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Abstract: Nanomaterials have emerged as the new future generation materials for high-performance
water treatment membranes with potential for solving the worldwide water pollution issue. The
incorporation of nanomaterials in membranes increases water permeability, mechanical strength,
separation efficiency, and reduces fouling of the membrane. Thus, the nanomaterials pave a new
pathway for ultra-fast and extremely selective water purification membranes. Membrane enhance-
ments after the inclusion of many nanomaterials, including nanoparticles (NPs), two-dimensional
(2-D) layer materials, nanofibers, nanosheets, and other nanocomposite structural materials, are
discussed in this review. Furthermore, the applications of these membranes with nanomaterials in
water treatment applications, that are vast in number, are highlighted. The goal is to demonstrate
the significance of nanomaterials in the membrane industry for water treatment applications. It
was found that nanomaterials and nanotechnology offer great potential for the advancement of
sustainable water and wastewater treatment.

Keywords: nanomaterials; membrane separation; water and wastewater treatment; membrane
enhancements; nano sheets; nano composites

1. Introduction

Water scarcity is presently a major area of concern for the entire world [1–3]. Rapid
industrial development and global population growth are increasing the demand for
several water resources. Based on UN Water ORG, 1.8 billion people are estimated to
be living in areas with absolute water scarcity, and two-thirds of the global population
will live under water stress conditions by the year 2025 [4]. Thus, highly efficient water
treatment technologies with great sustainability are required to tackle the worldwide
water scarcity issue. Membrane technology stands out to be the best technology for water
treatment compared to other technologies such as distillation [5–7], electrolysis [8–10],
adsorption [11–13], and photodegradation [14–16]. The reason for this is that membrane
technology requires less energy to operate, attains a high separation efficiency, and is
capable of operating in a continuous mode. Several studies have been conducted to increase
the overall performance of membranes. Nanotechnology plays a vital role in accelerating
the performance of membranes. The use of nanomaterials increases water permeability,
mechanical strength, and reduces the fouling phenomenon of the membrane [17].

Nanotechnology is thought to be the cure-all for the majority of problems involved
with water contamination remediation. In the past few decades, the urgent need for novel
membranes, made up of nanomaterials with well-defined nanostructures, has transformed
traditional membrane concepts, resulting in groundbreaking water treatment methods
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that exceed state-of-the-art performance. The nanomaterials used in the membranes in-
clude nanoparticles (NPs), two-dimensional (2-D) layer materials, nanofibers, and other
nanocomposite structural materials. Furthermore, a huge array of water treatment equip-
ment, including those incorporating nanotechnology, are presently available in the market,
with several more on the way. Figure 1 shows the number of publications about the use of
nanomaterial-based membranes for water treatment.
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Figure 1. A short post-2010 timeline showing the number of water treatment nanomaterial-based membrane related
academic publications.

It is clearly seen from Figure 1 that the number of publications about the use of nan-
materials-based membranes in the water treatment field has a general increasing trend.
This proves the importance of the nanomaterials in the membrane field for water treatment.

Several types of research and studies have been conducted to examine the use of
nanomaterials in the advancement of membrane performance. This review focuses on
membrane modifications following the implementation of new nanomaterials, including
nanoparticles (NPs), two-dimensional (2-D) layer materials, nanofibers, nanosheets, and
other nanocomposite structural materials. In addition, the applicability of these membranes
containing nanomaterials in various water treatment applications are highlighted. The
purpose is to prove the significance of nanomaterials in the membrane industry for water
treatment applications.

2. Traditional Membrane Materials

Membrane technology has advanced at a breakneck pace over the last few decades [18,19].
The membranes used in industrial and laboratory separation processes are mainly made up
of polymeric [20–23] and inorganic materials [24]. Generally speaking, ceramic membranes
are artificial membranes synthesized by the deposition of metal hydroxides colloidal sus-
pensions on porous supports [25]. Ceramic membranes are greatly employed in separation
processes that involve strong media such as acids and strong solvents or extreme conditions
such as high temperature and pressure. As a result of the accelerated chemical inertness
and mechanical thermal resistance of ceramic membranes, the flux through the membrane
can be recovered easily after fouling [26]. Ceramics, however, are excessively brittle, and
their high production costs severely limit their application in large-scale industries [27].

Polymeric membranes, on the other hand, are the leaders in the membrane separation
processes in industries due to their high performance and viable cost [28]. Porous polymer
membranes are traditionally synthesized using mechanical stretching and/or a phase-
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inversion technique. The advantages of polymeric membranes rely upon their superb
separation performance, high permeation rate, and perm-selectivity. The disadvantages
include low tolerance to high-temperature levels, corrosive environments, and organic
solvents [29].

Thin-film composite membranes, a significant breakthrough in the field of membranes,
presently have a more flexible structure that combines a number of higher selective layers
and porous support layers for a more complex separation environment [30]. Under pres-
sure, nevertheless, the multilayer structure has significant compaction repercussions [31].
When the loading pressure is increased, the polymers rearrange into a smaller structure, re-
sulting in a decrease in porosity and, as a result, a loss in separation efficiency. Compaction
often increases with increasing pressure [32,33].

3. Nanomaterial-Based Membranes

Despite the domination of the water purification market by conventional membranes,
it is difficult to choose the most preferable membrane depending on usage, because each
membrane type is bounded by a tradeoff, such as selectivity, permeability, flux, stability,
or high manufacturing cost [1]. In addition, fouling is a serious issue that constrains the
application of ceramic and polymeric membranes. Several pathways have been taken to
chemically modify the membrane surface for better performance and less fouling. Among
the wide variety of the proposed technologies and pathways, nanotechnology stands out
to be the most promising membrane technology. There are several nanomaterials used in
membranes. Figure 2 below shows the most widely used membrane-based nanomateri-
als structures.
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3.1. Nanoparticle Composed Membranes
3.1.1. Freestanding Nanoparticle Membrane

Nanoparticle membranes are synthesized by assembling the nanoparticles into free-
standing ultrathin membranes. Nanoparticle membranes are generated utilizing filtering,
a drying-mediated self-assembly method, and blown-film extrusion, as well as nano film
segregation over a two-dimensional interface created within a hole. At present, mono-
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component nanomaterial membranes that are entirely made up of nanoparticles such as
close-packed gold nanoparticle mono-layers, are not much available. Freestanding ultra-
thin nano-membranes (FUN-membranes) are two-dimensional membrane materials with a
nanoscale thickness of <100 nm and with very little, or almost no, substrate support. In the
past few years, there has been a surge of interest in rationally designing such membranes
for a wide range of applications, from electronic devices to water remediation systems [34].
However, there are few studies available in the market about the use of freestanding
ultrathin nano-membranes (FUN-membranes). Zhang, et al. [35] prepared freestanding
cross-linked polystyrene nanoparticle membranes that have a thickness of 80 nm and very
precise pores. The membrane was synthesized by the authors via polystyrene nanoparticle
filtration over a microfiltration membrane via a sacrificial layer of metal hydroxide nano
strands. The synthesized membranes exhibited very interesting properties along with
a quick separation of gold nanoparticles and small proteins [35]. Membrane filtration
has been proposed as a viable option to remediate the environment by incorporating it
into a modern oxidation processes to reduce energy and cost consumption. Ye, et al. [36]
successfully synthesized a freestanding 2-D confinement graphene oxide (GO) composite
membrane. The fabricated membrane had excellent capabilities of pollutant catalytic degra-
dation. Hence, these features demonstrat great potential for the fabricated 2-D confinement
catalytic membranes with enriched oxygen vacancies in wastewater purification [36].

3.1.2. Nanoparticles as Filler for Composite Membrane

Filling membrane composites with nanoparticles involves the addition of nanopar-
ticles to the ceramic or polymeric membrane during the synthesis process. The concept
behind the addition of inorganic or organic materials into a polymer matrix is commonly
used in the fabrication of mixed matrix membranes. In recent years, the incorporation of
nanoparticles into membranes has emerged as a new focus. However, the use of these small
nanosize particles in the membranes is followed by some advantages and disadvantages.
The advantages include a better interaction between the two phases in the membrane
which leads to higher selectivity, permeability, mechanical stability, hydrophilicity, and
less fouling. In addition, some nanoparticles provide the membranes with antibacterial
and catalytic properties. On the other hand, the disadvantages rely on the fact that some
properties of the polymeric membranes are rendered in the presence of the nanoparti-
cles. The most commonly used nanoparticles in the polymeric and ceramic membranes
include the following: alumina, TiO2, silica, zinc oxide, zeolite, and attapulgite (APT)
into polymeric membranes, which have shown to enhance the membrane water perme-
ability, surface hydrophilicity, resistance to fouling, and functionalization. Table 1 below
shows the membrane enhancements after the addition of some widely used nanoparticles
in membranes.

Table 1. Three-dimensional structures and membrane enhancements for some widely used nanoparticles in membranes.

Nanoparticle Three-Dimensional Structure (3-D) Enhancements in Membrane after the Addition
of the Nanoparticle

Zeolites
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Several studies have analyzed membrane efficiency enhancement after the incorpora-
tion of the most commonly used nanoparticles in several industries. Ghaemi [37] studied
the improvements that occurred in the removal efficiency of copper in PES membranes
after the incorporation of alumina (Al2O3) nanoparticles. The authors prepared mixed
matrix membranes by a phase inversion method while using PES and various amounts of
alumina nanoparticles. The results of the authors’ study show that the water permeation of
the mixed matrix membranes was elevated after the addition of the alumina nanoparticles
compared with the pristine PES. The increased water permeability was responsible for the
increase in the porosity and hydrophilicity of the mixed matrix membrane after the incor-
poration of alumina nanoparticles into the matrix of the membrane. In addition, the copper
ion removal efficiency of the alumina mixed membranes was also enhanced [37]. Hosseini,
et al. [38] studied the enhancement effects of TiO2 nanoparticles on the physicochemical
properties of a mixed matrix membrane. The authors used a solution casting technique
to prepare polyvinylchloride-co-TiO2 nanoparticle mixed matrix heterogeneous cation ex-
change membranes. The results of the study show that the membrane ion exchange capacity,
flux, mechanical strength, and selectivity were all improved after the addition of TiO2 into
the matrix of the membrane [38]. Furthermore, in a study that included TiO2 nanoparticles,
Mobarakabad, et al. [39] revealed the effect of titanium dioxide (TiO2) nanoparticles as
an inorganic filler additive on the membrane physico-chemical properties. The authors
used a phase inversion method to prepare asymmetric poly (1,4-phenylene ether–ether-
sulfone) (PPEES)-blend-polyethylene glycol nanocomposite nanofiltration membranes with
titanium dioxide (TiO2) nanoparticles as the inorganic filler additive and N-methyl pyrroli-
done as the solvent. The results of this study revealed that there was an enhancement
in the membrane water flux (WF), tensile strength, hydrophilicity, and salt rejection after
the addition of TiO2 nanoparticles as the inorganic filler in the membrane [39]. Ayyaru,
et al. [40] studied the effect of different GO-ZnO loadings on a polyvinylidene fluoride
(PVDF) membrane. The addition of GO-ZnO nanocomposite significantly improved mem-
brane porosity, wettability, water flux, and anti-fouling properties. This proves that the
overall properties of the GO-ZnO/PVDF are improved compared to the bare PVDF mem-
brane after the addition of the nanocomposite GO-ZnO [40]. Borjigin, et al. [41] studied the
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effect of incorporating Beta (β) zeolite in a polyamide (PA) thin-film nanocomposite (TFN)
membrane. The authors found that after the modification of the TFN membrane by the Beta
(β) zeolite the water flux, and the separation of the membrane significantly increased [41].
Attapulgite (APT) is a very promising highly hydrophilic mineral additive in nature that is
used to modify ultrafiltration (UF) membranes. Zhang, et al. [42] used attapulgite (APT) as
an additive for a polyvinylidene fluoride (PVDF) matrix to prepare a hybrid membrane
using the phase inversion method. The results of the study show that the APT particle
blended membranes had greater hydrophilicity, better thermal stability, higher water per-
meability, smaller pore size when, and enhanced antifouling performance compared with
the pure PVDF sample [42]. Tables 2–4 show the enhancements in membranes after the
incorporation of TiO2, SiO2, and other nanoparticles in the membranes.

Table 2. A summary of key elements of TiO2 nanoparticle-based nanocomposite membranes.

Membrane Application Modification Technique Membrane Modification Enhancement Reference

Study of Escherichia coli Dipped coating Anti-bio-fouling property was improved. [43]

membrane bioreactor system Dipped coating Higher anti-fouling properties [44]

activated sludge filtration Dipped coating and Phase
inversion

Increase in composite membrane porosity, and a
higher anti-fouling properties. [45]

Treatment of emulsified
oil wastewater Phase inversion method Higher water permeability, hydrophilicity,

mechanical strength and anti- fouling ability [46]

Enhancement of PES/PI
nanofiltration membranes Dipped coating under UV High flux recovery [47]

Study of the performance of
PVDF membrane Phase inversion method Enhanced antifouling properties of PVDF

(polyvinylidene fluoride) membrane [48]

The synthesized membrane
can be used as an advanced

filtration system

Sol-gel method/Deep
coating method

Higher mechanical strength and
structural stability. [49]

Alkaline fuel cells (AFC) Phase inversion method Greater thermal properties, thermal resistance
and enhanced water take. [50]

Study of the morphology and
properties of poly(phthalazine
ether sulfone ketone) (PPESK)

Phase inversion method
Enhanced antifouling properties, increase in

tensile mechanical properties, higher membrane
hydrophilicity and wettability.

[51]

Removal of harsh
organic solvents Phase inversion method Higher antifouling property, thermal stability,

and flux recovery. [52]

Study of poly (vinylidene
fluoride) (PVDF)/sulfonated

polyethersulfone (SPES)
blend membrane

Dipped coating Higher long-term flux stability and
antifouling property. [53]

Study of Polyethersulfone
ultrafiltration membranes

Surface deposition in presence
and absence of UV Reduction in membrane fouling. [54]

Study of PES/TiO2 composite
membranes Phase inversion method Improvement in thermal stability, hydrophilicity,

mechanical strength and anti-fouling property. [55]

Study of the
polysulfonamide/nano

titanium dioxide
(PSA/nano-TiO2) composite

Phase inversion using a
spinning technique

Better thermal stability and greater
ultraviolet resistance [56]

Membrane can be used in
guided bone

regeneration (GBR)
Casting method Greater mechanical strength, and higher

antimicrobial activity [57]
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Table 2. Cont.

Membrane Application Modification Technique Membrane Modification Enhancement Reference

Study the photo-bactericidal
effect on Escherichia coli

(E. coli)
Phase inversion method

Better antibacterial property, higher
hydrophilicity, greater flux recovery and

enhanced antifouling property.
[58]

Study of titania
nanocomposite

polyethersulfone
ultrafiltration membranes

The sol-gel surface
coating method

Higher stability, durability, hydrophilicity, and
antifouling property [59]

Degradation of dyes Phase inversion using
electro-spinning Greater photocatalytic activity [60]

Improving fouling resistance Phase inversion method Greater permeability, higher antifouling property
and improved hydrophilicity [61]

Study of
sulfonated-polyethersulfone
(SPES)/nano-TiO2 composite

UF membrane

Casting method Greater antifouling property, improved
photocatalytic activity and binding strength [62]

Study of polyamide thin film
nanocomposite (TFN)

nanofiltration membrane
Surface coating Higher salt rejection, permeability, thermal

stability, and selectivity. [63]

Study of photocatalytic
polyvinyl alcohol (PVA)/TiO2
composite polymer membrane

Phase inversion method using
electro-spinning

Higher photocatalytic activity, and enhanced
tensile strength [64]

Study of PVDF membrane Dipped coating Higher antifouling property [65]

Study of microporous PES
membrane Phase inversion method

Greater thermal stability, and permeation. In
addition, the pore size of the membrane surface
layer and the breaking strength was increased.

[66]

Table 3. A summary of key elements of SiO2 nanoparticle-based nanocomposite membranes.

Membrane Application Modification Technique Membrane Modification Enhancement Reference

Polyethersulfone-mesoporous silica
nanocomposite ultrafiltration

membranes

Phase inversion
casting method

Greater hydrophilicity, thermal stability,
porosity, water uptake and antifouling

properties.
[67]

Polysulfone/silica nanoparticle
mixed-matrix membranes used for

gas separation
Phase inversion method Enhanced gas permeability of the PS

(polysulfone) membrane [68]

Ce-doped nonstoichiometric
nanosilica/polysulfone composite

membranes used in wastewater
treatment

Phase inversion method Greater tensile strength, antifouling
property, and hydrophilicity. [69]

Poly(vinylidene fluoride) composite
membranes applied in the

electro-driven separation processes
Phase inversion method Higher conductivity, selectivity, and

physical stability. [70]

Organic/inorganic composite
membranes Solution casting method

Higher chemically stability and tensile
strength. In addition, the membrane proton

conductivity was also improved
[71]

PDMS nanocomposite membranes
used for gas separation Casting method Greater permeability [72]
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Table 3. Cont.

Membrane Application Modification Technique Membrane Modification Enhancement Reference

PSf/SiO2 nanocomposite
membrane applied in oil-in-water

emulsion separation
Phase inversion method Higher permeability and antifouling

property. [73]

Silica nanocomposite membranes Phase inversion method Increase in water diffusivity and fractional
free-volume. [74]

Nanocomposite membranes for gas
separation Phase inversion method Higher diffusivity, gas permeability,

solubility, and selectivity. [75]

Nano silica/Nafion composite
membrane applied in proton

exchange membrane fuel cells
Phase inversion method Higher proton conductivity. [76]

Polymer Nanocomposite Electrolyte
Membrane used for High

Performance Lithium/Sulfur
Batteries

Casting method Higher electrochemical stability, and ionic
conductivity. [77]

PBI and PBI/ZIF-8 nanocomposite
membranes Phase inversion method Improved solubility, degree of swelling,

and selectivity [78]

PVA/nano silica composite
membranes Phase inversion method Higher hydrophilicity and flux. [79]

Table 4. A summary of key elements of several nanoparticle-based nanocomposite membranes.

Nanoparticle Membrane Application Modification
Technique

Membrane Modification
Enhancement Reference

Zeolite

Polymer-Zeolite
Nanocomposites as

Mixed-Matrix Membranes used
for Gas Separation

Casting method Greater permeability for CH4,
N2, and CO2. [80]

ZIF-8

Polybenzimidazole (PBI) and
PBI/zeolitic imidazolate

framework (ZIF-8)
nanocomposite membranes

Phase inversion
method

Increase in permeability,
sorption diffusion coefficient,
pervaporation, and swelling

characteristics.

[78]

ZnO Chitosan/ZnO nanoparticle
composite membranes Phase inversion Higher antibacterial property

and mechanical stability. [81]

Al2O3
Al2O3/PES membrane applied

in wastewater filtration Phase inversion
The composite membrane had
a decline in the fouling effect

and a decrease in flux.
[82]

SiO2-Al2O3
Nanocomposite SiO2-Al2O3

membrane Surface coating Higher structural stability and
hydrogen selectivity. [83]

Zirconia

Poly(arylene ether
sulfone)/Nano-ZrO2 Composite

Anion Exchange Membranes
applied in Alkaline Fuel Cells

Phase inversion

Improved water uptake,
hydroxide ion conductivity,

dimension stability,
mechanical properties, thermal
stability and chemical stability.

[84]

ZrO2,
Al2O3, and TiO2

Nano-structured
ceramic–metallic composite

microporous membranes for gas
separation application

Spray assisted surface
coating

Enhanced thermal and
chemical stability. [85]
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Table 4. Cont.

Nanoparticle Membrane Application Modification
Technique

Membrane Modification
Enhancement Reference

Al2O3
Hybrid Composite Membranes
used for Lithium-Ion Batteries Dipped Coating Greater thermal stability and

enhanced wettability. [86]

Fe/Pd Microfiltration Membrane Ion-exchange pore
diffusion technique Higher reactivity. [87]

ZnO
PVDF microfiltration

membranes used for water
treatment

Phase inversion

The composite membrane had
greater water flux, breaking

strength, and pore size
distribution.

[88]

3.1.3. Applications of Nanoparticle Membranes in Water Treatment

The pollution of water by contaminants is a worldwide issue that must be addressed
efficiently to overcome the drastic consequences of water contamination. Nanotechnology
offers a wide range of applications in the field of water and wastewater treatment (Table 5).

Table 5. Summary of nanomaterials used in membranes for water/wastewater treatment.

Nanomaterial Application in Water/Waste
Treatment Process Applied

Enhancement in Membrane
after the Incorporation of the

Nanomaterial

CNTs, zeolites, metal-oxides
and chitosan Pollutant removal Adsorption

High surface area, high
accessible adsorption sites,

fine-tuning of compound to
pollutant, easy to reuse

nZVI, Au, and TiO2 Pollutant degradation Photocatalysis or chemical
reduction

Catalytic reduction and
photocatalysis not seen in

bulk materials, unique
quantum effects

Chitosan, Ag, TiO2 and MgO,
and CNTs

Removal of contaminants
from drinking water or

wastewater
Disinfection

Cell membrane damage, metal
chelation in cells, reactive

oxygen species (ROS)
production, chemical stability

Figure 3 represents the adsorption process of a nanoparticle-based membrane in
the removal of several heavy metals and dyes for water treatment. Several studies have
reported the use of nanoparticles in membranes to enhance the removal efficiency of
pollutants from water. Figure 4 below shows the most commonly used nanoparticles for
water treatment.

Zhao, et al. [89] added a series of defective ZIF-8 (dZIF-8) nanoparticles into polyamide-
based thin-film nanocomposite (TFN) membranes for the desalination of seawater and
brackish water. The authors studied the incorporation of dZIF-8 with several loadings on
membrane separation performance and properties. The authors found that the separation
performance and the properties of the membrane were greatly enhanced as the loadings
of the nanoparticles increased [89]. The main target of Bose, et al. [90] was to fabricate
a polymeric nanocomposite membrane with a low-budget nanoparticle for an effective
oil-water separation process. The authors used a cellulose acetate (CA) polymer to fabricate
the membrane and silicon carbide (SiC) nanoparticles to modify the membrane. The effect
of silicon carbide (SiC) nanoparticle addition on membrane properties was analyzed by
the authors. The results of the authors’ study show that the addition of silicon carbide
(SiC) nanoparticles increased membrane hydrophilicity, pore size, water flux, porosity, and
water content. An 89% increment of the pure water flux occurred after using the modified
membrane. Furthermore, the antifouling properties of the membrane was enhanced as
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well. Besides, reasonable improvement in the antifouling attributes of the membranes were
also observed. Thus, the modified membrane by the SiC nanoparticles is more efficient for
the oil-water separation process than the unmodified membrane [90].
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Wen, et al. [91] successfully modified a graphene oxide membrane (GOM) by super-
hydrophobic modification using fluorinated silica nanoparticles layers on the membrane
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surface to improve the surface adhesion and decrease the surface energy. The authors used
light/heavy water as a model and an air gap membrane distillation (AGMD) apparatus to
evaluate the separation performance of the isotopic hydrogen of this composite membrane.
The results of the authors’ study demonstrate that the selectivity of the membrane was
enhanced by the addition of the fluorinated silica nanoparticles [91]. Membrane fouling
is considered the main limitation to the performance of membranes. Kazemi, et al. [92]
aimed to enhance the antifouling properties of a PVC membrane by incorporating GO and
GO-ZnO nanoparticles into the PVC membrane in oily wastewater treatment. The results
of the study revealed that increasing the nanoparticle content of the membranes improved
the membrane’s hydrophilicity. In addition, the water flux, and mechanical strength of
the membrane were also increased. Furthermore, the PVC/GO-ZnO membranes showed
a greater turbidity removal efficiency and less flux reduction compared to the PVC and
PVC/GO membranes [92]. There is a wide range of emerging technologies for the treatment
of oily wastewater using ultrafiltration membranes that use hydrophilic nanoparticles for
improving membrane efficiency. De Guzman, et al. [93] fabricated cellulose acetate (CA)
mixed-matrix membranes with zwitterionic nanoparticles (polydopamine-sulfobetaine
methacrylate P(DA-SBMA)) via a wet-phase inversion method for treating oily wastewater.
The authors’ found that the addition of the nanoparticles improved membrane porosity,
hydrophilicity, water flux, flux recovery, and reversible fouling. The authors used several
oil-in-water emulsions in their study, including containing diesel oil, toluene, hexane,
dodecane, and food-grade oil. The study revealed that oil-water separation efficiencies
from 95% up to 99% were achieved. Thus, nanoparticles were successful in improving the
performance of membranes for oily wastewater treatment [93].

The design and fabrication of polymeric membranes with high rejection and out-
standing permeability remains a major issue. Zhang, et al. [94] synthesized and used
metal-organic framework nanoparticles that are soluble in water to modify a polyether-
sulfone membrane forming a uniform porous membrane. The results of the authors’ study
showed that the permeability of the modified membrane was enhanced considerably. In
addition, the water flux was also significantly enhanced. Furthermore, the modified mem-
brane had a high rejection of approximately 100% for bovine serum albumin. Thus, the
modification of the membrane with the nanoparticles significantly improved its separation
performance [94]. Zhao, et al. [95] incorporated UiO-66-NH2 nanoparticles into polyamide-
based thin-film nanocomposite (TFN) RO membranes. The outstanding properties of the
UiO-66-NH2 nanoparticles enhanced the membrane surface hydrophilicity and decreased
the preferential pathways and degree of cross-linking for the water molecules across the
selective layers. In addition, the TFN membranes showed a higher salt rejection and wa-
ter flux compared to the benchmark membranes [95]. Kotp [96] reported a new method
containing high flux thin-film nanocomposite (TFN) nanofiltration (NF) membranes. The
authors synthesized the membranes by incorporating camphor-Al2O3NPs (CA.TFN) and
commercial-Al2O3 (CO.TFN) into polyamide layers using an interfacial polymerization
method. The results of the study revealed that the addition of the camphor-Al2O3 NPs into
the TFC membrane improved membrane water flux, salt rejection, and hydrophilicity [96].
In a further study, Matindi, et al. [97] fabricated polyethersulfone (PES)/sulfonated polysul-
fone (SPSf)/TiO2 mixed matrix membranes (MMMs) for the oil/water emulsion separation
process. The authors analyzed the membrane performance by various loadings of TiO2
nanoparticles (NPs) and polymer concentrations. The results of the authors’ study exhib-
ited that adding small concentrations of TiO2 NPs into the membrane led to an outstanding
improvement in the separation performance of membranes applied in oil/water emulsion
filtration [97]. Barati, et al. [98] used in situ grown iron oxide nanoparticles (NPs) study to
impregnate commercial ceramic membranes via a facile technique to treat produced water.
The results of the authors’ study revealed that membrane hydrophilicity, organic rejection,
and antifouling behavior were improved significantly after the addition of the iron oxide
nanoparticles (NPs) [98].
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The use of nanocomposite adsorptive membranes that incorporate nanosorbents is a
very promising option for water treatment from heavy metals; however, the aggregation of
nano-sorbents in the membrane matrix has hampered their practical uses. He, et al. [99]
prepared an adsorptive membrane made up of homogenous in-situ generated ferrihydrite
nanoparticles (NPs)/polyethersulfone (PES), and strived to remove lead from water con-
taining heavy metals. The synthesized membrane had high surface hydrophilicity and
water flux. In addition, it also showed high adsorption capacity and selectivity of Pb2+,
and outstanding reusability without significant loss of Pb2+ adsorption. Consequently,
the reported membrane in this study with the ferrihydrite nanoparticles (NPs) is a very
promising present material for the removal of heavy metals from water [99].

There have been huge advancements using inorganic membranes in the treatment
of marginal water containing hydrocarbon contaminants. Liu, et al. [100] incorporated
silica nanoparticles into an alumina matrix to achieve hydrophilic modification of alumina
microfiltration membranes. The alumina membrane incorporating silica nanoparticles
was intended to separate cyclohexane from water. The study demonstrated that the
added silica nanoparticles significantly increased membrane hydrophilicity, water flux,
and oil rejection. This study proved that the addition of nanoparticles in the membrane
enhances the overall performance of the membrane with respect to oil-water separation
processes [100]. The separation of oil-water emulsions can be successfully achieved by using
porous ceramic membranes with great mechanical strength. However, the preparation of
ceramic membranes that have small pore sizes and remarkable antifouling properties is
quite hard to attain. Zhang, et al. [101] modified β-SiAlON ceramic membranes with SiO2
nanoparticles for the removal of oil droplets from an oil-water emulsion. The modified
membranes had a very small pore size, and water fluxes that were outstanding for the
oil-water separation process. Furthermore, the membrane displayed a high oil rejection rate
and remarkable antifouling ability. Thus the synthesized membrane in this study with the
nanoparticle can be considered as a promising material for oil-contaminated wastewater
treatment [101]. Rowley and Abu-Zahra [102] used Fe3O4 nanoparticles (NPs) to modify
polyethersulfone (PES) nanocomposite membranes for the removal of arsenic from water.
The fabricated PES membranes with A-Fe3O4 NPs showed a high adsorption capacity of
arsenic from water using only small concentrations of the A-Fe3O4 NPs. The results prove
that the synthesized membrane in this study with the incorporated A-Fe3O4 NPs is a very
efficient candidate for the treatment of water from arsenic [102]. Table 6 below shows the
applications of several nanoparticles for the removal of contaminants from water.

Table 6. Application of nanoparticles in the removal of contaminants from water.

Nanoparticle Contaminants Removal Capacities Rejection
(%) Process Used pH Contact

Time Reference

Aluminium
substituted

goethite
(Al-FeOOH)

Ni 94.52 mg·g−1 - - 5 6 h [103]

SiO2
Oil/water
emulsion - 99% Microfiltration - - [104]

ZnO and
montmorillonite Cu(II) - - - 4 90 min [105]

AgNps E. coli,
B. subtilis 94% Microfiltration - - [106]

Iron nanoparticles
modified micro

fibrillated cellulose
As(V) 2.460 mmol·g−1 - - 2 75 min [103]
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Table 6. Cont.

Nanoparticle Contaminants Removal Capacities Rejection
(%) Process Used pH Contact

Time Reference

Hematite As(III) and
As(V)

2899 ± 71.09 µg·g−1

and
4122 ± 62.79 µg·g−1

- - 6–8 8 h [107]

Nanoscale zero
valent iron (NZVI) Cr(VI) 100% - - 2 10–30 min [108]

TiO2@g-C3N4 tetracycline - 97% Photocatalysis - - [109]

Magnetite
Fe3O4/Chitosan

nanoparticles
(Fe3O4/CSNPs)

Pb(II) 79.29 mg·g−1 - - 6 12 h [110]

MWCNTS,
Graphene, TiO2

Cadmium - 100% Adsorption - - [109]

MgO Pb(II) 2614 mg·g−1 - - - 180 min [111]

Zerovalent iron
and reduced

graphene oxide
Cd(II) 425.72 mg·g−1 - - 5 50 min [112]

CNTS TOC - 30.5% Microfiltration - - [113]

Ascorbic
acid-stabilized
zero valent iron

Nps

Cd(II) 79.58% - - 7 60 min [114]

Copper oxide Cr(VI) 15.62 mg·g−1 - - 3 180 min [115]

Ag Nps AZG dye 85% Photocatalysis [116]

Graphene
oxide-Cobalt oxide Cr(VI) 208.8 mg·g−1 - - 3 12 h [117]

γ-Al2O3 NPs Cd(II) 17.22 mg·g−1 - - 5 30 min [118]

Manganese ferrite
and cobalt As(III) 24.17 and

24.81 mg·g−1 - - 2 4 h [119]

ZnO Nps Oil, E. coli - –
Microfiltration,

Antimicro-
bial

- - [120]

Sulfonated
magnetic NPs Pb(II) 108.93 mg·g−1 - - 7 24 h [121]

γ-alumina NPs
and MWCNTs Ni 99.41% and 87.65% - - 10 30 min [122]

Titanate nanotubes Th(I) and
Th(III) 709.2 mg·g−1 - - - 10 min [123]

OMWCNTs Indigo 98% Microfiltration - - [124]

Modified henna
with Fe3O4

Cu(II) 99.11% - - 4 85 min [125]

SiO2 Oil/water - 98% Microfiltration - - [126]
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Table 6. Cont.

Nanoparticle Contaminants Removal Capacities Rejection
(%) Process Used pH Contact

Time Reference

γ-alumina Cu(II) 31.3 mg·g−1 - - 5 4 h [127]

Fe3O4 Ni 209.205 to
362.318 mg·g−1 - - 8 35 min [107]

GO
Oil/water;
Methylene
Blue dye

-
99%,

95.38%,
92.45%

Microfiltration,
Adsorption - - [128]

Nanoscale zero
valent iron (nZVI)

Pb(II), Cd(II),
Cu(II), Ni(II) - - - 2–7

30 min (Pb),
20 min

(Cd, Cu, Ni)
[129]

3.2. Nanofiber-Composed Membrane
3.2.1. Freestanding Nanofiber Membrane

Nanofibers are traditionally stated as fibers with diameters less than 100 nm. Nanofibers
are known for having a high weight ratio, and highly porous structure with remarkable
pore interconnectivity [130]. The ratio of the nanofibers is very high, which makes it easier
for them to interlock and form a freestanding porous membrane. The distinguishable prop-
erties of the nanofibers allow them to be used in various applications in several industries.

Cellulose fiber-modified membranes have been used for a long time ago in various
water treatment applications. A new cellulose form was discovered in the last century
that allows the design of new liquid separation membranes. Cellulose has outstanding
film-forming and mechanical properties that enable it to be used in several industries.
In addition, the cellulose surface is easy to modify and very safe to use, which eases the
process of surface modification.

In many separation processes, there is an increasing demand for solvent-resistant
and highly efficient nanoporous membranes. It is common for membranes to have a low
permeation flux as a result of a low resistance to solvent and a thick membrane layer. The
synthesis of ultrathin nanometer pore size membranes for rapid organic filtering is now
the most difficult issue. Zhang, et al. [131] prepared ultrafine cellulose nanofibers via a
facile method for the fabrication of ultrathin nano-porous membranes. The synthesized
nanofibers had a diameter of 7.5 ± 2.5 nm, and the cellulose nanoporous membranes had
an adjustable thickness down to 23 nm. In addition, the cellulose nano-porous membranes
had very narrow pore sizes that ranged from 2.5 to 12 nm. The resultant nanocellulose
membrane had rapid permeation of water and several organic compounds in a pressure-
driven filtration process. In addition, the prepared cellulose nanofibers in this study were
easy to use in the production of novel syringe filters with less than 10 nm pore size, which
has a wide range of applications in the rapid separation and purification process [131].

The fabrication of other biopolymer-based nanofiber ultrathin membranes was the
main aim of several studies. Ling, et al. [132] synthesized a new ultrathin filtration mem-
brane made of silk nanofibrils (SNFs), which were exfoliated from natural Bombyx mori
silk fibers, for the separation of various dyes, proteins, and colloids of nanoparticles. The
synthesized membranes had a thickness down to 40 nm and pore sizes ranging from 8
to 12 nm. The SNF-based ultrathin membrane synthesized in this study showed a water
flux of 13,000 L·h−1·m−2·bar−1, which is greater than 1000 times of the most commercial
ultrathin filtration membranes at present. In addition, the SNF-based ultrathin membranes
exhibited very high efficiency for dyes, colloids of nanoparticles, and proteins, with a
minimum of 64% rejection for Rhodamine B. Thus, the reported SNF-based ultrathin mem-
brane in this study is a promising material for a broad range of applications in water and
wastewater treatment.

Various techniques can be used in the preparation of nanofibers, including melt-
blowing, flash-spinning, splitting of bicomponent fibers, physical drawing, phase separa-
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tion [5], self-assembling [6], centrifugal spinning, solvent dispersion [7,8], hydrothermal [9],
and electrospinning. Electrospinning is the best method of nanofiber preparation among
all the mentioned methods. Electrospinning surpasses the mentioned methods by its
high versatility in the preparation of nanofibers using a wide range of materials, and the
capability of controlling the nanofiber diameter, morphology, and structure. In addition,
it is easy to modify by the addition of several nanomaterials or soluble substances to the
electrospinning solution. However, the application of electrospinning is hindered by its
high cost, since it needs massive-scale solvent recovery from a dilute air stream, making
the process uneconomical. Several studies reported the use of electrospinning for the
preparation of nanofiber membranes for water treatment applications. Du, et al. [133] pre-
pared via one-step electrostatic spinning of a polyvinylpyrrolidone (PVP), polyvinylidene
fluoride (PVDF), and an inorganic titanium dioxide (TiO2) nanoparticles blend nanofiber
membrane. The presence of PVDF increases the strength and chemical resistance of the
membrane. In addition, the PVP enhances the hydrophilicity and the mechanical strength
of the membrane. The synthesized membrane in this study showed a high separation
efficiency (98.4%) for various emulsions, great antifouling properties with a remarkable
flux recovery rate (FRR 95.68%), and a low total fouling ratio (15.18%) after many cycles.
Thus, the electrospinning method is a remarkable method for the preparation of nanofiber
membranes to be used in water treatment processes [133].

3.2.2. Nanofibers as Filler for Composite Membranes

In the water purification field, thin-film composite membranes (TFC) have received
a lot of researchers’ attention. Using a one-step procedure, a unique TFC membrane
was created based on a layer of polyvinylidene fluoride (PVDF) that formed tree-like
electrospun nanofiber membranes (TENMs) [134]. The TENMs were characterized by a
high-proportion of interconnect pores, high surface porosity, a pore size less than 200 nm,
and low tortuosity, compared to the traditional support membranes. Thus, this is very
promising for the fabrication of high-performance TFC nanofiltration (NF)membranes. The
results of the authors’ study revealed that the rejection rate was greater than 97% against
the MgSO4 solution and 76% against NaCl solution, showing great potentials in the water
purification field [134].

As a result of the remarkable sieving performance for small molecules and ions, lower
energy requirements, and high permeation flux, nanofiltration plays a major role in a
wide range of processes. On the other hand, current nanofiltration membranes (NFMs)
face significant difficulties in improving permeability while keeping a high rejection rate
for divalent (or multivalent) ions. Lv, et al. [135] used an electrospun polyacrylonitrile
nanofiber membrane as a support for a fabricated thin-film composite (TFC) nanofiltration
membrane. The resulting NFMs had high water flux along with an excellent rejection rate
for divalent anions and cations. This study opens the door for highly efficient methods for
the preparation of NFMs to be used in various separation applications [135].

3.2.3. Applications of Nanofiber Membranes in Water Treatment

Catastrophic oily discharges into water are a huge concern for environmental pol-
lution. Effective electrospun nanofiber membranes have attracted great interest due to
their high surface area, high porosity, customizable wettability, and uniform pore distribu-
tion [136]. However, the most frequently used nanofiber membrane modification methods,
including grafting and surface coating, are strictly limited, and thus reduce their use in
several applications. Thus, Du, Wang, Liu, Wang and Yu [133] used a one-step electrostatic
spinning technique to fabricate a polyvinylpyrrolidone (PVP), polyvinylidene fluoride
(PVDF), and inorganic titanium dioxide (TiO2) nanoparticle blend nanofiber membrane.
The addition of these chemicals increased the nanofiber membrane mechanical strength, hy-
drophilicity, and chemical resistance. In addition, the membrane appeared to be oleophobic
in water and hydrophilic in air. The results of this study show that the produced membrane
attained a separation efficiency of 98.4% for several emulsions, distinguishable antifouling
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properties with a high flux recovery rate reaching 95.68%, and a low total fouling ratio up to
15.18%, after its use in several cycles. Thus, the fabricated membrane is an excellent choice
for oil/water separation applications [133]. Xu, et al. [137] synthesized a unique tubular
polyvinyl chloride (PVC) hybrid nanofiber membrane using hydrophobic nanosilica (SiO2)
as the inorganic additive and a polyester (PET) hollow braided tube as the support. The
fabricated membrane appeared to be very efficient in the separation of liquid, because of
its remarkable separation efficiency for various water/oil emulsions. Furthermore, the
membrane showed a distinguishable superhydrophobicity and lipophilicity under oil. In
addition, the membrane had a high permeation flux and a remarkable separation efficiency
greater than 95% under gravity. In addition, the three-dimensional tubular nanofiber mem-
brane showed excellent porosity, mechanical properties, thermal stability, and hydrophobic
stability. All of the above-mentioned properties of the synthesized three-dimensional
tubular nanofiber membrane allow it to be effectively used in oily wastewater remediation
processes [137]. As a continuation to oily wastewater separation methods, Su, et al. [138]
fabricated a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber
(PNF) membrane via a solution blow spinning technology. The fabricated membrane had
high membrane roughness, super hydrophobicity and super lipophilicity. In addition,
the membrane was capable of separating various oil/water mixtures including toluene,
n-hexane, dichloromethane, and kerosene by gravity with a high (toluene/water) separa-
tion efficiency up to 99.99. Furthermore, the membrane had the capability of degrading
organic pollutants in oily wastewater. Thus, the synthesized membrane is fully capable
of being used as an efficient candidate for oil/water treatment processes [138]. Zhang,
et al. [139] fabricated a PVDF/graphene (GE) composite membrane (TPGCM) covered with
micro/nanospheres and tubular nanofibers. The membrane showed high superoleophilic-
ity in air, remarkable separation efficiency, and outstanding recyclability. Thus, it can be
efficiently used in oily water treatment industries [139]. Obaid, et al. [140] fabricated an
electrospun nanofiber membrane (ENM) that is super-hydrophilic and, underwater, super-
oleophobic. The nanocoated-ENMs synthesized in this study showed excellent oil/water
emulsion separation performance. In addition, the nanocoated-ENMs had high flux and
separation efficiency for a surfactant-stabilized oil-in-water emulsion up to 97.5%. Fur-
thermore, the nanocoated-ENMs showed outstanding chemical stability, reusability, and
durability in harsh environments. Thus, the synthesized nanocoated-ENMs are promising
candidates for oil/water emulsion separation [140].

Superwetting interfacial porous membranes with several wettabilities can be widely
used in wastewater treatment. Several factors control membrane wettability including
pH, temperature, and pressure. Yin, et al. [141] used a calcining-spraying method to
prepare a novel electrospun SiNPs/ZnNPs-SiO2/TiO2 (SZST) nanofiber membrane. The
resultant membrane had the capability of changing its wettability in several environ-
ments. The membrane showed a high separation efficiency up to 99% for an oil/water
emulsion. Furthermore, the membrane had excellent chemical stability and corrosion
resistance. Consequently, the synthesized SZST nanofiber membrane in this study can
be efficiently used in various water treatment processes [141]. Venkatesh, et al. [142] fab-
ricated a DTPA/MWCNT/TiO2-polyvinylidene difluoride (PVDF) nanofiber membrane
for oil-in-water emulsion separation. This showed a good underwater oleophobicity and
hydrophilicity, and high separation efficiency for oil-water emulsions. Thus the synthesized
nanofiber membrane in this study has great potential in oil-water treatment processes [142].
Wang, et al. [143] synthesized a deacetylated cellulose acetate (d-CA) nanofiber membrane
for oil/water separation. The fabricated membrane was super-hydrophilic in oil and oleo-
phobic in water and showed high separation efficiency of 99.97% and separation flux of
38,000 L/m2·h. The d-CA nanofiber membranes showed outstanding self-cleaning and
antipollution abilities. Thus, the synthesized nanofiber membrane in this study can be
efficiently used in the separation of oil from water [143]. The usage of electrostatic spinning
to fabricate nanofiber membranes (NFMs) has gained great interest in the treatment of
wastewater due to these membranes having a large specific surface area and high porosity.



Membranes 2021, 11, 995 17 of 36

However, the large-scale application of nanofiber membranes (NFMs) is limited by fouling
and their incapability of removing very small molecular weight dyes. Thus, Li, et al. [144]
fabricated polyacrylonitrile (PAN)-ZnO NFM for efficient dye removal. The results of the
study demonstrated that the (PAN)-ZnO NFM exhibited a very high removal rate of more
than 95% for sunset yellow (YS), methylene blue (MB), Congo red (CR), rhodamine B (RhB),
and methyl orange (MO) with an outstanding water flux (1016 L·m−2·h−1·Bar−1. In addi-
tion, the PAN-ZnO NFM had remarkable mechanical properties and antifouling abilities.
As a result of the excellent abilities that the PAN-ZnO NFM holds, it is fully capable to be
used in dye removal from wastewater [144]. Ozbey-Unal, et al. [145] synthesized hydropho-
bic nanofiber membranes to remove salt and boron from geothermal water using air gap
membrane distillation (AGMD). The results of the study showed that the permeate flux and
the mechanical strength of the membrane were improved. Hence, the membrane was capa-
ble of removing salt and boron from geothermal water [145]. Wang, et al. [146] synthesized
a multifunctional polyvinylidene fluoride-co-hexafluoropropyle (PVDF-HFP)/catechol-
polyethyleneimine (CA-PEI)/Ag/3-glycidyloxy propyltrimethoxysilane (KH560) tubular
nanofiber membrane (TNM) for oil/water separation and dye degradation. The results of
the study show that the fabricated membrane had a high separation rate and separation
efficiency along with a catalytic ability for the degradation of several dyes. Thus, the
membrane is efficient for oil/water separation and water treatment processes [146].

The development of a cost-effective and fast-paced oil/water separation process has
become necessary due to an increase in oil spills and significant organic contamination of
the marine environment. Moatmed, et al. [147] introduced flexible and freestanding hybrid
polystyrene nanofibers as a hybrid membrane for ultrafast oil/water separation. The
authors used several loadings of Fe3O4 nanoparticles and added them to the polystyrene
nanofibers to synthesize a superhydrophobic/super-oleophilic membrane. The results of
the study show that the addition of (Fe3O4) nanoparticles to the membrane improved the
separation efficiency and superhydrophobic properties of light and heavy oils. The synthe-
sized membrane had a very high flux (5000 L·m−2·h−1), along with a separation efficiency
of up to 99.8% for hexane. Thus, the nanofiber membrane synthesized in the current study
can be efficiently used in oil/water separation industries [147]. Choi, et al. [148] aimed
to adsorb heavy metal ions from water by synthesizing a thiol-functionalized cellulose
nanofiber membrane. The membrane showed a high adsorption rate for Cd(II), Cu(II), and
Pb(II) ions. Thus, the synthesized membrane can be used in the remediation of water from
heavy metal ions [148]. Zhang, et al. [149] fabricated an alkali lignin/poly (vinyl alcohol)
(lignin/PVA) composite nanofiber membrane for the adsorption of Safranine T (ST). The
nanofiber membrane showed excellent adsorption ability for Safranine T (ST) from water.
Hence, the synthesized alkali lignin/poly (vinyl alcohol) (lignin/PVA) composite nanofiber
membrane can be used as an efficient adsorbent for dyes from wastewater [149].

The fabrication of highly porous super-hydrophobic and super-oleophilic materials is
very important in the efficient removal of oils and dyes from wastewater. Gao, et al. [150]
synthesized a hybrid nanofiber membrane (FHNM) containing SiO2/polyvinylidene fluo-
ride (PVDF) microspheres for oil separation from water. The results of the study showed
that the FHNM was fully capable of separating oil, and corrosive solutions from wa-
ter. Hence, FHNM is a promising candidate for oil remediation from water [150]. Cao,
et al. [151] prepared a stellate poly(vinylidene fluoride) (PVDF)/polyethersulfone (PES)
microsphere-nanofiber membrane for oil/water separation. The synthesized PES/PVDF
membranes showed excellent ability in the separation of oils from water. Hence, the
PES/PVDF membranes mentioned in this study can be successfully used in oil/water
separation processes [151]. Zhang, et al. [152] synthesized a TiO2 nanofiber membrane
for water treatment. The TiO2 nanofiber membrane appeared to have a high Humic Acid
removal reaching 90%. Thus, the synthesized TiO2 nanofiber membrane is a promising
candidate for water treatment [152]. Tables 7 and 8 below shows the application of several
nanocellulose and nanofibrous membranes in the removal of contaminants from water.
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Table 7. Application of modified nanocellulose membranes in the removal of contaminants for water treatment.

Modified Nanocellulose Method Used Application Removal Efficiency Reference

Amino-modified CNF Infusion
Microfiltration of virus,
bacteria, and metal ions

adsorption

MS2: LRV 4;
E. coli: LRV 6;
Metal ions: -

[153]

TEMPO-oxidized CNC Membrane coating Metal ions adsorption – [154]

BTCA-functionalized CNC Spray coating Metal ions adsorption 58.05% [155]

TEMPO-modified and Unmodified
CNF Membrane deposition Oil-water separation >99% [156]

Meldrum’s acid-modified CNF Impregnation
Dye adsorption and

Microfiltration of
Fe2O3 nanoparticles

>99% dye and
nanoparticles [157]

TiO2-modified CNC In-situ growth Oil-water separation >99.5% [158]

AgNP- and PtNP-grafted CNC phase separation wastewater treatment 92−94% [159]

(tridecafluoro-1,1,2,2-tetrahydrooctyl)-
trichlorosilane-modified

BNC
Supercritical-drying Desalination using

DCMD >99.8% [160]

Thiol-modified CNF Infusion Metal ions adsorption >93% [161]

Alkoxysilanes-modified BNC Conventional drying Water-oil separation >99% [162]

Ag-modified CNF Immobilizations Dye degradation 98% [163]

(3-aminopropyl)
triethoxysilane-modified BNC Freeze-drying Metal ion adsorption 5–100% [164]

Fe3O4 modified CNF In-situ synthesis Dye degradation 94.9% [165]

Table 8. Application of various nanofibrous membranes in the removal of heavy metals from water for water treatment.

Nano Fibrous Membrane Heavy Metal Ion Adsorption Capacity (Mg/G) Reference

Chitosan As(V) 11.2 [166]

Multiwalled carbon
nanotube-Polyethyleneimine/Polyacrylonitrile Pb(II), Cu(II) 232.7, 112.5 [167]

Polyindole Cd(II) 140.36 [168]

Polyvinyl alcohol/Silica Cu(II) 489.12 [169]

Silk fibroin/Cellulose acetate Cu(II) 22.8 [170]

Polyvinyl alcohol/Titanium dioxide/Zinc oxide Th(IV) 333.3 [171]

Chitosan As(V) 30.8 [172]

Polyacrylonitrile/Titanium dioxide Pb(II), Cd(II) 193, 91 [173]

Chitosan/Cellulose acetate Cd(II) 110.48 [174]

Polyvinylpyrrolidone/Silica/3-
Aminopropyltriethoxysilane Cd(II), Pb(II), Ni(II) 157.4, 158.3, 63.0 [175]

Chitosan Cr(VI) 20.5 [176]
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Table 8. Cont.

Nano Fibrous Membrane Heavy Metal Ion Adsorption Capacity (Mg/G) Reference

Polyamide 6/Fe3O4/Oxidized multiwalled
carbon nanotubes Pb(II) 49.3 [177]

Wool keratose/Silk fibroin Cu(II) 2.88 [178]

Polyvinylpyrrolidone/Silica Cr(III) 97 [179]

Chitosan/poly(L–lactic acid) Cu(II) 111.66 ± 3.22 [180]

Polyvinyl alcohol/Titanium dioxide Th(IV) 238.1 [181]

polyethersulfone-poly (dimethyl amino) ethyl
methacrylate Cu(II) 161.3 [182]

Chitosan/Polyvinyl alcohol Cu(II) 90.3 [183]

Polyacrylonitrile/Fe2O3/Sodium dodecyl
sulfate Cu(II), Pb(II), Cd(II) 11.8, 30, 7.5 [184]

Chitosan/Poly(ethylene oxide)/Permutit Cr(VI) 208 [185]

Polyacrylonitrile/γ-AlOOH Pb(II), Cu(II), Cd(II) 180.83, 48.68, 114.94 [186]

Polyethyleneimine/Polyvinyl alcohol Cr(VI) 150 [187]

Polyacrylic acid/Polyvinyl alcohol/Zero-valent
iron Cu(II) 107.8 [188]

Chitosan/Graphene oxide Cu(II), Pb(II), Cr(VI) 461.3, 423.8, 310.4 [189]

Polyethyleneimine/Polydopamine Cu(II) 33.59 [190]

Polyetherimide-Fe3O4/Polyacrylonitrile Cr(VI) 684.93 [191]

Chitosan/Sodium polyacrylate Cr(VI) 78.92 [192]

Polyvinyl alcohol/Chitosan/ZnO Cd(II), Ni(II) 138.77, 50.21 [193]

Polyindole Cu(II) 121.95 [194]

Poly(vinylidene fluoride)/Polydopamine Cu(II) 26.7 [195]

Wool keratin/Nylon 6 Cu(II) 103.5 [196]

Polyacrylonitrile/Cellulose acetate/ZIF-67 Cu(II), Cr(VI) 18.9, 14.5 [197]

Chitosan/Poly(ethylene oxide) Ni(II) 227.27 [198]

Polyvinyl alcohol/NaX zeolite Ni(II), Cd(II) 342.8, 838.7 [199]

Polyacrylic acid/Polyvinyl alcohol Pb(II) 288 [200]

Polyvinyl alcohol/Sb-TBC
Polyvinyl alcohol/Sr-TBC
Polyvinyl alcohol/La-TBC

Pb(II)
91

124
194

[201]

Polyacrylonitrile/Polypyrrole Cr(VI) 74.91 [202]

Cellulose acetate/Polymethacrylic acid Pb(II) 146.21 [203]

Polyacrylic acid/Sodium alginate Cu(II) 591.7 [204]

Polystyrene/Titanium dioxide Cu(II) 522 [205]

Chitosan/Titanium dioxide Cu(II), Pb(II) 710.3, 579.1 [206]

Polyacrylonitrile/Zinc oxide Pb(II), Cd(II) 322, 166 [207]

Polyacrylonitrile@γ-AlOOH Cr(VI) 5 [208]

Ethyl cellulose/Al2O3 Pb(II) 134.5 [209]
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Table 8. Cont.

Nano Fibrous Membrane Heavy Metal Ion Adsorption Capacity (Mg/G) Reference

Silica@Polyvinylidene
fluoride-hexafluoropropylene Cu(II) 21.9 [210]

Polyacrylonitrile/Chitosan Cr(III) 116.5 [211]

MgAl-EDTH-LDH@Polyacrylonitrile Cu(II) 120.77 [212]

Polyvinyl alcohol/Silica Mn(II), Ni(II) 234.7, 229.9 [213]

Polyvinylpyrrolidone/Silica Hg(II) 852 [214]

Chitosan/Poly (ethylene oxide)/Activated
carbon

Cr(VI), Fe(III), Cu(II), Zn(II),
Pb(II) 261.1, 217.4, 195.3, 186.2, 176.9 [215]

Poly (ethylene oxide)/Graphene oxide Cu(II), Cd(II) 44.7, 59.1 [216]

Cellulose/Graphene oxide Hg(II) 13.73 [217]

Polyacrylonitrile/F300
Polyacrylonitrile/MOF808

Poly(vinylidene fluoride)/MOF808
Hg(II), Pb(II)

53.09, 30.19
50.88, 23.98
42.60, 17.19

[218]

Polyacrylonitrile/MOF-808 Cd(II), Zn(II) 225.05, 287.06 [219]

Chitosan/Polyvinyl alcohol/Zeolite Cr(VI) 450 [220]

Chitosan/Fe As(III) 36.1 [221]

Chitosan/Fe3O4/Oxidized multiwalled carbon
nanotubes Cr(VI) 358 [222]

3.3. Two-Dimensional Layer Materials Composed Membrane

In today’s society, studies in the fields of the chemical industry, energy conservation,
and environmental remediation are all confronting significant hurdles in terms of the
usefulness, durability, and performance of essential main materials. It is well known
that complex and advanced carbon-based nanomaterials, such as graphene, will keep on
evolving and accelerating over time. These carbon-based nanomaterials are predicted
to play a key role in resolving several important difficulties and achieving advances
in engineering and technology. These carbon nanomaterials are used in several water
treatment applications such as dye removal, oil separation from water, and heavy metal
ions removal.

In the membrane field, two-dimensional materials (2-D) have evolved rapidly in
chemical engineering research and water treatment applications. It all started in the
year 2010 when Geim and Novoselov were awarded the Nobel Prize in Physics for their
groundbreaking experiment in the two-dimensional graphene [223]. Graphene and other
two-dimensional materials are the main focus of a wide number of studies in several
research fields. According to Whitby [224], graphene has a honeycomb crystal structure
made up of a monolayer of carbon atoms with a one-atomic thickness of sp2 linked
carbon that forms a two-dimensional (2-D) array of carbon atoms arranged in a hexagonal
structure. The unique characteristics of two-dimensional carbon-based materials, especially
graphene, makes them the ultimate choice for membrane materials. These 2-D materials
have a two-dimensional structure with a mono-atomic thickness, high chemical inertness,
and mechanical strength. Typically, graphene has been regarded as an ideal membrane
because of its monolayer structure with mono-atomic thickness. Figure 5 below shows the
three-dimensional structure of graphene.
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The wide variation in 2-D materials opens the door for a lot of possibilities for the
development of two-dimensional-material membranes (2DMMs). Porous graphene, zeolite
nanosheets, and MOFs can all be used to produce nanosheet membranes. The strategic
selection of the aperture size and porosity of in-plane nanopores can significantly im-
prove the membrane’s selectivity and permeation simultaneously. However, nonporous
nanosheets, such as graphene oxide (GO), can be drawn into laminar membranes with
ordered structures. Basically, defect-free graphene is an impenetrable material for all types
of molecules, even for the tiniest ones, thus it is crucial to either drill nano-size pores in
graphene nanosheets or construct the nanosheet into a laminar membrane to give it the
size-sieving feature. Several molecular dynamics simulations and tests have proved the
feasibility of using graphene ultrathin membranes with functionalized nanopores for the
separation of various ions and liquids with a remarkable selectivity and a fast separa-
tion rate. However, large-scale production of graphene nanosheets functionalized with
nanopores is very difficult, since it requires very precise control for correct membrane pore
size and distribution. In addition, as the applied pressure exceeds the critical pressure,
the produced nanopores may undergo a loss of mechanical strength and stability, leading
to catastrophic ripping of the membrane. With the great number of challenges facing the
use of graphene nanosheets functionalized with nanopores, most of the studies primarily
focus on finding an explanation for the transport behavior and sieving mechanism of the
membrane. On the other hand, graphene derivatives, including a graphene oxide (GO)
membrane and reduced graphene, do not face the same problems as graphene nanosheets
with functionalized nanopores. Because of the nanochannels in their membranes, the
nanopores in their nanosheets, and their functional groups, graphene derivatives have
strong selective separation capability.

The presence of the oxygen-containing functional groups in graphene oxide nanosheets
enables them to be formed into a laminar structure membrane using several techniques
such as vacuum filtration, and dip coating. Many studies have focused on improving the
structural stability of graphene oxide nanosheets, such as the addition of metal ions or
molecules to the nanosheets. Furthermore, controlling the graphene-based membranes pore
sizes is a necessity for the exploration of their transport characteristics and their application
in several water treatment fields, such as water desalination. Based on present research
studies, graphene oxide (GO) membranes hold very promising desalination capabilities
owing to their easy fabrication process, low cost of production, and great performance [225].
Chen, et al. [226] synthesized ultrathin graphene membranes with very precise control
of subnanometer pores via coassembling a graphene oxide nanosheet and a polymer on
a porous ceramic substrate. The results of the authors’ study show that the synthesized
graphene membranes have distinguishable molecular-sieving water evaporation prop-
erties that achieve a very high water evaporation flux compared to other conventional
membranes. Thus, the graphene membrane fabricated in this study is a very promising
material for water desalination and other separation processes [226]. The remediation of
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detrimental heavy metals from the marine environment has become the focus of a wide
number of studies as a result of the catastrophic implications that they have on the whole
environment and human body.

Modi and Bellare [227] fabricated a unique nanohybrid that compriseszeolitic imida-
zolate framework-67 nanoparticles-decorated carboxylated graphene oxide nanosheets
(ZIF-67/cGO) incorporated in polyethersulfone (P) hollow fiber membranes (HFMs) to
improve membrane separation efficacy. The results of the authors’ study showed that
the addition of ZIF-67/cGO nanohybrid in HFMs enhanced the physicochemical prop-
erties of the nanocomposite (ZcGP) HFMs, which led to a remarkably high pure water
flux (346.4 ± 11.2 L/m2/h) and an outstanding flux recovery (95.7%). In addition, the
membrane showed high adsorption capacity and removal of Cu2+ and Pb2+ heavy metal
ions from contaminated water. Thus, the membrane provided in this study is an efficient
material for the separation of heavy metals from water [227].

Current studies have used two-dimensional materials other than carbon-based 2-D
materials, such as carbon nitride nanosheets (g-C3N4NSs), 2-D boron nitride nanosheets
(BNNS), and metal-organic framework nanosheets in water treatment applications. In
addition, a few studies have reported the use of mixed matrix membranes that comprise
nanosheets in water remediation. Amid, et al. [228] fabricated ultrafiltration polycarbonate
mixed matrix membranes (MMMs) for the separation of oil from water. Graphene oxide
nanosheets and modified halloysite nanotubes were incorporated by the authors into
the blank membrane. The result of the authors’ study show that after the modification
of the membrane, the oil rejection rate and oil removal efficiency were enhanced. Thus,
the synthesized MMMs in this study are a promising candidate for oil/water separation
processes [228].

Application of Two-Dimensional Layer Materials Composed Membrane in Water
Treatment

Currently, two-dimensional layer materials composed of membranes are becoming
new-generation materials for water treatment applications with high efficiency (Figure 6).
Several studies have focused their search on graphene oxide (GO) membranes for a wide
variety of water treatment applications. The unique two-dimensional GO membrane inter-
layer nanostructure provides a base for a very precise and efficient molecular sieving for
rapid water and ion transport applications. However, there are a few studies concerning
the transport mechanism of water and ions through the GO membrane’s 2-D interlayer
nanochannels. In addition, the GO membrane application in several water treatment
processes is limited by the tradeoff between selectivity and permeability. Li, et al. [229]
investigated the water and ion transport mechanisms in the two-dimensional nanochannels
of the GO membrane for the development of GO membranes for a desalination process.
The authors found there was an interaction between the oxygen-containing groups in the
GO nanosheets and the water/ion, which proved there was successful transport. Thus,
GO membranes was efficiently used in the desalination process [229]. The major indus-
trial effluent that pollutes the environment is oily wastewater. Membrane technology is
widely used in the treatment of oily wastewater to limit its catastrophic effects on the
environment. Zeng, et al. [230] synthesized Hal@MXene-PDA two-dimensional (2-D)
composite membranes via vacuum filtration to investigate their application in oil/water
separation. The Hal@MXene-PDA composite membrane showed higher hydrophilicity
compared to the bare membrane. In addition, the membrane showed high pure water flux
and high oil rejection (petroleum ether and lubricating oil) up to 99.8%. Furthermore, the
modified membrane(M6) also had excellent anti-fouling abilities. Thus, the membrane
fabricated in this study is a promising candidate for oil-water separation [230]. Feng,
et al. [231] synthesized a reduced graphene oxide (RGO)/polydopamine (PDA)/titanium
carbide (MXene) composite via a dopamine modification approach. The authors suction
filtrated the RGO/PDA/MXene composites on a nylon membrane to fabricate a two-
dimensional-two-dimensional (2D-2D) laminated composite membrane. The modified
membrane demonstrated very high removal, greater than 96% for the following dyes:
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Methylene Blue (MB), Methyl Red (MR), Methyl Orange (MO), Evans Blue (EB), and Congo
Red (CO). In addition, the modified membrane also exhibited a very high oil/water sepa-
ration greater than 97% on emulsions. Moreover, long-term cycle experiments conducted
by the authors demonstrated the stability of RGO/PDA/MXene composite membranes.
Thus, the RGO/PDA/MXene composite membranes synthesized in this study is a very
promising applicant in the oil/water separation process and water treatment field [231].
Zhao, et al. [232] synthesized a graphitic carbon nitride nanosheet/reduced graphene
oxide/cellulose acetate composite photocatalytic membrane (g-C3N4 NS/RGO/CA) for
water treatment applications. Under visible light irradiation the membrane exhibited
an outstanding performance in water treatment. The membrane showed high removal
efficiency of Rhodamine B and excellent anti-fouling property. The membrane also had
high removal efficiency for CODMn, UV254, TOC, and bacteria from the surface of the water.
Thus, the synthesized membrane in this study can be successfully used in water treatment
applications [232].
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Small pollutants and organic molecules cause detrimental environmental effects that
destroy the environment and human health. However, their removal from the environment
is very difficult due to their narrow size. Yang, et al. [233] demonstrated single-layer
nanoporous graphene (NPG) membranes for the removal of organic pollutants (methanol,
ethanol, urea, n-nitrosodimethylamine (NDMA), 2-propanol, pyrrole, and phenol) from
water. The nano porous graphene (NPG) membranes exhibited high water permeability
and selectivity against the target organic pollutants. Thus, the proposed membrane in this
study is a promising candidate for the removal of organic contaminants from water [233].
Nanomaterials are mainly incorporated into the membranes to enhance the membrane
permeation flux and oil/water emulsion separation performance. Zhang, et al. [234]
fabricated nanocomposite membranes graphene oxide/halloysite nanotubes (GO/HNTs)
that consisted of GO nanosheets and HNTs. The fabricated membrane exhibited high
permeation flux and rejection rate. In addition, the GO/HNTs composite membrane
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was successfully used for oil-water separation experiments. Consequently, the proposed
membrane in this study is a promising candidate for oil/water separation processes [234].
Table 9 below shows the application of some graphene and its derivatives in the removal
of heavy metals and dyes from water.

Table 9. Application of graphene and its derivatives in the removal of heavy metals and dyes from water for water treatment.

Adsorbent Pollutant Adsorption Capacity
(mg·g−1) Kinetic Model Reference

Reduced graphene oxide (rGO)
decorated with molybdenum

disulfide (MoS2)

Cr(III) 242

- [235]

Co(II) 112
Ni(II) 145
Cu(II) 417
Zn(II) 550
Pb(II) 498

Chitosan reinforced graphene
oxide-hydroxyapatite (CS@GO-Hap)

Congo Red (CR) 43.06
pseudo-second-order [236]Acid Red 1 (AR1) 41.32

Reactive Red 2 (RR2) 40.03

β-CD/PAA/GO nanocomposites methylene blue (MB)
safranine T (ST)

247.99
175.49 Langmuir [237]

MnO2 nanotubes@reduced
graphene oxide hydrogel (MNGH)

Pb2+ 356.37

- [238]
Cd2+ 177.4
Ag+ 138.2
Cu2+ 121.5
Zn2+ 83.9

Graphene oxide embedded calcium
alginate (GOCA)

Pb(II) 602
Pseudo-second-order [239]Hg(II) 374

Cd(II) 181

Silica-decorated graphene oxide
(SGO) Cadmium(II) 43.45 pseudo-second-order [240]

Thiosemicarbazide functionalized
graphene oxide (GO-TSC-GO) methylene blue (MB) 596.642 pseudo-second-order [241]

Fe3O4/SiO2-GO Cd(II)
Pb(II)

128.2
385.1 - [242]

Poly(m-
phenylenediamine)/reduced
graphene oxide/nickle ferrite

nanocomposite

Cr(VI) 502.5 pseudo-second-order [243]

Graphene oxide–silica composite Congo red (CR)
Cadmium(II)

43.45
333.33 pseudo-second-order [240]

Graphene oxide-activated carbon
(GO-AC) composite

methylene blue (MB)
crystal violet (CV)

147
70 pseudo-second-order [244]

Graphene oxide (GO)
Pb2+ 75.41

pseudo-second-order [245]Ni2+ 29.04
Cd2+ 31.35

Reduced graphene oxide (rGO) malachite green (MG) 476.2 pseudo-second-order [246]

GO@SiO2-MSp@SiO2NH2 Pb(II) 323.5 pseudo-second-order [247]
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Table 9. Cont.

Adsorbent Pollutant Adsorption Capacity
(mg·g−1) Kinetic Model Reference

Reduced graphene oxide/Lanthanum
Alluminate nanocomposites

(RGO-LaAlO3)
Methyl orange (MO) 702.2 Pseudo-second-order [248]

Sulfonated graphene oxide (SGO) Pb2+ 415 Pseudo-second-order [249]

MnFe2O4/rGO magnetic nanoparticles
(MRGO) methylene blue (MB) 105 Pseudo-second order [250]

Graphene oxide functionalized
chitosan-magnetite nanocomposite Cu(II) Cr(VI) 111.11

142.85 Pseudo-second-order [251]

Fe3O4/graphene nanocomposite Cr(VI) 280.6 Pseudo-second-order [252]

magnetic CoFe2O4/graphene oxide
(GO)

methylene blue (MB)
rhodamine B (RhB)

355.9
284.9 Pseudo-second-order [253]

Graphene oxide (GO) Pb(II) 555 Pseudo-second-order [254]

Bimetal oxide decorated graphene oxide
(Gd2O3/Bi2O3@GO) nanocomposite Methyl orange (MO) 544 Pseudo-second-order [255]

Thiosemicarbazide-grafted graphene
oxide (GO-TSC) Hg(II) 231 - [256]

3D graphene nanoedges methyl orange (MO) 27.932 - [257]

Porous silica–graphene oxide
nanocomposite(GO-SiO2) Pb(II) As(III) 527

30 Pseudo-second-order [258]

Magnetic CoF/GO MB 157
Pseudo-second-order [259]MV 122

GN-MnO2 Co(II) Cr(III) 403.4
491.98 Second-order-pseudo [260]

Graphene oxide Congo Red (CR) 120.20 second order [261]

Bifunctionalized graphene
oxide/MnFe2O4 magnetic nanoparticles

(PEHA-Phos-GO/MnFe2O4)
Pb(II) 366.4 Pseudo-second-order [262]

4. Conclusions

The fast pace of industrial development and e global population growth is increasing
the demand for several water resources. Thus, high-performance water treatment tech-
nologies are required. Membrane technology is the best technology for water treatment
compared to other conventional technologies. However, application is hindered by several
factors including fouling, selectivity, and permeability. Consequently, the use of materials
to improve the performance of membranes is required.

Nanomaterials have emerged as the new future generation materials for high-performance
membranes that are expected to solve the water crisis issue. The use of nanomaterials in-
creases water permeability and mechanical strength, and reduces fouling of the membrane.

This review paper highlights the incorporation of several nanomaterials in membranes
in various water treatment fields. It is recommended that researchers and scientists should
apply more effort in the field of nanomaterials and try to reduce the overall cost of the pro-
cess. Issues related to the scale up of the production of nanomaterials and their derivatives,
and applications in situ, are also important aspects for future development. In addition,
the toxicity of the nanomaterials themselves may need further investigation.
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