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ABSTRACT  

ALDOSARI, MASHAEL, ALDOSARI, Masters : January : 2022, Applied Statistics 

Title: Generalizing the Point Biserial to Measure the Association Between a set of 

dichotomous Variables and a Continuous Variable 

Supervisor of Thesis: Abdel-Salam Gomaa Abdel-Salam. 

Exploring the statistical association between more than two variables requires 

utilizing a proper technique/test along with meeting its required assumptions. Measures 

of correlation are used to explain such associations by intervals ranging [01] or [-11], 

where values near one imply a strong positive relationship and vice versa. Numerous 

measures of association exist for variables with similar characteristics, such as nominal 

vs. nominal or ordinal vs. ordinal. However, only a handful of measures exploring the 

relationship between quantitative and qualitative variables are available. To the best of 

my knowledge, there is no available measure for measuring the association between a 

set of dichotomous variables and a continuous variable. 

Therefore, the present study aims to propose measures of association to evaluate 

the strength of the relationship between a set of dichotomous variables and a continuous 

variable, namely, mixed data. The proposed measures generalized the Point Biserial 

Correlation Coefficient for dichotomous variables with an identical or non-identical 

probability. 

 The study utilized the Mean Square Error (MSE) and Bias as criteria for 

comparing the performance of the aforementioned measures of the association through 

extensive simulations and real data analyses. 

This study contributed by introducing association measures that can be applied 
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to data from any field that depends in most cases on dichotomous variables and a 

continuous variable to study their association. However, it is a common phenomenon 

in the education sector. Therefore, the proposed measures applied to real datasets 

derived from the Education sector in Qatar. Education is an essential human virtue, a 

necessity of society, the basis of a good life, and a sign of freedom. Education is 

important for the integration of separate entities.  

Simulation study and real-data applications were carried out to compare the 

performances of the 𝜂2
∗  , and the proposed measures based on MSE and bias considering 

different probabilities, sample sizes, correlation coefficients, and a different number of 

dichotomous variables. The research demonstrates that the two proposed measures had 

the best performances when the sample size and the number of dichotomous increased 

compared to 𝜂2
∗  .  
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CHAPTER 1: BACKGROUND AND INTRODUCTION 

 

1.1 Introduction  

 

The size of the association between two variables can be summarized using 

measures of association. Several association measures were designed to have a 

range of merely 0 to 1, whereas others have a range of -1 to +1. The latter allows 

you to see if the two variables have a positive or negative relationship with one 

another. For example, if the correlation coefficient, R, is positive, then an increase 

in X would increase Y. However, if the measure of association were negative, an 

increase in X would result in a decrease in Y. Larger measure of association, such 

as 0.8, would suggest a stronger relationship between the variables, while figures 

like 0.3 would suggest weaker ones as shown: 

 

 

 

The objective of this thesis is to introduce and utilize two generalized forms for 

the Point Biserial. The first form for measuring the association between a 

continuous variable and a set of independent dichotomous variables with the same 

trial probabilities. The second form where the independent binaries with different 

probabilities of each trial. Furthermore, compared the performance for the proposed 

measures and 𝜂2
∗  measure of association for a set of dichotomous and continuous 
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variables. Lastly, apply the considered measures in the study to real educational 

data from Qatar.  

 

1.2 Importance of measure of association  

 

- Associations show how variables are related to each other and quantify the 

relationship between these variables. 

- Used to determine the direction and strength of each relationship. 

- Another benefit of correlational research is that it opens up a great deal of 

further research to other scholars when researchers begin investigating a 

phenomenon or relationship for the first time. 

 

1.3 Definition of terms 

 

This section of the study contains definitions for key terms that used throughout 

the research: 

1.3.1 Direction: the measure's sign indicates whether the relationship is positive or 

negative. When one variable in a positive relationship is high, so is the other. 

When one variable is high in a negative relationship, the other is low. 

1.3.2 Measures of association: a single number that summarizes the strength of the 

relationship. This statistic depicts the magnitude and/or direction of a variable-

to-variable relationship. 

1.3.3 Magnitude: the closer the association is to the absolute value of one, the stronger 

it is. There is no relationship between the two variables if the measure equals 0. 

1.3.4 Generalization: Generalization is the method of developing a general 
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mathematical formula that can be valid for general and specific cases. 

 

1.4 Level of measurement 

 

Before performing statistical analysis, it is imperative to determine the 

measurement scale. The measurement scales usually differ with regards to their 

meaning and numbers. In most instances, the scales are grouped into four measurement 

levels that fall into two broad types of variables: 

1. Qualitative or Categorical – under this level, the variables are grouped into 

two major types. These are nominal and ordinal variables. Researchers need to 

understand the definition and nature of these variables to know how they are 

handled during a research process.  

i. Nominal Variables: These are variables that differ because they have 

different names. Therefore, it is not possible to place them in any kind 

of order when used in a study. Some of the common nominal variables 

may include ethnicity, race, neighborhood, hair color, and gender.  

ii. Ordinal Variables: The second type is the ordinal variables that are 

unique and can be ranked into different categories when used in a 

research project or study. The common ordinal variables include class 

level (junior, senior, freshman, and sophomore) and level of education 

(college degree, High School Diploma, and Less than High School 

Diploma). 

 

2. Quantitative or Continuous/Scale –In this group of variables, the researcher 

can use data or information that falls along a given spectrum characterized by 
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standard intervals. The common ones that can be used in a study are intervals 

and ratios. 

i. Interval: Interval refers to variables that do not have absolute zero 

value. In this case, absolute zero refers to the absence of a value or 

something. When the interval variable is used, zero is just considered 

another kind of data point along the scale being used. Therefore, it 

should not be perceived to be an indication that there is no value.  For 

instance, when talking about the temperature scale, the data of zero 

degrees is not an indication that there is no heat or some form of 

temperature. Instead, it is included in the scale just like the other values 

that show whether it is cold or hot. 

ii. Ratio:  A ratio is considered a research variable containing absolute 

zero, which is meaningful. It implies that when the ratio variable is given 

the number 0, it implies that there is nothing that exists. For example, 

zero oranges mean that there is no orange.  

 

In the actual practices, six variable combinations may be used. These 

combinations have unique features that the researchers need to understand when using 

them in a study or project. The common combinations include:  

1. Continuous vs. continuous  

2. Continuous vs. ordinal  

3. Continuous vs. nominal  

4. Ordinal vs. ordinal  

5. Ordinal vs. nominal  

6. Nominal vs. nominal 
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This study focuses on the combination of multinomial and continuous measures of 

association. 

 

1.5 Point biserial correlation 

 

product-moment correlation in which one variable is continuous (must be ratio 

scale or interval scale) and the other one  is a discrete random variable 

(dichotomous), which takes the values 0 and 1,  based on a random sample (𝑋𝑖, 𝑌𝑖), 

i = 1, 2…. , n. 

 

Point biserial correlation is defined by 

𝒓𝒑𝒃 = (
�̅�𝟏 − �̅�𝟐

𝒔𝒀
) √

𝒏𝒑𝟎(𝟏 − 𝒑𝟎)

𝒏 − 𝟏
 

The formula for the point biserial correlation coefficient is: 

 �̅�𝟏 = the mean value (for the entire test)  on the continuous variable Y  for all data 

points in of the group that received the positive dichotomous variable (i.e., the 

“1”). 

 �̅�𝟐 = the mean value (for the entire test)  on the continuous variable Y  for all data 

points in of the group that received the negative dichotomous variable (i.e., the 

“0”). 

 𝒔𝒀 = standard deviation for the entire test. 

 𝒑𝟎= Proportion of cases in the “0” group. 

 𝒑𝟏 = Proportion of cases in the “1” group. 

 

Where  

https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/nominal-ordinal-interval-ratio/#ratio
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/nominal-ordinal-interval-ratio/#ratio
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/nominal-ordinal-interval-ratio/#interval
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𝒔𝒀 = √
∑ (𝒀𝒌 − �̅�)𝟐𝒏

𝒌=𝟏

𝒏 − 𝟏
 

�̅� =
∑ 𝒀𝒌

𝒏
𝒌=𝟏

𝒏
 

𝒑𝟏 =
∑ 𝒙𝒌

𝒏
𝒌=𝟏

𝒏
 

𝒑𝟎 = 𝟏 − 𝒑𝟏 

 

1.6 Multivariate measure of association  

 

In statistics, different variables can be used to refer to distributions and make 

sense of statistical data sets. For instance, the researchers can decide to make 

inferences about single distribution through the use of univariate statistics. This 

particular model forms the basis of other kinds of statistics. However, it does not 

show the relationship in the data set that is being examined. For the researcher 

to explore relationships among variables, it is imperative to use bivariate 

statistics, which show the association between two variables (Garson, G. 

D.,2012). 

In other cases, the researcher frequently wishes to move beyond this to 

multivariate statistics, where the relationships among several variables are 

examined simultaneously. The present study focuses on examining the 

relationship between X’s, which is a multinomial, and Y, which is a continuous 

variable. The association will be investigated using the multivariate distribution 

method.  

 

 



  

7 

 

1.7 Theoretical background 

Several reports have studied the generalized point biserial correlation 

coefficient using different ways. Gupta (1960) investigated the point multi-serial 

correlation coefficient between a continuous variable and a recoded nominal variable 

based on the corresponding means on the continuous variable. Furthermore, Olsson, 

Drasgow, and Dorans (1982) introduced the point polyserial correlation coefficient 

between polychotomous-ordinal categories and continuous variables. Also, the 

multivariate extension investigated by Olkin and Tate (1961) for a multinomial 

distribution, where Y conditional distribution for fixed X is multivariate normal. 

Therefore, the first approach in this study to utilize generalized the point biserial in two 

forms. First, by measuring the association between a continuous variable and a set of 

independent dichotomous variables with the same trial probabilities. The second form 

is a special generalized of the former one, where the independent binaries have different 

trial probabilities. 

 

To the best knowledge of the researcher and based on the research that has been 

explored, the contribution of this study is to fill in the gap in the literature that no one 

has studied the association between a set of dichotomous variables and a continuous 

variable. Furthermore, the regular Point Biserial correlation coefficient considers each 

dichotomous outcome separately in a univariate framework. However, this strategy is 

less efficient than the proposed approach incense of avoiding the increase of the 

probability of type I error. 

 

 Therefore, this study extends the research by Lev (1949), which measures the 

association between a set of independent dichotomous variables and a continuous 
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variable by generalizing the Point Biserial correlation coefficient. In the other method, 

𝜂2
∗  will be using that investigated by Taha and Hadi (2016), where will transform 

nominal variables into a set of dichotomous variables to measure the association 

between nominal and continuous variables. In addition, it utilizes 𝜂2
∗  suggested by Taha 

and Hadi (2016) after transforming a set of dichotomous variables to a nominal variable 

and then transform that nominal into dependent dichotomous variables.  

 

1.8 Research Questions 

Proceeding from the research problem, and under the scope of the literature 

that was reviewed, the research’s questions can be: 

(i) How is the correlation between a set of dichotomous variables and a 

continuous variable can be measured? 

(ii) What is the performance of the proposed and other techniques in 

measuring the association? 

(iii) How can researchers compute and interpret those measures of 

association in a real-life application? 
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CHAPTER 2: LITERATURE REVIEW 

 

 2.1 Level of measurements 

It is well-established in the field of statistics that there are four types of 

measurement levels (nominal, ordinal, ratio, and interval), each requiring a specific 

statistical analysis. Such variables can be quantitative or qualitative in nature. 

Quantitative variables (ratios and intervals) involve the use of numbers, while 

qualitative ones (nominal and ordinal) are solely based on labels. 

 

Nominal qualitative factors code data by assigning limited numbers to 

categories within ≥ two sets and lacking certain orders or ranking. On the other hand, 

ordered or implied factors can only be represented as ordinal variables. Further, the 

nominal type can also be referred to as a dichotomous variable as it contains two 

dichotomous data. In other words, only two possible outcomes are involved (i.e., 

gender: male vs. female), with an artificial dichotomy occurring when researchers 

create a variable via recoding quantitative variables using cutoff values. For example, 

a researcher can create two age groups in which zero and one are defined as (age >40) 

and (age <40), respectively (Ulrich & Wirtz, 2004). 

 

As for quantitative variables, interval scales contain data with equal distances 

between values (i.e., the same distance between 4 and 5 is found between 14 and 15). 

The most common example of an interval scale is the temperature data using either 

Celsius or Fahrenheit, where zero  nil. Thus, even though ratio and interval have 

similar properties, the former has a meaningful or true zero value (Berry, Johnston, & 

Mielke Jr, 2018; Boslaugh, 2012). 
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2.2 Measures of association 

Researchers should be aware of levels of measurements in order to pose the 

ability to choose the correct measure of association properly, and therefore, correctly 

assess the relationship between two or more variables (Islam & Rizwan, 2020; Khamis, 

2008).  

Commonly, bivariate measures of association with the same characteristic are 

carried out through Pearson product-moment, Spearman rank-order, Phi, Tetrachoric, 

and Gamma correlation coefficients (Perinetti, 2019). 

 

 Pearson product-moment is the most common bivariate measure of 

association introduced by Pearson (1909). It provides the magnitude as 

well as the direction of the association, in which both scales are intervals 

or ratios and are normally distributed. The correlation uses these scales 

to draw a line of best fit and explore the extent of variation found within 

variable points throughout the line. However, researchers have 

developed several analyses using the Pearson correlation. 

 

  The Spearman rank-order proposed by Spearman (1906) is used for 

ordinal scales, in which one or both variables’ distribution is unknown 

since it is a non-parametric measure. Studies such as Hotelling and Pabst 

(1936); Maurice G Kendall (1948); Maurice George Kendall (1948); 

Kendall, Kendall, and Smith (1939); Kendall and Smith (1939) are 

among others emphasizing the use of Spearman rank correlation 

coefficient in such circumstances. 
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 Phi correlation coefficient introduced by Yule (1912) is used in cross-

tabulated data, where both scales are dichotomous in nature. Interpreting 

phi correlation coefficients is similar to Pearson product-moment 

correlation coefficient as the estimated product-moment for two 

naturally dichotomous variables will return the Phi correlation 

coefficient. Moreover, the Phi correlation mainly depends on a two-

dimensional contingency table containing frequencies by category. 

 

 The tetrachoric correlation coefficient, Pearson (1900), is utilized to 

estimate the correlation between two normally distributed variables, 

describing a linear relationship between two continuous variables that 

have each been measured on an artificially dichotomous scale (Bonett 

& Price, 2005).  

 

 Gamma correlation coefficient recognized by Goodman and Kruskal 

(1979) shows the strength of association when two ordinal variables. 

The Gamma technique measures the association by translating the scale 

numbers into ordinal “rank,” contrary to the Pearson product-moment 

correlation that assesses the relationship between two continuous 

variables. 

On the contrary, there are measures of association studying the relationship between 

different types of variables (Barbiero & Hitaj, 2020). For instance,  
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 As mentioned earlier, the Pearson correlation explores the relationship 

between continuous variables. Nevertheless, if one of the variables of 

interest is continuous that is transformed to form dichotomous 

categories, the Biserial correlation coefficient investigated by Robert 

Fleming Tate (1950) is more meaningful. However, the original 

continuous variable must be transformed into another one with 

dichotomous outcomes. 

 

 Articles by Lev (1949) and Robert F Tate (1954) reviewed a special case 

of the Pearson’s product-moment correlation that fulfills the same 

assumptions and named Point Biserial correlation coefficient denoted as 

𝑟𝑝𝑏. A correlation of a relationship strength between a continuous level 

variable (interval or ratio) and a dichotomous variable is obtained from 

the Point Biserial Correlation Coefficient.  

 

Dichotomous variables are nominal scale variables with only two 

possible values, and researchers often refer to them as dummy or 

dichotomous variables when performing regression analysis. 

Dichotomous variables are widely used to denote the presence or 

membership of one category of specimens that exist, such as male or 

female. They may also be generated by recoding variables or grouping 

cases for the analysisif necessarywhere Biserial correlation rather 

than Point Biserial is used to measure the association (Tare, 1949). 

However, the Point Biserial correlation coefficient assumes that both 

dependent and independent variables are random variables and Y 

https://statistics.laerd.com/spss-tutorials/pearsons-product-moment-correlation-using-spss-statistics.php
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follows normal distribution N(𝜇1, 𝜎2) when X=1 while,  N(𝜇0, 𝜎2) when 

X=0. Where, 𝜇1 is the mean value for the continuous when X=1; 

therefore: 𝜇1 =
1

𝑛1
∑ 𝑦𝑖

𝑛1
𝑖=1  for all the data points in group 1 with size 𝑛1 

and 𝜇0 =
1

𝑛0
∑ 𝑦𝑖

𝑛0
𝑖=1 . The combined sample size is given by 𝑛 = 𝑛0 +

𝑛1. Yet, authors estimated 𝑟𝑝𝑏 using the maximum likelihood estimation 

for bivariate normal distribution by standardized X using Bernoulli 

distribution, since X has dichotomous outcomes.  

 

 Taha and Hadi (2016) presented two measures for the power of linking 

between two definite categorical variables, namely, 𝜂1 and 𝜂2. 

Additionally, more extensions of their measures are provided and 

broken down so that they can be used to quantify the power of 

connecting mixed variables, which is where some variables can be 

qualitative and others being quantitative or categorical. For mixed data, 

authors transformed nominal variables to be multi- dichotomous 

variables in which each dichotomous variable depends on the others. 

The basic idea for those measures is to find a singular value. For two 

categorical variables, the performance of both measures is better 

compared with other five different measures of associations. Moreover, 

they introduced 𝜂1
∗ and 𝜂2

∗  for mixed data (categorical vs. continuous) 

and showed that 𝜂2
∗  is better than 𝜂1

∗ based on bias and RMSE.  

 

2.3 Measures of association extended of point biserial correlation coefficient  

 A study by Gupta (1960) introduced the point multi-serial correlation 
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coefficient and examined some of its properties. It is noted that the 

product-moment correlation coefficient can measure linear relation 

between qualitative characters when the number of categories is more 

than two, and the set scores that are assigned to these classes are well-

known (Wherry & Taylor, 1946). The moment correlation coefficient is 

also termed the point multi-serial correlation coefficient (PMS). By 

definition, Y is a discrete random variable with values 𝑦𝑖 (i = 1, 2, … 𝑙) 

and probability Pi and X are continuous random variables to the extent 

that when Y=𝑦𝑖, then the conditional variance and mean of X are 𝜎𝑖
2and 

𝑚𝑖, respectively. Some of the main properties of PMS include 𝑚1 =

𝑚2 = ⋯ = 𝑚𝑙, which is an adequate condition to take PMS to be 

equivalent to 0 even though it is not an essential condition. Additionally, 

when 𝑙 = 2, PMS becomes invariant for linear transformation of 𝑦1 and 

𝑦2. Therefore, 1 and 0 can replace 𝑦2 and When 𝑙 = 3 and 𝑦1 + 𝑦2 + 𝑦3 

= 0, where 𝑦1 is greater than 𝑦2, which is also greater than 𝑦3, then p 

becomes unchanged if the three y values are replaced 1, 0, and -1, 

respectively.  

 

 A frequently arising model, originally from psychology experiments, 

contains both continuous and discrete variables. The model is a discrete 

variable X that takes 0 or 1 and a continuous variable y. X represents the 

absence or presence of an attribute. The frequency and orientation of the 

connection between one continuous variable and one discrete variable 

are calculated via a Point Biserial correlation (LeBlanc & Cox, 2017). 

Researchers can, for example, use a dot Biserial link to investigate if 
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wages in the U.S. are associated with gender. “Salary” will be the 

continuous variable in this example, while “gender” will be the discrete 

variable as it has two categories (male and female). The multivariate 

extension investigated by Olkin and Tate (1961) has X as a binomial 

distribution, and the condition distribution of y for fixed x is normal in 

this model. Therefore 𝑋 = (𝑥0, 𝑥1, … , 𝑥𝑛) has a multinomial 

distribution, and y conditional distribution is 𝑌 = (𝑦0, 𝑦1, … , 𝑦𝑛)  for 

fixed X is multivariate normal.  

 

 Olsson et al. (1982) considered Point Polyserial and Polyserial 

correlations as Point Biserial and Biserial correlations generalizations to 

derive the association between Polyserial and Point Polyserial 

correlation. The authors considered the case when one variable has 

polychotomous-ordinal categories while the other is continuous. 

Polychotomous-ordinal categories or ordered categorical variables that 

have more than two categories and some kind of order such as “1- if you 

earn up to 10,000QR”, “2- if you earn 10,000QR- 20,000QR” and “3- if 

you earn over 20,000QR”.  

 

Worthy mentions that most of the association measures are related to the 

Pearson product-moment, such as the Point Biserial correlation coefficient, Biserial 

correlation coefficient, Tetrachoric correlation, Spearman rank-order, etc. In addition, 

several studies create different ways to transform multi-dichotomous variables to 

nominal variables and vice versa. Therefore, from the above studies, the suggested 

approach is a special case of Pearson product-moment by generalizing Point Biserial 
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correlation while the other approach is derived from 𝜂2
∗ .  
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CHAPTER 3: CONTRIBUTIONS IN THIS THESIS 

 

Two proposed measures of association were generalizing point biserial 

association will discuss and clarify in this section. In addition to the mathematical 

formulas for 𝜂2
∗   measure of association and goodness-of-fit criteria. 

 

3.1 Extension of Point Biserial correlation   

Lev (1949) proved that the Point Biserial correlation coefficient is a 

Pearson correlation between a continuous and a dichotomous variable. The 

proof began with the joint probability distribution function of the two 

variables. It ended up with a modified version of the typical Pearson formula 

by replacing the expectation and the variance of one of the two continuous 

variables with the expectation and the variance of the dichotomous variable. 

Therefore, it can be concluded that the Point Biserial correlation is a 

particular case of bivariate Pearson correlation. It proceeds from that the 

Point Biserial formula and can be extended to involve more than one 

dichotomous variable to measure the correlation between a set of binaries 

and a continuous variable. The idea of the extension in this study is 

developed on the basis that adding up the dichotomous variables together to 

give a new variable follows Binomial distribution under the assumption of 

independent and identical dichotomous variables. Considering that the 

identical assumption is not fulfilled, then the new variable follows the 

Poisson-Binomial distribution. Nevertheless, that changes nothing in the 

correlation formula because Binomial distribution may be seen as a special 

case of the Poisson-Binomial distribution. 
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3.1.1 Correlation between a set of iid dichotomous and a 

continuous: 

 Definition:  

A measure of association quantifies a relationship between a continuous variable and a 

set of dichotomous variables. The measure is a generalization of point Biserial 

correlation which was introduced by Lev (1949) when k is more than 1, and p is 

constant. Given Y, being normally distributed a continuous random variable having 

mean=𝜇 and with variance= 𝜎2 and given 𝑥1, 𝑥2, … … , 𝑥𝑘 are dichotomous variables, 

where 𝑘 > 1 represents the number of trials. 𝑝 is the probability for each of the 

dichotomous variables, where 0 ≤ 𝑝 ≤ 1. Since x’s are Bernoulli trials, so 

𝑋~𝑏𝑖𝑛(𝑘, 𝑝) is a Binomial distribution. Hence, the summation of x’s denoted by X, 

where X can take values from zero to k. 

 Properties: 

1- The continuous variable should be normally distributed. 

2- The dichotomous variables are independent and identical Bernoulli random 

variables. 

3- The data should not contain outlier points.  

4- The 1's categories on dichotomous variables must correspond to the higher 

mean on the continuous variable, and the 0's categories must correspond to 

the lowest mean on the continuous variable or vice versa. 

 Derivation:  

Let 𝑌 ~ 𝑁(𝜇, 𝜎2), and 

Let  𝑥𝑗 are identical independent distributions (iid) Bernoulli trial, j=1,…, k, 

Note that; 
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𝑛0 + 𝑛1 = 𝑛               for each 𝑥𝑗 , j =  1,2, 3, … , k 

Where, 𝑛0 is the number of fails trials for each of the k trials, and 𝑛1 is the 

number of successes trials for each of the k trials. 

Thus, 

𝑝 =
𝑛1

𝑛0 + 𝑛1
=

𝑛1

𝑛
          for each 𝑥𝑗 , j =  1,2, 3, … , k 

Now; Let   

X = ∑ 𝑥𝑗
𝑘
𝑗=1  = 𝑥1+𝑥2 + ⋯ … + 𝑥𝑘       (1) 

Therefore, 

𝑋~𝑏𝑖𝑛(𝑘, 𝑝) 

The standard form of the correlation coefficient is: 

𝑐𝑜𝑟(𝑋, 𝑌) = 𝜌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
     (2) 

Where,  

𝑐𝑜𝑣(𝑋, 𝑌) =  𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌]   (3) 

The mean (𝜇𝑋, sometimes denoted as the expected value) as well as the standard 

deviation (𝜎𝑋) of a binomially distributed variable are derived using equations (4) and 

(5). 𝑋 is the sum of Bernoulli trials, so simply the mean and variance will be the 

summation of different probabilities of successes of the Bernoulli distributions: 

 

𝐸[𝑋] = 𝜇𝑋 = 𝑘𝑝 =
𝑘𝑛1

𝑛
  (4) 

 

𝜎𝑋 = √𝑘𝑝(1 − 𝑝) = √
𝑘𝑛1

𝑛
(1 −

𝑛1

𝑛
)   (5) 
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While the mean (𝜇𝑌, which is also denoted as the expected value) and standard 

deviation (𝜎𝑌) of a normally distributed variable are derived using equations (6) and 

(7) 

𝐸[𝑌] = 𝜇𝑌 =
∑ 𝑌𝑖

𝑛
𝑖=1

𝑛
    (6) 

 

𝜎𝑌 =  √
∑ (𝑌𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
    (7) 

Therefore, 

𝑐𝑜𝑣(𝑋, 𝑌) =  𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌] = [
1

𝑛
∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1 −

𝑘𝑛1

𝑛2
∑ 𝑌𝑖

𝑛
𝑖=1 ]  

Multiply n and divided by n to 
1

𝑛
∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1  

Thus,  

𝑐𝑜𝑣(𝑋, 𝑌)= 
1

𝑛2 [𝑛 ∑ (∑ 𝑥𝑖𝑗)𝑘
𝑗=1 𝑌𝑖

𝑛
𝑖=1 − 𝑘𝑛1 ∑ 𝑌𝑖

𝑛
𝑖=1 ]   (8) 

where j =1,.., k 

By substituting in equation (2), then 

 

𝑐𝑜𝑟(𝑋, 𝑌) = 𝜌 =
 

1
𝑛2 [𝑛 ∑ (∑ 𝑥𝑖𝑗)𝑘

𝑗=1 𝑌𝑖
𝑛
𝑖=1 − 𝑘𝑛1 ∑ 𝑌𝑖

𝑛
𝑖=1 ]

√∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

𝑛 − 1
√𝑘𝑛1

𝑛 (1 −
𝑛1

𝑛 )   

 

Therefore, the proposed measure of association can be obtained using the following 

formula: 

𝜌𝐵 =
  

1
𝑛2 [𝑛 ∑ (∑ 𝑥𝑖𝑗)𝑘

𝑗=1 𝑌𝑖
𝑛
𝑖=1 − 𝑘𝑛1 ∑ 𝑌𝑖

𝑛
𝑖=1 ]

𝜎𝑌√𝑘𝑛1

𝑛 (1 −
𝑛1

𝑛 )   

 

or 
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𝜌𝐵 =

1
𝑛

[∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1 − 𝑘𝑝 ∑ 𝑌𝑖

𝑛
𝑖=1 ]

𝜎𝑌√𝑘𝑝(1 − 𝑝)
    (9) 

 

Where, 

𝜌𝐵= proposed measure of association for a Binomial experiment, 

𝑛 = the number of observations, 

𝑘 = the number of trials, 

𝑝 = the probability of successes for each of the k trials, 

𝑋𝑖 = value of the summation of the independent Bernoulli trials (for ith 

observation), 

𝑌𝑖 = value of y (for ith observation), 

𝑛0= the number of fails trials for each of the k trials, and 

𝑛1= the number of successful trials for each of the k trials. 

 

Algorithm (a1): 

An algorithm may be used to derive the association between a set of dichotomous 

variables and one continuous variable for the proposed measure 𝜌𝐵. 

Input:  

A mixed dataset B consists of a set of dichotomous variables and one continuous 

variable. 

Algorithm:  

Step 1. Recode the dichotomous variables to have 1’s categories correspond to 

the highest mean on Y. 

Step 2. Compute X, which is the summation of each row in the set of 

dichotomous variables. 
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Step 3. Compute 𝑝 which is the probability of successes 

Step 4. Compute  μX and μy  using (4) & (6).  

Step 5. Compute  σx and σy  using (5) & (7).  

Step 6. Compute the covariance of X and Y using (8). 

Step 7. Compute ρB using (9)  

Output: the proposed measure of association  𝜌𝐵 

 

3.1.2 Correlation between a set of independent but not id 

dichotomous variables and a continuous: 

 

 Definition “Poisson-Binomial” : 

The second case, given Y, being normally distributed a continuous random variable 

having mean=𝜇 and with variance= 𝜎2 and given 𝑥1, 𝑥2, … … , 𝑥𝑘 are dichotomous 

variables, where 𝑘 > 1 represents a number of trials. The probability of each 

dichotomous variable is  𝑝𝑗 = 𝑝𝑟(𝐼𝑗 = 1) = 1 − 𝑝𝑟(𝐼𝑗 = 0), where 0 ≤ 𝑝𝑗 ≤

1, 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, … , 𝑘. Since x’s are Bernoulli trials, so 𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑗) which is a 

Poisson-binomial distribution. Hence, the summation of x’s denoted by X, where X can 

take values from zero to k.  Hence, this measure could be considered a generalization 

of the Point Biserial correlation when k is more than one and unequal p (Chen & Liu, 

1997; Hong, 2013; Neammanee, 2005; Samuels, 1965). 

 

 Proprieties: 

 

The assumptions will be as the assumption in 6.1.1; the only change is that the 

dichotomous variables are not identically Bernoulli random variables. 
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 Derivation: 

Let 𝑌 ~ 𝑁(𝜇, 𝜎2), and 𝑥𝑗 independent non-identical distributed Bernoulli trial, 

j=1,…, k, 

Note that; 

𝑛0𝑗 + 𝑛1𝑗 = 𝑛               for each 𝑥𝑗 , j =  1,2, 3, … … , k 

 

𝑛1𝑗

𝑛0𝑗 + 𝑛1𝑗
+

𝑛0𝑖

𝑛0𝑖 + 𝑛1𝑗
= 1 , 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 

𝑛1𝑗

𝑛
+

𝑛0𝑗

𝑛
= 1     for each 𝑥𝑗 , j =  1,2, 3, … … ,

k  

 

Thus, 

𝑝𝑗 =
𝑛1𝑗

𝑛0𝑗 + 𝑛1𝑗
=

𝑛1𝑗

𝑛
          for each 𝑥𝑗 , j =  1,2, 3, … … , k 

 

Now; Let  

X = ∑ 𝑥𝑗
𝑘
𝑗=1  = 𝑥1+𝑥2 + ⋯ … + 𝑥𝑘     (10) 

 

Therefore, 𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑗) 

The mean (𝜇𝑋, sometimes denoted as the expected value) as well as the standard 

deviation (𝜎𝑋)  of a Poisson binomial distributed variable are derived using equations 

(11) and (12). X is the sum of Bernoulli trials, so simply the mean and variance will be 

the summation of different probabilities of successes of the Bernoulli distributions: 

 

𝐸[𝑋] = 𝜇𝑋 = ∑ 𝑝𝑗

𝑘

𝑗=1

= ∑
𝑛1𝑗

𝑛0𝑗 + 𝑛1𝑗

𝑘

𝑗=1

   (11) 
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𝜎𝑋 = √∑(1 − 𝑝𝑗)𝑝𝑗

𝑘

𝑗=1

= √∑ [
𝑛1𝑗

𝑛
(1 −

𝑛1𝑗

𝑛
)]

𝑘

𝑗=1

= √∑ [
𝑛1𝑗

𝑛
(
𝑛0𝑗

𝑛
)]

𝑘

𝑗=1

= √∑
𝑛0𝑗𝑛1𝑗

𝑛2

𝑘

𝑗=1

    (12) 

 

While the mean (𝜇𝑌, which is also denoted as the expected value) and standard 

deviation (𝜎𝑌) of a normally distributed variable are derived using equations (6) and 

(7) 

Therefore, 

𝑐𝑜𝑣(𝑋, 𝑌) =  𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌] = 
1

𝑛
[∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1 − ∑ 𝑝𝑖

𝑘
𝑖=1 ∑ 𝑌𝑖

𝑛
𝑖=1 ] 

=  [
∑ (∑ 𝑥𝑖𝑗)𝑘

𝑗=1 𝑌𝑖
𝑛
𝑖=1

𝑛
− ∑

𝑛1𝑗

𝑛

𝑘

𝑗=1

.
∑ 𝑌𝑖

𝑛
𝑖=1

𝑛
]  

=  [
∑ (∑ 𝑥𝑖𝑗)𝑘

𝑗=1 𝑌𝑖
𝑛
𝑖=1

𝑛
−

1

𝑛2
∑ 𝑛1𝑗

𝑘

𝑗=1

∑ 𝑌𝑖

𝑛

𝑖=1

] 

 

Multiply n and divided by n to 
∑ (∑ 𝑥𝑖𝑗)𝑘

𝑗=1 𝑌𝑖
𝑛
𝑖=1

𝑛
 

Thus, 

𝑐𝑜𝑣(𝑋, 𝑌) = =  
1

𝑛2
[𝑛 ∑(∑ 𝑥𝑖𝑗)

𝑘

𝑗=1

𝑌𝑖

𝑛

𝑖=1

− ∑ 𝑛1𝑗

𝑘

𝑗=1

∑ 𝑌𝑖

𝑛

𝑖=1

]   (13) 

 

By substituting in equation (2)  
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𝑐𝑜𝑟(𝑥, 𝑦) = 𝜌 =
 

1
𝑛2 [𝑛 ∑ (∑ 𝑥𝑖𝑗)𝑘

𝑗=1 𝑌𝑖
𝑛
𝑖=1 − ∑ 𝑛1𝑗

𝑘
𝑗=1 ∑ 𝑌𝑖

𝑛
𝑖=1 ]

√∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

𝑛 − 1
√∑

𝑛0𝑗𝑛1𝑗

𝑛2
𝑘
𝑗=1   

 

=
 

1
𝑛2 [𝑛 ∑ (∑ 𝑥𝑖𝑗)𝑘

𝑗=1 𝑌𝑖
𝑛
𝑖=1 − ∑ 𝑛1𝑗

𝑘
𝑗=1 ∑ 𝑌𝑖

𝑛
𝑖=1 ]

 
1
𝑛

√∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

𝑛 − 1 √∑ 𝑛0𝑗𝑛1𝑗
𝑘
𝑗=1   

 

=
 
1
𝑛

[∑ 𝑌𝑖
𝑛
𝑖=1 [𝑛 ∑ (∑ 𝑥𝑖𝑗)𝑘

𝑗=1 − ∑ 𝑛1𝑗
𝑘
𝑗=1

𝑛
𝑖=1 ]]

 √
∑ (𝑌𝑖 − �̅�)2𝑛

𝑖=1
𝑛 − 1 √∑ 𝑛0𝑗𝑛1𝑗

𝑘
𝑗=1   

 

 

Therefore, the proposed measure of association can be obtained using the following 

formula: 

 

𝜌𝑃𝐵 =
 
1
𝑛 [∑ 𝑌𝑖

𝑛
𝑖=1 [𝑛 ∑ (∑ 𝑥𝑖𝑗)𝑘

𝑗=1 − ∑ 𝑛1𝑗
𝑘
𝑗=1

𝑛
𝑖=1 ]]

𝜎𝑌 √∑ 𝑛0𝑗𝑛1𝑗
𝑘
𝑗=1   

 

or 

𝜌𝑃𝐵 =

1
𝑛

[∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1 − ∑ 𝑝𝑗

𝑘
𝑗=1 ∑ 𝑌𝑖

𝑛
𝑖=1 ]

𝜎𝑌√∑ (1 − 𝑝𝑗)𝑝𝑗
𝑘
𝑗=1

    (14) 

 

Where, 

𝜌𝑃𝐵= proposed measure of association, 

𝑛 = the number of observations, 

𝑘 = the number of trials, 

𝑝𝑖 = the probability of successes for each of the k trials,  

𝑋𝑖 = value of the summation of the independent Bernoulli trials (for ith 
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observation), 

𝑌𝑖 = value of y (for ith observation), 

𝑛0𝑗= The number of fails trials for each of the k trials, 

𝑛1𝑗= The number of successful trials for each of the k trials, 

 

Algorithm (a2): 

 

An algorithm may be used to derive the association between a set of dichotomous 

variables and one continuous variable 𝜌𝑃𝐵. 

Input:  

A mixed dataset matrix (B) consists of a set of dichotomous variables and one 

continuous variable. 

Algorithm:  

Step 1. Recode the dichotomous variables to have 1’s categories correspond to 

the highest mean on Y. 

Step 2. Compute X, which is the summation of each row in the set of 

dichotomous variables. 

Step 3. Compute pi which is the different probabilities of successes 

Step 4. From step3 compute the summation of pi.  

Step 5. Compute  μX and μy  using (6) & (11).  

Step 6. Compute  σx and σy  using (7) & (12).  

Step 7. Compute the covariance of X and Y using (13). 

Step 8. Compute ρ𝑃𝐵 using (14)  

Output: The proposed measure for the association ( 𝜌𝑃𝐵) 
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3.2 𝜼𝟐
∗  correlation coefficient 

 

 Definition: 

The measure was introduced by Taha and Hadi (2016), where the nominal variable will 

be transformed into a set of dependent dichotomous variables. For this measure, the set 

of independent dichotomous variables will be transformed into a nominal variable, and 

then the nominal one will be transformed into a set of dependent dichotomous variables.  

 Properties: 

One quantitative and one categorical variable. 

 Derivation: 

First, B is a set of dichotomous variables, say 𝑥1, 𝑥2, … … , 𝑥𝑘 transforming to the 

categorical variable with 2𝑘 categories, say X, then transformed to dichotomous data 

𝑩∗ consisting of 2𝑘  dichotomous variables, where 2𝑘  is the number of categories in 

X. Then 𝑩∗ is augmented to the quantitative variable Y and obtain the augmented n 

×(2𝑘  + 1) matrix W = (Y : 𝑩∗). Then we compute the 2𝑘  + 1 singular values of the 

matrix W . These are denoted by 𝛿1 ≥ ⋯ ≥  𝛿2𝑘 +1. Note that the set of dichotomous 

variables, 𝑩∗ representing the categorical variable is linearly dependent, then at least 

one (the smallest) singular value of W is zero.  

Therefore, the formula is  

𝜼𝟐
∗ =

𝛿1 − 𝛿2𝑘 

𝛿1 + 𝛿2𝑘 

     (18) 

 

Where, 

𝛿1= the highest singular value, 

𝛿2𝑘= the second smallest singular value, 

𝑘= number of independent dichotomous variables, 
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Algorithm (c): 

An algorithm to derive the association between a set of dichotomous variables 

and one continuous variable 𝜂2
∗ . 

Input:  

A mixed dataset matrix B consists of a set of dichotomous variables and one 

continuous variable. 

Algorithm:  

Step 1. Obtain the categorical variable by transforming a set of binaries variable 

to a nominal variable with 2𝑘groups. 

Step 2. Compute the binary matrix 𝐵∗ corresponding to the categorical variable 

X. 

Step 3. Compute the ordered singular values of W, 𝛿 = {𝛿1 ≥ ⋯ ≥  𝛿2𝑘+1}. 

Step 4. Compute the 𝜂2
∗   Correlation coefficient using equation (18). 

Output: The Correlation coefficient 𝜼𝟐
∗   

 

3.3 Criteria for evaluation 

In this study, there are two criteria: bias and MSE will be utilized to assess which 

measures produce better predictions. To estimate the true correlation, 𝜌, assume that 𝜃 

represents one of the three association measures in this study; to generate the synthetic 

data, we will use that. Assume that 𝜃𝑖  denotes the association measure for the ith 

dataset, i = 1,…, N  for each configuration (Ratner, 2009; Taha & Hadi, 2016). 

 

The formula of the two criteria is defined as:  

(1) The bias of 𝜃 where shows the better performance of the measures of 

association when the values of bias close to zero is,  
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𝐵(𝜃) =
1

𝑁
∑ 𝜃𝑖 − 𝜌.

𝑁

𝑖=1

 

 

(2) The MSE of  𝜃 for determining the better measures where the measure have 

the smallest MSE values means that it is the better measure and more precise 

the predictions is,  

𝑀𝑆𝐸(𝜃) =  
1

𝑁 − 1
∑(𝜃𝑖 − �̅�)2

𝑁

𝑖=1

+ (
1

𝑁
∑ 𝜃𝑖 − 𝜌

𝑁

𝑖=1

)

2

 

Where  

𝑣𝑎𝑟(𝜃) =
1

𝑁 − 1
∑(𝜃𝑖 − �̅�)2.

𝑁

𝑖=1

 

Where N is the number of simulation runs for each configuration and  �̅� =  
1

𝑁
∑ 𝜃𝑖 .𝑁

𝑖=1  

Therefore, the MSE defined as: 

 

𝑀𝑆𝐸(𝜃) =  𝑣𝑎𝑟(𝜃) + 𝐵2(𝜃). 
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CHAPTER 4: EMPIRICAL STUDY 

 

This chapter introduced the simulation study as an empirical study to test 

measures mentioned in Chapter 3. The performances of the proposed methods are 

compared using MSE and Bias (given in section 3.3) criteria to decide which of the 

measures has the best performance. In addition, applied those measures on real data 

focused on the Education dataset. 

4.1 Monte Carlo simulation  

In the 1940’s the Monte Carlo analysis was developed to obtain a probabilistic 

approximation to the solution of a mathematical equation or model through a computer-

based analysis method. Monte Carlo analysis is a numerical analysis technique that 

utilizes random sampling to simulate real-world phenomena. Simulation in the context 

of Monte Carlo analysis is the process of approximating a model's output through 

repetitive random application of a model's algorithm (Raychaudhuri, 2008) . 

Monte Carlo simulation is a type of simulation that computes simulation results 

using repeated random sampling and statistical analysis. Simulation experiments are 

conducted to compare 𝜂2
∗  and proposed measures and to make specific 

recommendations for practitioners.  

In this study, the Monte Carlo simulation technique is considered to assess the 

performance of two correlation cases: (1) Correlation between a set of independent 

identical distributed (iid) dichotomous variables (Binomially distributed variables) and 

a normally distributed variable, (2) Correlation between a set of independent non-

identical distributed dichotomous variables (Poisson Binomial distributed variables) 

and a normal distributed variable. After that, random variables were generated from 

these distributions based on specific parameters under different scenarios, as will be 
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presented in the following pages. The simulation process was repeated 10,000 times for 

each scenario to calculate the bias and mean square error (MSE) of these estimates 

mentioned in Chapter 3,  where all the computations are made using R-Software. 

 

4.1.1 Measure based on a set of iid dichotomous and a continuous 

This section evaluated the performance of the generalized point biserial 

correlation coefficient when we have a set of iid dichotomous. The design parameters 

that govern the generation of the simulated data are:  

 K: the number of dichotomous variables k = 2, 3, 5, 7 

 n: the sample size. We chose four settings for n = 30, 100, 250 and 500 

 𝜌: the correlation coefficient between the two variables. Five settings are 

chosen for 𝜌 = 0.25, 0.50, 0.70 and 0.95. 

 p: the probability for each dichotomous variable. We chose four settings for p 

= 0.25, 0.50, 0.65 and 0.80.  

Regarding the above parameters, the generating process was conducted based 

on a multiple linear regression that considered one dependent variable and k 

independent variables, where all variables were generated based on a multivariate 

normal distribution. Then, the independent variables were recoded to dichotomous 

variables based on the probabilities that were considered as cut points. After that, the 

proposed measures and 𝜂2
∗  measure were applied on the simulated data, followed by the 

computation of goodness-of-fit criteria, Bias and MSE. 

4.1.1.1 Results and comparison  

The following tables and charts present the results of the simulation study on 

how 𝜌𝐵 measure performs to detect the association between a set of dichotomous 
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variables and a continuous variable compared to 𝜂2
∗   measure considering different 

scenarios of sample sizes and the number of dichotomous variables, as was explained 

before.   

Table 1 contains the results of MSE and Bias that were calculated to assess the 

performance of 𝜌𝐵 measure when the number of dichotomous variables is two. In 

contrast, Table 2 contains the results of the same MSE and Bias to assess the 

performance of  𝜂2
∗   measure under the same criteria. Comparing Table 1 to Table 2 

shows that the Bias and MSE do not indicate satisfactory performance when the sample 

size is 30. However, the results suggest that as the sample size increases, the 

performance of the considered association measures increases by giving smaller MSE 

and Bias. For instance, Tables 1 and 2 show that when P is 0.25 and the correlation 

coefficient equals 0.25, the MSE and bias of 𝜌𝐵 for a sample size of 30 were greater 

than MSE and bias of 𝜂2
∗  for a sample size of 30.  

 

 

Table 1: The Bias and MSE’s of 𝜌𝐵 measure of association for two iid dichotomous 

variables  

  MSE Bias 

n p 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.0308 0.0147 0.0097 0.0104 0.1081 0.0721 0.0581 0.0590 

 0.50 0.0297 0.0125 0.0097 0.0116 0.1086 0.0679 0.0590 0.0635 

 0.65 0.0291 0.0126 0.0099 0.0113 0.1096 0.0681 0.0587 0.0614 

 0.80 0.0369 0.0136 0.0119 0.0106 0.1253 0.0753 0.0648 0.0588 

100 0.25 0.0044 0.0026 0.0032 0.0035 0.0415 0.0311 0.0380 0.0404 

 0.50 0.0038 0.0027 0.0032 0.0044 0.0365 0.0324 0.0372 0.0458 
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 0.65 0.0038 0.0027 0.0029 0.0043 0.0394 0.0326 0.0344 0.0444 

 0.80 0.0041 0.0027 0.0027 0.0038 0.0406 0.0329 0.0340 0.0421 

250 0.25 0.0009 0.0011 0.0015 0.0023 0.0193 0.0247 0.0306 0.0388 

 0.50 0.0009 0.0011 0.0018 0.0026 0.0190 0.0253 0.0333 0.0416 

 0.65 0.0010 0.0012 0.0016 0.0024 0.0206 0.0250 0.0318 0.0402 

 0.80 0.0012 0.0010 0.0015 0.0020 0.0217 0.0230 0.0296 0.0361 

500 0.25 0.0004 0.0007 0.0010 0.0018 0.0149 0.0217 0.0278 0.0376 

 0.50 0.0005 0.0008 0.0012 0.0018 0.0160 0.0232 0.0303 0.0379 

 0.65 0.0004 0.0008 0.0011 0.0019 0.0148 0.0231 0.0294 0.0392 

 0.80 0.0005 0.0007 0.0009 0.0016 0.0150 0.0206 0.0258 0.0351 

 

 

Table 2: The Bias and MSE’s of 𝜂2
∗  measure of association for two iid dichotomous 

variables  

  MSE Bias 

n p 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.0246 0.0109 0.0054 0.0011 -0.1388 -0.0904 -0.0632 -0.0312 

 0.50 0.0123 0.0051 0.0023 0.0004 -0.0887 -0.0541 -0.0357 -0.0166 

 0.65 0.0173 0.0069 0.0025 0.0006 -0.1098 -0.0690 -0.0423 -0.0213 

 0.80 0.0279 0.0148 0.0070 0.0018 -0.1505 -0.1076 -0.0749 -0.0403 

100 0.25 0.0220 0.0078 0.0030 0.0008 -0.1423 -0.0844 -0.0535 -0.0289 

 0.50 0.0051 0.0012 0.0004 0.0000 -0.0640 -0.0316 -0.0189 -0.0086 

 0.65 0.0117 0.0032 0.0012 0.0002 -0.1015 -0.0546 -0.0343 -0.0163 

 0.80 0.0295 0.0109 0.0047 0.0014 -0.1656 -0.1008 -0.0672 -0.0367 
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250 0.25 0.0202 0.0064 0.0026 0.0007 -0.1390 -0.0789 -0.0509 -0.0269 

 0.50 0.0031 0.0006 0.0002 0.0000 -0.0529 -0.0251 -0.0147 -0.0068 

 0.65 0.0099 0.0026 0.0009 0.0002 -0.0964 -0.0501 -0.0303 -0.0146 

 0.80 0.0265 0.0095 0.0042 0.0012 -0.1600 -0.0964 -0.0644 -0.0357 

500 0.25 0.0187 0.0062 0.0025 0.0007 -0.1354 -0.0784 -0.0507 -0.0268 

 0.50 0.0025 0.0005 0.0001 0.0000 -0.0492 -0.0230 -0.0137 -0.0062 

 0.65 0.0093 0.0023 0.0008 0.0002 -0.0951 -0.0484 -0.0295 -0.0143 

 0.80 0.0251 0.0090 0.0039 0.0012 -0.1570 -0.0945 -0.0628 -0.0354 

 

For more insight in the performance of 𝜌𝐵 and 𝜂2
∗  measure, Figure 1 and Figure 

2 were developed to reflect a clear vision about the behaviors of the considered 

measures regarding the sample size, in addition to a visual comparison between the two 

measures, where Figure 1 depicts the behavior of MSE of the two measures versus 

sample size, while Figure 2 depicts the behavior of the absolute Bias of the two 

measures versus sample size.  

As it is well known about MSE and absolute bias as the goodness-of-fit criteria, 

the smallest MSE, and absolute bias, the better the measure's performance. Clearly, it 

can be noticed that the performance of 𝜂2
∗  is better than 𝜌𝐵 at sample size 30 where 𝜂2

∗  

produced less values of MSE and absolute bias than what 𝜌𝐵 produced. However, when 

the sample size is greater than 30, the performance of 𝜌𝐵 substantially is better than the 

performance of 𝜂2
∗ , where the values of MSE and the absolute bias of 𝜌𝐵 are 

significantly less than the corresponding values of 𝜂2
∗ . Moreover, the absolute Bias and 

MSE converge reasonably well to zero when the sample size increases.  
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Figure 1. MSE of 𝜌𝐵 versus MSE of 𝜂2
∗   for two iid dichotomous variables  
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Figure 2. Absoulte bias of 𝜌𝐵 versus Absoulte bias of 𝜂2
∗    for two iid dichotomous 

variables 

 

Also, Table 3 contains the results of MSE and Bias that were calculated to assess 

the performance of 𝜌𝐵 measure when the number of dichotomous variables increased 

to three. On the other hand, Table 4 contains the results of the same MSE and Bias to 

assess the performance of  𝜂2
∗   measure under the same criteria. Comparing Table 3 to 

Table 4 shows almost similar results when the number of dichotomous variables was 

two that the Bias and MSE do not indicate satisfactory performance when the sample 

size is less than 100. For instance, Tables 3 and 4 show that when P is 0.25 and the 

correlation coefficient equals 0.25, the MSE and bias of 𝜌𝐵 for a sample size of 30 were 

greater than MSE and bias of 𝜂2
∗  for a sample size of 30.  
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Table 3: The Bias and MSE’s of 𝜌𝐵 measure of association for three iid dichotomous 

variables 

  MSE Bias 

n p 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.0488 0.0240 0.0203 0.0172 0.1644 0.1083 0.0993 0.0839 

 0.50 0.0515 0.0237 0.0184 0.0177 0.1686 0.1100 0.0957 0.0876 

 0.65 0.0479 0.0222 0.0187 0.0177 0.1664 0.1073 0.0933 0.0874 

 0.80 0.0552 0.0251 0.0180 0.0173 0.1786 0.1183 0.0921 0.0914 

100 0.25 0.0078 0.0055 0.0053 0.0066 0.0639 0.0536 0.0553 0.0607 

 0.50 0.0081 0.0048 0.0058 0.0069 0.0650 0.0511 0.0583 0.0635 

 0.65 0.0080 0.0053 0.0054 0.0067 0.0669 0.0539 0.0546 0.0626 

 0.80 0.0080 0.0050 0.0051 0.0061 0.0663 0.0505 0.0538 0.0592 

250 0.25 0.0022 0.0021 0.0029 0.0042 0.0356 0.0369 0.0452 0.0560 

 0.50 0.0022 0.0024 0.0031 0.0049 0.0344 0.0403 0.0473 0.0613 

 0.65 0.0021 0.0024 0.0030 0.0048 0.0344 0.0399 0.0456 0.0604 

 0.80 0.0022 0.0020 0.0027 0.0038 0.0354 0.0356 0.0431 0.0535 

500 0.25 0.0011 0.0013 0.0020 0.0034 0.0256 0.0310 0.0408 0.0539 

 0.50 0.0010 0.0017 0.0025 0.0041 0.0246 0.0359 0.0451 0.0588 

 0.65 0.0010 0.0014 0.0022 0.0038 0.0252 0.0327 0.0430 0.0570 

 0.80 0.0009 0.0013 0.0019 0.0031 0.0236 0.0315 0.0393 0.0505 

 

Table 4: The Bias and MSE’s of 𝜂2
∗   measure of association for three iid dichotomous 

variables 
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  MSE Bias 

n p 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.0300 0.0190 0.0090 0.0024 -0.1494 -0.1162 -0.0794 -0.0420 

 0.50 0.0344 0.0205 0.0097 0.0026 -0.1589 -0.1189 -0.0811 -0.0414 

 0.65 0.0338 0.0191 0.0095 0.0024 -0.1576 -0.1171 -0.0806 -0.0399 

 0.80 0.0286 0.0173 0.0093 0.0028 -0.1487 -0.1115 -0.0836 -0.0463 

100 0.25 0.0183 0.0070 0.0028 0.0007 -0.1263 -0.0784 -0.0500 -0.0263 

 0.50 0.0084 0.0029 0.0010 0.0002 -0.0788 -0.0462 -0.0275 -0.0128 

 0.65 0.0105 0.0037 0.0015 0.0003 -0.0924 -0.0549 -0.0350 -0.0163 

 0.80 0.0246 0.0102 0.0044 0.0012 -0.1491 -0.0957 -0.0634 -0.0342 

250 0.25 0.0127 0.0038 0.0015 0.0004 -0.1089 -0.0602 -0.0386 -0.0197 

 0.50 0.0023 0.0005 0.0002 0.0000 -0.0424 -0.0208 -0.0127 -0.0058 

 0.65 0.0046 0.0012 0.0004 0.0001 -0.0640 -0.0333 -0.0199 -0.0094 

 0.80 0.0204 0.0069 0.0029 0.0008 -0.1392 -0.0815 -0.0532 -0.0289 

500 0.25 0.0108 0.0030 0.0011 0.0003 -0.1023 -0.0546 -0.0342 -0.0177 

 0.50 0.0009 0.0002 0.0000 0.0000 -0.0280 -0.0127 -0.0078 -0.0035 

 0.65 0.0030 0.0007 0.0002 0.0000 -0.0534 -0.0262 -0.0155 -0.0073 

 0.80 0.0173 0.0057 0.0024 0.0007 -0.1300 -0.0752 -0.0490 -0.0270 

 

For more clarify in the performance of 𝜌𝐵 and 𝜂2
∗  measure, Figures 3 and 4 were 

created to reflect a clear vision of the behaviors of the considered measures in terms of 

sample size and a visual comparison between the two measures. Where Figure 3 depicts 

the behavior of MSE of the two measures versus sample size, while Figure 4 depicts 

the behavior of the absolute Bias of the two measures versus sample size.  
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As it is well known about MSE and absolute bias as the goodness-of-fit criteria, 

the smallest MSE, and absolute bias, the better the performance of the measure. Clearly, 

it can be noticed that the performance of 𝜂2
∗  is better than 𝜌𝐵 when the sample size was 

less than 100 where 𝜂2
∗  produced smaller values of MSE and absolute bias than what 

𝜌𝐵 produced. However, when the sample size is larger than 30, the performance of 𝜌𝐵 

slightly better than the performance of 𝜂2
∗ , where the values of MSE and the absolute 

bias of 𝜌𝐵 were significantly less than the corresponding values of 𝜂2
∗ . Moreover, Figure 

3 shows that performance of the 𝜌𝐵 in terms of MSE versus the sample size n, almost 

give same performance compared to  𝜂2
∗    at sample size 100, while Figure 4 depicts the 

behavior of the absolute Bias of the two measures versus absolute bias clarify that the 

𝜌𝐵 is outperform compared to 𝜂2
∗ . 

 

 

Figure 3. MSE of 𝜌𝐵 versus MSE of 𝜂2
∗  for three iid dichotomous variables 
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Figure 4. Absolute bias of 𝜌𝐵 versus Absolute bias of 𝜂2
∗    for three iid dichotomous 

variables 

 

Table 5 presents the results of 𝜌𝐵 and 𝜂2
∗  to show the performance when the 

number of dichotomous variables increased to five variables. 

 In addition, Table 6 shows the results of the same MSE and Bias to evaluate 

the performance of  𝜂2
∗   measure under the same goodness-of-fit criteria. However, 

when  Table 5 and Table 6 are compared,  Bias and MSE indicate the 𝜌𝐵 are performing 

satisfactorily for all considered sample sizes, even for the small sample size.    

 

Table 5: The Bias and MSE’s of 𝜌𝐵 measure of association for five iid dichotomous 

variables 

  MSE Bias 
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n p 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.1085 0.0519 0.0363 0.0282 0.2809 0.1853 0.1530 0.1255 

 0.50 0.0933 0.0487 0.0359 0.0268 0.2577 0.1799 0.1504 0.1177 

 0.65 0.0949 0.0496 0.0369 0.0280 0.2584 0.1838 0.1506 0.1229 

 0.80 0.1089 0.0548 0.0406 0.0287 0.2790 0.1913 0.1611 0.1243 

100 0.25 0.0172 0.0099 0.0095 0.0108 0.1079 0.0818 0.0797 0.0864 

 0.50 0.0165 0.0095 0.0093 0.0108 0.1068 0.0809 0.0784 0.0855 

 0.65 0.0169 0.0096 0.0098 0.0105 0.1073 0.0803 0.0821 0.0837 

 0.80 0.0168 0.0092 0.0092 0.0100 0.1089 0.0796 0.0787 0.0824 

250 0.25 0.0046 0.0039 0.0047 0.0066 0.0571 0.0547 0.0605 0.0729 

 0.50 0.0043 0.0043 0.0050 0.0076 0.0543 0.0574 0.0626 0.0786 

 0.65 0.0047 0.0040 0.0052 0.0074 0.0574 0.0549 0.0638 0.0778 

 0.80 0.0048 0.0040 0.0046 0.0063 0.0573 0.0547 0.0598 0.0708 

500 0.25 0.0018 0.0025 0.0037 0.0053 0.0364 0.0447 0.0557 0.0684 

 0.50 0.0020 0.0027 0.0040 0.0064 0.0380 0.0472 0.0592 0.0752 

 0.65 0.0017 0.0025 0.0038 0.0060 0.0359 0.0459 0.0575 0.0732 

 0.80 0.0020 0.0024 0.0033 0.0053 0.0387 0.0448 0.0531 0.0685 

 

 

Table 6: The Bias and MSE’s of 𝜂2
∗   measure of association for five iid dichotomous 

variables 

  MSE Bias 

n p 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 
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30 0.25 0.0910 0.0630 0.0396 0.0121 -0.2796 -0.2304 -0.1779 -0.0992 

 0.50 0.1711 0.1159 0.0686 0.0201 -0.3945 -0.3220 -0.2453 -0.1316 

 0.65 0.1440 0.0945 0.0545 0.0189 -0.3597 -0.2887 -0.2149 -0.1248 

 0.80 0.0582 0.0393 0.0256 0.0093 -0.2178 -0.1756 -0.1390 -0.0839 

100 0.25 0.0557 0.0259 0.0134 0.0036 -0.2262 -0.1537 -0.1100 -0.0569 

 0.50 0.0893 0.0432 0.0199 0.0049 -0.2898 -0.2002 -0.1355 -0.0675 

 0.65 0.0733 0.0360 0.0168 0.0044 -0.2608 -0.1827 -0.1239 -0.0636 

 0.80 0.0416 0.0226 0.0116 0.0035 -0.1939 -0.1433 -0.1017 -0.0561 

250 0.25 0.0252 0.0097 0.0042 0.0010 -0.1536 -0.0950 -0.0626 -0.0315 

 0.50 0.0274 0.0097 0.0040 0.0009 -0.1600 -0.0955 -0.0609 -0.0290 

 0.65 0.0277 0.0099 0.0041 0.0009 -0.1610 -0.0964 -0.0619 -0.0299 

 0.80 0.0252 0.0105 0.0046 0.0013 -0.1540 -0.0991 -0.0661 -0.0352 

500 0.25 0.0121 0.0039 0.0015 0.0004 -0.1070 -0.0611 -0.0385 -0.0194 

 0.50 0.0096 0.0027 0.0010 0.0002 -0.0945 -0.0509 -0.0311 -0.0146 

 0.65 0.0104 0.0031 0.0011 0.0002 -0.0989 -0.0542 -0.0329 -0.0155 

 0.80 0.0159 0.0056 0.0023 0.0006 -0.1240 -0.0734 -0.0473 -0.0247 

 

Figure 5 indicates that the MSE of 𝜌𝐵 for all cases is outperforms compared to 

𝜂2
∗ . Furthermore, Figure 6 depicts the behavior of the absolute Bias of the two measures 

versus sample size. Clearly, it can be noticed that even absolute Bias of  𝜌𝐵 is 

outperforms than the corresponding values of 𝜂2
∗ . However, it can be seen that at sample 

size 500, results for the goodness-of-fits criteria shows that 𝜌𝐵 and  𝜂2
∗  has almost 

similar results, but on average, still 𝜌𝐵 has better performance than 𝜂2
∗ .  
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Figure 5. MSE of 𝜌𝐵 versus MSE of 𝜂2
∗   for five iid dichotomous variables 

 

Figure 6. Absolute bias of 𝜌𝐵 versus Absolute bias of 𝜂2
∗   for five iid dichotomous 

variables 
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Table 7 presents the best performance of the 𝜌𝐵 measure for all considered 

sample sizes when the number of dichotomous variables is seven compared to  𝜂2
∗  

performance in Table 8. So it is clear that when the number of dichotomous variables 

increases, the performance of the 𝜌𝐵 measure improves in contrast to 𝜂2
∗ . However, the 

results provide that as the sample size and dichotomous variables increases, the 

performance of the association measure 𝜌𝐵 increases by giving smaller MSE and Bias. 

Further, the below figures will clarify that the performance of measures.  

 

Table 7: The Bias and MSE’s of 𝜌𝐵 measure of association for seven iid dichotomous 

variables 

  MSE Bias 

n p 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.1560 0.0811 0.0552 0.0407 0.3482 0.2485 0.1979 0.1590 

 0.50 0.1453 0.0754 0.0530 0.0377 0.3367 0.2343 0.1909 0.1514 

 0.65 0.1458 0.0780 0.0525 0.0392 0.3382 0.2392 0.1915 0.1556 

 0.80 0.1561 0.0874 0.0588 0.0446 0.3514 0.2554 0.2063 0.1707 

100 0.25 0.0284 0.0152 0.0128 0.0137 0.1464 0.1072 0.0980 0.1004 

 0.50 0.0256 0.0148 0.0129 0.0143 0.1405 0.1052 0.0970 0.1015 

 0.65 0.0279 0.0150 0.0132 0.0138 0.1448 0.1056 0.0987 0.0997 

 0.80 0.0290 0.0149 0.0132 0.0129 0.1499 0.1056 0.0984 0.0966 

250 0.25 0.0080 0.0059 0.0061 0.0085 0.0781 0.0682 0.0705 0.0846 

 0.50 0.0071 0.0054 0.0064 0.0095 0.0735 0.0663 0.0729 0.0891 

 0.65 0.0069 0.0056 0.0065 0.0085 0.0730 0.0668 0.0732 0.0840 
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 0.80 0.0078 0.0057 0.0061 0.0074 0.0771 0.0671 0.0701 0.0778 

500 0.25 0.0031 0.0033 0.0046 0.0069 0.0501 0.0534 0.0637 0.0790 

 0.50 0.0028 0.0035 0.0050 0.0079 0.0475 0.0543 0.0667 0.0847 

 0.65 0.0030 0.0035 0.0050 0.0073 0.0483 0.0548 0.0667 0.0814 

 0.80 0.0031 0.0031 0.0044 0.0064 0.0493 0.0515 0.0620 0.0757 

 

Table 8: The Bias and MSE’s of 𝜂2
∗   measure of association for seven iid dichotomous 

variables 

  MSE Bias 

n p 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.1433 0.1023 0.0687 0.0269 -0.3607 -0.3027 -0.2447 -0.1521 

 0.50 0.2120 0.1510 0.0962 0.0339 -0.4470 -0.3719 -0.2954 -0.1737 

 0.65 0.1942 0.1417 0.0900 0.0335 -0.4251 -0.3608 -0.2850 -0.1715 

 0.80 0.0904 0.0675 0.0459 0.0206 -0.2815 -0.2400 -0.1963 -0.1303 

100 0.25 0.1415 0.0843 0.0466 0.0158 -0.3690 -0.2835 -0.2101 -0.1216 

 0.50 0.2891 0.1701 0.0929 0.0266 -0.5317 -0.4057 -0.2993 -0.1601 

 0.65 0.2267 0.1315 0.0717 0.0223 -0.4696 -0.3563 -0.2624 -0.1457 

 0.80 0.1034 0.0601 0.0342 0.0125 -0.3134 -0.2377 -0.1785 -0.1077 

250 0.25 0.0948 0.0463 0.0227 0.0066 -0.3040 -0.2117 -0.1481 -0.0801 

 0.50 0.1858 0.0949 0.0459 0.0122 -0.4278 -0.3051 -0.2118 -0.1092 

 0.65 0.1458 0.0735 0.0343 0.0094 -0.3784 -0.2679 -0.1828 -0.0957 

 0.80 0.0698 0.0343 0.0169 0.0053 -0.2601 -0.1819 -0.1277 -0.0715 

500 0.25 0.0552 0.0231 0.0102 0.0027 -0.2324 -0.1502 -0.1001 -0.0513 
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 0.50 0.0908 0.0390 0.0171 0.0041 -0.2993 -0.1959 -0.1296 -0.0640 

 0.65 0.0786 0.0329 0.0146 0.0035 -0.2779 -0.1799 -0.1196 -0.0591 

 0.80 0.0427 0.0182 0.0083 0.0023 -0.2042 -0.1329 -0.0902 -0.0479 

 

Previous Figures show that the performance of the 𝜌𝐵 and 𝜂2
∗  measure for 

several numbers of variables k, while Figure 7 and Figure 8 clarify that 𝜌𝐵 outperforms 

𝜂2
∗  for 30≤ n ≤500 when the number of dichotomous variables increased to seven. 

However, when the sample size increases, the performance of 𝜌𝐵 is better than the 

performance of 𝜂2
∗ , where the values of MSE and the absolute bias of 𝜌𝐵 are 

significantly less than the corresponding values of 𝜂2
∗ . Furthermore, it can be noticed 

that increasing the number of dichotomous variables provide that 𝜌𝐵  measure is more 

qualified for all cases compared to 𝜂2
∗ . 
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Figure 7. MSE of 𝜌𝐵 versus MSE of 𝜂2
∗   for seven iid dichotomous variables 
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Figure 8. Absolute bias of 𝜌𝐵 versus Absolute bias of 𝜂2
∗   for seven iid dichotomous 

variables 

 

4.1.2 Measure based on a set of independent but non-id dichotomous variables and 

a continuous 

 

This section evaluates the performance of the generalized point biserial 

correlation coefficient when we have a set of non-id dichotomous. The design 

parameters that govern the generation of the simulated data are:  

 K: the number of dichotomous variables k = 2, 3, 5, and 7. 

 n: the sample size. We chose four settings for n = 30, 100, 250 and 500. 

 𝜌: the correlation coefficient between the two variables. Five settings are 

chosen for 𝜌 = 0.25, 0.50, 0.70 and 0.95. 
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 p: the probability for each dichotomous variable is Four settings for each 

variable depends on the number of variables as follows: 

- For k=2, the probabilities are 𝑝1 = 0.25, 0.50, 0.65 and 0.80  and 𝑝2 = 0.65, 

0.70, 0.40 and 0.50. 

- For k=3, the probabilities are 𝑝1 = 0.25, 0.50, 0.65 and 0.80, 𝑝2 = 0.65, 0.70, 

0.40 and 0.50 and 𝑝3 = 0.70, 0.40, 0.80 and 0.35. 

- For k=5, the probabilities are 𝑝1 = 0.25, 0.50, 0.65 and 0.80, 𝑝2 = 0.65, 0.70, 

0.40 and 0.50, 𝑝3 = 0.70, 0.40, 0.80 and 0.35, 𝑝4 = 0.35, 0.80, 0.20 and 0.90 

and 𝑝5 = 0.80, 0.85, 0.60 and 0.25. 

- For k=7, the probabilities are 𝑝1 = 0.25, 0.50, 0.65 and 0.80, 𝑝2 = 0.65, 0.70, 

0.40 and 0.50, 𝑝3 = 0.70, 0.40, 0.80 and 0.35, 𝑝4 = 0.35, 0.80, 0.20 and 0.90, 

𝑝5 = 0.80, 0.85, 0.60 and 0.25, 𝑝6 = 0.30, 0.20, 0.90 and 0.70 and 𝑝7 = 0.90, 

0.75, 0.35 and 0.20. 

Regarding the above parameters, the generating process was conducted based 

on a multiple linear regression that considered one dependent variable and k 

independent variables, where all variables were generated based on a multivariate 

normal distribution. Then, the independent variables were recoded to dichotomous 

variables based on the different probabilities for each independent variable that were 

considered as cut points. After that, the proposed measures and 𝜂2
∗  measure were 

applied on the simulated data, followed by the computation of goodness-of-fit criteria, 

Bias, and MSE. 

4.1.2.1 Results and comparison  

The following tables and charts present the results of the simulation study on 

how 𝜌𝑃𝐵 measure performs to detect the association between a set of dichotomous 
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variables and a continuous variable compared to 𝜂2
∗   measure considering different 

scenarios of sample sizes and the number of dichotomous variables as was explained 

before.   

Table 9 and Table 10  contains the results of MSE and Bias that were calculated 

to assess the performance of 𝜌𝑃𝐵 measure when the number of dichotomous variables 

is two. In contrast, Table 11 and Table 12 contains the results of the same MSE and 

Bias to assess the performance of  𝜂2
∗   measure under the same criteria. Comparing 

Table 9 and Table 10 to Table 11 and Table 12 shows that the Bias and MSE do not 

indicate satisfactory performance when the sample size is 30. However, the results 

suggest that as the sample size increases, the performance of the considered association 

measures increases by giving smaller MSE and Bias. For instance, Table 9 and Table 

10  show that when P is 0.25 and the correlation coefficient equals 0.25, the MSE and 

bias of 𝜌𝑃𝐵 for a sample size of 30 were greater than MSE and bias of 𝜂2
∗  for a sample 

size of 30.  

 

Table 9: The MSE’s of 𝜌𝑃𝐵 measure of association for two non-id dichotomous 

variables 

 MSE 

n P1 P2 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.0317 0.0123 0.0091 0.0098 

 0.50 0.70 0.0290 0.0136 0.0116 0.0117 

 0.65 0.40 0.0330 0.0108 0.0099 0.0119 

 0.80 0.50 0.0265 0.0118 0.0083 0.0084 

100 0.25 0.65 0.0036 0.0022 0.0026 0.0036 
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 0.50 0.70 0.0038 0.0030 0.0036 0.0045 

 0.65 0.40 0.0039 0.0026 0.0030 0.0040 

 0.80 0.50 0.0033 0.0019 0.0023 0.0031 

250 0.25 0.65 0.0009 0.0010 0.0013 0.0020 

 0.50 0.70 0.0013 0.0015 0.0018 0.0030 

 0.65 0.40 0.0008 0.0011 0.0014 0.0024 

 0.80 0.50 0.0007 0.0007 0.0010 0.0014 

500 0.25 0.65 0.0004 0.0006 0.0010 0.0014 

 0.50 0.70 0.0005 0.0009 0.0014 0.0023 

 0.65 0.40 0.0004 0.0007 0.0011 0.0017 

 0.80 0.50 0.0003 0.0004 0.0006 0.0009 

 

 

Table 10: The Bias of 𝜌𝑃𝐵 measure of association for two non-id dichotomous variables 

   Bias 

n P1 P2 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.1148 0.0639 0.0536 0.0557 

 0.50 0.70 0.1077 0.0712 0.0627 0.0659 

 0.65 0.40 0.1129 0.0623 0.0580 0.0649 

 0.80 0.50 0.1019 0.0640 0.0500 0.0463 

100 0.25 0.65 0.0367 0.0289 0.0329 0.0379 

 0.50 0.70 0.0386 0.0368 0.0418 0.0480 

 0.65 0.40 0.0379 0.0330 0.0361 0.0431 

 0.80 0.50 0.0347 0.0257 0.0296 0.0339 
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250 0.25 0.65 0.0188 0.0225 0.0271 0.0356 

 0.50 0.70 0.0229 0.0287 0.0346 0.0465 

 0.65 0.40 0.0184 0.0243 0.0280 0.0398 

 0.80 0.50 0.0175 0.0181 0.0218 0.0276 

500 0.25 0.65 0.0134 0.0189 0.0262 0.0329 

 0.50 0.70 0.0156 0.0255 0.0331 0.0440 

 0.65 0.40 0.0145 0.0223 0.0287 0.0368 

 0.80 0.50 0.0109 0.0154 0.0201 0.0255 

 

Table 11: The MSE’s of 𝜂2
∗   measure of association for two non-id dichotomous 

variables 

   MSE 

n P1 P2 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.0196 0.0086 0.0034 0.0008 

 0.50 0.70 0.0166 0.0080 0.0028 0.0005 

 0.65 0.40 0.0154 0.0067 0.0026 0.0005 

 0.80 0.50 0.0253 0.0121 0.0046 0.0010 

100 0.25 0.65 0.0168 0.0043 0.0014 0.0003 

 0.50 0.70 0.0110 0.0023 0.0006 0.0001 

 0.65 0.40 0.0092 0.0019 0.0006 0.0001 

 0.80 0.50 0.0190 0.0062 0.0024 0.0005 

250 0.25 0.65 0.0142 0.0033 0.0010 0.0002 

 0.50 0.70 0.0089 0.0014 0.0004 0.0000 
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 0.65 0.40 0.0067 0.0012 0.0003 0.0000 

 0.80 0.50 0.0173 0.0051 0.0020 0.0004 

500 0.25 0.65 0.0135 0.0030 0.0010 0.0002 

 0.50 0.70 0.0081 0.0012 0.0003 0.0000 

 0.65 0.40 0.0062 0.0010 0.0003 0.0000 

 0.80 0.50 0.0167 0.0049 0.0019 0.0004 

 

Table 12: The Bias of 𝜂2
∗   measure of association for two non-id dichotomous variables 

   Bias 

n P1 P2 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 -0.1206 -0.0757 -0.0474 -0.0234 

 0.50 0.70 -0.1085 -0.0692 -0.0401 -0.0179 

 0.65 0.40 -0.1024 -0.0640 -0.0392 -0.0178 

 0.80 0.50 -0.1406 -0.0947 -0.0587 -0.0289 

100 0.25 0.65 -0.1218 -0.0615 -0.0357 -0.0169 

 0.50 0.70 -0.0959 -0.0438 -0.0236 -0.0110 

 0.65 0.40 -0.0865 -0.0397 -0.0231 -0.0106 

 0.80 0.50 -0.1314 -0.0759 -0.0477 -0.0234 

250 0.25 0.65 -0.1158 -0.0561 -0.0321 -0.0150 

 0.50 0.70 -0.0900 -0.0360 -0.0203 -0.0094 

 0.65 0.40 -0.0780 -0.0334 -0.0189 -0.0087 

 0.80 0.50 -0.1289 -0.0707 -0.0446 -0.0215 

500 0.25 0.65 -0.1144 -0.0544 -0.0313 -0.0146 
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 0.50 0.70 -0.0880 -0.0345 -0.0191 -0.0089 

 0.65 0.40 -0.0766 -0.0316 -0.0178 -0.0081 

 0.80 0.50 -0.1279 -0.0697 -0.0435 -0.0211 

 

For more insight into the performance of 𝜌𝑃𝐵 and 𝜂2
∗  measures, Figure 9 and 

Figure 10 were developed to reflect a clear vision about the behaviors of the considered 

measures regarding the sample size, in addition to a visual comparison between the two 

measures, where Figure 9 depicts the behavior of MSE of the two measures versus 

sample size, while Figure 10 depicts the behavior of the absolute Bias of the two 

measures versus sample size.  

As it is well known about MSE and absolute bias as the goodness-of-fit criteria, the 

smallest MSE, and absolute bias the better the measure's performance. Clearly, it can 

be noticed that the performance of 𝜂2
∗  is better than 𝜌𝑃𝐵 at sample size 30 where 𝜂2

∗  

produced less values of MSE and absolute bias than what 𝜌𝑃𝐵 produced. However, 

when the sample size is larger than 30, the performance of 𝜌𝑃𝐵 substantially is better 

than the performance of 𝜂2
∗ , where the values of MSE and the absolute bias of 𝜌𝑃𝐵 were 

significantly less than the corresponding values of 𝜂2
∗ . Moreover, the absolute Bias and 

MSE converge reasonably well to zero when the sample size increases.  
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Figure 9. MSE of 𝜌𝑃𝐵 versus Absoulte bias of 𝜂2
∗   for two non-id dichotomous 

variables 
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Figure 10. Absolute bias of 𝜌𝑃𝐵 versus Absolute bias of 𝜂2
∗   for two non-id 

dichotomous variables 

 

In addition, Table 13 and Table 14 contains the results of MSE and Bias that 

were calculated to assess the performance of 𝜌𝑃𝐵 measure when the number of 

dichotomous variables increased to three. On the other hand, Table 15 and Table 16 

contains the results of the same MSE and Bias to assess the performance of  𝜂2
∗   measure 

under the same criteria. Comparing the four tables below shows that 𝜌𝑃𝐵 and 𝜂2
∗    

measures had almost similar results when the number of dichotomous variables was 

two that the Bias and MSE do not indicate satisfactory performance when the sample 

size is less than 100. For instance, Tables 13 and 15 show that when P is 0.25 and the 

correlation coefficient equals 0.25, the MSE and bias of 𝜌𝑃𝐵 for a sample size of 30 

were greater than MSE and bias of 𝜂2
∗  for a sample size of 30.  

 

Table 13: The MSE’s of 𝜌𝑃𝐵 measure of association for three non-id dichotomous 

variables 

   MSE 

n P1 P2 P3 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.0432 0.0200 0.0126 0.0113 

 0.50 0.70 0.40 0.0494 0.0192 0.0123 0.0117 

 0.65 0.40 0.80 0.0520 0.0187 0.0146 0.0126 

 0.80 0.50 0.35 0.0485 0.0168 0.0117 0.0101 

100 0.25 0.65 0.70 0.00679 0.0028 0.0029 0.0033 

 0.50 0.70 0.40 0.00621 0.0029 0.0028 0.0038 
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 0.65 0.40 0.80 0.00630 0.0033 0.0030 0.0037 

 0.80 0.50 0.35 0.00659 0.0027 0.0024 0.0032 

250 0.25 0.65 0.70 0.00143 0.0010 0.0011 0.0016 

 0.50 0.70 0.40 0.00157 0.0011 0.0013 0.0018 

 0.65 0.40 0.80 0.00158 0.0011 0.0014 0.0020 

 0.80 0.50 0.35 0.00134 0.0008 0.0009 0.0014 

500 0.25 0.65 0.70 0.00051 0.0005 0.0007 0.0010 

 0.50 0.70 0.40 0.00059 0.0006 0.0008 0.0014 

 0.65 0.40 0.80 0.00065 0.0006 0.0009 0.0014 

 0.80 0.50 0.35 0.00047 0.0004 0.0005 0.0008 

 

 

Table 14: The Bias of 𝜌𝑃𝐵 measure of association for three non-id dichotomous 

variables 

    Bias 

n P1 P2 P3 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.1568 0.0971 0.0705 0.0578 

 0.50 0.70 0.40 0.1644 0.0959 0.0679 0.0627 

 0.65 0.40 0.80 0.1691 0.0990 0.0795 0.0624 

 0.80 0.50 0.35 0.1617 0.0886 0.0675 0.0506 

100 0.25 0.65 0.70 0.0585 0.0359 0.0339 0.0323 

 0.50 0.70 0.40 0.0569 0.0365 0.0330 0.0386 

 0.65 0.40 0.80 0.0587 0.0403 0.0366 0.0387 
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 0.80 0.50 0.35 0.0571 0.0347 0.0295 0.0304 

250 0.25 0.65 0.70 0.0274 0.0225 0.0219 0.0275 

 0.50 0.70 0.40 0.0286 0.0243 0.0263 0.0296 

 0.65 0.40 0.80 0.0279 0.0252 0.0272 0.0334 

 0.80 0.50 0.35 0.0255 0.0195 0.0198 0.0230 

500 0.25 0.65 0.70 0.0160 0.0170 0.0198 0.0243 

 0.50 0.70 0.40 0.0175 0.0198 0.0221 0.0297 

 0.65 0.40 0.80 0.0184 0.0202 0.0248 0.0321 

 0.80 0.50 0.35 0.0156 0.0147 0.0171 0.0212 

 

Table 15: The MSE’s of 𝜂2
∗   measure of association for three non-id dichotomous 

variables 

    MSE 

n P1 P2 P3 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.0317 0.0202 0.0084 0.0024 

 0.50 0.70 0.40 0.0384 0.0196 0.0098 0.0024 

 0.65 0.40 0.80 0.03146 0.01879 0.00910 0.00233 

 0.80 0.50 0.35 0.0295 0.0183 0.0088 0.0021 

100 0.25 0.65 0.70 0.0132 0.0046 0.0017 0.0003 

 0.50 0.70 0.40 0.0098 0.0030 0.0011 0.0002 

 0.65 0.40 0.80 0.0130 0.0037 0.0015 0.0003 

 0.80 0.50 0.35 0.0113 0.0039 0.0014 0.0003 

250 0.25 0.65 0.70 0.0076 0.0016 0.0006 0.0001 
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 0.50 0.70 0.40 0.0031 0.0007 0.0002 0.0000 

 0.65 0.40 0.80 0.0059 0.0010 0.0003 0.0000 

 0.80 0.50 0.35 0.0053 0.0012 0.0004 0.0001 

500 0.25 0.65 0.70 0.0055 0.0011 0.0003 0.0000 

 0.50 0.70 0.40 0.0015 0.0002 0.00010 0.0000 

 0.65 0.40 0.80 0.0040 0.0005 0.0001 0.0000 

 0.80 0.50 0.35 0.0035 0.0007 0.0002 0.0000 

 

Table 16: The Bias of 𝜂2
∗   measure of association for three non-id dichotomous variables 

    Bias 

n P1 P2 P3 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 -0.1522 -0.1177 -0.0753 -0.0396 

 0.50 0.70 0.40 -0.1667 -0.1153 -0.0801 -0.0403 

 0.65 0.40 0.80 -0.1514 -0.1133 -0.0776 -0.0386 

 0.80 0.50 0.35 -0.1456 -0.1108 -0.0745 -0.0375 

100 0.25 0.65 0.70 -0.1045 -0.0603 -0.0371 -0.0179 

 0.50 0.70 0.40 -0.0862 -0.0471 -0.0288 -0.0135 

 0.65 0.40 0.80 -0.1019 -0.0539 -0.0336 -0.0153 

 0.80 0.50 0.35 -0.0957 -0.0553 -0.0337 -0.0166 

250 0.25 0.65 0.70 -0.0824 -0.0386 -0.0232 -0.0115 

 0.50 0.70 0.40 -0.0499 -0.0246 -0.0141 -0.0067 

 0.65 0.40 0.80 -0.0709 -0.0300 -0.0173 -0.0082 

 0.80 0.50 0.35 -0.0682 -0.0328 -0.0197 -0.0094 
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500 0.25 0.65 0.70 -0.0723 -0.0328 -0.0190 -0.0089 

 0.50 0.70 0.40 -0.0365 -0.0158 -0.0091 -0.0042 

 0.65 0.40 0.80 -0.0603 -0.0212 -0.0123 -0.0059 

 0.80 0.50 0.35 -0.0568 -0.0257 -0.0149 -0.0070 

 

 

For more clarify in the performance of 𝜌𝑃𝐵 and 𝜂2
∗  measure, Figures 11 and 12 

were created to reflect a clear vision of the behaviors of the considered measures in 

terms of sample size and a visual comparison between the two measures. Where Figure 

11 depicts the behavior of MSE of the two measures versus sample size, while Figure 

12 depicts the behavior of the absolute Bias of the two measures versus sample size.  

As it is well known about MSE and absolute bias as the goodness-of-fit criteria, 

the smallest MSE, and absolute bias, the better the performance of the measure. Clearly, 

it can be noticed that the performance of 𝜂2
∗  is better than 𝜌𝑃𝐵 when the sample size was 

less than 100 where 𝜂2
∗  produced smaller values of MSE and absolute bias than what 

𝜌𝑃𝐵 produced. However, when the sample size is larger than 30 the performance of 𝜌𝑃𝐵 

slightly is better than the performance of 𝜂2
∗ , where the values of MSE and the absolute 

bias of 𝜌𝑃𝐵were significantly less than the corresponding values of 𝜂2
∗ . Moreover, 

Figure 11 shows that performance of the 𝜌𝑃𝐵 in terms of MSE versus the sample size 

n, almost give same performance compared to  𝜂2
∗    at sample size 100, while Figure 12 

depicts the behavior of the absolute Bias of the two measures versus absolute bias 

clarify that the 𝜌𝑃𝐵 is outperform compared to 𝜂2
∗ . 
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Figure 11. MSE of 𝜌𝑃𝐵 versus MSE of 𝜂2
∗   for three non-id dichotomous variables 
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Figure 12. Absolute bias of 𝜌𝑃𝐵 versus Absolute bias of 𝜂2
∗   for three non-id 

dichotomous variables 

 

The tables below present the results of 𝜌𝑃𝐵 and 𝜂2
∗  to show the performance 

when the number of dichotomous variables increased to five variables. 

Table17 and Table 18 contains the results of MSE and Bias that were calculated 

to assess the performance of 𝜌𝑃𝐵 .In addition, Table 19 and Table 20 shows the results 

of the same MSE and Bias to evaluate the performance of  𝜂2
∗   measure under the same 

goodness-of-fit criteria. However, when  all tables below  are compared,  Bias and MSE 

indicate the 𝜌𝑃𝐵 performing satisfactorily for all considered sample sizes, even for a 

small sample size.    

 

Table 17: The MSE’s of 𝜌𝑃𝐵 measure of association for five non-id dichotomous 

variables 
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     MSE 

n P1 P2 P3 P4 P5 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.35 0.80 0.0934 0.0459 0.0304 0.0201 

 0.50 0.70 0.40 0.80 0.85 0.0978 0.0504 0.0342 0.0236 

 0.65 0.40 0.80 0.20 0.60 0.0914 0.0474 0.0300 0.0228 

 0.80 0.50 0.35 0.90 0.25 0.0936 0.0510 0.0315 0.0223 

100 0.25 0.65 0.70 0.35 0.80 0.0162 0.0075 0.0061 0.0066 

 0.50 0.70 0.40 0.80 0.85 0.0182 0.0084 0.0069 0.0078 

 0.65 0.40 0.80 0.20 0.60 0.0154 0.0080 0.0064 0.0067 

 0.80 0.50 0.35 0.90 0.25 0.0166 0.0084 0.0063 0.0060 

250 0.25 0.65 0.70 0.35 0.80 0.0038 0.0024 0.0027 0.0036 

 0.50 0.70 0.40 0.80 0.85 0.0047 0.0030 0.0034 0.0045 

 0.65 0.40 0.80 0.20 0.60 0.0039 0.0028 0.0031 0.0038 

 0.80 0.50 0.35 0.90 0.25 0.0043 0.0026 0.0028 0.0038 

500 0.25 0.65 0.70 0.35 0.80 0.0013 0.0013 0.0017 0.0024 

 0.50 0.70 0.40 0.80 0.85 0.0017 0.0018 0.0023 0.0035 

 0.65 0.40 0.80 0.20 0.60 0.0015 0.0013 0.0019 0.0029 

 0.80 0.50 0.35 0.90 0.25 0.0015 0.0014 0.0019 0.0028 

 

Table 18: The Bias of 𝜌𝑃𝐵 measure of association for five non-id dichotomous variables 

      Bias 

n P1 P2 P3 P4 P5 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.35 0.80 0.25978 0.1747 0.1339 0.0978 
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 0.50 0.70 0.40 0.80 0.85 0.2638 0.1833 0.1481 0.1123 

 0.65 0.40 0.80 0.20 0.60 0.2505 0.1758 0.1333 0.1095 

 0.80 0.50 0.35 0.90 0.25 0.2594 0.1852 0.1408 0.1065 

100 0.25 0.65 0.70 0.35 0.80 0.1049 0.0697 0.0606 0.0597 

 0.50 0.70 0.40 0.80 0.85 0.1104 0.0739 0.0656 0.0696 

 0.65 0.40 0.80 0.20 0.60 0.1038 0.0725 0.0633 0.0626 

 0.80 0.50 0.35 0.90 0.25 0.1063 0.0738 0.0642 0.0571 

250 0.25 0.65 0.70 0.35 0.80 0.0510 0.0408 0.0430 0.0504 

 0.50 0.70 0.40 0.80 0.85 0.0581 0.0458 0.0497 0.0586 

 0.65 0.40 0.80 0.20 0.60 0.0523 0.0434 0.0471 0.0512 

 0.80 0.50 0.35 0.90 0.25 0.0550 0.0427 0.0440 0.0522 

500 0.25 0.65 0.70 0.35 0.80 0.0307 0.0315 0.0364 0.0439 

 0.50 0.70 0.40 0.80 0.85 0.0350 0.0369 0.0437 0.0555 

 0.65 0.40 0.80 0.20 0.60 0.0323 0.0321 0.0392 0.0489 

 0.80 0.50 0.35 0.90 0.25 0.0322 0.0333 0.0384 0.0475 

 

Table 19: The MSE’s of 𝜂2
∗   measure of association for five non-id dichotomous 

variables 

      MSE 

n P1 P2 P3 P4 P5 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.35 0.80 0.1000 0.0666 0.0436 0.0154 

 0.50 0.70 0.40 0.80 0.85 0.0899 0.0633 0.0396 0.0147 

 0.65 0.40 0.80 0.20 0.60 0.0959 0.0684 0.0416 0.0153 
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 0.80 0.50 0.35 0.90 0.25 0.0711 0.0491 0.0320 0.0112 

100 0.25 0.65 0.70 0.35 0.80 0.0596 0.0312 0.0139 0.0039 

 0.50 0.70 0.40 0.80 0.85 0.0558 0.0285 0.0146 0.0041 

 0.65 0.40 0.80 0.20 0.60 0.0597 0.0292 0.0145 0.0038 

 0.80 0.50 0.35 0.90 0.25 0.0439 0.0232 0.0114 0.0033 

250 0.25 0.65 0.70 0.35 0.80 0.0248 0.0093 0.0039 0.0009 

 0.50 0.70 0.40 0.80 0.85 0.0244 0.0095 0.0040 0.0010 

 0.65 0.40 0.80 0.20 0.60 0.0249 0.0094 0.0038 0.0009 

 0.80 0.50 0.35 0.90 0.25 0.0215 0.0080 0.0034 0.0008 

500 0.25 0.65 0.70 0.35 0.80 0.0106 0.0032 0.0012 0.0002 

 0.50 0.70 0.40 0.80 0.85 0.0106 0.0033 0.0013 0.0003 

 0.65 0.40 0.80 0.20 0.60 0.0102 0.0030 0.0012 0.0002 

 0.80 0.50 0.35 0.90 0.25 0.0099 0.0031 0.0012 0.0003 

 

Table 20: The Bias of 𝜂2
∗   measure of association for five non-id dichotomous variables 

      Bias 

n P1 P2 P3 P4 P5 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.35 0.80 -0.2941 -0.2379 -0.1897 -0.1115 

 0.50 0.70 0.40 0.80 0.85 -0.2778 -0.2296 -0.1800 -0.1088 

 0.65 0.40 0.80 0.20 0.60 -0.2888 -0.2414 -0.1854 -0.1115 

 0.80 0.50 0.35 0.90 0.25 -0.2448 -0.1991 -0.1609 -0.0938 

100 0.25 0.65 0.70 0.35 0.80 -0.2340 -0.1676 -0.1116 -0.0599 

 0.50 0.70 0.40 0.80 0.85 -0.2256 -0.1600 -0.1143 -0.0605 
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 0.65 0.40 0.80 0.20 0.60 -0.2344 -0.1629 -0.1137 -0.0585 

 0.80 0.50 0.35 0.90 0.25 -0.1995 -0.1431 -0.0993 -0.0542 

250 0.25 0.65 0.70 0.35 0.80 -0.1520 -0.0930 -0.0601 -0.0296 

 0.50 0.70 0.40 0.80 0.85 -0.1504 -0.0929 -0.0606 -0.0307 

 0.65 0.40 0.80 0.20 0.60 -0.1522 -0.0933 -0.0592 -0.0292 

 0.80 0.50 0.35 0.90 0.25 -0.1407 -0.0854 -0.0564 -0.0285 

500 0.25 0.65 0.70 0.35 0.80 -0.0994 -0.0550 -0.0337 -0.0161 

 0.50 0.70 0.40 0.80 0.85 -0.0996 -0.0557 -0.0347 -0.0169 

 0.65 0.40 0.80 0.20 0.60 -0.0978 -0.0532 -0.0336 -0.0161 

 0.80 0.50 0.35 0.90 0.25 -0.0961 -0.0543 -0.0343 -0.0167 

 

As mentioned earlier, Figures always clarify the performance of 𝜌𝑃𝐵 and 𝜂2
∗  

measure. Figure 13 indicates that the MSE of 𝜌𝑃𝐵 for all cases is outperforms compared 

to 𝜂2
∗ . Furthermore, Figure 14 depicts the behavior of the absolute Bias of the two 

measures versus sample size. Clearly, it can be noticed that even absolute Bias of 𝜌𝑃𝐵 

is outperforms the corresponding values of 𝜂2
∗ . However, it can be seen that at sample 

size 500, results for the goodness-of-fits criteria shows that 𝜌𝑃𝐵 and  𝜂2
∗  has almost 

similar results, but on average, still 𝜌𝑃𝐵 has better performance than 𝜂2
∗ .  
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Figure 13. MSE of 𝜌𝑃𝐵 versus MSE of 𝜂2
∗   for five non-id dichotomous variables 

 

Figure 14. Absolute bias of 𝜌𝑃𝐵 versus Absolute bias of 𝜂2
∗   for five non-id 

dichotomous variables 
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Table 22  presents the best performance of the 𝜌𝑃𝐵 measure for all considered 

sample sizes when the number of dichotomous variables is seven compared to  𝜂2
∗  

performance in Table 24 regarding to Bias criteria results. In contrast, values of MSE 

in Table 21 and Table 23 at sample size 30 contains the results of 𝜌𝑃𝐵 indicate less  

performance compared to  𝜂2
∗ . However, the results provide that as the sample size and 

dichotomous variables increases, the performance of the association measure 𝜌𝑃𝐵 

increases by giving smaller MSE and Bias. Further, the below figures will clarify that 

the performance of measures.  

 

Table 21: The MSE’s of 𝜌𝑃𝐵 measure of association for seven non-id dichotomous 

variables 

        MSE 

n P1 P2 P3 P4 P5 P6 P7 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.1445 0.0947 0.0632 0.0465 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.1617 0.0903 0.0638 0.0457 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.1502 0.0878 0.0586 0.0466 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.1559 0.0859 0.0571 0.0417 

100 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.0276 0.0167 0.0152 0.0139 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.0296 0.0181 0.0160 0.0176 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.0287 0.0174 0.0145 0.0155 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.0300 0.0161 0.0148 0.0145 

250 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.0084 0.0062 0.0072 0.0093 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.0083 0.0071 0.0088 0.0113 
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 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.0086 0.0066 0.0079 0.0104 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.0079 0.0062 0.0067 0.0092 

500 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.0034 0.0038 0.0051 0.0075 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.0038 0.0045 0.0063 0.0098 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.0036 0.0042 0.0056 0.0088 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.0031 0.0039 0.0050 0.0077 

 

Table 22: The Bias of 𝜌𝑃𝐵 measure of association for seven non-id dichotomous 

variables 

        Bias 

n P1 P2 P3 P4 P5 P6 P7 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.3385  0.2673  0.2161  0.1762 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.3622 0.2649  0.2147  0.1735 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.3469  0.2586  0.2065  0.1763 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.3539  0.2542  0.1996  0.1641 

100 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.1448  0.1119  0.1066  0.1006 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.1521  0.1182  0.1123  0.1175 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.1485  0.1151  0.1049  0.1091 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.1513  0.1102  0.1064 0.1042 

250 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.0815  0.0700  0.0779  0.0893 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.0804 0.0762  0.0864  0.0986 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.0823  0.0722  0.0811  0.0944 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.0781  0.0702 0.0746 0.0882 

500 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.0519  0.0569  0.0674  0.0830 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.0549  0.0621  0.0750  0.0950 



  

70 

 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.0529  0.0599  0.0704  0.0896 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20  0.0500  0.0573  0.0667  0.0836 

 

Table 23: The MSE’s of 𝜂2
∗   measure of association for seven non-id dichotomous 

variables 

        MSE 

n P1 P2 P3 P4 P5 P6 P7 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.1355 0.1014  0.0706 0.0348 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.1382  0.1016  0.0712  0.0311 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.1345  0.0975  0.0719  0.0295 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.1266  0.0920  0.0631  0.0270 

100 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.1391  0.0859  0.0506  0.0186 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.1469  0.0869  0.0504  0.0174 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.1392  0.0872  0.0490  0.0171 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.1286  0.0766  0.0427  0.0149 

250 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.0896  0.0454  0.0227  0.0073 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.0931  0.0475  0.0234  0.0068 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.0896  0.0457  0.0217  0.0066 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.0849  0.0401  0.0197  0.0059 

500 0.25 0.65 0.70 0.35 0.80 0.30 0.90 0.0525  0.0222  0.0104  0.0030 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 0.0553  0.0230  0.0104  0.0029 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 0.0517  0.0219  0.0097  0.0026 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 0.0487  0.0198  0.0090  0.0024 
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Table 24: The Bias of 𝜂2
∗   measure of association for seven non-id dichotomous 

variables 

        Bias 

n P1 P2 P3 P4 P5 P6 P7 𝜌1=0.25 𝜌2=0.50 𝜌3=0.70 𝜌4=0.95 

30 0.25 0.65 0.70 0.35 0.80 0.30 0.90 -0.3504  -0.3006  -0.2496  -0.1726 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 -0.3543  -0.3019  -0.2495 -0.1628 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 -0.3498  -0.2943  -0.2507 -0.1599 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 -0.3378  -0.2850  -0.2329  -0.1518 

100 0.25 0.65 0.70 0.35 0.80 0.30 0.90 -0.3657  -0.2859  -0.2186  -0.1322 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 -0.3762  -0.2876  -0.2182  -0.1278 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 -0.3660  -0.2878  -0.2150  -0.1266 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 -0.3513  -0.2693  -0.2005  -0.1180 

250 0.25 0.65 0.70 0.35 0.80 0.30 0.90 -0.2953  -0.2093  -0.1482  -0.0838 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 -0.3010  -0.2146  -0.1504  -0.0813 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 -0.2954  -0.2102  -0.1448  -0.0801 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 -0.2868  -0.1967  -0.1376  -0.0754 

500 0.25 0.65 0.70 0.35 0.80 0.30 0.90 -0.2264  -0.147  -0.1008  -0.0541 

 0.50 0.70 0.40 0.80 0.85 0.20 0.75 -0.2326  -0.1499  -0.1008  -0.0532 

 0.65 0.40 0.80 0.20 0.60 0.90 0.35 -0.2249  -0.1462  -0.0971 -0.0509 

 0.80 0.50 0.35 0.90 0.25 0.70 0.20 -0.2180  -0.1389  -0.0938  -0.0486 

 

Previous Figures show that the performance of the 𝜌𝑃𝐵 and 𝜂2
∗  measure for 

several numbers of variables k, while Figure 15 and Figure 16 clarify that 

𝜌𝑃𝐵outperforms 𝜂2
∗  for all considered samples size when the number of dichotomous 

variables increased to seven. However, when the sample size increses the performance 



  

72 

 

of 𝜌𝑃𝐵 is better than the performance of 𝜂2
∗ , where the values of MSE and the absolute 

bias of 𝜌𝑃𝐵 are significantly less than the corresponding values of 𝜂2
∗ . Furthermore, it 

can be noticed that Figure 15 and Figure 16 show that the performance of 𝜂2
∗  is better 

than 𝜌𝑃𝐵 at sample size 30 where 𝜂2
∗  gives smaller the MSE. In contrast, values of 

absolute bias contain the results of 𝜌𝑃𝐵 indicate better  performance compared to  𝜂2
∗ . 

 

Figure 15. MSE of 𝜌𝑃𝐵 versus MSE of 𝜂2
∗   for seven non-id dichotomous variables 
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Figure 16. Absolute bias of 𝜌𝑃𝐵 versus Absolute bias of 𝜂2
∗   for seven non-id 

dichotomous variables 

 

4.2 Real Application  

This section provides data analysis to assess the goodness-of-fit of the proposed 

measures with respect to Qatar Education data to see how the new measures work in 

practice. Comparison using real data is not easy because the true measure of association 

is unknown. Nevertheless, we apply the proposed association measures to a real data 

set: the teachers' dataset (Social and Economic Survey Research Institute  2021). It 

consists of 424 teachers where the number of observations became 408 teachers after 

removing missing values and outliers. The measures of association evaluate the hours 

per week do teachers spend on activities related to their work according to the following 

three variables: 

1. FORCE: Teach a subject out of your specialization. 
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2. NEW SUBJECT: Teaching a subject that you have never taught before. 

3. CHOICE: Teaching your first choice when you joined the education sector. 

 

4.2.1 Study characteristics 

 

Table 25: Qatar Education survey 2018 (Teachers dataset) description 

Number of Cases 424 

Data Collection Period November 2018 – April 2019 

Survey Organization Social and Economic Survey Research Institute (SESRI), 

Qatar University 

Interview Method Face-to-face Computer-assisted personal interviewing 

(CAPI) 

Data Type Sample survey data 

Unit of Analysis 408 School Teachers 
259 Independent schools teachers 

149 Private schools teachers 

 

 

The Social and Economic Survey Research in Qatar university prepared and 

published the Qatar Education Study (QES), which is a series of surveys. Each survey 

studied various topics on how students, parents, teachers, and administrators view the 

current education system. The 2018 Qatar Education Study (QES) dataset is the third 

and last of a series of three datasets(QES 2012, QES 2015, and QES 2018). The four 

surveys that comprise the 2018 Qatar Education Study include over 3380 participants 

from 34 preparatory and secondary schools. In addition, the survey of teachers includes 

424 respondents who hold positions such as school principal, academic advisor, and 

subject coordinator were examining the attitudes of all education system members who 

will support the development of educational plans in Qatar.  
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4.2.2 Data analysis 

 

Teachers' datasets are used to establish three measures of association where 

separate datasets into two samples. Alongside independent schools, private sector 

schools also play an increasingly important role in providing education services in 

Qatar. Thus, the sample was 259 teachers from independent schools and 149 teachers 

from private schools. The measures of association examined the teachers' performance 

under three dichotomous variables mentioned at the beginning regarding the hours per 

week teachers spend on activities related to their work. 

 

4.2.3 Properties 

There are four main properties as follows: 

1- The continuous variable should be normally distributed: 

Two continuous variables were observed for independent schools and private 

schools.  However, normality tests can be conducted using Shapiro–Wilk test. For 

both variables, the p-values less than 0.05. Thus, it rejects the hypothesis of 

normality.  

Many methods have been developed over the years to relax this assumption, in

cluding generalized linear models, quantile regression, survival models, and so on. 

One technique that is still used in this context is to "beat the data" into looking 

normal by applying some kind of normalizing transformation. This could be as 

simple as a log transformation or as complicated as a Yeo-Johnson transformation. 

The variables still reject the hypothesis of normality using the simple way, which 

is a log transformation. Thus, using the Yeo-Johnson transformation was the best 

solution. 
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The Yeo-Johnson transformation 

 

The Yeo Johnson transformation (Yeo and Jhonson,2000) attempts to find the 

value of lambda (in the following equation) that minimizes the Kullback-Leibler 

distance between the normal distribution and the transformed distribution 

 

𝒈(𝒙, 𝝀) = 𝟏(𝝀≠𝟎,𝒙≥𝟎)

(𝒙 + 𝟏)𝝀 − 𝟏

𝝀
 

+𝟏(𝝀=𝟎,𝒙≥𝟎)𝐥𝐨𝐠 (𝒙 + 𝟏) 

+𝟏(𝝀≠𝟐,𝒙<𝟎)

(𝒙 + 𝟏)𝟐−𝝀 − 𝟏

𝝀 − 𝟐
 

+𝟏(𝝀=𝟐,𝒙<𝟎) − 𝐥𝐨𝐠(𝟏 − 𝒙) 

 

This method has the advantage of working without having to worry about the 

domain of 𝒙. This 𝝀 parameter, like the Box-Cox, can be evaluated using maximum 

likelihood. However, the two continuous variables were mentioned above transformed 

to normally distributed variables using Johnson transformation as shown below: 
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Figure 17:  Histogram of the number of hours for private schools  
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Figure 18: pressurNormal Q–Q Plot of the Number of hours for private schools  

 

 

Figure 19: Histogram of the number of hours for independent schools  
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Figure 20: ressuNormal Q–Q Plot of the Number of hours for independent schools 

 

The Q-Q plot shows that the points on the plot for the transformed data closely 

follow the fitted normal distribution line for both continuous variables. Sometimes the 

histogram and other visualization techniques are not enough to provide a clear, 

conclusive answer; statistical inference (Hypothesis Testing) can provide a more 

objective answer as to whether our variables deviate significantly from a normal. The 

p-values were more effective to evidence that the normal distribution is a good fit. For 

independent schools teachers, the p-value was 0.1396927 and 0.2083471 for private 

schools teachers, so p-values greater than alpha indicate that the data follow the normal 

distribution. 
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2- Check if dichotomous variables are independent and identical Bernoulli random 

variables or non-identical using probability for each variable. For independent 

schools teachers:  FORCE variable has 0.10 for 0’s and 0.90 for 1’s, NEW 

SUBJECT variable has 0.05 for 0’s and 0.95 for 1’s, and CHOICE variable has 0.15 

for 0’s and 0.85 for 1’s. For private schools teachers: FORCE variable has 0.25 for 

0’s and 0.75 for 1’s, NEW SUBJECT variable has 0.05 for 0’s and 0.95 for 1’s and 

CHOICE variable has 0.11 for 0’s and 0.89 for 1’s .Therefore, the second measure 

of association of non-id and independent dichotomous variables is more relevant. 

 

3- The data should not contain outlier points  

Several techniques can be used to get the outliers in data. Mahalanobis distance 

is one of the popular techniques using for outliers detection. Thus, it was used to 

detected outliers and removed them from the data. 

 

4- The 1's categories on dichotomous variables correspond to the higher mean on the 

continuous variable, and the 0's categories correspond to the lowest mean on the 

continuous variable for two analyses. 

 

4.2.4 Measures of association results 

 

Tables 26 and 27 show the results of the association between  the dichotomous 

variables and the number of hours based on the proposed measure, regression analysis, 

and 𝜼𝟐
∗ . The results show that both 𝝆𝑷𝑩 and regression analysis indicates a weak 

positive correlation between the dichotomous and the number of hours variable, while 

𝜼𝟐
∗  I\indicated a stronger correlation than the previous measures. However, based on 
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the simulation study that was conducted in chapter 4, 𝝆𝑷𝑩 always perform better than 

𝜼𝟐
∗  when the sample size is larger than 30, which is the case in our real data, therefore 

the 𝝆𝑷𝑩 can be more trusted than 𝜼𝟐
∗  and to support that, regression analysis was 

conducted to give closer results to 𝝆𝑷𝑩 measure.  

 

Table 26: The different association coefficient between the number of hours for private 

schools and the dichotomous variables   

Methods Coefficients  

𝝆𝑷𝑩 0.02 

𝑹 0.15 

𝜼𝟐
∗  0.33 

 

 

Table 27: The different association coefficient between the number of hours for 

independent schools and the dichotomous variables   

Methods Coefficients  

𝝆𝑷𝑩 0.04 

𝑹 0.10 

𝜼𝟐
∗  0.38 

 

Tables 26 and 27 show the measured association between the number of hours 

per week do teachers spend on activities related to their work, and their considered 

dichotomous variables (FORCE variable interpret that they teach a subject out of their 

specialization, NEW SUBJECT variable show if teaching was a subject that they have 

never taught before and CHOICE variable show if teaching was their first choice when 
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they joined education sector). Therefore, and based on 𝝆𝑷𝑩 measured association, a 

small positive value means that the relationship between the considered variables is 

positive and weak, which was the situation in both private and independent schools. 
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CHAPTER 5: CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY 

 

This study focuses on categorical data analysis by investigating two forms of 

measures the association between multi dichotomous variables and a continuous 

variable. Instead of using Bernoulli distribution in point biserial correlation, both 

binomial and Poisson binomial are used by generalizing the point biserial correlation 

coefficient. Monte Carlo power studies were performed for 10000 replications with 

various values of sample sizes n, several numbers of dichotomous variables and 

different probabilities. As sample size increases, MSE and Bias decrease, which shows 

the accuracy of the proposed methods. The results of Monte Carlo power studies 

revealed that the proposed methods outperform the  𝜼𝟐
∗   method in most cases, 

especially when both the sample size and the number of dichotomous variables 

increase. Finally, applications on real data sets were applied  to demonstrate  the 

measures of association for the  proposed methods and 𝜼𝟐
∗ .   

 

Future study  

This study focuses on multi-dichotomous variables with only one continuous 

variable. Thus, future studies may consider both multi dichotomous and multi 

continuous variables by generalizing point biserial. 

 Furthermore, proposed measures do not take into account the order of the 

categories on the dichotomous variables (e.g., in the case of two binaries, the measure 

treat 0 on 𝑋1 corresponding 1 on 𝑋2 and 1 on 𝑋1 corresponding 0 on 𝑋2  are similarly).  

Also, for the second measure where the dichotomous variables are non-

identical. Future researchers could use the same technique and build their study by 

focusing on more different probabilities.  
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In addition to that, an intense simulation study might be conducted to investigate 

the impact of the number of dichotomous variables on the performance of the proposed 

measures.  

Researchers in applied fields might use the proposed measures to assess the 

association between dichotomous and normal distribution variables.  
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APPENDIX A: BIAS OF 𝜌𝐵 VERSUS BIAS OF 𝜂2
∗   FIGURES FOR TWO, THREE, 

FIVE AND SEVEN IID DICHOTOMOUS VARIABLES 
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APPENDIX B: BIAS OF 𝜌𝑝𝐵 VERSUS BIAS OF 𝜂2
∗   FIGURES FOR TWO, 

THREE, FIVE AND SEVEN NON-ID DICHOTOMOUS VARIABLES 
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APPENDIX D: MSE OF 𝜌𝐵  FOR TWO, THREE, FIVE AND SEVEN IID 

DICHOTOMOUS VARIABLES 
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APPENDIX E: MSE OF 𝜌𝑝𝐵  FOR TWO, THREE, FIVE AND SEVEN IID 

DICHOTOMOUS VARIABLES 
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