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A B S T R A C T   

This paper aims at developing an artificial intelligence model to forecast the water yield of a 
modified solar distiller integrated with evacuated tubes and an external condenser. The model 
consists of a hybrid long short-term memory (LSTM) model optimized by a moth-flame optimizer 
(MFO) used as a subroutine to obtain the optimal internal parameters of the LSTM model that 
maximize the forecasting accuracy. The model performance was compared with that of the 
standalone LSTM model. Both developed models were trained and tested using experimental data 
of the modified distiller and a conventional distiller. The thermal performance of both distillers is 
also compared in this article. The maximum daily distillate output achieved for the modified 
distiller was 3920 l/m2. The forecasted data of both models were compared using several sta
tistical measures. For all measurements, LSTM-MFO outperformed standalone LSTM. The deter
mination coefficient of the forecasted data using LSTM-MFO reached a high value of 0.999 for 
both solar distillers.   

1. Introduction 

With the rapid growth of the world population and aggravated industrial development, the freshwater shortage has become a 
significant world crisis and human challenge [1]. Only 3% of the water on the earth can be used for domestic and industrial purposes, 
and the remaining amount is saline water [63]. Seawater desalination can help to provide the coastal cities with freshwater [62]. Both 
fossil fuels and renewable energy sources are used to operate seawater desalination systems. However, desalination systems powered 
by fossil fuel sources produce greenhouse gas emissions which cause a significant increase in air pollution. Hence, renewable energy 
sources such as solar energy and geothermal energy are highly recommended for seawater desalination systems [2]. 

Solar distillers are eco-friendly desalination units used in seawater desalination and powered by solar energy. They have a simple 
structure fabricated using a simple manufacturing process [ 64–66]. Nevertheless, they suffer from low distilled water productivity and 
low efficiency [3]. A lot of research has been conducted for improving the efficiency of solar distillers by modifying their design such as 
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single slope distiller [4], single basin distiller [5], tubular distiller [6], double slope distiller [7], distillers with glass cooling [8], double 
basin distiller [9], solar distillers with nanofluids and phase change materials [10–12], stepped distiller, pyramid distiller [13], and fins 
[14]. Furthermore, integrations between solar distillers and different engineering system like evacuated tubes with fins [15], evac
uated tube collector [16], ultrasonic vaporizer [17], photovoltaic modules [18], parabolic trough solar collector [19], external 
condenser [20], heat pipe solar collector [21], solar chimney [22], flat plate collector [23], solar water heater [24], and Fresnel lens 
[25] have been reported. 

Morad et al. [26] experimentally investigated the performance of a conventional solar distiller connected to a traditional solar 
collector with a flat-plate absorber. The distiller produced a high distilled water productivity of 10.06 l l/m2.day when the glass cover 
was cooled down using the flash cooling technique. Abu-Arabi et al. [27] developed a compound desalination unit comprised of a solar 
distiller, with steel pipes filled with sodium thiosulfate pentahydrate, paraffin wax, or sodium acetate trihydrate in the basin and a 
glass cooling, connected to an external collector. The use of an external collector helps in providing additional heat to the water basin, 
which enhances the system’s productivity of 7.4 ml/min was achieved for the hybrid system. Al-harahsheh et al. [28] established a 
solar distiller containing a copper tube filled with phase change material and integrated with an external solar collector. The distilled 
water productivity of the distiller was 4.3 l/day.m2. The solar collector enhances the distilled water productivity of the system by 
providing the system with continuous energy, which improves the performance of the energy storage device and consequently en
hances the system’s productivity at night. A compound desalination unit comprised of a solar distiller and a parabolic trough collector 
has been developed by Amiri et al. [29]. The established system produces more freshwater in summer than in winter by about 55% for 
parabolic troughs with a fixed structure. It reaches 70% if the parabolic trough is connected to a tracking system. A double slope solar 
distiller integrated with a parabolic concentrator, a photovoltaic module, and a coiled heat exchanger was experimentally investigated 
by Arora et al. [30]. The water productivity of the investigated system was augmented by about 65.7% compared with that of a 
standalone solar distiller. A single slope solar distiller equipped with a solar air collector, an external condenser, a spraying unit, and a 
flat plate solar collector was developed by Eltawil and Omara [31]. The daily freshwater productivity of the developed hybrid system is 
improved by about 142% compared to a standalone solar distiller. Sadeghi and Nazari [32] established a hybrid desalination unit 
comprised of a single slope solar distiller, an evacuated tube collector, and a thermoelectric-equipped channel. Compared with a 
standalone solar distiller, the established system ameliorates the energy efficiency and daily distilled water productivity by 117% and 
218%. The integration between a passive single-slope solar distiller and an external condenser enhanced the water productivity of the 
system by 92.3% [33]. The integration between an active solar distiller, an evacuated tube solar collector, and a condenser enhanced 
the water productivity of the system by 66% [34]. 

Modeling hybrid solar desalination systems is a cumbersome problem requiring advanced modeling techniques such as artificial 
intelligence to avoid solving complex mathematical models [35]. Mashaly et al. [36] employed an artificial neural network (ANN) 
approach to model the thermal behavior of solar distiller for different waters. A neuro-fuzzy inference system (ANFIS) model was used 
to predict a double-slope tubular solar distiller [37]. In another study [38], the same research group utilized an ensemble random 
vector functional link model to estimate the distilled water productivity of an active solar distiller integrated with an exterior 
condenser. Santos et al. [39] used local weather data to train the ANN model employed to predict the distilled water productivity of 
commercial solar distillers. Elsheikh et al. [40] developed long short-term memory (LSTM) neural network model to forecast the water 
productivity of a stepped solar distiller. The developed model outperformed the traditional autoregressive moving average technique 
according to the statistical evaluation of the forecasted data. Nevertheless, the traditional artificial intelligence models suffer from 
some inherent problems, such as trapping into local minima. Moreover, selecting the optimal structure and the model’s internal 
parameters is another critical issue that should be investigated to enhance the model’s prediction capability. 

Metaheuristic optimizers [41–43] have been proposed as efficient subroutines that optimize the performance of different artificial 
intelligence predictive models. From literature, numerous metaheuristic optimizers have been used to fine-tuned the artificial intel
ligence models for different engineering problems such as gradient-based optimizer [44], Hunger games optimizer [45], pigeon 
optimizer [46], equilibrium optimizer [47], manta ray foraging optimizer [48], political optimizer [49], parasitism-predation algo
rithm [50], ecosystem-based optimizer [51], flower pollination optimizer [52], and equilibrium optimizer [53]. 

Essa et al. [54] developed a compound artificial intelligence model to forecast the distilled water productivity of an active solar 
distiller connected to an exterior condenser. The model is composed of an ANN model fine-tuned using a metaheuristic optimizer called 
Harris hawks optimizer. The predicted data using the proposed hybrid model had a high correlation coefficient of 0.922 with the target 
data. Bahiraei et al. [55] employed a particle swarm optimizer to optimize ANFIS and ANN models to predict the performance of solar 
distiller integrated with thermoelectric modules. The correlation coefficient increased 0.9508 to 0.9904 for the predicted data of ANN 
and the optimized ANN, respectively. 

In this study, two single-basin single-slope solar distillers are designed, established, and tested under the same meteorological 
conditions. The second distiller is integrated with an evacuated tube and an external condenser. The performance of both distillers is 
compared. Furthermore, an advanced artificial intelligence-based model comprised of an LSTM model and moth-flame optimizer is 
developed to forecast the water productivity of the established solar distillers. The developed model is compared with standalone 
LSTM using statistical evaluation measures. 

2. Experimental methodology 

The experiments were conducted in an atmospheric condition of Gandhinagar, Gujarat, India. One conventional solar distiller 
(CSD) and another modified solar distiller (MSD) was designed and established to compare the performances of the two solar distillers 
[20]. Both CSD and MSD were made from the same wooden materials, having a basin area of 1 m2. To absorb the solar irradiance, the 
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basin surface was painted using black color. The top side of the solar distiller was covered with a transparent glass cover with a 
thickness of 4 mm. In the modified solar distiller, six evacuated tubes and an air-cooled condenser were attached. Pebbles were added 
to the basin of the modified distiller and acted as a sensible heat storage material. In Fig. 1, the schematic and pictorial views of both 
solar distillers are shown. An evacuated was attached to preheat the saline water inside the solar distiller basin, which increases the 
evaporative heat storage capacity of a solar distiller. A condenser was used to maintain the inner vapor pressure of the solar distiller 
and lower the inner glass cover temperature. 

All experiments were conducted from 7:00 a.m. of a day to 6:00 a.m. of the next day for all working days in the climatic conditions 
of Gandhinagar city. In both conventional and modified one solar distiller, water levels were kept constant, having 3 cm. A water level 
indicator was used, which maintains the constant water level in both solar distillers from overhead water tank constant water supplied 
to both distillers. With increasing solar intensity, water inside the solar distiller gets heated. Also, an evacuated tube preheats the water 
inside a modified solar distiller, which increases its basin water temperature and evaporative heat capacity. The more vapor generated 
inside the modified solar distiller moves towards the condensation area where it condenses. The freshwater could be collected from the 

Fig. 1. The experimental setup: a) Schematic, b) Photo [20].  

A.H. Elsheikh et al.                                                                                                                                                                                                    



Case Studies in Thermal Engineering 28 (2021) 101671

4

front and condenser areas in a modified solar distiller. During the experimental work, various operating parameters like ambient 
temperature (Ta), solar irradiance (I), water temperature (Tw), and inner glass cover temperature (Tgi) were measured and recorded 
for all working days. The temperature was measured using a k-type thermocouple sensor. A solarimeter was used to measure the solar 
intensity. A data logger was used to record all of the experimental readings. 

3. Artificial intelligence modeling 

3.1. Long-short-term memory network 

Artificial neural networks (ANNs) have been widely used in predicting and forecasting the responses of different engineering 
processes [56,57]. Long-short-term memory (LSTM) is an advanced, recurrent ANN model which has shown promising applications in 
the deep learning and forecasting field [58]. LSTM can recall old patterns and remember them for a long time due to its innovative 
structure composed of multiple feedback connections. This innovative structure gives LSTM a significant advantage over traditional 
feed-forward ANN. LSTM avoids the vanishing/explosion gradient problem, which is a severe problem of recurrent ANN models via 
varying the self-loop weights by adding input, forgetting, and output gates. Furthermore, LSTM has outstanding advantages for 
forecasting the future behavior of time-series data with nonlinear nature [58]. The network arrangement of an LSTM model is pre
sented in Fig. 2. 

An LSTM unit is composed of three gates and a memory cell. The cell state is considered the core of the unit. It could be represented 
as a conveyor belt that moves through the memory cell carrying the information. The cell state is regulated using input, forgetting, and 
output gates. It is composed of point-wise multiplication operators, tanh and sigmoid activation functions. The sigmoid function has a 
regulated output ranging between 0 and 1. If its value is equal to zero, then no information can pass through the unit. If its value is 
equal to unity, then all information can pass through the unit. 

The forget gate acts as a decision-making unit to determine the trivial information that should be omitted from the cell state. This 
gate comprises a cell state Dt-1, hidden layer ft -1, and an input Xt. The outputs of Dt-1 range between 0 and 1. The forget gate is 
mathematically represented as follows: 

ft = S(Whft− 1 +Uixt + bh) (1) 

The input gate acts as a decision-making unit to determine the information that can be preserved in the cell state. Closing the input 
gate means that all information is prevented from transmission to the memory cell. This distinctive function helps the memory cell to 
preserve data for the following updating process. Two activation functions are used to process the information in this gate, namely 

sigmoid, which is used to select the updated information It, and a tanh function creates a new vector D
⌢

t. The input gate converts the old 
state Dt− 1 into a newly updated stateDt. 

It = S(Uixt +Wift− 1 + bi) (2)  

D
⌢

t = T
(
U c⌢xt +W c⌢ft− 1 + b c⌢

)
(3)  

Dt = It ⊙ D
⌢

t + ft ⊙ Dt− 1 (4) 

The output gate produces the information that flows through the next cell state. 

Ot = S(Uoxt +Woft− 1 + bo) (5) 

Finally, the new state is computed as follows: 

ℤ= T(ct) ⊙ Ot (6)  

Fig. 2. The network arrangement of an LSTM model [59].  
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where Dt, D
⌢

t ℤ, and Ot are cell sate, potential cell state, hidden state, and output gate, respectively; T( ·) denotes the hyperbolic tangent 
activation function; S( ·) denotes an activation function called sigmoid, (b,W,U) are the bias/weight at the gates. 

3.2. Moth-flame optimizer 

Moth-flame optimizer (MFO) is a nature-inspired optimizer that mimics the natural navigation behavior of moths fly [60]. These 
flies maintain a constant angle with the moon during nighttime e and apply an intelligent technique during traveling for long distances. 
Nevertheless, these flies are trapped in a deadly/useless path with a spiral shape when they watch any artificial lights. To model this 
behavior using mathematical tools (Xi, i = 1, 2, …, Z). The positions of moths represent the model parameters, and the optimal 
position of these moths is considered a flame. The algorithm of MFO contains random population (R), moving function (M) that 
describes the navigation of moths in the search space, and the model parameters (P) that are used to terminate the optimization 
process. The algorithm is given as a function of the parameters mentioned above: 

MFO=(R,M,P) (7) 

In the moving function M, the positions of moths are reorganized based on the flames using the following equation: 

Ai =S
(
Ai,Bj

)
=Ci · ebr ⋅ cos(2πt) + Bj (8)  

Fig. 3. The execution procedures of the proposed LSTM-MFO model.  
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where S , Bj, and Ai represent the spiral function. jth flame and ith moth, respectively. Ci denotes the distance between the jth flame 
and ith moth. b denotes a constant used to define the spiral geometry. r is a randomly generated number in the range [-1, 1]. The 
distance Ci is computed as follows: 

Ci =
⃒
⃒Bj − Ai

⃒
⃒ (9) 

The exploration phase of the search space is maintained following an adaptive strategy to reduce the number of flames as follows: 

N = round
(

Nmax − α×
Nmax − 1

ξ

)

(10)  

where N, Nmax , ξ, and α represent the number of flames, total number of flames, total number of iterations, and the current iteration 
number, respectively. 

3.3. Optimized model 

To optimize the performance of LSTM, MFO is used as a subroutine to obtain the optimal parameters of LSTM that maximize the 
forecasting accuracy. The optimized internal parameters of the network are the number of nodes, weights, and the learning rate, 
respectively. The optimization process is executed via minimizing an objective function. This objective function is an error measure 
defines the deviation between the forecasted and target data. Herein, root-mean-square deviation RMSD is used as an objective 
function: 

RMSD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m

∑N

k=1
(xk − x̂k)

2

√
√
√
√ (11)  

where m, xk , and xk denote the number of training data, the value of the target data, and the value of the forecasted data, respectively. 
The execution procedures of the proposed LSTM-MFO model are presented in Fig. 3. The training data is preprocessed and divided 

into two groups, test set, and training set. The parameters of LSTM and MFO are initialized. Then, the LSTM network is trained using 
the training set, and the fitness function is evaluated. The model parameters are updated to minimize the fitness function until the 
stopping criterion is achieved. Once the stopping criterion is reached, The LSTM with the optimal parameters is tested. Various sta
tistical criteria assess its performance. Finally, the optimized LSTM network is employed to forecast the distilled water productivity of 
the solar distillers. 

3.4. Model evaluation criteria 

The accuracy of LSTM and LSTM-MFO models has evaluated the statistical measures tabulated in Table 1 [61]. 

4. Results and discussions 

4.1. Experimental evaluation 

In Fig. 4 (a), hourly variations of ambient temperature with time for all working days are shown. Atmospheric temperature is an 
essential parameter for an experimental result. Atmospheric temperature is varied with solar intensity. With higher solar intensity, a 
higher ambient temperature could be achieved. The slope of ambient temperature for all days is relevant to each other, so it means not 
measure variation in temperature differences could be achieved during experimental work. The highest ambient temperature was 
reached is 42.50 ◦C at 15:00 p.m.; because of the maximum solar irradiance at this time. In the noontime, the maximum temperature 
was achieved for all days. In evening hours, the slope for temperature decreases due to lower solar intensity at evening hours. Higher 

Table 1 
Statistical measures used to evaluate the accuracy of the LSTM and LSTM-MFO models.  

Measure Abbreviation Formula 

Determination coefficient R2 

R2 =
(
∑m

i=1(xi − x)(yi − y))2

∑m
i=1(xi − x)2

×
∑m

i=1(yi − y)2  

Mean absolute error MAE 
MAE =

1
m

∑m

i=1

⃒
⃒xi − yi

⃒
⃒

Mean relative error MRE MRE =
1
ns

∑ns

i=1
di − yi

di  
Root mean square error. RMSE 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(xi − yi)

2

√

Efficiency coefficient EC 
EC = 1 −

∑m
i=1(xi − yi)

2

∑m
i=1(xi − y)2  

Overall index OI 
OI =

1
2

(

1 −

(
RMSE

xmax − xmin

)

+ EC
)

Coefficient of variation COV COV =
RMSE

x
× 100  

Where m, x, and y denote the number of experimental datasets, measured data, and forecasted data. Additionally, xmax and xmin represent the maximum and minimum 
values of the experimental data, respectively, while y and x denote mean values of the forecasted and experimental data, respectively. 

A.H. Elsheikh et al.                                                                                                                                                                                                    



Case Studies in Thermal Engineering 28 (2021) 101671

7

ambient temperature increases the water temperature of the basin, which enhances the distillate output of the solar distiller. 
Fig. 4 (b) shows the hourly variations of solar intensity with time for all working days. Here seven days of experimental readings are 

taken. In the morning and evening hours, the solar intensity remains lower. So during these hours, lower ambient temperature could be 
achieved. The figure shows that after 11:00 a.m., solar irradiance increases and reaches its peak value at 14:00 p.m. At this time, a 
higher basin water temperature may be obtained. The maximum solar intensity that could be achieved was 830 W/m2 at 13:00 p.m. 
The higher value of solar irradiance increases the distillate output of the solar distiller. In night hours, due to the absence of solar 
intensity, the distillate output becomes lower, which lowers the efficiency of a solar distiller. 

Higher the basin water temperature increases the distillate productivity of solar distiller. Fig. 4 (c) shows the hourly variations of 
basin water temperature for conventional solar distiller (CSD). In a conventional solar distiller, the basin water temperature is varied 
with time. In the morning hours, the temperature becomes lower due to lower ambient temperature and solar intensity. In the af
ternoon time, a higher water temperature may be obtained. The maximum water temperature achieved for conventional solar distiller 
was 63.75 ◦C at 15:00 p.m. The water temperature in CSD remains lower compared to modified solar distiller (MSD). It happens due to 
the existence of evacuated tubes and condensers in a modified solar distiller. The lower water temperature could be achieved during 
the evening hours because of lower solar intensity in the sky. It also decreases the nocturnal productivity of solar distiller. 

In Fig. 4 (c), an hourly variation of basin water temperature for modified solar distiller is also shown. Six evacuated tubes were 
connected to the modified solar distiller to achieve a higher water temperature and preheat the saline water inside the basin area. The 
maximum saline water temperature achieved for MSD and CSD was 69.21 ◦C and 63.75 ◦C, respectively, at 15:00 p.m. In MSD, water 
temperature is higher than that of CSD by about 6 ◦C. Thanks to the use of evacuated tubes with MSD, the higher basin water tem
perature could be reached; it also increases the evaporative heat transfer coefficient of MSD compared to CSD. From the figure, it could 
be found that the lines of water temperature for all days are varied with each other. The water temperature for the modified solar 
distiller changed day by day during experimental work. Also, in the night hours, the water temperature in MSD is higher than that of 
CSD. 

Higher inner glass cover temperature increases the top heat losses of a solar distiller, which decreases the distillate productivity and 
efficiency of a solar distiller. In Fig. 4 (d), variations of inner glass cover temperature for CSD are shown. In CSD, the inner glass cover 
temperature remains higher compared to MSD. From the figure, it could be found that the inner glass cover temperature shows the 
maximum for all days during noon hours. The single maximum inner glass cover temperature for CSD was 55.93 ◦C at 15:00 p.m. The 
higher inner glass cover temperature decreases the daily distillate productivity of CSD. To increase the productivity of solar distiller, 
the inner glass cover temperature should be lower. Fig. 4 (d) shows the hourly variations of inner glass cover temperature for a 
modified solar distiller. The higher water temperature and lowered inner glass cover temperature increase the distillate productivity of 
solar distiller. In MSD, an air-cooled condenser was attached to maintain this temperature difference, which reduces the temperature of 
the inner glass cover in MSD. The highest inner glass temperature achieved for MSD was 54.93 ◦C at 15:00 p.m., which was lower than 
CSD. In MSD, a higher water temperature could be obtained by preserving the inner glass cover temperature. In an MSD condenser, 

Fig. 4. Variations of: a) ambient temperature; b) solar irradiance; c) water temperature; d) glass temperature.  
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decrease the pressure inside the basin area by condensing the excess vapor of the basin surface and lowering the temperature of the 
glass cover. It also increases the volumetric heat transfer capacity of MSD. During night hours, the excess vapor is released by a 
condenser. It maintains the basin water temperature higher for MSD compared to CSD. 

The higher water temperature and lower inner glass cover temperature decrease the distillate output of the solar distiller. To in
crease the distillate output, this temperature difference should be minimal. In Fig. 5, hourly variations of cumulative distillate output 
for conventional solar distiller are shown. From the figure, it can be found that distillate output is continuously increased. The 
maximum total distillate output achieved for CSD was 2430 l/m2 in a single day. During night time the distillate output of CSD remains 
lower due to heat losses from the top of the glass cover. The total distillate output of CSD remains lower compared to MSD. In Fig. 5, 
hourly variations of the total distillate output of MSD for all working days. From the figure, it could be seen that distillate output 
increases with time. The maximum distillate output achieved for MSD was 3920 l/m2 in a single day, higher than CSD. In MSD, at
tachments of evacuated tubes and condensers give more distillate than CSD. Evacuated tubes increase the temperature of basin water 
and its evaporative heat transfer capacity; also condenser maintains the inner glass cover temperature of MSD. The higher water 
temperature and lower glass cover temperature achieved in MSD increase its day and night performance. In MSD, the condenser stores 
the excess heat during the daytime and performs better during night hours; hence nocturnal distillate output could be increased. 
Compared to CSD, MSD provides higher nocturnal productivity. 

4.2. Forecasting of distilled water productivity 

Distilled water productivity of the CSD and MSD was forecasted using two developed models, namely LSTM and LSTM-MFO. The 
experimental data of the distilled water productivity of the distillers for five days was used as a time series fed to both models. First, the 
developed models were trained using the experimental data of five days for both solar distillers. Then the distilled water productivity of 
one subsequent day was forecasted using the trained models. The models were evaluated using different statistical measures by 
comparing forecasted data with the experimental ones. Eight statistical measures were computed during the models evaluation. Once 
the models succeed in forecasting the distilled water productivity during the test stage with an acceptable deviation from the 
experimental data, they may be utilized to forecast the distilled water productivity of the investigated distillers. 

For both investigated distillers, 120 datasets (five days) were used to train the LSTM and LSTM-MFO models, and 24 datasets (one 
day) were used to test the models. The convergence of the LSTM-MFO is a little bit faster than that of standalone LSTM for both solar 
distillers, as shown in Fig. 6. In Fig. 7 (a), the blue data points are experimental, and the green data points are forecasted during the teat 
stage. A reasonable agreement is observed between the green data points and blue ones in the green region and Fig. 7 (c). This 
agreement encourages us to use the LSTM model to forecast future data points shown in the red region. A better agreement between the 
experimental and forecasted data is observed in the case of LSTM-MFO, as shown in Fig. 7 (b, d). The error between the forecasted and 
experimental data in the case of LSTM and LSTM-MFO is demonstrated in Fig. 7(e) and Fig. 7 (f), respectively. The error of LSTM-MFO 
ranges between − 0.010–0.005, which is lower than that of LSTM, which ranges between − 0.15 and 0.001. The RMSE of LSTM-MFO 
(0.0053) is lower than that of LSTM (0.0608). The low error of LSTM-MFO compared with LSTM reveals the role of MFO to optimize 
LSTM parameters to maximize its accuracy. The same conclusion could be drawn from Fig. 8 for MSD. The accuracy of LSTM-MFO is 
better than that of standalone LSTM. As shown in Fig. 8(a–d), the forecasted data points are in a better agreement with experimental 
ones compared with that of LSTM during the test stage shaded in green. The error of LSTM-MFO ranges between − 0.075–0.076, which 

Fig. 5. Variations of accumulated distilled water productivity.  
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is lower than that of LSTM, which ranges between − 0.1 and 0.12. The RMSE of LSTM-MFO (0.026) is lower than that of LSTM (0.055). 
The statistical evaluation of the LSTM and LSTM-MFO models for CSD and MSD using different statistical measures is tabulated in 

Table 2. LSTM-MFO has a higher R2, EC, and OI of 0.999, 0.999, and 0.996–0.998, respectively, compared with standalone LSTM, 
which are 0.997–0.998, 0.997–0.997, and 0.984–0.991, respectively. The higher values of R2, OI, and EC, which approach the unity, 
point out the higher performance of the models. Also, it indicates the outperformance of LSTM-MFO compared with standalone LSTM. 
On the other, LSTM-MFO has lower RMSE, MRE, MAE, COV and CRM of 0.056–0.061, − 0.021–0.008, 0.040–0.052, 2.396–4.004, and 
− 0.001 to − 0.033, respectively, compared with that of standalone LSTM which are 0.005–0.027, 0.003–0.052, 0.004–0.021, 
0.344–1.131, − 0.002–0.009, respectively. The lower values of RMSE, MRE, MAE, COV, and CRM, which approach the zero value, 

Fig. 6. Convergence curves of LSTM and LSTM-MFO.  

Fig. 7. The forecasted and experimental hourly distilled water productivity for the CSD: a) data series and forecasted yield using LSTM; b) data series and forecasted 
yield using LSTM-MFO; c) forecasted yield using LSTM in test stage; d) forecasted yield using LSTM-MFO in test stage; e) error of LSTM; f) error of LSTM-MFO. 
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indicate the higher performance of the models. From an analysis of these measures, it can be declared that LSTM-MFO has a higher 
accuracy than standalone LSTM to predict the distilled water productivity of CSD and MSD. That is due to the vital role of MFO to 
determine the optimal model parameters of the LSTM network that maximize the forecasting accuracy. Therefore, LSTM-MFO is 
suggested to forecast the performance of the investigated solar distillers. 

5. Conclusion 

This study developed an optimized LSTM model to forecast the freshwater productivity of a standalone single-slope solar distiller 
and a hybrid solar distiller connected to evacuated tubes and an external condenser. Both solar distillers were established and tested 
under Indian metrological conditions. The freshwater productivity of the modified solar distiller was improved by 177% compared 
with that of a standalone solar distiller. The improved freshwater productivity of the modified distiller over the standalone solar 
distiller is attributed to 1) the role of evacuated tubes to harvest more solar energy; 2) the role of the external condenser to condensate 
more water vapor. The optimized LSTM model consists of a conventional LSTM model fine-tuned using a moth-flame optimizer. The 
optimized LSTM outperformed the standalone LSTM due to the vital role of a moth-flame optimizer to find the optimal parameters of 
the LSTM model that maximize the forecasting accuracy. LSTM-MFO has a higher R2, EC, and OI of 0.999, 0.999, and 0.996–0.998, 

Fig. 8. The forecasted and experimental hourly distilled water productivity for the MSD: a) data series and forecasted yield using LSTM; b) data series and forecasted 
yield using LSTM-MFO; c) forecasted yield using LSTM in test stage; d) forecasted yield using LSTM-MFO in test stage; e) error of LSTM; f) error of LSTM-MFO. 

Table 2 
Statistical assessment of the LSTM and LSTM-MFO models.    

R2 RMSE MRE MAE COV EC OI CRM 

CSD LSTM 0.997 0.061 − 0.021 0.052 4.004 0.994 0.984 − 0.033 
LSTM-MFO 0.999 0.005 0.003 0.004 0.344 0.999 0.998 − 0.002 

MSD LSTM 0.998 0.056 0.008 0.040 2.396 0.997 0.991 − 0.001 
LSTM-MFO 0.999 0.027 0.052 0.021 1.131 0.999 0.996 0.009  
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respectively, compared with standalone LSTM, which are 0.997–0.998, 0.997–0.997, and 0.984–0.991, respectively. On the other, 
LSTM-MFO has lower RMSE, MRE, MAE, COV and CRM of 0.056–0.061, − 0.021–0.008, 0.040–0.052, 2.396–4.004, and − 0.001 to 
− 0.033, respectively, compared with that of standalone LSTM which are 0.005–0.027, 0.003–0.052, 0.004–0.021, 0.344–1.131, 
− 0.002–0.009, respectively. The higher values of R2, EC, and OI, which approach the unity, as well as the lower values of RMSE, MRE, 
MAE, COV, and CRM, which approach the zero value, indicate the higher performance of the optimized LSTM model. 
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