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ABSTRACT As a common approach in the development of control charts in Statistical Process Control
(SPC), an industrial process is monitored with one or more quality characteristics using their corresponding
distributions. Note though, modelling the quality characteristics through a relation between some indepen-
dent and dependent variables is an alternative approachwhich is designated as profilesmonitoring. This study
proposes the integration of the adaptive approach to the conventional Multivariate Exponentially Weighted
Moving Average (MEWMA) control chart to improve its detection ability in phase II application. The run
length characteristics of the adaptive MEWMA chart are measured with the use of Monte Carlo simulations
by which better performance of the proposed method than numerous existing competitors including the
conventional MEWMA chart is indicated in monitoring linear and logistic profiles. Finally, a real-life
example from semiconductor manufacturing is provided to demonstrate the implementation and superiority
of the proposed adaptive MEWMA chart over the conventional MEWMA chart.

INDEX TERMS Control chart, linear profiles, logistic profiles, profile monitoring, statistical process
control (SPC).

I. INTRODUCTION
As a common approach in industrial processes, statistical
process control (SPC) is mostly reduced assignable causes
and expurgated adverse conditions to improve the final qual-
ity of the products. SPC controls and monitors the whole
production’s process, finds internal system problems and
provides several complementary choices to optimize the pro-
duction process with the seven existing tools; i.e. cause-
and-effect diagram, Pareto chart, control chart, histogram,
scatter diagram, check sheet and stratification; see [1], [2].
As the most popular approach among seven tools, control
charts have been widespread as an effective tool for quality
control in manufacturing processes since the 1920s. It is
implemented either in phase I or II applications. In phase I,
an initial retrospective study to find the proper estimations
of reliable process parameters is conducted while phase II
applications start with on-line monitoring of the process with
the aim of inspecting the occurrence of the assignable causes
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in which the process stability conditions are no longer met
(i.e., the process moves from IC (in-control) to OC (out-
of-control) situation). It is measured by definition of ARL
(average run length) criteria meaning the average number of
charting statistics to be plotted on the control chart before an
OC signal. Naturally, it is expected that a control chart has
greater (lower) ARL values in IC (OC) conditions which are
denoted by ARL0 (ARL1), respectively; see [3].

To monitor a process in SPC with control charts, two
different ways have been usually applied in the previous
researches. In the first manner, the process is formulated with
a univariate or multivariate distribution of a single or multiple
quality characteristics. On the other hand, as a secondary and
state-of-the-art method, the quality characteristic of such a
process could be exhibited by a regression model between
the dependent or response and explanatory or independent
variables. In the related SPC literature, this approach has
been usually termed as profile monitoring. According to [3],
profile monitoring aims to investigate whether a predefined
IC relationship (or profile) is still valid or the IC model has
been changed to an unknown OC model.
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Several studies have shown thatmonitoring functional rela-
tionship or equivalently profile monitoring could be caused
to a faster, cheaper and more profitable results in industrial
process in comparison with direct monitoring or monitoring
quality characteristics [1], [4]. The main reason for this supe-
riority is that some unnatural trends and assignable causes
could not be found in monitoring quality characteristics while
profile monitoring is able to detect them. So, it has been gain-
ing increasing attentions in scientific researches and practical
applications in recent years [5].

Profile monitoring has been employed efficiently in a wide
range of industrial processes such as calibration [6], deep
reactive ion etching machines from semiconductor manufac-
turing [7], wood composites [8], remote laser welding [9],
thermal conductivity management [10], health-care moni-
toring [11], pharmaceutical industry [12], agriculture [13],
optical imaging system [14], 3D printing [15] and so
forth. In these applications, different profiles types entailing
linear [16], nonlinear [17], logistic [18], Poisson [19] and
non-parametric models [20] have been considered as the IC
model. In these studies, it was required to establish a rela-
tionship between some independent and dependent variables
in such a process. In other words, it does not matter whether
the variables have been located in a specific range but it is
important that the relationship between them to be controlled
over time. So, as the dependent variable changes during the
process, the independent variables must change according to
the predefined IC model.

Since this paper focuses on phase II monitoring of linear
and logistic profiles, a brief literature review about them is
only provided below. Also, some descriptions about applica-
tion of memory type control chart have been provided. Note
though, an interested reader is referred to Maleki, et al. [5]
for more details on other types of profile control charts.

In the linear profiles’ SPC literature, the well-known
Exponentially Weighted Moving Average (EWMA) charts
have been developed in several researches. First, Kang and
Albin [6] utilized the EWMA chart to monitor the resid-
uals of the profile parameters, this chart is denoted by
EWMAR. Next, Kim, et al. [21] applied a novel trans-
formation on the independent variables and proposed three
individual independent EWMA charts, denoted as EWMA3.
Zou, et al. [7] improved the detection ability of the EWMAR
and EWMA3 control charts by introducing the Multivariate
EWMA (MEWMA) monitoring scheme. This approach not
only generated lower ARL1 values, but also was able to
detect decreasing error variance shifts. It could be deduced
that most of the existing subsequent works have been
designed based on the EWMAR [22], EWMA3 [23]–[26] and
MEWMA [27]–[29] control charts.

In some applications, it is also common to employ profile
monitoring for discrete, categorical, and unsorted response
variables; for example, categorizing the product quality level
in two groups or counting the number of nonconforming out-
comes. In these situations, some of the conventional assump-
tions considered in linear profiles entailing the responses

follow a normal distribution, establishing a linear relationship
between response and independent variables and so forth may
be violated. Hence, in such circumstances, the generalized
linearmodels (GLM) can be employed to describe the profiles
which include a wide range of distributions, such as the
Bernoulli, gamma, exponential, Poisson and logistic. As one
of the fundamental researches in this field, Yeh, et al. [30]
provided some different types of Hotelling’s T2 statistics for
monitoring logistic profiles. In addition to the T2 method,
Soleymanian, et al. [31] extended the MEWMA and Likeli-
hood Ratio Test (LRT) schemes formonitoring binary logistic
profiles in phase II. The modified version of LRT schemewas
also proposed by Qi, et al. [32], where the weighted effects of
the previous samples were augmented by computation of the
current charting statistic. Application of change point theory
has been also applied in monitoring logistic profiles; for
instance, Shadman, et al. [33] utilized the change point esti-
mator in combination with the Rao score test to obtain a new
statistic for the binary logistic profiles. Also, some other ideas
were introduced in Shang, et al. [34], Huwang, et al. [35],
Shang, et al. [19], Song, et al. [36] and Alevizakos, et al. [37]
for monitoring logistic profiles.

The content analysis of related literature revealed that dif-
ferent memory-type control charts have been developed in
profile monitoring, especially for linear profiles. For exam-
ple, Riaz, et al. [25] and Huwang, et al. [38] used ranked
set sampling approach for monitoring linear profiles. That is,
the basic idea is that the samples are gathered as a memory
and then are ranked with a predefined criterion. By this
end, a sequence of sorted samples generates a new statis-
tic about the process. As an alternative approach, Variable
Sampling Interval (VSI) scheme has been employed in some
papers [39]–[43]. In the VSI approach, the sampling interval
is not fixed, that is, it varies according to the IC and OC
occurrence probabilities considering the previously obtained
charting statistics.

In a different approach, Haq [29] monitored linear profiles
with an adaptive approach. In this method, whose main idea
has been extracted from Haq and Khoo [44], the smooth-
ing constant of the EWMA chart, usually denoted with λ,
is assigned with regard to the unbiased estimator of the pro-
cess parameters’ shift.

Adaptive control charts which have been frequently
implemented in monitoring quality characteristics, usually
adjusts the sample size, sampling interval, chart statistic
or other parameters based on the estimated shifted param-
eters, see [45] and [46]. Based on related SPC literature,
it can be deduced that very little attention has been paid
to adaptive control charts in profile monitoring and, more
precisely, all of the existing memory-type approaches have
been extended for linear profiles only; see, for instance [25],
[29], [39], [42], [47]. In this paper, a novel MEWMA chart
based on the adaptive approach (implemented using a com-
pletely different mechanism as compared to the older above-
mentioned methods) is proposed for phase II applications of
profile monitoring. The adaptive approach which considers
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the ration of samples as the main criteria in decision making
is incorporated into the design of the MEWMA charting
statistics (by Zou, et al. [7] and Soleymanian, et al. [31]) for
monitoring simple linear and binary logistic profiles, respec-
tively. The performance of the proposed scheme is evaluated
through extensive Monte Carlo simulations as well as an
illustrative example based on semiconductor manufacturing.
To sum up, themain contributions of this paper are as follows:
• Employing of adaptive control chart in monitoring linear
and logistic profiles in phase II.

• Definition a heuristic structure for the proposed method.
• Increasing the detection ability of conventional
MEWMA control chart with the proposed adaptive
approach.

The rest of the article is organized as follows: in Section II,
the formulations of linear and binary logistic profiles are
discussed. Section III illustrates the design of the proposed
control chart. Section IV gives a comprehensive simulation
study of the proposed method and the performance compari-
son based on the ARL criteria. Section V provides a practical
example to show the implementation of the proposed method,
and finally, in Section VI, concluding remarks and recom-
mendations for future research ideas are provided.

II. MEWMA STATISTIC IN PROFILE MONITORING
A. MEWMA STATISTIC IN LINEAR PROFILES
In phase II applications, the IC general linear profile model
of jth sample containing n sets of (Xj , Yj) is shown as:

Yj = Xjβ j + εj. (1)

The responses in (1), i.e., Yj, is defined as the vector of jth

dependent variable; while, Xj (n × p with n > p) is indicator
of the matrix of independent variables. The vector of parame-
ters, βj is defined as a p-dimensional vector of IC parameters
and εij is regarded to follow a normal distribution, denoted
as N (0, σ 2

0 ). By this definition, the IC parameters are shown
with β0 = (β01, β02,. . . , β0p) and σ0. Also, the explanatory
variables are considered as a fixed values in each profile;
hence, the j index is omitted from Xj and it is denoted by X
hereafter.

The estimators of coefficients and error variance in (1)
(i.e., the p-dimensional vector β̂ j and σ̂

2
j ) are computed via

the ordinary least square (OLS) method with the following
formulations:

β̂ j = (XX)−1′X ′Y j,

σ̂
2
j =

1
n− p

(Y j − X β̂ j)
′(Y j − X β̂ j). (2)

To monitor the IC model in (1), Zou, et al. [7] scaled the
estimations of parameters as follows:

Zj(β) =
β̂ j − β0

σ0
,

Zj(σ ) = 8−1{F((n− p)
σ̂
2
j

σ 2
0

; n− p)}. (3)

The above formulation transforms the probability distri-
bution of an ’estimator’ into a normal distribution, where
8−1 (.) is the inverse of the standard normal cumulative
distribution function. Also, the chi-square cumulative distri-
bution function is shown with F(., ν) (ν is the indicator of the
degrees of freedom).

In the above relation, Zj consisting of p+1 elements, has a
normal distribution with mean vector 0 and covariance matrix∑
=

(
(X ′X )−1 0

0 1

)
. To construct the MEWMA estimator

similar to EWMA statistic, Zou et al. [4] defined Wj as the
MEWMA statistic of the vector Zj from the first to the jth

profile, i.e.:

Wj = θZj + (1− θ )Wj−1, (4)

In most of the EWMA control charts, the smoothing
parameter (θ ) is considered as a fixed value between 0.1 and
0.2; so, without loss of generality, it is taken as 0.2 in this
paper. For ease in computations, the initial value of Wj
(i.e.,W0) is adjusted based on the IC model. Due to aiming to
have a unique statistic, an approach similar to Hotelling’s T2

is applied for the above statistics and we have an OC signal
when:

Uj =WT
j 6
−1Wj > L

θ

2− θ
. (5)

So, Uj is the final decision-making criteria in a way that
an OC signal is observed when a single plotted point of
Uj is beyond the Upper Control Limit (UCL), where UCL
is equivalent to L θ

2−θ (for better understanding, we show
it as UCLMEWMA). For a specified value of θ ,UCLMEWMA
is calculated by adjusting the parameter L such that the IC
process is able to reach the predefined value of ARL0.

B. MEWMA STATISTIC IN LOGISTIC PROFILES
Suppose that for the jth profile collected over time, there is a
set of n observations (xi, yij; i = 1,2,. . . , n; j = 1,2,..) in which
yij is the ith response variable and xi is a vector including
p independent variables (xi = (xi1, xi2, . . . , xip)), and their
values are assumed to be constant in different profiles. Since
we do not use the j index for the independent variable, then
X is the n × p matrix of independent variables in the form of
X = [x1;x2;. . . ,xn].
To establish a logistic profile, a relationship between the

response and independent variables is modeled with the
assumption of:
(1) yij (i.e., response variables) are binomial variables with

parameters m and πij (yij ∼ binomial(m, πij)), where m
is the total number of trials in each observation and πij
is the probability of success for the ith observation in
the jth profile.

(2) The relationship between πij and explanatory variable
vectors is expressed using Logit link function:

g(πij) = log(
πij

1− πij
) = xiβ j

= β1jxi1 + β2jxi2+, . . . ,+βpjxip, (6)

124270 VOLUME 9, 2021



A. Yeganeh et al.: Novel Simulation-Based Adaptive MEWMA Approach

in which βj = (β1j, β2j,. . . , βpj) is the vector of the model’s
parameters and we will have xi1 = 1 so that β1j is equal to the
intercept.

Yeh, et al. [30] suggested IterativeWeighted Least Squares
(IWLS) algorithm for estimating the model parameters in the
jth profile and the same approach has been employed in this
paper (a MATLAB code was written by the authors for this
aim and it can be made available upon request).

Soleymanian, et al. [31] and Shadman, et al. [33] devel-
oped MEWMA statistic for logistic profiles. In this scheme,
the chart statistic is defined as:

Uj = (Zj − β0)
′
∑−1

z
(Zj − β0), (7)

where Zj is established with an EWMA form as Zj = θ β̂ j +
(1 − θ )Zj−1, and

∑
z =

θ
2−θ

∑
0 is the variance-covariance

matrix (
∑

0 is obtained from phase I) and Z0 is equal to
the IC parameters (i.e., β0). The chart triggers an OC signal
when Uj is greater than UCLMEWMA which is obtained using
simulation to achieve a specific ARL0.

III. THE PROPOSED METHOD
The main idea of this paper is to provide an adaptive
MEWMAcontrol chart that is based on the ratio of samples in
three specific regions from IC range entailing Lower Control
Limit (LCL) (which is equal to 0 for the MEWMA) to UCL
([0-UCLMEWMA]). Naturally, such an OC situation will allow
more data to be generated far from (close to) the LCL (UCL),
respectively. More discussions about this phenomenon could
be found in Yeganeh and Shadman [48] from which it could
be inferred that the average of generated MEWMA statistics
(Uj) is increased when there are more plotted points near the
UCL, whereas it is decreased in the condition of having more
samples in the closeness of the LCL (for both the linear and
logistic profiles).

From the abovementioned regions, three specific states
with three fixed coefficients (c1 ≤ 1 ≤ c2 ≤ c3) are defined
for the MEWMA control chart as follows:
• State 1 (S1): It considers the samples plotted in the range
[0-UCLMEWMA3 ] with the coefficient c1.

• State 2 (S2): It considers the samples plotted in the range
[UCLMEWMA3 - 2UCLMEWMA3 ] with the coefficient c2.

• State 3 (S3): It considers the samples plotted in the range
[ 2UCLMEWMA3 -UCLMEWMA] with the coefficient c3.

Suppose we are in the jth sample over time. The num-
ber of samples in each state is denoted as d1j, d2j and d3j.
Then, the ratios of samples are computed as r1j =

d1j
j , r2j =

d2j
j and r3j =

d3j
j (with r1j + r2j+ r3j = 1). Considering these

ratios, the Adaptive Rate (ARj) is obtained as:

ARj = c1 × r1j + c2 × r2j + c3 × r3j. (8)

In this formula c1, c2 and c3 are the control chart’s param-
eters all of which are designed to reach a predefined ARL0.
By the above definition, it is expected that ARj to be lower
than 1 when there are more samples in the first state (since
r1j has the most impact) and it could be greater than 1 when
there are more samples in the second and third states.

In the jth generated sample, the MEWMA statistic is
updated with the following equation:

U∗j = Uj × ARj. (9)

The OC signal is triggered when U∗j or Uj are greater
than UCLMEWMA. By the above procedure, U∗j are updated
regarding to the process condition in a way that it is expected
to have U∗j > Uj in OC situations and vice versa.
Let the values of c1, c2, c3 and ARL0 be the determined

values (the manner by which they determined are discussed
later). Figure 1 illustrates the signaling procedure and the
computation of ARL1 (in MaxIt iterations) for the proposed
method.

The procedure outlined in Figure 1 can be used either for
linear or logistic profiles. Also, the standard deviation of
run length (SdRL) is computed in a similar manner to ARL;
hence, it is denoted by SdRL0 and SdRL1 for the IC and OC
profiles, respectively.

Designing of the proposed method entails choosing a
proper value for c1, c2, c3 and UCLMEWMA. Similar to
Hafez Darbani and Shadman [39], Haq, et al. [42] and
Yeganeh, et al. [22], simulation-based approach is utilized in
this paper for control limit adjustment.

The designing idea is based on the three main directions.
First, the value of UCLMEWMA is only related to the ARL0,
or equivalently, it is the same with the common MEWMA
approach. Considering the ration of sample in IC data gen-
eration for the coefficients of states 1 and 2, i.e., c1 and
c2 is the second one, and the logical relation between coef-
ficients (c1 ≤ 1 ≤ c2 ≤ c3) is the last. To this end,
10000 IC profiles are generated from 1 and the averages of
ratios in each state are computed for estimation of the initial
values of c1 and c2. Then, c3 is obtained corresponding to
the sum of the obtained differences. Equation (10) summa-
rizes the formulas for obtaining the initial values of c1, c2
and c3.

c1 = r̄1,

c2 = 1+ r̄2,

c3 = c2 + 1− r̄1 + r̄2 = 2c2 − c1. (10)

In the above formula, r̄1 and r̄2 are the average
of 10000 obtained ratios in states 1 and 2 from the IC data
generation. Considering the initial values and UCLMEWMA,
the ARL0 is calculated. Considering multiplying the relative
differences of the obtained ARL0 and the desired one in r̄1,
the c1 is changed (if the obtained ARL0 is lower (greater) than
the desired one, c1 is decreased (increased), respectively).
Then, ARL0 is computed with the new value of c1. The
above procedure should be iterated with c2 if the desired
ARL0 is not reached with the new c1 (by multiplying relative
difference in r̄2). Similarly, if it is not possible to reach the
desired value, the updating procedure could be done with c3
(with multiplying relative difference in r̄1 + r̄2). For better
understanding of the designing procedure, the following steps
are provided.
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FIGURE 1. The signaling and ARL1 computing procedure in the proposed method.

• Step 1: Adjust UCLMEWMA to reach desired ARL0.
• Step 2: Generate 10000 IC profiles and compute r̄1
and r̄2.

• Step 3: Calculate initial values of coefficients by
using (10).

• Step 4: Calculate ARL0 with regard to the obtained
coefficients.

• Step 5: Calculate relative difference of obtained and
desired ARL0.

• Step 6: Update only one coefficient, respectively,
by multiplying relative difference in r̄1 (for c1), r̄2 (for
c2) and r̄1 + r̄2 (for c3).

• Step 7: Iterate Steps 4, 5 and 6 to reach the desired
ARL0.

Note that in Step 7, we iterate the previous three steps by
updating one coefficient at a time.

IV. SIMULATION RESULTS
In this section, the performance of the proposed method
for simple linear and binary logistic profiles in phase II
is investigated through extensive Monte Carlo simulations.
The IC models have been gathered from Zou, et al. [7] and
Shadman, et al. [33] respectively.

A. PERFORMANCE COMPARISON IN
SIMPLE LINEAR PROFILES
Following Zou, et al. [7], the IC model is defined as:

yij = 3+ 2xi + εij,

i = 1, 2, 3, 4; j = 1, 2, . . . ,

εij ∼ N (0, 1). (11)

To adjust ARL0 at 200 in phase II, UCLMEWMA is
obtained as 1.3189 (L = 11.867) based on Table 1 in
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TABLE 1. A step-by-step procedure for designing of the coefficients in simple linear profile.

TABLE 2. ARL1 comparisons under positive shift in simple linear profile.

Huwang, et al. [27]. The designing procedure in simple linear
profile is illustrated here and the same approach has been
carried out for the logistic model.

To this end, 10000 IC profiles were generated with the
above model and then the average of ratio of statistics in the
states 1 [0-0.4395], 2 (0.4395-0.879] and 3 [0.879-1.3186]
were obtained as 0.77 (r̄1), 0.23 (r̄2) and 0, respectively. So,
from Equation (10), the initial values of c1, c2 and c3 are 0.77,
1.23 and 1.69 (1.23+1-0.77+0.23), respectively. By this
adjustment, ARL0 and relative difference were obtained as
188.3 and −0.058 ( 188.3−200200 ), respectively (so the change
magnitude is 0.77× (−0.058)=−0.045). The procedure was
iterated with a new value of c1 (0.77–0.045 × 0.77 = 0.74)
and ARL0 became 190.4 in step 1 (the change magnitude
is |1-1.23| × (−0.048) = -0.011). By updating c2 as 1.22
(1.23–0.011 × 1.23 = 1.22), we were able to reach ARL0
nearly equal to 200 at the second step. For better clarification,

the details of the designing procedure for the above example
are provided in Table 1.

Hence, the final coefficients are 0.74, 1.22 and 1.69. With
this adjustment, next, we compare our proposed adaptive
method, denoted as AMEWMA, with the existing MEWMA
by [7], EWMAR by [6] and EWMA3 by [21]. Table 2 pro-
vides the ARL1 values for increasing shifts from the IC
model parameters. The magnitude of shifts in intercept, slope
and standard deviation are shown with λ, η and γ , respec-
tively. For example, when the OC profiles are generated
with the intercept equal to 3.2, the AMEWMA chart has the
best ARL1 performance which is equal to 53.75, and yields
a 10% improvement in comparison with MEWMA chart
(i.e., |59.9−53.75|59.9 = 0.1). It can be seen that the detection
ability of MEWMA chart is improved when the adaptive
approach is used, with the percentage improvement in the
range of 10 to 22%. It is worth mentioning that for large
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TABLE 3. ARL1 comparisons under negative shift in simple linear profile.

shifts in the standard deviation, the EWMAR chart tends to
outperform the other competing charts in Table 2; however,
the AMEWMA chart still has a slight advantage over the
MEWMA chart.

Similar to increasing shifts, Table 3 summarizes the ARL1
values for decreasing shifts. We can see that there are scant
improvements in small shifts while AMEWMA has more
superiority with respect to increasing the intercept and slope
shifts magnitude. In decreasing error variance shift, occur-
rence of the bias effect, i.e., having ARL1 > ARL0, is seen.
More discussion about this situation has been provided in
Huwang, et al. [27] and Yeganeh, et al. [28]. Except these
limited cases, AMEWMA chart has the best method in other
simulations.

Similar to SdRL0 and SdRL1, median of run lengths
denoted by MRL0 and MRL1 are defined in phase II and they
are two another supplementary criterion for phase II compar-
isons, see for instance the discussions in [16, 23, 26, 49]. It is
important for such a proper approach to reduce SdRL1 and
MRL1 in addition to ARL1. Table 4 illustrates the values of
SdRL1 and MRL1 in addition to SdRL0 and MRL0 values
for EWMA3,AMEWMAandMEWMAschemes for positive
shifts of simple linear profile. The results of EWMA3 have
been gathered from Abbas, et al. [49] and other values were
based on our simulations.

It is obvious that the proposed method is able to decrease
SdRL1 andMRL1 values for AMEWMA chart in comparison

with MEWMA and EWMA3 charts in most of the shifts
especially in small and moderate shifts.

For more illustration of improvements in small and mod-
erate shifts, Figure 2 compares the SdRL1 values in some
specific shift of intercept and standard deviation. As can be
seen, improvements in standard deviation shifts are more
tangible then intercept and slope (for brevity they have been
neglected).

B. PERFORMANCE COMPARISON IN BINARY
LOGISTIC PROFILES
The IC binary logistic model is described in Shadman, et al.
[33] as follows:

g(πij) = log(
πij

1− πij
) = −2.8+ xi,

i = 1, 2, . . . , 10, n = 10, m = 30,

x = 0.1 : 0.1 : 1,

σ1 = 0.4676, σ2 = 0.6907,∑
0

=

(
0.2186 −0.2936
−0.2936 0.4771

)
. (12)

To reach ARL0 equal to 200, the contol chart limits
entailing UCLMEWMA, c1, c2 and c3 are obtained as 12.9,
0.9, 1.4 and 1.9. The details are similar to Table 1 and
they are neglected for brevity. The shift magnitudes (1 =
[δ1σ1 δ2σ2]) are reported with δ1 and δ2 for the shifts in inter-
cept and slope. Due to investigation of joint shifts, the Non
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TABLE 4. SdRL and MRL (top and bottom) comparisons under shifts in simple linear profile.

FIGURE 2. The SdRL1 comparisons between AMEWMA and MEWMA when there are shifts in the intercept (left panel) and standard deviation (right panel).

Centrality Parameter (NCP) index, defined with 1′
∑
−1
0 1,

is calculated for each shift magnitude. The competitors are
MEWMA by [33], LRT by [31] and Hotelling’s T2 by [31]
approaches.
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TABLE 5. ARL1 comparisons under intercept shift in binary logistic profile.

TABLE 6. ARL1 comparisons under slope shift in binary logistic profile.

The simulation results for the shift in the intercept (δ2 =
0) are shown in Table 5 for AMEWMA chart as well as the
other competitors. Similar to linear profiles, the bias effect is
also observed for small shifts of the MEWMA, AMEWMA
and T2 schemes. Except for some limited shifts in which
the bias effect is seen, the AMEWMA chart has a better
detection ability than the MEWMA chart. The improvement
range is between 16 to 26%. Comparing with LRT chart,
the AMEWMA chart has superior ability in the moderate
shifts, while the LRT chart has better small and large shifts
detection ability.

The simulation results for the shift in the slope (δ1 = 0)
are shown in Table 6 for AMEWMA chart as well as the
other competitors. The conclusions are similar to the shift
in intercept. The best improvement percentage occurred in
NCP = 0.51, i.e., 27%.
Table 7 provides the results of the joint shifts for the

AMEWMA chart and other competitors when a step shift
takes place in the intercept. Although the bias effect has
occurred in MEWMA scheme for NCP = 0.22, AMEWMA
scheme did not suffer from it. The improvement range

is between 10 to 33%. The competition between the
AMEWMA and LRT charts is the same as in the previous
shifts.

From all the results, it could be concluded that AMEWMA
chart had a superior performance compared with MEWMA
in most of the shifts. Also, it could be said that the maximum
improvement had been observed in themedium shift sizes and
that is why the AMEWMA chart outperforms the LRT chart
for medium shifts.

Superiority of AMEWMA over other competitors is obvi-
ous in simple linear profiles but one may want to inves-
tigate precisely the overall performance of our proposed
method over other competitors. For this aim, relative mean
index (RMI) was implemented to show the overall detec-
tion ability of MEWMA, AMEWMA and LRT approaches
(T2 was omitted due to significant weakness against other
methods). The formula of RMI has been provided in several
references (see for example [50], [51]) and the lower the RMI
the better overall performance would be. The RMI values for
the shifts in intercept (Table 5), slope (Table 6) and joint shifts
(Table 7) are gathered in Figure 3.
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TABLE 7. ARL1 comparisons under joint shift in binary logistic profile.

FIGURE 3. The RMI comparisons for the unique (intercept and slope) and simultaneous shifts in the binary logistic model
parameters.

As can be seen, the overall superiority of AMEWMA over
MEWMA is obvious for logistic profiles. Also, AMEWMA
outperformed LRT in slope and simultaneous shifts while
LRT achieved a slightly better performance in intercept shifts
as compared to the AMEWMA.

V. ILLUSTRATIVE EXAMPLE
To illustrate the practical application of our proposed
method, a well-known deep reactive ion-etching process
from semiconductor device fabrication has been selected
to clarify implementation of the AMEWMA approach; see
also [7], [20], [27], [28] who used the same dataset. During
this process, an electron microscopy scanner investigates an
etched wafer in research labs. This wafer is utilised in some
intricate chemical–mechanical reactions on a complicated

automative system, denoted as inductively coupled plasma
silicon etcher, produced by a supplier of plasma company.

Several adjustment entailing deterministic iterative etching
and deposition phases are required in the machine process
chamber to have an accurate final outcome. Another impor-
tant machine’s factor to be taken into consideration is the pro-
file of the trench. It does not only significantly have a massive
impact on the downstream operations, but also adjusts the
quality of the final product. Tomonitor this profile of a trench,
a novel approach was proposed by Zou, et al. [7]. they used
the Scannig Electronic Microscope (SEM) date instead of the
measurement angles of the sidewalls.

The ICmodel of this process is a polynominal form and the
IC data could be obtained from Appendix C in Zou, et al. [7].
The following equation shows the details of the ICmodel, that
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TABLE 8. The responses and estimation of parameters for 19 OC generated profiles.

FIGURE 4. The values of the plotted statistics for the simulated OC generated profiles (ARj values are on the top of each sample).

is, a transformation on the explanatory variables was suggeted

in a way that zi = xi and z2i = x2i −
11∑
i=1

x2i
11 .

yij = 1.55+ 0zi + 0.62z2i + εij,
i = 1, 2, . . . , 11; j = 1, 2, . . . ,

xi = −2.5 : 0.5 : 2.5,
εij ∼ N (0, 0.16). (13)

The response and explanatory variables were defined as the
shape of the profiles. For phase II analysis, it is a common
approach to use simulation data instead of collecting real
samples.

To reach ARL0 equal to 370, UCLMEWMA was adjusted
at 1.7122 (L = 15.41). Based on the proposed design-
ing approach, the states (as described in Section III) are 1
[0-0.571], 2 (0.571-1.142] and 3 (1.142-1.712] (see Figure 4).
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TABLE 9. The signaling procedure for the 19 OC generated profiles.

The coefficients were obtained as 0.92, 1.2 and 1.41 by the
proposed designing procedure.

To generate OC profiles, we changed the standard devia-
tion to 0.48 from 0.4 (this is equivalent to considering a shift
with magnitude 1.2 in IC standard deviation). Table 8 shows
the details of the 19 OC generated profiles. The last four
colunms are the estimated parameters obtained with the OLS
method. For better understanding, the values ofUj s and ARjs
are depicted in Figure 4.

With these data, our proposed AMEWMA chart triggers an
OC signal at the 19th profile. The details of coefficients and
obtained statistics are shown in Table 9. In the last sample,
the ratios are 0.474 ( 8

19 ), 0.474 ( 8
19 ) and 0.052 ( 1

19 ) so we
have AR19 = 0.92× 0.474 + 1.2× 0.474 + 1.41× 0.052 =
1.078. Because all the values in the fifth column are lower
than 1.7122, (unlike the AMEWMA chart) the conventional
MEWMA chart do not issue an OC signal in this example.

VI. CONCLUSION AND EXTENSIONS
This paper provides an effective adaptive approach for
improvement of the MEWMA control chart in monitoring
linear and logistic profiles for Phase II applications. In the
proposed method, termed as AMEWMA, the magnitude of
the MEWMA statistic, denoted by Uj in the jth sample,
is adjusted with regard to the ratio of generated statistics
in three predefined states. A simple and useful simulation-
based designing procedure was proposed to obtain the states
and control limits of the AMEWMA approach. On the
basis of performance evaluations in terms of ARL criterion,
AMEWMA not only improved the detection ability of the

MEWMA approach in phase II of monitroing linear and
logistic profiles; but also outperformed some of the existing
control charts (i.e., EWMA3, EWMAR, T2, and LRT) for
most shifts.

Due to suitable performance in linear, logistic and poly-
nomial profiles, as mentioned in the illustrative example,
the proposed adaptive method could be developed to other
profile models (such as non-parametric, nonlinear, Poisson,
geometric, etc.) in future researches. Finally, the combination
of other adaptive methods such as VSI with our proposed
method may result in an improved detection ability of the
MEWMA control chart in phase II. Hence, it is suggested for
future study to apply VSI in simple, logistic and other profile
types monitoring.
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