end if
10: Send the updated parameters to all clients; wt + 1 and θt + 1

Phase 4: Model Parameters Dissemination

The updated model parameters are sent back to all available clients to build their

new models. In the testing phase of this framework, only the local discriminators are

present for classifying the traffic of IoT devices and also the central discriminator on the

central Edge device. After empirically determined E epochs i.e., global epochs, a final

IDS is obtained.

Performance Evaluation

In this section, we provide a comparison of the performance of the IDS using FLwith

and without GAN in terms of test accuracy, training loss, recall, precision, F1-score,

66



AUC score and convergence rate. We also present the results recorded for binary and

multiclass classification of the proposed IDS. The number of epochs for communication

rounds i.e., global iterations is kept constant for accurate comparison. We perform all

experiments using two standard datasets: NSL-KDD and KDD99. The ten labels of

KDD99 dataset are categorized into four standard attack classes, DoS, Remote to local

(R2L), User to root (U2R), and Probe. We perform all the necessary pre-processing steps

for training the DL models. The experiments are conducted on an Intel(R) Core(TM) i7

- 10750H CPU@3 GHz predator machine with 4 GB NVIDIA GeForce RTX2060. For

each training epoch i.e., global communication round, all the local model’s parameters

are transmitted to the central Edge node for aggregation and update.

Data Set

Various data sets like NSL-KDD, UNSW NB15 and KDDcup99 are available for

testing the IDS. Each dataset has its own set of advantages and disadvantages. For

instance, KDDcup99 contains redundant records and the categorization of malicious

and benign packets is imprecise [98]. However, this dataset can be used to test the

ability of the pre-processing techniques in eliminating the redundant data. Mostly,

NSL-KDD data set is used for testing the IDS framework to identify its efficiency of

detecting.

Federated Learning with and without GAN

In the first case, we model the IDS using FL without GAN. Each IoT device has only

one Deep Neural Network and not the generator network. The single network is trained

on the local data of the device. The data samples are divided randomly from NSL-KDD

67



dataset not considering any particular division of attack samples (DoS, PROBE, U2R,

R2L). Whatever percentage of attack samples an IoT device gets, the same proportion

of normal samples are fed to it to have a balanced local data for training. For example,

IoT device 1 gets some samples of DOS and Probe, which constitutes 20% of the attack

samples, and then 20% of normal samples are added to it. Likewise, IoT device 2 gets

some samples of DOS and Probe, which constitutes 25% of attack samples from the

dataset and then we add 25% normal samples to it. The local models are trained using

the divided data on each IoT device. Once the models are built, the parameters of each

model are transferred to the central node for aggregation from all IoT devices. Likewise,

the accuracy of the model at each local epoch, each global iteration and the end of the

training phase is recorded. As the data is Non-IID, we observe deviations in the results.

The local iterations of each local model is considered 200, whereas the global iterations

are chosen as per the performance of the models.

Likewise, we model the IDS using FL with GAN. Each IoT device has two Net-

works, generator and generator. The discriminator network is trained on the local data

and generated data by generator network. The parameters of discriminator and gener-

ator from all IoT devices are transferred to the central generator and discriminator for

aggregation. For this scenario, we also divide the NSL-KDD dataset randomly on the

available devices. The following Figure 5.3 shows the accuracies of intrusion detection

models using FL without and with GAN architecture. The accuracy is recorded on a

IoT device after the final global update in both the scenarios.

The accuracy of both models increase gradually with the local epochs on the IoT

device. However, the accuracy of the model without GAN network lies between 75% to

80%. While adding the GAN network helps to improve the accuracy at an earlier stage

68



Figure 5.3: The Test Accuracy of a Local Model after Final Global Update of FED-IDS
and FEDGAN-IDS.

in federated scenario. In FL with a GAN scenario, the model performance is enhanced

in terms of accuracy and loss. Figure 5.4 shows the loss of the two IDS models. In

FED-IDS case, the loss of the model moderately decreases and it reaches to the lowest

value of 0.1. On the contrary, the loss is almost negligible i.e., 0.01 in FEDGAN-IDS

case.

The two model’s convergence is shown in Figure 5.5. After every iteration i.e.,

global epoch, the accuracy of both models is improved. At iteration 10, FED-IDSmodel

achieves the accuracy of approximately 74% whereas FEDGAN-IDS model achieves

more than 85%. The convergence state is reached 5 to 10 times faster in GAN case than

the model without GAN. FED-IDS reaches to its maximum value 78% after iteration

25 and no significant enhancement is seen after that. With GAN network, the model

reaches more than 95% of accuracy after 15 global epochs and the detection accuracy

is 10% to 12% higher in Fed-GAN case. We deduce that adding GAN network to

69



Figure 5.4: FED-IDS and FEDGAN-IDS Model Loss.

FED-IDS is promising for better performance of IDS model with FL.

Figure 5.5: Model Convergence of Fed-IDS and FEDGAN-IDS.

We also show the performance evaluation of our FED-GAN classification model in

terms of training and testing accuracy of local discriminators on its local dataset i.e.,

own data and synthetic data generated by local GAN. The training accuracy of the three

70



discriminator models is recorded at the Global iteration 3 i.e., after three global updates.

The training and testing data splits are 70% and 30%. The discriminator models are

trained successfully and each of the local models gives nearly equal accuracy. We record

the training and testing accuracy of all local models during the local iterations i.e., 200

epochs and also during each global iteration. The test accuracy of three discriminators

is evaluated on the 30% of the local dataset is shown in Figure 5.6. The test accuracy of

three discriminators on different datasets is shown in Figure 5.7. At the beginning of the

third global iteration, the test accuracy on the local discriminators is recorded from 0 to

200 local epochs. The test accuracy starts with a very low value and gradually increases

to a satisfactory accuracy level with the local dataset. Whereas, on different datasets,

there are many deviations in the results. The reason for testing the discriminator models

performance on different datasets is to confirm that our model is not over-fitting. We

incorporated the validation dataset while training to ensure the unbiased nature of the

dataset.

Moreover, the accuracy of each local discriminator model is recorded while testing

with the full dataset i.e., NSL-KDD for ten global iterations. The results are illustrated

in Figures 5.8 and 5.9 for FED-IDS and FED-GAN-IDS models, respectively. FED-IDS

models are trained on the local data of the IoT device and parameters are sent to the

central model. After parameter aggregation, the updates are communicated back to all

DNN models, which are retrained on the available local data of the IoT devices. After

each global iteration, the test accuracy of the individual models is recorded to understand

the performance of the model.

From the results, we observe that test accuracy improves with every update on all

DNN models. FEDGAN-IDS model undergoes the same process but with two DNN

71



Figure 5.6: FED-GAN-IDS Test Accuracy on Local Discriminators at G_Iteration 3
with Local Test Data.

model updates at each global iteration. We are concerned with the attack detection

accuracy of the IDS model, and hence we have recorded the performance of the dis-

criminator models. These discriminator models are trained on local data of IoT devices

and synthetic data generated by the generator network of that IoT device. The results

signifies continuous improvement of the discriminator models at each iteration with

better accuracy than the FED-IDS model. The summary of results for binary classifi-

cation FEDGAN-IDS model using two datasets is shown in Table 5.2. The comparison

between FED-IDS and FEDGAN-IDS in terms of all metrics is also shown in the table.

The performance of FED-IDS is similar with two datasets, NSL-KDD and KDD99.

72



Figure 5.7: FED-GAN-IDS Test Accuracy on Local Discriminators at G_Iteration 3
with different Datasets.

FEDGAN-IDS Multiclass Classification

We also record the performance of multiclass FEDGAN-IDS model for different

attacks. Figure 5.10 shows the performance recorded at each global iteration on discrim-

inator1 modeled as multiclass. The selection of hyper-parameters played a principal role

in training a multiclass FEDGAN-IDS model. The decay rate is selected as 1.0X10−4

and the penalty coefficient is 0.05. The generator on each IoT device augments the data

for training the model. From the figure, we observe that the performance of GAN-based

Federated multiclass classification IDS model is better than a non-GAN or standalone

73



Figure 5.8: FED-IDS Binary Classification Test Accuracy at each Global Iteration.

Figure 5.9: FEDGAN-IDS Binary Classification Test Accuracy at each Global Iteration.

IDS model. The accuracy of each attack class improves at each iteration. The detailed

results after final global update are given in Tables 5.3 and 5.4 for the two datasets.

74



Table 5.2: Binary Classification.

Metrics FED-IDS
(NSL-KDD)

FEDGAN-IDS
(NSL-KDD)

FED-IDS
(KDD99)

FEDGAN-IDS
(KDD99)

Accuracy 85.3 99.29 83.8 99.1
Precision 84.1 99.3 80.5 97.8
Recall 79.2 98.9 78.3 96.3
F1-Score 82.8 99 92.2 98.5
AUC-Score 78.4 99.01 79 98

Figure 5.10: FEDGAN-IDS Multiclass classification.

Table 5.3: Multiclass Classification using NSL-KDD Dataset.

Metrics U2R R2L PROBE DoS Normal

Accuracy 82 92.5 94.3 97 98.5
Precision 82.7 91.9 95 96.5 98.2
Recall 82.9 89.3 94.9 97.1 99
F1-Score 81.4 90.6 93 96.8 98
AUC-Score 82.3 90 90 96 97.5

75



Table 5.4: Multiclass Classification using KDD99 Dataset.

Metrics U2R R2L PROBE DoS Normal

Accuracy 80.59 90 92 96.7 97.6
Precision 79.5 89.1 93.1 95.3 96
Recall 79.9 88.5 92.8 96 97.8
F1-Score 78.5 89.6 89 95.8 97.3
AUC-Score 77.4 87.8 87.6 96.9 96.4

76



CHAPTER 6: CONCLUSION

The number of smart devices, big streaming data, and the complexity of networks

have made it difficult to secure the data and communications between IoT devices.

Security vulnerabilities or random bugs in IoT devices can cause user dissatisfaction

and various unpredicted outcomes. The open Internet architecture as well as the limited

power, memory, computational capability and bandwidth resources make IoT devices

potentially vulnerable for attacks. A notable amount of research proves that continuous

network monitoring protects the network, so IDS is widely used defense mechanism.

In this dissertation, we have investigated various existing IDS models for IoT devices

to identify the current challenges. The major issues in building an effective IDS for

IoT systems are resource constraints, heterogeneous big data, data isolation and privacy

concerns. First, we have studied the resource constraints and big data issues, and

proposed a distributed IDSwith parallel pre-processing on IoT devices using incremental

feature learning.

For tackling the big data, we have developed a heuristic pre-processing technique

that greatly reduces the input to the classifier. For this purpose, a SAE network is placed

on each IoT device to suit its resource restrictions. Each SAE pre-processes its local data

and transfers it to a bridge network. The bridge network pre-processes the collected data

from all IoT devices in the network and sends it to the final network for classification.

The bridge network is also critical to capture any new features arriving in the network.

Pre-processing on IoT devices reduces the input to the classifier and gives improved

results. Incremental learning model records new features from the incoming traffic on

a bridge network to retrain the model to identify newer attacks. Adding new features

minimizes the objective function residuals. In addition, merging similar features avoids

77



overfitting and gives a compact representation of the features. The distributed setting of

the proposed IDS guarantees less time and computations and categorizes attacks quickly.

We showed that the model is able to achieve an optimal accuracy suitable for DoS attack

detection using standard and real-time data set. This model can be utilized to retrain for

different attacks by capturing the new features at the bridge network.

Second, we have studied the data isolation and imbalanced data issues, and proposed

a GAN based IDS using FL that leverages the minor class samples. It is known that

the accuracy of intrusion detection models is proportional to the amount of training

data, especially for ML or DL trained models. However, each IoT device has a limited

amount of data leading to weak separate models in Federated scenarios. Besides, it

is not recommended to collect the data of IoT devices at one place for model training,

particularly for e-health devices as the data is highly-sensitive containing information

about the health conditions and other private patient information. Moreover, the traffic

patterns are different on each smart device and can be used to train the IDS. If the data

of all devices is utilized for training then the model performance improves.

Because of these significant obstacles, we have integrated two advanced technologies

with complementary benefits: FL and GANs. A GAN network is modeled using FL,

where each IoT device has a generator network and discriminator network. The generator

on each IoT device analyzes the local data and generate similar traffic patterns to provide

enough data samples for the local discriminator of that IoT device. After training

of generator and discriminator networks, the gradients are transferred to the central

generator and discriminator networks placed on the Edge, which aggregates and sends

back the updated parameters. The two networks coordinate in building an efficient IDS

model that ensures privacy of the data on IoT devices to some extent. The benefits of

78



this integration is highlighted with real-time scenarios and use-cases. After a series

of evaluations and comparisons to various existing and proposed models, we proved

that the FEDGAN-IDS architecture for IDS in the binary and multiclass classification

scenarios is promising for present-day IoT networking. To the best of our knowledge,

the application of GAN is used for the first time in the FL scenario for IDS. The model

achieves 99% and 98% accuracy for binary and multiclass classifiers, respectively.

Scalability

Since IoT devices are hugely distributed with heterogeneous data and limited compu-

tational capability, applying FL in large scale IoT systems becomes difficult. The major

bottleneck in training a successful FL model is the Non-IID nature and imbalanced data

on IoT devices [99]. Considering these two significant problems, we chose a separate

GAN network on each IoT device. Such that, it analyzes each device’s traffic without

the influence of other devices. The generator network learns independently based on the

different traffic patterns of the IoT devices. Besides, the irregularity in data distribution

and data samples tampers the FL training [99]. So, we augment the local data of the

IoT device that ensures communication-efficient FL process. The data augmentation

uniforms that the training process over the clients (IoT devices). The model that we

have proposed is for smart-home scenarios which involves less number of IoT devices.

However, the scalability of the model for large scale IoT systems can be tested by de-

signing it using FL architectures that support huge number of clients. Such as "Flower

framework" which is introduced to test and simulate FL process of large number of

clients. As our proposed model attempts to solve Non-IID and unbalanced data issues in

a smart home IoT system, it must resemble same properties in large scale IoT systems.

79



CHAPTER 7: FUTURE WORK

The proposed FEDGAN-IDS outperforms the classic centralized and distributed

models. However, the federated approach leaves some backdoors for attackers to ma-

nipulate the training process or to compromise the model built [100] [101]. In the race

for obtaining better models, FL fails to protect the architecture from inference and ma-

nipulation attacks [102] [103]. Attempts have been made to defend FL models against

poisoning attacks using adversarial networks [92] [104]. If the training data is mixed up

with some false data, then it computes different parameters. To some extent, it becomes

difficult to launch membership inversion or inference attack to obtain the actual data set

or a sample from the training set. In addition, the order of transfer of parameters and

aggregation technique changes the model training. Nevertheless, FEDGAN architec-

ture can be susceptible to various malicious attacks. In future, we plan to improve the

following critical areas of the proposed model:

1. Though the local data on IoT devices is mixed with fake data generated by GAN

network, it does not fully guarantee the differential privacy of the sensitive data

on IoT devices. Future enhancements can to be made in order to guarantee the

privacy of data.

2. Secure sharing of local gradients and global updates to ensure the integrity in order

to protect the generator and discriminator networks training against interception

attacks.

On the other hand, recent cyber attacks adversely cause physical damage beyond the

cyberspace particularly in the area of smart health systems. Smart health devices such as

IoT medical devices or Internet of Medical Things (IoMT), record and monitor human

80



vital signs for diagnosis purposes. These tiny devices are empowered with wireless

connectivities to treat patients remotely [105]. Similarly, Implanted Medical devices

(IMDs) are smart devices placed in the human body to monitor or treat various diseases

in different organs or to enhance the poor functions of different body parts [106]. These

remote monitoring devices generate a large volume of continuous data from the vital

signs and other signals, e.g., EEG and ECG. This health data is confidential and sensitive

to be attacked. Threats like eavesdropping, denial of service attacks or ransomware can

causemonetary loss and sometimes loss of life in IoT systems [107] [108] [109]. Existing

IoMT devices and IMDs in the market suffer from vulnerabilities, that if exploited can

have dramatic consequences. We advocate that securing IoMT devices and IMDs is of

utmost importance, as attacks not only expose sensitive patient data but can also lead to

serious injuries and death.

The future directions for protecting these devices are as follows:

1. Firstwe aim to customize FEDGAN-IDS for these devices. In designingFEDGAN-

IDS for IoT devices, the computational and communication complexity is not

considered, as IoT devices posses enough resources suitable to run a DL or FL

model. However, IoMT and IMDs are empowered on batteries. Heavy computa-

tions and numerous communications of DL and FLmodels, respectively can drain

the battery and shutdown the device. It is interesting to explore the possible ways

of training of the FEDGAN-IDS intelligently with minimum communications and

computations.

2. The IDS designed for these devices has to be light-weight since these devices are

more resource constrained than the IoT devices. We investigate the possible ways

81



to optimize the proposed models to suit the deployment requirements on these

devices.

3. Any tampering of the data on these devices can cause a serious issue, such as

false diagnosis, delay in an emergency, and other health complications [110]. It

is important to consider that the IDS model targeted for these devices has to be

quick in malicious traffic identification along with higher accuracy.

82



PUBLICATIONS

• Tabasum, Aliya, Zeineb Safi, Wadha AlKhater and Abdullatif Shikfa. "Cy-
bersecurity issues in implanted medical devices." In 2018 International Con-
ference on Computer and Applications (ICCA), pp. 1-9. IEEE, 2018.

• Tabassum, Aliya, Aiman Erbad and Mohsen Guizani. "A survey on recent
approaches in intrusion detection system in IoTs." In 2019 15th International
Wireless Communications & Mobile Computing Conference (IWCMC), pp.
1190-1197. IEEE, 2019.

• Tabassum, Aliya and Wadha Lebda. "Security Framework for IoT Devices
against Cyber-Attacks." International Conference on Internet of Things (CIoT
2019).

• Tabassum, Aliya, Aiman Erbad, Amr Mohamed and Mohsen Guizani.
"Privacy-Preserving Distributed IDS Using Incremental Learning for IoT
Health Systems." IEEE Access 9 (2021): 14271-14283.

• Tabassum, Aliya, Aiman Erbad, Wadha Lebda, Amr Mohamed and Mohsen
Guizani. "FEDGAN-IDS: Privacy-Preserving IDS Using GAN and Feder-
ated Learning." Computer Communications | Journal | Elsevier (Submitted)

83



REFERENCES

[1] “Forecast economic impact of the internet of things (iot) in 2025 (in billion u.s.

dollars),”

[2] E.Omanović-Mikličanin,M.Maksimović, andV.Vujović, “The future of health-

care:Nanomedicine and internet of nano things,”FoliaMedicaFacultatisMedic-

inae Universitatis Saraeviensis, vol. 50, no. 1, pp. 23–28, 2015.

[3] P. V. Paul and R. Saraswathi, “The internet of things—a comprehensive survey,”

in Computation of Power, Energy Information and Commuincation (ICCPEIC),

2017 International Conference on, IEEE, 2017, pp. 421–426.

[4] A. Tabasum, Z. Safi, W. AlKhater, and A. Shikfa, “Cybersecurity issues in

implanted medical devices,” in 2018 International Conference on Computer

and Applications (ICCA), IEEE, 2018, pp. 1–9.

[5] K. D. Kshirsagar, A. R. Attar, and P. V. Borade, “Iot based tire pressure monitor-

ing system for vehicles,” Recent Trends in Control and Converter, vol. 1, no. 1,

pp. 17–21, 2018.

[6] M. Burhan, R. A. Rehman, B. Khan, and B.-S. Kim, “Iot elements, layered

architectures and security issues: A comprehensive survey,” Sensors, vol. 18,

no. 9, p. 2796, 2018.

[7] C. Kolias, A. Stavrou, and J. Voas, “Securely making" things" right,” Computer,

vol. 48, no. 9, pp. 84–88, 2015.

[8] S. Hilton, “Dyn analysis summary of friday october 21 attack,” Dyn blog

https://dyn. com/blog/dyn-analysis-summary-of-friday-october-21-attack, 2016.

84



[9] B. B. Zarpelao, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A survey

of intrusion detection in internet of things,” Journal of Network and Computer

Applications, vol. 84, pp. 25–37, 2017.

[10] M. Plachkinova and C. Maurer, “Security breach at target,” Journal of Informa-

tion Systems Education, vol. 29, no. 1, pp. 11–20, 2018.

[11] B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “Deepfed: Federated deep

learning for intrusion detection in industrial cyber–physical systems,” IEEE

Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5615–5624, 2020.

[12] A. Riahi, E. Natalizio, Y. Challal, N. Mitton, and A. Iera, “A systemic and cogni-

tive approach for iot security,” in Computing, Networking and Communications

(ICNC), 2014 International Conference on, IEEE, 2014, pp. 183–188.

[13] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizu-

tani, “State-of-the-art deep learning: Evolving machine intelligence toward to-

morrow’s intelligent network traffic control systems,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2432–2455, 2017.

[14] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system:

A comprehensive review,” Journal of Network and Computer Applications,

vol. 36, no. 1, pp. 16–24, 2013.

[15] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection in the

internet of things,” Ad hoc networks, vol. 11, no. 8, pp. 2661–2674, 2013.

[16] D. Oh, D. Kim, and W. W. Ro, “A malicious pattern detection engine for

embedded security systems in the internet of things,” Sensors, vol. 14, no. 12,

pp. 24 188–24 211, 2014.

85



[17] T.-H.Lee,C.-H.Wen,L.-H.Chang,H.-S.Chiang, andM.-C.Hsieh, “A lightweight

intrusion detection scheme based on energy consumption analysis in 6lowpan,”

in Advanced Technologies, Embedded and Multimedia for Human-centric Com-

puting, Springer, 2014, pp. 1205–1213.

[18] V. Vaidya, “Dynamic signature inspection-based network intrusion detection,”

2001, US Patent 6,279,113.

[19] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits, “Denial-of-service

detection in 6lowpan based internet of things,” in 2013 IEEE 9th international

conference on wireless and mobile computing, networking and communications

(WiMob), IEEE, 2013, pp. 600–607.

[20] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection systems

in wireless sensor networks,” IEEE communications surveys & tutorials, vol. 16,

no. 1, pp. 266–282, 2014.

[21] A. Mishra, K. Nadkarni, and A. Patcha, “Intrusion detection in wireless ad hoc

networks,” IEEE wireless communications, vol. 11, no. 1, pp. 48–60, 2004.

[22] A. Le, J. Loo, Y. Luo, and A. Lasebae, “Specification-based ids for securing rpl

from topology attacks,” in 2011 IFIP Wireless Days (WD), IEEE, 2011, pp. 1–3.

[23] A. Le, J. Loo, K. K. Chai, andM. Aiash, “A specification-based ids for detecting

attacks on rpl-based network topology,” Information, vol. 7, no. 2, p. 25, 2016.

[24] E. J. Cho, J. H. Kim, and C. S. Hong, “Attack model and detection scheme

for botnet on 6lowpan,” in Asia-Pacific Network Operations and Management

Symposium, Springer, 2009, pp. 515–518.

86



[25] D. H. Summerville, K. M. Zach, and Y. Chen, “Ultra-lightweight deep packet

anomaly detection for internet of things devices,” in Computing and Commu-

nications Conference (IPCCC), 2015 IEEE 34th International Performance,

IEEE, 2015, pp. 1–8.

[26] P. Pongle and G. Chavan, “Real time intrusion and wormhole attack detection

in internet of things,” International Journal of Computer Applications, vol. 121,

no. 9, 2015.

[27] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki, “Net-

work intrusion detection for iot security based on learning techniques,” IEEE

Communications Surveys & Tutorials, 2019.

[28] C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis, “Intrusion detection

in 802.11 networks: Empirical evaluation of threats and a public dataset,” IEEE

Communications Surveys & Tutorials, vol. 18, no. 1, pp. 184–208, 2016.

[29] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P.

Sheth, “Machine learning for internet of things data analysis: A survey,” Digital

Communications and Networks, vol. 4, no. 3, pp. 161–175, 2018.

[30] S. Rathore and J. H. Park, “Semi-supervised learning based distributed attack

detection framework for iot,” Applied Soft Computing, vol. 72, pp. 79–89, 2018.

[31] S. Chawla andG. Thamilarasu, “Security as a service: Real-time intrusion detec-

tion in internet of things,” in Proceedings of the Fifth Cybersecurity Symposium,

ACM, 2018, p. 12.

[32] T. N. Dinh and M. T. Thai, “Ai and blockchain: A disruptive integration,”

Computer, vol. 51, no. 9, pp. 48–53, 2018.

87



[33] N. A. Team, “Nebula ai (nbai)—decentralized ai blockchain whitepaper,” 2018.

[34] A. Tabassum, A. Erbad, A. Mohamed, and M. Guizani, “Privacy-preserving

distributed ids using incremental learning for iot health systems,” IEEE Access,

vol. 9, pp. 14 271–14 283, 2021. doi: 10.1109/ACCESS.2021.3051530.

[35] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlin-

ear dimensionality reduction,” inProceedings of theMLSDA2014 2ndWorkshop

on Machine Learning for Sensory Data Analysis, ACM, 2014, p. 4.

[36] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme using deep

learning approach for internet of things,” Future Generation Computer Systems,

vol. 82, pp. 761–768, 2018.

[37] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural

information processing systems, vol. 27, 2014.

[38] L. Lan, L. You, Z. Zhang, Z. Fan,W. Zhao, N. Zeng, Y. Chen, andX. Zhou, “Gen-

erative adversarial networks and its applications in biomedical informatics,”

Frontiers in Public Health, vol. 8, p. 164, 2020, issn: 2296-2565. doi: 10.3389/

fpubh.2020.00164. [Online]. Available: https://www.frontiersin.org/

article/10.3389/fpubh.2020.00164.

[39] I. Durugkar, I. Gemp, and S. Mahadevan, “Generative multi-adversarial net-

works,” arXiv preprint arXiv:1611.01673, 2016.

[40] Q. Hoang, T. D. Nguyen, T. Le, and D. Phung, “Multi-generator generative

adversarial nets,” arXiv preprint arXiv:1708.02556, 2017.

88

https://doi.org/10.1109/ACCESS.2021.3051530
https://doi.org/10.3389/fpubh.2020.00164
https://doi.org/10.3389/fpubh.2020.00164
https://www.frontiersin.org/article/10.3389/fpubh.2020.00164
https://www.frontiersin.org/article/10.3389/fpubh.2020.00164


[41] R. Bellman, “Dynamic programming,” New Jersey Google Scholar, Princeton

University Press, Princeton, NJ, USA, 1957.

[42] E. Lahner, M. Intraligi, M. Buscema, M. Centanni, L. Vannella, E. Grossi,

and B. Annibale, “Artificial neural networks in the recognition of the presence

of thyroid disease in patients with atrophic body gastritis,” World Journal of

Gastroenterology: WJG, vol. 14, no. 4, p. 563, 2008.

[43] C.Xing, L.Ma, andX.Yang, “Stacked denoise autoencoder based feature extrac-

tion and classification for hyperspectral images,” Journal of Sensors, vol. 2016,

2016.

[44] J. An and S. Cho, “Variational autoencoder based anomaly detection using

reconstruction probability,” Special Lecture on IE, vol. 2, no. 1, pp. 1–18, 2015.

[45] K. Nandhakumar and D. S. Sukumaran, “A hybrid feature extraction method for

network intrusion detection system,” IOSR Journal of Computer Engineering

(IOSR-JCE), 4th ser., vol. 21, 3 2019.

[46] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsuper-

vised feature learning,” inProceedings of the fourteenth international conference

on artificial intelligence and statistics, 2011, pp. 215–223.

[47] C. Shi, B. Luo, S. He, K. Li, H. Liu, and B. Li, “Tool wear prediction via multidi-

mensional stacked sparse autoencoders with feature fusion,” IEEE Transactions

on Industrial Informatics, vol. 16, no. 8, pp. 5150–5159, 2019.

[48] C. Zhang, X. Cheng, J. Liu, J. He, and G. Liu, “Deep sparse autoencoder

for feature extraction and diagnosis of locomotive adhesion status,” Journal of

Control Science and Engineering, vol. 2018, 2018.

89



[49] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for robust

visual tracking,” International journal of computer vision, vol. 77, no. 1-3,

pp. 125–141, 2008.

[50] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature learning,” in Ad-

vances in neural information processing systems, 2007, pp. 41–48.

[51] G. Chechik, U. Shalit, V. Sharma, and S. Bengio, “An online algorithm for large

scale image similarity learning,” in Advances in Neural Information Processing

Systems, 2009, pp. 306–314.

[52] D. Preuveneers, V. Rimmer, I. Tsingenopoulos, J. Spooren, W. Joosen, and

E. Ilie-Zudor, “Chained anomaly detection models for federated learning: An

intrusion detection case study,” Applied Sciences, vol. 8, no. 12, p. 2663, 2018.

[53] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An incremental

learning algorithm for supervised neural networks,” IEEE transactions on sys-

tems, man, and cybernetics, part C (applications and reviews), vol. 31, no. 4,

pp. 497–508, 2001.

[54] Y. Yi, J. Wu, and W. Xu, “Incremental svm based on reserved set for network

intrusion detection,” Expert Systems with Applications, vol. 38, no. 6, pp. 7698–

7707, 2011.

[55] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classifiers with

online and active learning,” Journal of Machine Learning Research, vol. 6,

no. Sep, pp. 1579–1619, 2005.

90



[56] J. Li, G. Han, J. Wen, and X. Gao, “Robust tensor subspace learning for anomaly

detection,” International Journal of Machine Learning and Cybernetics, vol. 2,

no. 2, pp. 89–98, 2011.

[57] D. Kulić,W. Takano, andY. Nakamura, “Incremental learning, clustering and hi-

erarchy formation of whole body motion patterns using adaptive hidden markov

chains,” The International Journal of Robotics Research, vol. 27, no. 7, pp. 761–

784, 2008.

[58] W.-F. Hsiao and T.-M. Chang, “An incremental cluster-based approach to spam

filtering,”Expert Systems with Applications, vol. 34, no. 3, pp. 1599–1608, 2008.

[59] C. Alippi and M. Roveri, “The (not) far-away path to smart cyber-physical

systems: An information-centric framework,” Computer, vol. 50, no. 4, pp. 38–

47, 2017.

[60] Y. Wang, X. Fan, Z. Luo, T. Wang, M. Min, and J. Luo, “Fast online incre-

mental learning on mixture streaming data,” in Thirty-First AAAI Conference on

Artificial Intelligence, 2017.

[61] F. Noorbehbahani, A. Fanian, R. Mousavi, and H. Hasannejad, “An incremen-

tal intrusion detection system using a new semi-supervised stream classifica-

tion method,” International Journal of Communication Systems, vol. 30, no. 4,

p. 3002, 2017.

[62] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Survey on incremental

approaches for network anomaly detection,” arXiv preprint arXiv:1211.4493,

2012.

91



[63] F. Lin, Y. Zhou, X. An, I. You, and K.-K. R. Choo, “Fair resource allocation

in an intrusion-detection system for edge computing: Ensuring the security of

internet of things devices,” IEEE Consumer Electronics Magazine, vol. 7, no. 6,

pp. 45–50, 2018.

[64] J. Yang, C. Zhou, S. Yang, H. Xu, and B. Hu, “Anomaly detection based on

zone partition for security protection of industrial cyber-physical systems,” IEEE

Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4257–4267, 2017.

[65] Y. Otoum, D. Liu, and A. Nayak, “Dl-ids: A deep learning–based intrusion

detection framework for securing iot,” Transactions on Emerging Telecommu-

nications Technologies, e3803, 2019.

[66] M. Gajewski, J. M. Batalla, G. Mastorakis, and C. X. Mavromoustakis, “A

distributed ids architecture model for smart home systems,” Cluster Computing,

vol. 22, no. 1, pp. 1739–1749, 2019.

[67] H. Saadat, A. Aboumadi, A. Mohamed, A. Erbad, and M. Guizani, “Hierar-

chical federated learning for collaborative ids in iot applications,” in 2021 10th

Mediterranean Conference on Embedded Computing (MECO), IEEE, 2021,

pp. 1–6.

[68] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of things intrusion

detection: Centralized, on-device, or federated learning?” IEEENetwork, vol. 34,

no. 6, pp. 310–317, 2020.

[69] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated learning,”

Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 13,

no. 3, pp. 1–207, 2019.

92



[70] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-R.

Sadeghi, “Dïot: A federated self-learning anomaly detection system for iot,” in

2019 IEEE 39th International Conference on Distributed Computing Systems

(ICDCS), IEEE, 2019, pp. 756–767.

[71] Y. Fan, Y. Li, M. Zhan, H. Cui, and Y. Zhang, “Iotdefender: A federated transfer

learning intrusion detection framework for 5g iot,” in 2020 IEEE 14th Interna-

tional Conference on Big Data Science and Engineering (BigDataSE), IEEE,

2020, pp. 88–95.

[72] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and G. Sri-

vastava, “Federated learning-based anomaly detection for iot security attacks,”

IEEE Internet of Things Journal, 2021.

[73] E. Seo, H.M. Song, and H. K. Kim, “Gids: Gan based intrusion detection system

for in-vehicle network,” in 2018 16th Annual Conference on Privacy, Security

and Trust (PST), IEEE, 2018, pp. 1–6.

[74] A. Ferdowsi andW. Saad, “Generative adversarial networks for distributed intru-

sion detection in the internet of things,” in 2019 IEEE Global Communications

Conference (GLOBECOM), IEEE, 2019, pp. 1–6.

[75] Z. Chkirbene, H. B. Abdallah, K. Hassine, R. Hamila, and A. Erbad, “Data

augmentation for intrusion detection and classification in cloud networks,” in

2021 InternationalWireless Communications andMobile Computing (IWCMC),

IEEE, 2021, pp. 831–836.

[76] S. Ganapathy, K. Kulothungan, S. Muthurajkumar, M. Vĳayalakshmi, P. Yo-

gesh, and A. Kannan, “Intelligent feature selection and classification techniques

93



for intrusion detection in networks: A survey,” EURASIP Journal on Wireless

Communications and Networking, vol. 2013, no. 1, p. 271, 2013.

[77] A. Tabassum, A. Erbad, and M. Guizani, “A survey on recent approaches in

intrusion detection system in iots,” in 2019 15th International Wireless Commu-

nications & Mobile Computing Conference (IWCMC), IEEE, 2019, pp. 1190–

1197.

[78] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detect-

ing out-of-distribution samples and adversarial attacks,” in Advances in Neural

Information Processing Systems, 2018, pp. 7167–7177.

[79] Y. Chen, F. Luo, T. Li, T. Xiang, Z. Liu, and J. Li, “A training-integrity privacy-

preserving federated learning scheme with trusted execution environment,” In-

formation Sciences, vol. 522, pp. 69–79, 2020.

[80] Y. Li, Y.Wang,Q. Liu, C. Bi, X. Jiang, and S. Sun, “Incremental semi-supervised

learning on streaming data,” Pattern Recognition, vol. 88, pp. 383–396, 2019.

[81] K. Wu, Z. Chen, and W. Li, “A novel intrusion detection model for a massive

network using convolutional neural networks,” IEEE Access, vol. 6, pp. 50 850–

50 859, 2018.

[82] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[83] M. S. G. Karypis, V. Kumar, and M. Steinbach, “A comparison of document

clustering techniques,” in TextMiningWorkshop at KDD2000 (May 2000), 2000.

94



[84] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the

kdd cup 99 data set,” in 2009 IEEE symposium on computational intelligence

for security and defense applications, IEEE, 2009, pp. 1–6.

[85] O. Irsoy and E. Alpaydın, “Unsupervised feature extraction with autoencoder

trees,” Neurocomputing, vol. 258, pp. 63–73, 2017.

[86] S. Potluri and C. Diedrich, “Accelerated deep neural networks for enhanced

intrusion detection system,” in 2016 IEEE 21st international conference on

emerging technologies and factory automation (ETFA), IEEE, 2016, pp. 1–8.

[87] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J.

Long, E. J. Shekita, and B.-Y. Su, “Scaling distributedmachine learning with the

parameter server,” in 11th {USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 14), 2014, pp. 583–598.

[88] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,

A. Senior, P. Tucker, K. Yang, et al., “Large scale distributed deep networks,”

Advances in neural information processing systems, vol. 25, pp. 1223–1231,

2012.

[89] J. Konečn, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,

“Federated learning: Strategies for improving communication efficiency,” arXiv

preprint arXiv:1610.05492, 2016.

[90] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C.

Kiddon, J. Konečn, S. Mazzocchi, H. B. McMahan, et al., “Towards federated

learning at scale: System design,” arXiv preprint arXiv:1902.01046, 2019.

95



[91] A. Antoniou, A. Storkey, and H. Edwards, “Data augmentation generative ad-

versarial networks,” arXiv preprint arXiv:1711.04340, 2017.

[92] C. Fan and P. Liu, “Federated generative adversarial learning,” in Chinese Con-

ference on Pattern Recognition and Computer Vision (PRCV), Springer, 2020,

pp. 3–15.

[93] M. Rasouli, T. Sun, and R. Rajagopal, “Fedgan: Federated generative adversarial

networks for distributed data,” arXiv preprint arXiv:2006.07228, 2020.

[94] C. Hardy, E. Le Merrer, and B. Sericola, “Md-gan: Multi-discriminator gener-

ative adversarial networks for distributed datasets,” in 2019 IEEE international

parallel and distributed processing symposium (IPDPS), IEEE, 2019, pp. 866–

877.

[95] B. Xin, W. Yang, Y. Geng, S. Chen, S. Wang, and L. Huang, “Private fl-gan:

Differential privacy synthetic data generation based on federated learning,” in

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), IEEE, 2020, pp. 2927–2931.

[96] R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying convolutional

neural network for network intrusion detection,” in 2017 International Confer-

ence on Advances in Computing, Communications and Informatics (ICACCI),

IEEE, 2017, pp. 1222–1228.

[97] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential privacy.,”

Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–407, 2014.

96



[98] A. Warzyński and G. Kołaczek, “Intrusion detection systems vulnerability on

adversarial examples,” 2018 Innovations in Intelligent Systems and Applications

(INISTA), pp. 1–4, 2018.

[99] M. Zhang, E. Wei, and R. Berry, “Faithful edge federated learning: Scalability

and privacy,” IEEE Journal on Selected Areas in Communications, 2021.

[100] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor

federated learning,” in International Conference on Artificial Intelligence and

Statistics, PMLR, 2020, pp. 2938–2948.

[101] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated

poisoning attacks and defenses in malware detection systems: An adversarial

machine learning approach,” computers & security, vol. 73, pp. 326–344, 2018.

[102] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated learning by local

adaptation,” arXiv preprint arXiv:2002.04758, 2020.

[103] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of

deep learning: Passive and active white-box inference attacks against centralized

and federated learning,” in 2019 IEEE symposium on security and privacy (SP),

IEEE, 2019, pp. 739–753.

[104] Y. Zhao, J. Chen, J. Zhang, D.Wu, J. Teng, and S. Yu, “Pdgan: A novel poisoning

defense method in federated learning using generative adversarial network,” in

International Conference on Algorithms and Architectures for Parallel Process-

ing, Springer, 2019, pp. 595–609.

[105] H. Moustafa, E. M. Schooler, G. Shen, and S. Kamath, “Remote monitoring and

medical devices control in ehealth,” in 2016 IEEE 12th International Conference

97



onWireless andMobile Computing, Networking and Communications (WiMob),

IEEE, 2016, pp. 1–8.

[106] A. Tabassum and W. Lebda, “Security framework for iot devices against cyber-

attacks,” arXiv preprint arXiv:1912.01712, 2019.

[107] G. De La Torre, P. Rad, and K.-K. R. Choo, “Driverless vehicle security: Chal-

lenges and future research opportunities,”Future Generation Computer Systems,

2018.

[108] S. Meggitt, “Medjack attacks: The scariest part of the hospital,” 2018.

[109] N. Davies, N. Taft, M. Satyanarayanan, S. Clinch, and B. Amos, “Privacy me-

diators: Helping iot cross the chasm,” in Proceedings of the 17th International

Workshop onMobile Computing Systems and Applications, ACM, 2016, pp. 39–

44.

[110] H. Fotouhi, A. Causevic, K. Lundqvist, andM. Björkman, “Communication and

security in health monitoring systems – a review,” in 2016 IEEE 40th Annual

Computer Software and Applications Conference (COMPSAC), vol. 1, 2016,

pp. 545–554.

98


	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Thesis Objectives and Contributions
	Thesis Overview

	Background and Related Work
	Intrusion Detection System
	IDS Placement Strategies

	Intrusion Detection System Approaches
	Signature-based Detection
	Specification-based Detection
	Anomaly-based Detection

	Intrusion detection approaches based on Artificial Intelligence
	IDS using Machine Learning
	IDS using Deep Learning

	Generative Adversarial Network

	Challenges of Intrusion Detection System for IoT devices
	Intrusion Detection in Streaming IoT Data
	Data Pre-processing and Incremental Learning
	Privacy-preserving Decentralized Models
	Data Imbalance Issues in Model Training

	Parallel Pre-processing of Data on IoT Devices for Intrusion Detection
	System Model
	Notations

	Distributed Architecture
	Generative Network
	Bridge Network
	Classifier Network

	Detailed Design
	Generative Network: Pre-processing Phase
	Bridge Network: Comparison Phase
	Classifier Network: Classification Module

	Experimental Results
	Dataset
	Pre-processing Task
	Classification Task
	Incremental Learning Module
	Time Complexity


	FEDGAN-IDS: Privacy-preserving IDS using FL and GAN
	System Model
	Proposed Framework
	Distributed IDS using GAN
	Federated Learning Framework

	FEDGAN-IDS Algorithm
	Problem Formulation
	Phase 1: Local Generator Training
	Phase 2: Local Discriminator Training 
	Phase 3: Central Model Update
	Phase 4: Model Parameters Dissemination

	Performance Evaluation
	Data Set
	Federated Learning with and without GAN
	FEDGAN-IDS Multiclass Classification


	Conclusion
	Scalability

	Future Work
	Publications
	References

