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a b s t r a c t

The use of hybrid systems for electrification of remote areas has been increased dramatically in recent
years, and the optimal sizing of these systems is a significant challenge for cost-effectiveness and
reliability. This paper aims to propose a predictable planning framework that increases the renewable
energy penetration (REP) rate and minimizes the annualized cost of the system (ACS) considering CO2
emission and different loss of power supply probability (LPSP). Due to the unavailability of precise
weather data in remote areas, an intelligent weather forecasting scheme is developed using an adaptive
neuro-fuzzy process based on fuzzy c-means clustering technique to estimate the solar radiation,
wind speed, and ambient temperature. This paper also examines various evolutionary algorithms and
compare the collected result of the proposed Multi-Verse Optimizer (MVO) with other meta-heuristic
methods in terms of total annualized cost with different LPSP, and REP amounts. Moreover, to assess
the impact of wind speed, solar irradiation, the lifespan of battery energy storage systems, and the
fuel price of diesel engine generators on optimal sizing problem, a sensitivity analysis is performed
for different values of REP and LPSP. The effectiveness of the proposed approach is verified using a
realistic case study in the Sistan & Balouchestan province of Iran. Simulation results illustrate that
using photovoltaic panels, wind turbine generators, battery energy storage systems, and diesel engine
generators (PV/WTG/BESS/DEG) is the most cost-effective strategy resulting in a 96.13% decrease of
CO2 emission compared to DEG system at REPmin = 97% and LPSPmax = 1%. Moreover, the growth of
fuel cost causes an increase in the production of renewable energy resources (RESs) and a decrease
in the usage of diesel engine generators. Consequently, for LPSPmax = 10% and REPmin = 91%, and 50%
rise in the price of fuel, the number of DEG drops to zero, and the optimal number of PV and BESS
increase from 311 and 172 to 411 and 228, respectively.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In remote areas, electricity users face various challenges as-
ociated with security of energy delivery, and high operational
nd transmission costs due to economic and geographic rea-
ons (Salameh et al., 2020; Alturki et al., 2021). In this regard,
conomic planning and optimal sizing of hybrid power systems
ave been recently proposed as an effective approach to achieve
ost-efficient and reliable energy delivery systems in remote ar-
as (Razmjoo et al., 2019; Jamshidi and Askarzadeh, 2019). The
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optimum size of a hybrid system is a deterministic decision that
can be obtained using available energy sources while considering
several operational constraints, such as satisfying load demand
and reducing costs (Khan et al., 2019). These available energy
sources, e.g., diesel engine generators (DEG), battery energy stor-
age systems (BESS), photovoltaic (PV) panels, and wind turbine
generators (WTG), are often integrated into the hybrid systems
for improving both the reliability and resiliency (Bayani et al.,
2021a,b). However, the dependency of wind speed and solar
irradiation impose conservative constraints in the calculation of
optimal solutions in a power system with the high renewable
energy penetration (REP) rate. In this paper, different types of
distributed energy resources (DERs), namely, PV, WTG, BESS, and
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Nomenclature

P rat
WTG The rated power of wind turbine gener-

ator
PWTG The output power of wind turbine

generator
NWTG Number of wind turbine generators
EWTG The total generated power of wind

turbine generators
ρ The density of air
Cp Power coefficient of wind turbine gen-

erator
v Wind speed at hub height
vcut−in The cut-in of wind speed
vr The rated wind speed
vcut−out The cut-out of wind speed
H Height of tower where wind turbine

generator has been installed
Nmin

WTG Minimum number of wind turbine gen-
erators

Nmax
WTG Maximum number of wind turbine

generators
P rat
PV The rated power of photovoltaic panel

PPV The output power of photovoltaic panel
NPV Number of photovoltaic panels
EPV The total generated power of photo-

voltaic panels
NOCT Normal operating cell temperature of

photovoltaic panel
Iref Solar radiation at reference condition
Tref Standard temperature
I Solar irradiation
Tcell The temperature of cell
α The temperature coefficient of photo-

voltaic panels
T Ambient temperature
Nmin

PV Minimum number of photovoltaic pan-
els

Nmax
PV Maximum number of photovoltaic pan-

els
EBatt Level of charge of battery
σ The rate of self-discharge of battery
ηBatt The efficiency of charge state of battery
NBatt Number of battery energy storage sys-

tems
Nmin

Batt Minimum number of battery energy
storage systems

Nmax
Batt Maximum number of battery energy

storage systems
Emin
Batt The minimum level of charge of battery

energy storage system
Emax
Batt The maximum level of charge of battery

energy storage system
SratBatt The nominal capacity of battery energy

storage system
DOD Maximum depth of discharge of battery

energy storage system
ConsDEG The fuel consumption of diesel engine

generator
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AD, BD Coefficients of the consumption curve
P rat
DEG The nominal output power of diesel

engine generator
PDEG The power of diesel engine generator
NDEG Number of diesel engine generators
Nmin

DEG Minimum number of diesel engine gen-
erators

Nmax
DEG Maximum number of diesel engine gen-

erators
ηInv Efficiency of inverter
ELoad Load demand
Eren The total generated power of renewable

energy sources
CCk Capital cost related to each unit
ACCk Annual capital cost related to each unit
CRF Capital recovery factor
ir Annual real interest rate
tl Lifetime of project
i Nominal interest rate
f Annual inflation rate
RCkrep Replacement cost related to each unit

that needs to be replaced
ARCkrep Annual replacement cost related to each

unit that needs to be replaced
SFF Sinking fund factor
trep The lifespan of each unit that needs to

be replaced
Pfuel Cost of fuel per liter
FC Cost of fuel consumption of diesel en-

gine generators
AFC Annual fuel cost related to diesel engine

generators
AO&MC Annual operation & maintenance cost

related to each unit
LPSPmax Maximum loss of power supply reliabil-

ity
REPmin Minimum renewable energy penetra-

tion
NI (Ui) The normalized inflation rate of U

matrix
r1, r2, r3, r4 Random numbers in the range of 0 and

1
Xj The jth parameter of the best universe
xji The jth parameter of ith universe
lbj The lower bound of jth variable
ubj The upper bound of jth variable
WEPmin Minimum value of wormhole existence

probability factor
WEPmax Maximum value of wormhole existence

probability factor
l The current number of iterations
L The maximum number of iterations
p The exploitation accuracy
m The number of vector data of FCM
c The number of cluster of FCM
µij Membership degree of data point j in

cluster i
q The index of fuzziness fluctuating in the

range [1, ∞]
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dij Euclidean distance between ci and xj
Oi,1 The first layer output of ANFIS
X, Y Incoming signals
wi Normalized firing strength

Subscript

n The number of universes
d The number of optimization parameters

of MVO

Abbreviation

WTG Wind Turbine Generator
PV Photovoltaic
BESS Battery Energy Storage System
DEG Diesel Engine Generator
FC Fuel Cell
DER Distributed Energy Resource
DG Distributed Generation
RES Renewable Energy Source
NPC Net Present Cost
TNPC Total Net Present Cost
TAC Total Annual Cost
EENS Expected Energy Not Supplied
ELF Equivalent Loss Factor
LOLE Loss Of Load Expected
LCE Levelized Cost of Energy
REP Renewable Energy Penetration
LPS Loss of Power Supply
LPSP Loss of Power Supply Probability
MVO Multi-Verse Optimizer
DA Dragonfly Algorithm
GOA Grasshopper Optimization Algorithm
GWO Grey Wolf Optimization
SSA Salp Swarm Algorithm
GA Genetic Algorithm
PSO Particle Swarm Optimization
HS Harmony Search
MILP Mixed Integer Linear Programming
EHO Elephant Herding Optimization
CSA Crow Search Algorithm
CS Cuckoo Search
WEP Wormhole Existence Probability
TDR Traveling Distance Rate
ANN Artificial Neural Network
FIS Fuzzy Inference System
RBF Radial Basis Function
ANFIS Adaptive Neuro-Fuzzy Inference System
FCM Fuzzy C-Means
ANFIS-FCM Adaptive Neuro-Fuzzy Inference System

based on Fuzzy C-Means
MF Membership Function
MSE Mean Square Error
RMSE Root Mean Square Error
STD Standard Deviation

DEG as a backup generation unit are deployed. From this per-
spective, resolving a multifaceted planning framework, which can
increase the REP rate by minimization of the annualized cost of
the system (ACS) is a vital issue. It is worth mentioning that ACS
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also considers carbon emission and different loss of power supply
probability (LPSP).

Several hybrid energy systems, which have been studied in
recent papers, utilize DERs, e.g., wind, solar, hydrogen, battery,
and diesel generator, to resolve several challenges of electricity
demand effectively (Babaei et al., 2021; Alberizzi et al., 2020).
The problem of the economic sizing of a hybrid power sys-
tem with a non-convex nature has been addressed through ef-
fective methods in the literature (Foley et al., 2010). The ex-
isting methods consider a wide range of modern hybrid sys-
tems including hybrid optimization model for electric renewables
(HOMER) (Das and Zaman, 2019; Haratian et al., 2018), linear and
non-linear programming (Roy, 1997; Mohammadi et al., 2017),
mixed integer linear programming (MILP) (Alberizzi et al., 2020),
genetic algorithm (GA) (Suresh et al., 2020), particle swarm opti-
mization (PSO) (Askarzadeh and dos Santos Coelho, 2015), ele-
phant herding optimization (EHO) (Ashraf et al., 2020), crow
search algorithm (CSA) (Ghaffari and Askarzadeh, 2020), cuckoo
search (CS) (Sanajaoba Singh and Fernandez, 2018), and har-
mony search (HS) (Maleki and Askarzadeh, 2014b). Furthermore,
meta-heuristic algorithms have received a high surge of atten-
tion due to unparalleled capabilities at different levels of hybrid
power systems (Bala and Siddique, 2009; Maleki and Askarzadeh,
2014a). For instance, in Hossain et al. (2019), authors have de-
veloped slow-paced algorithms to facilitate the analysis of cost
function and reduce the electricity cost of a microgrid by about
12% compared to other proposed methods; however, Multi-Verse
Optimizer (MVO) in many works , such as extracting several
parameters of PV arrays and task scheduling in cloud comput-
ing environments, yields a promising performance in terms of
convergence speed, minimization of execution time, cost, and
best solutions compared to other mentioned optimization algo-
rithms (Ali et al., 2016; Shukri et al., 2021). Recently, different
participation indexes, which can increase the reliability of power
systems considerably, have been also reported. As an example,
authors in Sanajaoba and Fernandez (2016) have considered total
system cost as an objective function and defined two standards
including loss of load expected (LOLE) and expected energy net
supplied (EENS) as reliability. In Askarzadeh (2017), the crow
search algorithm is applied in PV/WTG/BESS/Tidal hybrid system
to minimize the net present cost (NPC) by considering equiva-
lent loss factor (ELF). Besides, LPSP is a commonly used reliable
factor in a wide range of recent investigations (Ghorbani et al.,
2018; Maleki and Pourfayaz, 2015). It is worth mentioning that
different criteria and optimization algorithms can be proposed to
improve the reliability of a hybrid system based on the type of
geographical location and facilities.

Environmental emission is another significant factor that has
recently received a high level of attention in the analysis of hybrid
systems. In Hafez and Bhattacharya (2012), optimal sizing is mod-
eled based on the lifecycle costs and environmental constraints
using HOMER Pro software. In Movahediyan and Askarzadeh
(2018), objective functions of optimal planning are defined ac-
cording to three different criteria, i.e., carbon emission, total net
present cost, and LPSP in a hybrid system. Moreover, to make
a confident prediction of the future performance of hybrid sys-
tems during various operational conditions, sensitivity analysis
of parameters can be introduced as a practical approach in sev-
eral studies. This sensitivity analysis method is implemented for
several operating conditions, i.e. wind speed, solar irradiation,
CO2 emission, the price of fuel, the capital cost of the system
component, and load consumption. However, sensitivity analysis
has not been represented in the presence of different values of
REP and LPSP in a hybrid system. In addition, the effect of battery
lifespan on optimal sizing problem has not been broadly studied
in previous studies. As a result, in this project, we try to address
these concerns in a remote area efficiently.
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Despite many papers have focused on the capabilities of RESs
o improve the performance of recent hybrid systems, there is
lack of cost-effective and reliable models suitable for distant
reas (Zhang et al., 2018). In this regard, a cost-effective hybrid
odel can be firstly introduced in our project, and then avail-
ble resources are selected based on optimization approaches to
tudy both technical and economic aspects of this distant hybrid
ystem. In Zhang et al. (2019), authors have deployed a new
enewable energy source, i.e., hydrogen energy systems, which
an result in a considerable increase in the total cost of hybrid
ystems. Using such a DER makes the hybrid system costly for
emote areas of a country. Another group of researchers have
eglected the long-term optimal planning and focused on the
ptimum combination of RESs in hybrid power systems for a
hort time span (Ranjbar et al., 2014; Ranjbar and Kouhi, 2015;
toppato et al., 2014). In fact, a significant number of works have
nvestigated a small snapshot of an operating moment of hybrid
ystems which may not proper for a local area. Furthermore,
everal studies have ignored the impact of weather forecasting
nd climatic changes in their optimal sizing (Kazem et al., 2013).
ince the weather data for renewable energies in remote areas are
ot accessible with ease, intelligent weather forecasting methods
ust be introduced to improve the precision of our optimal
izing of hybrid systems. One of a modified type of an adaptive
euro-fuzzy inference system (ANFIS), which is widely used in
rediction mechanisms, is an ANFIS-FCM (fuzzy c-means) ap-
roach. This method has been received a special consideration in
everal prediction procedures such as anticipation of earthquake
agnitude and thermal error in industrial automation (Mirrashid,
014; Abdulshahed et al., 2015a). In fact, the fuzzy c-means
FCM) technique could decrease the number of rules and network
omplexity, and consequently increase the speed of prediction
echanisms.
In this manuscript, we suggest a wide range of distributed

nergy resources (DERs) to constitute a hybrid system owing to
indy areas and deserts in the under-study province. Addition-
lly, MVO algorithm is deployed to improve the optimization
rocess of our hybrid system planning. Inspiring from the above
iscussion, the intermittent nature of wind speed and solar irra-
iation could add various uncertainties to our hybrid system. As
result, the mentioned data must be efficiently predicted using
NFIS-FCM. In this regard, the main contribution of this paper
ith considering above-mentioned concerns, i.e., the speed of
ptimization process of planning framework and lack of weather
ata in remote areas, can be listed as follows:

• Addressing previous deficiencies in the modeling of renew-
able energies by considering the potential of distributed
generations and designing a specific optimal sizing for this
area.

• Proposing an adaptive neuro-fuzzy method according to
fuzzy c-means (ANFIS-FCM) clustering technique to tackle
the problem of data unavailability for solar radiation, wind
speed, and ambient temperature in remote areas.

• Proposing an optimal scheme of an off-grid hybrid system
to study the desired values of LPSP and REP, CO2 emission,
and total system cost based on different RESs combina-
tions. To resolve this economic-environmental-energy siz-
ing problem, one of the efficient meta-heuristic algorithms,
i.e., Multi-verse optimizer (MOV) is introduced in a realistic
case study in the Sistan & Balouchestan province of Iran.

• Conducting a sensitivity analysis for variation of wind speed,
solar radiation, the lifespan of battery energy storage sys-
tems, and the cost of fuel to assess the optimal sizing prob-
lem in case of different values of REP and LPSP.
5650
2. Hybrid system configuration

A case study that represents a distant area in Sistan & Balouch-
estan province is adopted so as to investigate the performance
of the proposed technique. The layout of this system includ-
ing its several energy sources, e.g. wind turbine generator, so-
lar parks, battery, and diesel engine generator is illustrated in
Fig. 1. In this scheme, wind turbine generators and solar pan-
els are responsible for producing clean energy and meeting the
load demand. Battery energy storage systems can store extra
electricity energy and guarantee the reliability and stability of
the hybrid system in a fairway, and diesel engine generator
can play a supportive role during various operational conditions
in this hybrid system. Moreover, a high percentage of control-
lable and non-controllable appliances deploy AC power, conse-
quently, inverter-based topologies are introduced to meet this
need practically.

2.1. Modeling of wind turbine generator

Recently, WTG has witnessed significant growth for two im-
portant reasons; (i) WTG can reduce the volume of air pollution
and remove environmental concerns to a great extent, and (ii)
WTGs are generally considered as efficient economic sources of
energy. Wind speed could change greatly due to its fluctuating
nature at different times of the day. In this regard, the out-
put power related to wind turbine generators is proposed as a
variable energy source in integrated hybrid systems. From this
perspective, WTG starts to produce electrical energy when wind
speed exceeds the cut-in value. In the following, WTG generates a
constant value, when wind speed exceeds the rated speed and if
the speed of wind reaches the cut-out value, it will stop smoothly
to prevent any damage to the mechanical structure (Lee and
Wang, 2008). This nominal output power can be expressed as
follows (Abazari et al., 2020):

P rat
WTG =

1
2

× ρ × A × Cp × v3 (1)

where in Eq. (1), ρ, A, Cp, and v are the density of air (kg/m3),
the swept area of wind turbine (m2), WTG power coefficient, and
nominal wind speed (m/s), respectively.

The power generated of WTG during various operational con-
ditions, can be calculated at any wind speed by the following
equation (Maleki and Pourfayaz, 2015; Arzani et al., 2021):

PWTG (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 v (t) < vcut−in

av(t)3 − bP rat
WTG vcut−in < v (t) < vr

P rat
WTG vr ≤ v (t) ≤ vcut−out

0 v (t) > vcut−out

(2)

where two parameters (a, b) in (2) can be defined as:

a = PratWTG/
(
v3r −v3cut−in

)
(3)

b = v3cut−in/
(
v3r −v3cut−in

)
(4)

v(t) = v0(t) × (H/H0)
α (5)

In Eqs. (2) to (5), v is the wind speed at hub height (m/s), H is
the height of the tower (m) where this WTG has been installed,
α is the wind shear coefficient which is assumed to be 0.25 in
this paper and P rat

WTG is defined as the rated power of the wind
turbine generator (watt) based on Eq. (1). In addition, vr , vcut−in,
and vcut−out represent the rated, cut-in, and cut-out of wind speed
(m/s), respectively.

In this hybrid system, assuming NWTG to be the number of
wind turbine generators, the total generated power can be ex-
pressed as:

EWTG (t) = NWTG × PWTG(t) (6)
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Fig. 1. The layout of a hybrid power system in a remote area of Sistan & Balouchestan province.
.2. Modeling of photovoltaic panels

Solar radiation must be considered in a pragmatic way to
resent a proper PV model in a hybrid system. As a result, the
utput active power related to solar cells can be obtained by the
ollowing equation (Maleki and Pourfayaz, 2015):

PV (t) = P rat
PV × (I(t)/Iref ) ×

[
1 + α

(
Tcell(t) − Tref

)]
(7)

where solar irradiation is indicated as (I(t)) in (W/m2) and Iref
is the solar radiation at reference condition (1000 W/m2). Tref
is defined as the standard temperature (◦C) and α is the PV
temperature coefficient. In addition, the temperature of cell (Tcell)
can be introduced as (Maleki and Pourfayaz, 2015):

Tcell (t) = T (t) + (I(t)/800) × (NOCT − 20) (8)

It is important to mention that NOCT is proposed as the normal
operating cell temperature in ◦C and T (t) is defined as a function
which states ambient temperature.

If the number of solar panels is NPV , the total power which is
generated through solar energy can be given by:

EPV (t) = NPV × PPV (t) (9)

2.3. Modeling of battery energy storage system

One of the advantages of using a low-inertia hybrid system
is to consider the effect of energy storage systems, i.e. BESSs,
along with DERs. The storage systems can be deployed with non-
dispatchable DER units like wind farms and solar parks to turn
them into dispatchable ones. Under this circumstance, the battery
starts to store electrical energy, if the total power is greater than
demand on the load side. On the contrary, if the total of generated
energy is less than demand, the battery will enter the discharge
state to keep a balance between demand and consumption rate.
5651
For the aforementioned states, the charge and discharge level of
this battery energy storage in a hybrid system can be expressed
by the following equations (Maleki and Askarzadeh, 2014b):

For charge state:

EBatt (t) = EBatt (t − 1) × (1 − σ) +
(
(EPV (t) × ηInv

+EWTG (t) × η2
Inv

)
− ELoad(t)/ηInv

)
× ηBatt (10)

For discharge state:

EBatt (t) = EBatt (t − 1) × (1 − σ)

−
(
ELoad(t)/ηInv −

(
EPV (t) × ηInv + EWTG (t) × η2

Inv

))
/ηInv

(11)

In the above-mentioned equations, EBatt (t) and EBatt (t − 1)
represent the level of charge of the battery at t and t − 1,
respectively. The rate of self-discharge can be defined as σ and
presented based on the hour unit. Furthermore, ηInv and ηBatt
indicate the efficiency of the inverter and charge state of the
battery, respectively. In Eq. (11), the discharge efficiency of the
battery energy storage system is assumed as unity. Finally, ELoad(t)
in both equations is a symbol of load demand.

2.4. Modeling of diesel engine generator

In this hybrid system, the diesel engine generator is proposed
as a fast power injection component to prevent any deficiency or
blackout on the load side. This type of energy generation starts
to produce electricity, when WTG and PV cannot participate in
the energy production scheme and the state of the battery energy
storage system is low. The fuel consumption of DEG (Liter), which
depends on output power and several coefficients of the con-
sumption curve (AD and BD), mentioned in references (Jamshidi
and Askarzadeh, 2019; Ashraf et al., 2020):

Cons t = A × P rat
+ B × P (t) (12)
DEG ( ) D DEG D DEG
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In this equation, P rat
DEG is the nominal DEG output power and

DEG (t) is defined as a power of DEG at time t .

. Optimization problem formulation

.1. Cost modeling

In this manuscript, the minimization of annualized cost of
he system is considered as the main objective function. The
otal cost consists of annual capital cost (ACC), annual operation
nd maintenance cost (AO&MC), annual replacement cost (ARC)

as well as annual fuel consumption cost (AFC) related to diesel
engine generator. For this hybrid system, which comprises differ-
ent renewable energy sources, the annualized cost of this hybrid
system can be calculated as:

ACS = ACC + AO MC + ARC + AFC (13)

In this analysis, replacement costs are only considered for the
attery, DEG, and inverter. The main reason is that the lifespan
f the wind turbine generators, as well as photovoltaic panels,
s relatively long and equal to the lifetime of this project in
he Sistan & Balouchestan province. From this perspective, the
ongevity of battery, inverter, and DEG is 5 years, 10 years, and
5,000 h, respectively.

.1.1. Capital cost
The amount of annual capital cost related to each unit (WTG,

V, BESS, DEG, and inverter) in this system considering the instal-
ation costs in the site can be calculated as below (Ashraf et al.,
020):

CCk = CCk × CRF (ir, tl) (14)

here CCk is the capital cost in relation to each unit and CRF (ir, tl)
is defined as a capital recovery factor to change the initial capital
cost into the annual capital cost as well. This factor generally is
associated with the annual real interest rate (ir) and longevity of
the project (tl):

CRF (ir, tl) = (ir×(1+ir)tl)/((1+ir)tl−1) (15)

It should be noted that the annual interest rate is associate
with a nominal interest rate (i) and annual inflation rate (f ) as:

ir = (i−f )/(1+f ) (16)

.1.2. Replacement cost
In this case study, several units including battery, diesel en-

ine generator, and inverter may be replaced with new energy
roduction units. As a result, the annual replacement cost of such
adgets can be obtained by the following equation (Ashraf et al.,
020):

RCkrep = RCkrep × SFF (ir, trep) (17)

where RCkrep is the replacement cost of mentioned units and
SFF (ir, trep) is defined as sinking fund factor which is associated
with the annual real interest rate (ir) and longevity of each
assumed units (trep) (Ashraf et al., 2020).

SFF
(
ir, trep

)
= ir/((1+ir)trep−1) (18)

.1.3. Cost of fuel consumption
The hourly cost of fuel consumption can be presented by the

ollowing statement (Maleki and Askarzadeh, 2014b):

C t = P × Cons (t) (19)
( ) fuel DEG
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In this manuscript, Pfuel is referred to as the cost of fuel per
iter. Consequently, the annual fuel cost for this diesel engine
enerator is calculated as:

FC =

8760∑
t=1

FC(t) (20)

.2. Objective function

In this case study, the main aim is to optimize the number
f renewable energy sources and diesel engine generators in a
ybrid system to minimize the annualized cost. As a result, the
bjective function related to this case study can be defined as:

in[ACS (NPV ,NWTG,NBatt ,NDEG)]

= Minimize

⎡⎣( ∑
k=PV ,WTG,Batt,DEG,Inv

Nk × (ACCk + AO MCk)

)

+

⎛⎝ ∑
krep=Batt,DEG,Inv

Nkrep × ARCkrep

⎞⎠+ AFC

⎤⎦ (21)

Several constraints should be satisfied for WTG, PV, BESS as
well as diesel engine generator system in order to optimize this
objective function effectively:

NWTG = Integer Nmin
WTG ≤ NWTG ≤ Nmax

WTG (22)

NPV = Integer Nmin
PV ≤ NPV ≤ Nmax

PV (23)

NBatt = Integer Nmin
Batt ≤ NBatt ≤ Nmax

Batt (24)

NDEG = Integer Nmin
DEG ≤ NDEG ≤ Nmax

DEG (25)

At different times, the level of the charge state of BESS must
be satisfied as below:

Emin
Batt ≤ EBatt (t) ≤ Emax

Batt tϵ[1, 8760] (26)

where Emin
Batt and Emax

Batt indicate the minimum and maximum level
of charge of BESS, respectively. The maximum level of charge
is defined based on the nominal capacity of BESS (SratBatt ) and
the minimum level can be acquired by the maximum depth of
discharge (DOD) in order to extend the longevity of BESS and
protect against unwanted events (Khan et al., 2019):

Emin
Batt = (1 − DOD) × SratBatt (27)

3.2.1. Reliability, environmental and renewable energy penetration
constraints

The LPSP, as a metric, can be leveraged to evaluate the reli-
ability of the system practically. This criterion is a number that
varies between 0 and 1. The LPSP of 0 means that the demand will
be satisfied completely and the LPSP of 1 states the condition in
which no portion of demand is satisfied. As a consequence, LPSP
can be presented based on a specific time interval (Jamshidi and
Askarzadeh, 2019):

LPSP =
∑T

t=1 LPS(t)/
∑T

t=1 ELoad(t) (28)

Another concept, i.e., loss of power supply (LPS(t)), is intro-
duced when the total generated energy and the amount of energy
saved in the battery is less than the amount of load demand:

LPS (t) = ((ELoad(t)−EDEG(t))/ηInv) −
(
EPV (t) × ηInv + EWTG (t) × η2

Inv

)
−
(
EBatt (t − 1) − Emin

Batt

)
(29)

The mass of emitted CO2 can be calculated as follows (Jamshidi
and Askarzadeh, 2019):

CO = (CC×EDEG)/1016.04 (30)
2w
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here CC , EDEG, and CO2w indicate carbon content
0.6078 kg/kWh), the total power which is generated by DEG,
nd carbon weight (ton), respectively.
Another new concept, which can play an important role in

sing the full potential of installed RESs and generating clean
nergy, is renewable energy penetration. A high percentage of or-
anizations are enforced to supply a portion of their consumption
sing renewable energy sources. Consequently, this parameter is
efined to satisfy the pre-defined desired value as discussed in
haffari and Askarzadeh (2020):

EP =
∑T

t=1

(
EPV (t)×ηInv+EWTG(t)×η2Inv

)
/
∑T

t=1

(
EPV (t)×ηInv+EWTG(t)×η2Inv+EDEG(t)

)
(31)

In a hybrid system, a consumer generally defines the concept
f LPSPmax during optimization technique. To guarantee the relia-
ility of the system, one constraint should be considered in order
o satisfy the maximum loss of power supply reliability:

PSP ≤ LPSPmax (32)

Furthermore, other constraint on CO2 is defined to satisfy the
aximum desired carbon weight as follows:

O2w ≤ COmax
2w (33)

Moreover, another constraint is considered for renewable en-
rgy penetration:

EP ≥ REPmin (34)

here REPmin means minimum the desired share of this type of
lean energy.

. Energy management strategy

The proposed strategy to achieve an acceptable performance
an be introduced and categorized in four conditional energies
ituations as follow:

1. If the calculated generated power by Eq. (35) from re-
newable energy sources is more than load demand, extra
power can be stored in BESS until the level of charge of
BESS reaches Emax

Batt . By BESS reaching to this level of charge,
the excess power generation is sent to the dump load. It
should be a notion that renewable energy sources are a
combination of WTGs and PV panels.

2. In this case, power generation of renewable energy sources
is lower than load demand. But the available energy of BESS
and generated power from RESs which are calculated by
Eq. (36), are sufficient for load demand. Therefore, BESS
will enter the discharge state, and BESS’s level of charge
is updated by Eq. (11).

3. If generated power of RESs and the available energy of
BESS is lower than the load demand, diesel engine gener-
ators will start to generate electricity in order to meet all
the considered requirements. This case is divided into the
following two cases:

3.1. If calculated power generation by Eq. (37) from RESs
and DEGs meets load demand, the extra generated
power is used to charge BESS. The mentioned charg-
ing will continue till the state level reaches Emax

Batt . By
reaching this level, the excess power generation is
sent to the dump load.

3.2. If generated power of RESs and DEGs are lower than
load demand, BESS will enter the discharge state.
Consequently, the level of charge of BESS is updated
by Eq. (11).
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4. If total power generated by PV panels, WTGs, DEGs, and
BESS, with regard to the minimum permissible discharge,
are not able to supply all load demand, some of the load
is not supplied. Therefore, the loss of power supply (LPS)
occurs.

Finally, if the fitness function including objective function and
constraints is satisfied, optimization will be completed. These sce-
narios have been summarized and depicted through a flowchart
in Fig. 2.

Ere(t) =
(
EPV (t) × ηInv + EWTG (t) × η2

Inv

)
× ηInv (35)

Ere+b (t) = η2
Inv × EBatt (t − 1) × (1 − σ) + Eren (t) − η2

Inv × Emin
Batt

(36)

Ere+d (t) = Eren (t) + (NDEG × PDEG (t)) (37)

4.1. Different types of optimization tools

In this practical project, the economic sizing of our hybrid
system can be achieved by minimizing the annualized cost of the
system, a reliable amount of LPSP, and the maximum possible
of REP. To provide superior optimization tools, several advanced
meta-heuristic methods, e.g. grasshopper optimization algorithm
(GOA) (Saremi et al., 2017), grey wolf optimization (GWO) (Mir-
jalili et al., 2014), dragonfly algorithm (DA) (Mirjalili, 2016), salp
swarm algorithm (SSA) (Mirjalili et al., 2017), are introduced, and
their performance is compared to multi-verse optimizer (MVO)
for different simulation scenarios.

4.1.1. Multi-Verse optimizer
Multi-Verse theory is derived from the big bang theory, which

states that the universe has been created due to a tremendous
explosion. This nature-inspired algorithm originates from multi-
verse theory in physics, and it is based on three concepts in cos-
mology, including white hole, black hole, and wormhole. White
holes, which are the main factor, are able to create the universe.
Black holes can drag everything towards themselves because of
gravitational forces and wormholes are able to keep contact with
different universes together as well as moving objects towards
different universes. The universe can be expanded in space prac-
tically due to its constant rate which is referred to as inflation.
It is important to mention that for achieving a balance between
different universes, all black, white, and wormholes should be in
contact with each other. According to the relationship between
the inflation rate and holes, the following rules are applied to the
universes for the optimization process (Mirjalili et al., 2016):

1. The probability of the existing white hole can increase by
raising the inflation rate.

2. The probability of the existing black hole can decrease by
raising the inflation rate.

3. In a universe, white holes send objects with high inflation.
4. In a universe, black holes receive objects with a low infla-

tion rate.
5. Without considering the inflation rate, objects can move

towards the best universe randomly by wormholes.

All the above-mentioned terms can be modeled mathemati-
cally by adopting the roulette wheel mechanism. The universe
can be arranged at each iteration for selecting white holes by use
of the roulette wheel approach. From this perspective, this paper

follows steps to deploy this algorithm effectively:
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Fig. 2. Flowchart of the proposed energy management strategy.
t

x

Considering n and d as the number of universes and parame-
ters, respectively, U matrix can be assumed as below:

U =

⎛⎜⎜⎜⎜⎝
x11 x21 · · · xd1
x12 x22 · · · xd2
...

...
...

...

1 2 d

⎞⎟⎟⎟⎟⎠ (38)
xn xn · · · xn
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The jth parameter of the ith the universe is calculated from
he following equation:

j
i =

{
xjk r1 < NI (Ui)

xji r1 ≥ NI (Ui)
(39)

where, Ui is referred to as the ith universe and NI (Ui) indicates
the normalized inflation rate. In addition, r1 is a random number
in the range of 0 and 1.

The wormhole channels are fixed between a new and the
best universe in order to keep the probability of enhancing the
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Fig. 3. Flowchart of multi-verse optimizer algorithm.

Fig. 4. Integration of fuzzy c-means clustering and ANFIS structure in weather
forecasting.

inflation rate by the following equations:

xji =

⎧⎪⎨⎪⎩
{
Xj + TDR ×

((
ubj − lbj

)
× r4 + lbj

)
r3 < 0.5

Xj − TDR ×
((
ubj − lbj

)
× r4 + lbj

)
r3 ≥ 0.5

xji r2 ≥ WEP

, r2 < WEP

(40)

where Xj is the jth parameter of the best universe, lbj and ubj
are the lower and upper bounds of jth variable, and r2, r3 and
r4 are random numbers in the range of 0 and 1. In the following,
an important factor, i.e. wormhole existence probability (WEP) is
defined to increase linearly during the optimization process. An-
other important factor, traveling distance rate (TDR) is introduced
to talk about the object which is deported by the wormhole to
the best universe. WEP and TDR can be obtained by the following
mathematical equations:

WEP = WEPmin + l × ((WEPmax−WEPmin)/L) (41)

TDR = 1 −
(
l1/p/L1/p

)
(42)

In Eqs. (36), (37), l and L are referred to as the current and
maximum number of iterations, and p indicates the exploitation
accuracy, which is assumed to be six in this study. In addition, the
numerical value of WEPmin and WEPmax is 0.2 and 1, respectively.
The flowchart of the MVO algorithm is illustrated in Fig. 3.
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4.2. Iterative weather forecasting

Recently, renewable energies have brought many benefits to
hybrid systems and consumers; however, RESs suffer from a
crucial problem, i.e. dependency of their output power on the
weather conditions, that is a time-variant and uncertain trend.
One of the most effective approaches to address this concern is
to propose an intelligent weather forecasting. It is often argued
that two different methods can be deployed in case of weather
forecasting, i.e., direct and iterative. In iterative forecasting, there
is a single forecaster with one output node and predicted values
will be defined as inputs for following forecasts. In contrary, in
the direct forecasting, the number of output nodes are related to
the forecast horizon period, and subsequent forecasts are directly
obtained from forecast outputs. Broadly speaking, selection of
iterative forecasting leads to negligible prediction errors, which
may be created by various factors at the local and regional levels
such as natural disasters and failure in meteorological devices;
however, a direct forecasting often incurs significant rounding
errors (Zhang et al., 2019).

Among existing iterative methods of weather prediction, the
artificial neural network (ANN) has received a high level of
consideration for different meteorological parameters. The main
drawback of this iterative training method such as ANN is that
as the number of inputs increases, the number of rules will also
grow dramatically. Moreover, various meteorological events like
floods, thunder and failures in devices can add noise and false
data to the training process of the neural network. From this
perspective, a pre-process clustering technique is proposed to
remove outlier data and improve the performance of the neural
network in case of forecasting.

Considering above concerns, we tried to address effects of
various destructive factors indirectly by integration of (i) a Fuzzy
C-Means (ANFIS-FCM) clustering technique, and (ii) Adaptive
Neuro-Fuzzy Inference System, which is illustrated in Fig. 4,
during our weather forecasting idea. In order to show howmeteo-
rological parameters can be estimated through iterative weather
forecasting, fuzzy C-means is firstly introduced and the perfor-
mance of ANFIS is described in the following sub-sections as
follows:

4.2.1. Fuzzy c-means clustering
Fuzzy c-means (FCM) is a soft clustering method that allows

existing data to move to specific clusters, with a degree specified
by a membership grade. Unlike K-means methods, which are
known to be a hard-clustering technique, the FCM algorithm is
defined as a fuzzy mode of the K-means algorithm. This technique
does not include sharp boundaries between different clusters and
allows partial belongings of each data to various groups rather
than a single group. In fuzzy C-means clustering, m vectors data{
xj, j = 1, 2, . . . ,m

}
is divided into c cluster within three steps.

In the first step, the centers of clusters {ci, i = 1, 2, . . . , c} are
randomly selected. In step-2, the membership matrix of each data
point is calculated as follows (Abdulshahed et al., 2015b):

µij = 1/
∑c

k=1(dij/dkj)
2/(q−1) (43)

where µij is referred to as the membership degree of data point
j in cluster i, and q indicates the index of fuzziness fluctuating in
the range [1, ∞], and dij =

ci − xj
 is defined as the Euclidean

distance between ci and xj. In the step-3, if the following objective
function becomes lower than the specific lower limitation, this
algorithm is stopped:

J
(
U, c1, c2,...,cc

)
=

c∑
Ji =

c∑
.

c∑
µ

q
ijd

2
ij (44)
i=1 i=1 i=1
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Fig. 5. The architecture of adaptive neuro-fuzzy inference system.
Finally, the following equation is deployed to obtain updated
uzzy cluster centers by this statement:

i =

(∑m
j=1 µ

q
ijxj
)
/
(∑m

j=1 µ
q
ij

)
(45)

In this paper, the FCM algorithm is deployed to separate our
training data pairs into several uniform subsets, i.e., member-
ship functions with different centers. In fact, several challenges
in meteorological parameters such as failures in meteorological
devices, floods and storms can be considered as outlier or noise
data in this prediction process. In this regard, we firstly use
this clustering technique to remove this data and afterward, the
remaining data will be transferred to ANFIS section for learning
process (Abdulshahed et al., 2015b).

4.2.2. Adaptive neuro-fuzzy inference system
In recent years, ANFIS has received a high level of consid-

eration as a powerful modeling technique. This method is able
to combine learning laws of ANN with fuzzy rule theory in the
presence of the adaptive framework. In fuzzy logic theory, a
fuzzy inference system (FIS) is defined as a well-known applica-
tion where membership functions (MFs) of this application are
defined based on trial and error. In this stage, ANN is able to
determine parameters of MFs effectively to achieve an acceptable
performance. Using the ANN method to develop the parameters
of a fuzzy model allows the system to learn from a given set
of training data. It is important to mention that the architecture
of ANFIS, which contains five layers, includes several fixed and
adaptive nodes. The layers of ANFIS architecture, which is shown
in Fig. 5, are as follows:

In the first layer, the main purpose is to produce fuzzy values
from input signals. This layer, which is often referred to as the
fuzzification layer, converts input signals into fuzzy values which
can be shown in the following statements:

O1,i=µAi (X) , for i = 1, 2 (46)

O1,i = µBi (Y ) , for i = 3, 4 (47)

where the variables X and Y are considered as incoming sig-
als. Other variables like i and 1 are symbols of the node and
ayer numbers, respectively. Furthermore, µ is referred to as the
embership function which can be different shapes and Oi,1 is

the output of each layer in this fuzzy process. The second layer
is responsible for producing output from the multiplication of
incoming fuzzy signals:

O2,i = wi = µAi (X) × µBi (Y ) , i = 1, 2 (48)

In the third layer, the normalization of firing strengths from
the previous layer is carried out accordingly:

O3,i = wi = wi/(w1+w2) (49)

here wi is the normalized firing strength parameter. In the
ollowing, the fourth layer is introduced as the defuzzification
5656
Table 1
Error comparison of different weather forecasting methods.

Methods MSE RMSE Mean of error STD of error

Solar
radiation

ANN 0.00542 0.07363 −0.00585 0.07340
RBF 0.00590 0.07680 −0.00129 0.07680
ANFIS-FCM 0.00388 0.06227 0.00099 0.06226

Temperature
ANN 1.15622 1.07528 0.01597 1.07522
RBF 5.98207 2.44583 −0.04771 2.44550
ANFIS-FCM 0.82973 0.91089 −0.01531 0.91082

Wind
speed

ANN 2.82199 1.67988 −0.06386 1.67990
RBF 4.13170 2.03266 −0.20817 2.03177
ANFIS-FCM 2.66197 1.63155 −0.01538 1.61831

phase which can calculate defuzzification layers as follows:

O4,i = wifi = wi (piX + qiY + ri) , i = 1, 2 (50)

In the final phase, the last layer tries to calculate the overall
output through summing incoming signals (Sabahi et al., 2009):

O5 =

∑
i

wiFi = (
∑

i wiFi)/(
∑

i wi) (51)

This iterative weather forecasting is performed to provide
future data according to two different stages. The first stage is
related to offline training data and the second stage is presented
to depict its online performance. At the first stage, historical
day-ahead weather data related to previous years such as so-
lar irradiation within a time interval is deployed to learn the
proposed ANFIS system. When the training of ANFIS is done,
the prediction of future meteorological parameters, e.g., radiation
(W/m2), temperature (◦C) and wind speed (m/s) can be carried
out using a previous learning stage. It is important to say that
this prediction is carried out until the defined error becomes less
than our intended threshold.

To depict the performance of our proposed method in compar-
ison with ANN and radial basis function (RBF) methods, predicted
results of solar radiation, ambient temperature, and wind speed
for the last week of the previous year are shown in Figs. 6, 7,
and 8, respectively. It is clear that ANFIS-FCM method is able
to track historical data with the least amount of error that con-
firms the superiority of this prediction method for meteorological
parameters used in our hybrid systems. This amount of small
deviation between real data and proposed method is a result of
combination of FCM and ANFIS that can decrease outlier historical
data considerably.

Besides, Table 1 provides information about several criteria
such as mean square error (MSE), root mean square error (RMSE),
mean of error, standard deviation (STD) of error, that confirms
ANFIS-FCM has a lower error compared to the mentioned meth-
ods.
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Fig. 6. Prediction of solar radiation data.

Fig. 7. Prediction of ambient temperature data.

Fig. 8. Prediction of wind speed data.

. Simulation results and discussion

.1. Assessment of the best meta-heuristic method

In this study, after obtaining the weather forecasting infor-
ation, which was presented in the previous section, the profile
f load is illustrated in Fig. 9. Three hybrid energy scenarios,
ncluding PV/WTG/BESS/DEG, WTG/BESS/DEG, and PV/BESS/DEG
onsidering both REP and LSPS criteria are evaluated and the
esults from optimization tools are given during the combination
f renewable energy sources in different diagrams. Several meta-
euristic algorithms are deployed to minimize the annualized
ost of the system and satisfy LPSPmax and REPmin. The param-
ters of the hybrid system and coefficients of meta-heuristic
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Table 2
The parameters of the hybrid system related to this project.
Project parameters Battery [5, 20, 27]

i (%) 5 SratBatt (kWh) 1.3
f (%) 2 Voltage (V) 12
Lifetime (Year) 20 σ 0.0002

PV panel [5, 20, 27] DOD 0.8

P rat
PV (kW) 0.12 ηBatt (%) 85

α −0.0037 E initial
Batt (%) 80

NOCT 33 CapitalCost($) 130
Tref (◦C) 25 O&MCost ($/year) 0
Iref (W/m2) 1000 Lifespan (year) 5

η (%) 12 Diesel engine generator [4, 18]

CapitalCost ($) 614 P rat
DEG (kW) 1.8

O&MCost ($/year) 0 ADEG 0.2461
Lifespan (year) 20 BDEG 0.08145

Wind turbine generator[3, 5, 20, 27] CapitalCost ($) 550

P rat
WTG (kW) 1 O&MCost ($/h) 0.144

vcut−in (ms ) 2.5 Lifespan (h) 15000
vcut−out (ms ) 13 Pfuel($/l) 1.18

vr (ms ) 11 Inverter/ Converter [20, 27]

H (m) 20 P rat
inv/conv (kW) 3

α 0.25 ηInv (%) 95
CapitalCost ($) 3200 CapitalCost ($) 2000
O&MCost ($/year) 100 O&MCost ($/year) 0
Lifespan (year) 20 Lifespan (year) 10

Table 3
Defined parameters of all meta-heuristic algorithms.
Parameters of optimization

Nrun 30 Iteration 1000
Nmax
PV 1500 Nmax

WTG 500
Nmax
Batt 1500 Nmax

DEG 50

MVO GOA

Universes 100 Searchagents 100
WEPmax 1 Cmax 1
WEPmin 0.2 Cmin 0.00001
p 6 f 0.5

DA l 1.5

Searchagents 100 SSA

Cmax 0.9 Searchagents 100

Cmin 0.5 GWO

β 1.5 Searchagents 100

algorithms have been given in Tables 2 and 3, respectively. The
maximum and minimum bounds of decision variables for WTG
change from 0 to 500, for PV varies from 0 to 1500, for the
battery is a range from 0 to 1500 and for DEG is a range from
0 to 50. At the first step, it is supposed that the state of charge
of batteries is 80% of the nominal value. The results of different
optimization tools for PV/WTG/BESS/DEG system are listed in
Table 4, and different criteria including maximum, minimum,
mean, and standard deviation of the annualized cost of the system
have been recorded over 30 independent runs of each algorithm,
along with various loss of power supply probability (LPSPmax) and
different renewable energy penetration (REPmin). Moreover, the
rank of each algorithm is shown in order to compare the assumed
meta-heuristic algorithms in terms of different criteria.

Table 4 compares the performance of different meta-heuristic
algorithms. It can be observed that multi-verse optimizer deliv-
ers the best performance over 30 runs. In this combination, all
distributed generations, namely, PV/WTG/BESS/DEG participate
practically. It is important to mention that during the imple-
mentation of this site, one of the main objectives is to deploy
renewable energy sources considering their maximum potential
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able 4
efined parameters of all meta-heuristic algorithms.
Optimization algorithm Parameters ACS ($) Rank

LPSPmax (%) Average

0 1 3 5 10 1 1 1 1
REPmin (%)

95 95 95 95 95 91 93 97 100

DA

Min 57788.1 54785.7 52616.3 50173.4 45968.1 53495.2 53936.0 56587.5 65954.2 54589.4 4
Max 58333.2 62198.3 52816.8 50538.6 51464.4 53686.3 60158.5 57374.7 66623.6 57021.6 4
Mean 57993.0 56408.1 52719.0 50303.3 47146.7 53571.5 55277.8 56930.5 66160.8 55167.9 4
STD 227.2 2395.3 91.8 154.9 2415.1 79.2 2733.7 288.3 270.0 961.7 4

GOA

Min 57551.0 54785.7 52632.0 50185.6 45285.4 53495.2 53946.6 56846.3 66006.4 54526.0 3
Max 62223.8 69767.8 69223.4 50428.2 45626.8 53751.8 54011.4 57978.1 82120.4 60570.2 5
Mean 58302.5 55760.4 56046.0 50352.2 45482.8 53619.0 53964.9 57300.1 78103.3 56547.9 5
STD 972.9 2791.6 7367.8 106.0 153.3 100.2 26.3 439.3 6790.9 2083.1 5

GWO
Min 58969.4 54785.7 52616.3 50156.7 45262.8 53624.6 54555.0 56571.9 65919.1 54717.9 5
Max 59120.7 54805.2 52632.0 50185.6 45965.1 53702.0 54562.5 56587.5 65933.1 54832.6 3
Mean 59017.1 54794.2 52619.4 50169.1 45403.2 53666.4 54556.5 56578.5 65921.9 54747.4 3
STD 64.7 8.4 7.0 12.4 314.1 39.0 3.4 7.5 6.3 51.4 2

SSA

Min 57569.6 54785.7 52616.3 50156.7 45262.8 53443.2 53936.0 56571.9 65919.1 54473.5 2
Max 58481.3 55075.7 52630.7 50259.8 45287.6 53706.5 53941.8 57271.0 65946.8 54733.5 2
Mean 57930.2 54797.9 52622.0 50195.9 45277.4 53567.0 53940.6 56734.8 65934.5 54555.6 2
STD 230.4 81.6 7.9 43.9 10.4 120.1 2.6 303.5 12.0 90.3 3

MVO

Min 57509.3 54785.7 52379.8 50156.7 45262.8 53416.7 53936.0 56482.5 65919.1 54427.6 1
Max 57890.0 54801.6 52393.9 50200.6 45280.0 53505.4 53965.6 56494.2 65991.9 54502.6 1
Mean 57653.7 54740.5 52382.6 50165.4 45270.1 53437.3 53946.0 56484.8 65944.7 54447.2 1
STD 93.4 41.1 6.3 19.6 6.2 38.6 11.4 5.2 19.1 26.8 1
P
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Fig. 9. Hourly load profile for one year (8760 h).

wing to financial issues as well as the debilitated road network
f this province in Iran. From this perspective, the amount of
enetration of renewable energy production changes from 91%
o 100% in order to deploy the highest capacity of existing PV,
TG, and battery banks. Using DEG, as an ancillary source of

nergy generation in this area, can be beneficial. This generation
nit helps the hybrid systems to minimize the annualized cost of
he system in a realistic way, although the DEG backup genera-
ion unit is not considered as an independent energy production
ource due to the high price of fuel and the lifetime of DEG. In
ddition, based on data given in Table 4, the amount of LPSPmax
aries from 0% to 10% in order to guarantee the reliability of
he system in this remote area. To indicate the performance of
ach algorithm and select the best optimizer among suggested
nes, the rank of each algorithm, which varies from 5 to 1 with
egard to a desirable operation of each algorithm, is defined based
n the average standard. This important standard, i.e. Average,
tates the mean value of 9 obtained results for each index. When
ll mentioned algorithms are compared on this economic sizing
or different values of LPSPmax and REPmin, MVO delivers the best
erformance in terms of the average of the minimum ($54427.6),
n average of the maximum ($54502.6), an average of the mean
5658
Fig. 10. Convergence characteristics of different meta-heuristic algorithms SSA,
GWO, GOA, MVO, and DA at LPSPmax = 1%, REPmin = 97% (Strategy:
V/WTG/BESS/DEG).

$54447.2) as well as an average of the standard deviation ($26.8)
f the annualized cost of the system (ACS). It can be observed
hat the difference between the average of the maximum and the
inimum annualized cost of the system for the MVO algorithm is
75, which is lower than other algorithms, i.e. DA, GOA, GWO, and
SA. Another index, the standard deviation for two algorithms
ncluding GOA and DA, is not acceptable compared to other
ptimization methods. As it can be observed, MVO has achieved
he best rank in four indexes, while GOA is not able to show a
ood performance based on its ranks in all sections. Based on this
verage parameter, MVO yields the least amount compared to
ther algorithms which depict that deploying this algorithm is an
ppropriate selection for sizing a hybrid system in this province.
As a proper example, the convergence process of mentioned

eta-heuristic algorithms has been illustrated in Fig. 10 to re-
olve this economic sizing at the 1000 iteration number for the
est solution. Based on this diagram, MVO presents a promising
erformance in terms of convergence speed and the best solution
ompared to other mentioned optimization algorithms.
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Fig. 11. Convergence trend of the multi-verse optimizer (MVO) at different
LPSPmax and REPmin = 95% (Strategy: PV/WTG/BESS/DEG).

Fig. 12. Convergence trend of the multi-verse optimizer (MVO) at different
REPmin and LPSPmax = 1% (Strategy: PV/WTG/BESS/DEG).

5.2. Different LPSP versus REP for different proposed scenarios

In the following, a comparison between different LPSPmax
(LPSPmax = 0 means the highest level of reliability without
blackout) is made at REPmin = 95% to depict the acceptable
convergence speed of the MVO meta-heuristic algorithm. Accord-
ing to Fig. 11, it can be observed that the main purpose of this
algorithm is to achieve a balance between the level of reliability
and the annualized cost of the system. It is often argued that
when the reliability of the system decreases, the annualized cost
of the system experiences a downward trend.

For PV/WTG/BESS/DEG contribution, the amount of reliability
is defined at LPSPmax = 1% and the penetration of RES contribu-
tion is considered at REPmin = 91%, 93%, 95%, 97%, and 100%. As
it can be concluded from Fig. 12, using renewable energy sources
can contribute to an increasing trend in the annualized cost of
the system. In this local area, when consumers take advantage
of DEG as an ancillary unit, the total cost decreases considerably
compared to deploying DEG as a main power generation unit.
Using DEG as a backup generation unit along with RESs such as
wind turbine, PV, and battery bank can result in decline in the
annualized cost of the hybrid system. Finally, Fig. 13 illustrates
the effect of LPSPmax on the annualized cost of the system for
different contributions of renewable energy sources.

Based on the obtained results in Table 4, the MVO algorithm is
selected as the best algorithm in this study. In the following, Ta-
ble 5 depicts the optimum number of each power generation unit
for a contribution of PV/WTG/BESS/DEG and the annualized cost
of the system considering different LPSPmax and REPmin criteria. In
this table, the amount of fuel consumption for DEG, as a backup
5659
Fig. 13. The impact of LPSPmax on the annualized cost of the system in different
renewable energy penetration levels (Strategy: PV/WTG/BESS/DEG).

generation unit, and the amount of excess power, which is gen-
erated during each scenario, is shown. According to the obtained
results, when LPSPmax is set at 10% and the minimum amount of
REP is defined at 95%, the minimum annualized cost of the system
is $45262.78. In this case, the optimum sizing is NPV = 336,
NWTG = 45, NBatt = 204, and NDEG = 2. It can be observed that
DEG along with other RESs yields more satisfactory performance.
In the following, Tables 6 and 7 present the figures related to two
contributions of RESs, namely, PV/BESS/DEG and WTG/BESS/DEG.
According to these mentioned tables, PV/WTG/BESS/DEG is the
best choice in terms of minimizing the annualized cost of the
system, so that the cost item of PV/WTG/BESS/DEG contribution
for a different level of LPSP and REP is lower than two assumed
contributions.

5.3. The annualized cost of system for different proposed scenarios

Fig. 14 shows the annualized cost of the system for three
different contributions of RESs in this hybrid system. It can be
observed that the intelligent combination of PV/WTG/BESS/DEG
delivers the most promising performance during various LPSP,
which varies from 0% to 10%. Moreover, the amount of renewable
energy penetration remains stable at 95%. In the next step, Fig. 15
illustrates this total annualized cost when LPSPmax is 1% and
REPmin changes from 91% to 100%. From this figure, it can be
concluded that an intelligent combination of PV/WTG/BESS/DEG
is able to achieve an acceptable balance between ACS ($) and
REP. During other contributions of RESs, namely, PV/BESS/DEG
and WTG/BESS/DEG, the lack of one of RESs will lead DEG to
compensate for the load demand, which results in a noticeable
reduction in the lifetime of DEG. Due to the weak road network
and the high price of petrol in this remote area, the annualized
cost of the system will experience an ever-increasing trend. In
addition, based on the geographical location of this area, wind
turbine experiences a broad range of changes in output power
compared to solar panels, which tend to change slightly. As a
result, in the strategy of WTG/BESS/DEG, a higher level of ex-
cess power is obtained. For example, excess power generation,
when LPSPmax is 1% and REPmin changes from 91% to 100%, have
een shown in Fig. 16. It is important to mention that during
he best contribution of RESs, PV/WTG/BESS/DEG, MVO tries to
inimize the consumption rate of DEG fuel compared to other
roposed contributions and regards DEG as a cost-effective power
eneration unit based on Fig. 17.
Finally, Fig. 18 depicts the breakdown of different costs, i.e. the

osts related to PV cell, wind turbine, battery, inverter, and DEG
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able 5
he summary of obtained results by MVO algorithm in PV/WTG/BESS/DEG contribution.
LPSPmax (%) REPmin (%) NPV NWTG NBatt NDEG LPSP (%) REP (%) ACS ($) Fuel consumption (Liter/year) Excess power generation (kW/year)

0 95 424 45 263 14 0.0000 95.6934 57509.31 5904.98 22113.95
1 95 451 44 275 7 0.9681 95.0030 54785.71 3114.90 18527.93
3 95 446 42 236 5 2.7791 95.0218 52379.78 3019.12 17155.33
5 95 405 44 259 3 4.9996 96.3106 50156.67 1997.08 13138.93
10 95 336 45 204 2 9.9964 95.9042 45262.78 2065.49 10860.09
1 91 359 46 233 8 1.0000 91.8157 53416.71 5701.52 13255.60
1 93 379 47 239 8 0.8815 93.0236 53935.96 4911.49 15969.97
1 97 492 44 319 6 0.9929 97.0233 56482.48 1906.06 22252.71
1 100 635 52 374 0 0.9981 100.0000 65919.10 0.00 57506.03
Table 6
The summary of obtained results by MVO algorithm in PV/BESS/DEG contribution.
LPSPmax (%) REPmin (%) NPV NWTG NBatt NDEG LPSP (%) REP (%) ACS ($) Fuel consumption (Liter/year) Excess power generation (kW/year)

0 95 879 0 316 15 0.0000 95.3355 65956.38 6514.16 27511.01
1 95 860 0 342 8 0.9916 95.1305 62036.54 3826.40 17160.72
3 95 858 0 348 5 2.9933 95.8761 60015.05 2501.55 15822.47
5 95 805 0 339 4 4.9882 95.4459 57013.72 2624.70 9672.13
10 95 758 0 299 2 9.9769 96.6659 51464.45 1783.51 6693.29
1 91 770 0 302 9 0.9952 92.3658 60024.17 6751.52 10050.89
1 93 787 0 306 9 0.9315 93.0497 60146.70 6253.59 11447.94
1 97 920 0 417 7 0.9783 97.0050 64847.08 2182.09 22830.57
1 100 1083 0 638 0 0.9971 100.000 77676.06 0.00 46045.90
Table 7
The summary of obtained results by MVO algorithm in WTG/BESS/DEG contribution.
LPSPmax (%) REPmin (%) NPV NWTG NBatt NDEG LPSP (%) REP (%) ACS ($) Fuel consumption (Liter/year) Excess power generation (kW/year)

0 95 0 102 446 14 0.0000 95.0839 66739.79 7087.64 37207.20
1 95 0 109 504 7 0.9863 95.5823 64906.01 3119.06 38251.86
3 95 0 101 476 5 2.9907 95.3553 60910.55 3045.89 27911.25
5 95 0 99 402 4 4.9987 95.4106 57293.25 2948.32 27957.12
10 95 0 95 325 2 9.9981 96.2760 51640.03 1951.27 26740.12
1 91 0 95 325 9 0.8204 91.0048 60040.32 7479.68 29109.88
1 93 0 102 388 8 0.9949 93.0711 61622.86 5201.81 33626.80
1 97 0 114 600 7 0.6802 97.0011 68639.57 2182.09 42842.79
1 100 0 134 945 0 0.9995 100.0000 84556.65 0.00 69504.79
Fig. 14. The annualized cost of the system of three different contributions for
various LPSPmax and REPmin = 95%.

for different levels of reliability. Based on this figure, which is as-
sociated with PV/WTG/BESS/DEG contribution, the maximum cost
belongs to PV production. The main reason is that in this area due
to special weather conditions and extra exiting sunny days, PV
plays an active role in meeting consumer’s requirements. In the
following, Fig. 19 shows another breakdown of produced energy
by different amounts of renewable energy penetration. It can be
observed from Fig. 19 that by increasing the penetration of RESs
in this hybrid system, the generated power of DEG decreases, and
the penetration level of PV in energy production experience an
increasing trend from 28% to 39%.
5660
Fig. 15. The annualized cost of the system of three different contributions for
various REPmin and LPSPmax = 1%.

5.4. An overview of power generated by PV/WTG/BESS/DEG

In the next step, to investigate the performance of PV, wind
turbine, battery, and DEG during power generation schedule and
satisfying requirements of consumers in a sensible way, a real
pattern of load in kW can be given in Fig. 20. The time interval
is regarded for a specific week from 1th to 7th January which
includes 168 h of total consumption through local people.

It can be observed from Figs. 21 and 22 that when the level of
RES penetration increases from 91% to 100% at LPSP = 1%, the
max
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Fig. 16. Excess power generation of three different contributions for various
REPmin and LPSPmax = 1% over a year.

Fig. 17. Fuel consumption of DEG of three different contributions for various
EPmin and LPSPmax = 1% over a year.

mount of PV energy production will increase. During the contri-
ution of PV/WTG/BESS/DEG in this hybrid system, this amount
f generated PV power is lower than when the contribution is
V/BESS/DEG. The main reason is that during PV/WTG/BESS/DEG
ontribution, WTG is responsible for providing a penetration of
nergy production based on the geographical location of this re-
ote area, although the contribution of wind turbine generators

n this project is lower than that of solar panels owing to an
xisting desert in this area. In the following, Figs. 23 and 24 have
een illustrated for different contributions to depict the amount
f WTG energy production. As it can be observed, in the presence
f PV contribution, WTG produces less energy compared to when
here is no PV contribution. When the PV generation faces a drop,
TG has to play an active role in providing consumer’s demand.
In the next stage, the amount of energy, which is produced

y DEG, is shown in Figs. 25, 26, and 27, respectively, when
he renewable energy penetration varies from 91% to 100%. It is
mportant to mention that when REPmin is 100%, all consumers’
requirement is provided by renewable energy sources including
PV, WTG, and battery which results in increasing annualized cost
of this hybrid system.

In the final stage, the behavior of the battery for three dif-
ferent contributions has been shown in Figs. 28, 29, and 30.
Based on the obtained patterns, during PV/WTG/BESS/DEG con-
tribution, BESS delivers the best performance in terms of the
amount of repetition of charge and discharge process and slight
variations compared to other contributions, namely, PV/BESS/DEG
and WTG/BESS/DEG. It should be noted that severe changes in the
i
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Fig. 18. Breakdown of the annualized cost of the system for a different level of
reliability and REPmin = 95% over a year.

charge and discharge processes could contribute to reduction in
the lifetime and performance of BESS.

5.5. A case study: A pattern of power generation during a specific
time interval

In this section, the performance of each power generation unit
is evaluated, and a pattern of power generation scheme, which is
distributed by the MVO algorithm at LPSPmax = 3%, REPmin = 95%,
is depicted in Fig. 31. In order to illustrate the capability and
flexibility of the proposed energy management strategy in case
of different values of LPSP, the value of LPSPmax is considered to
e 3% in this case study. This figure includes the level of produced
nergy by WTG and PV, along with the load demand in kW. To
ndicate the performance of this proposed strategy, this period of
ime (1st to 2nd January) is divided into four distinct parts. In the
irst time interval (from 33 to 40 h), all loads are supplied by PV
nd WTG power generation units, and the additional produced
ower is used to charge the battery bank up to the maximum
ermissible bound. In the second time interval (1–13, 16, 32,
1–46 h), renewable energy sources are not able to supply all
oad demand. As a result, such deficiency is compensated by the
attery bank. In the third period of time, (14–15, 17–19, 23–
7, 30–31, 47–48), the load is fully supplied by deploying the
iesel engine generator, PV, WTG, and battery. In the final time
nterval (20–22, 24–26, 28–29 h), total power which is generated
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Fig. 19. Breakdown of the annualized cost of the system for a different level of
renewable energy penetration and LPSPmax = 1% over a year.

Fig. 20. The real pattern of load in kW from 1st to 7th January (168 h).

by PV, WTG, DEG, and battery bank considering the minimum
permissible discharge are not able to supply all the loads. As
a result, some portions of the load cannot be supplied and the
concept of loss of power supply based on (28) will occur. For more
details, the behavior of the battery bank and the state of charge
of this bank are depicted in Fig. 32.
s

5662
Fig. 21. The power generated by PV from 1st to 7th January for
V/WTG/BESS/DEG strategy at LPSPmax = 1%.

Fig. 22. The power generated by from 1st to 7th January for PV/BESS/DEG
strategy at LPSPmax = 1%.

Fig. 23. The power generated by WTG from 1st to 7th January for
PV/WTG/BESS/DEG strategy at LPSPmax = 1%.

5.6. CO2 emission

The mass of CO2 gas, which is produced by diesel engine
generators, is illustrated in Table 8 with various LPSPmax and
REPmin values in the presence of different configurations. Based on
he obtained results from the mentioned table, as the REPmin in-
reases, the share of diesel engine generators from total produced
ower experiences a downward trend resulting in reduction of
arbon emission. Table 8 shows that the hybrid system can sig-
ificantly reduce pollutant gases emission. This phenomenon is
pecifically evident in the reduction of carbon dioxide. For in-
tance, PV/WTG/BESS/DEG hybrid configuration is able to save
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Fig. 24. The power generated by WTG from 1st to 7th January for
WTG/BESS/DEG strategy at LPSPmax = 1%.

Fig. 25. The power generated by DEG every hour from 1st to 7th January for
V/WTG/BESS/DEG strategy at LPSPmax = 1%.

Fig. 26. The power generated by DEG every hour from 1st to 7th January for
V/BESS/DEG strategy at LPSPmax = 1%.

96.13% of CO2 emission compared to DEG system at REPmin = 97%
nd LPSPmax = 1%.

5.7. Sensitivity analysis

5.7.1. Wind speed and solar radiation
The results of the wind speed and solar radiation sensitivity

nalysis for the PV/WTG/BESS/DEG hybrid system with LPSPmax =

% and different REPmin values are shown in Figs. 33 and 34,
espectively. According to the obtained results from Fig. 33, it is
lear that as the wind speed has increased, the optimal number
f wind turbine generators and consequently the share of wind
5663
Fig. 27. The power generated by DEG every hour from 1st to 7th January for
WTG/BESS/DEG strategy at LPSPmax = 1%.

Fig. 28. Amount of stored energy in BESSs from 1st to 7th January for
PV/WTG/BESS/DEG strategy at LPSPmax = 1%.

Fig. 29. Amount of stored energy in BESSs from 1st to 7th January for
PV/BESS/DEG strategy at LPSPmax = 1%.

turbines in the annual cost of the system has increased. However,
the optimal number of PV and the share of them has decreased
from ACS. For instance, at REPmin = 91%, the 40% increment of
wind speed (from −20% to + 20% real wind speed), has caused
the optimal number of wind turbines to increase from 6 to 52.
While this trend has caused the optimal number of PV, batteries,
and diesel to drop from 704, 281, and 9 to 211, 223, and 8,
respectively. Moreover, ACS has diminished by 19.15% result-
ing from a 40% increment of wind speed. In general, increasing
solar radiation leads to decreasing and increasing the optimal
number of wind turbines and solar panels, respectively. Based
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able 8
he mass of CO2 gas produced by diesel engine generators at different LPSP and REP standards.
CO2 (ton per year)

Hybrid system

LPSPmax (%)

0 1 3 5 10 1 1 1

REPmin (%)

95 95 95 95 95 91 93 97

PV/WTG/BESS/DEG 10.688 5.638 5.465 3.615 3.739 10.320 8.890 3.450
PV/BESS/DEG 11.791 6.926 4.528 4.751 3.228 12.220 11.319 3.950
WTG/BESS/DEG 12.829 5.645 5.513 5.336 3.532 13.538 9.415 3.950

LPSPmax (%)

DEG 0 1 3 5 10
90.067 89.268 87.575 85.937 83.500
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Fig. 30. Amount of stored energy in BESSs from 1st to 7th January for
WTG/BESS/DEG strategy at LPSPmax = 1%.

Fig. 31. The pattern of power generated by PV/WTG/BESS/DEG strategy from
st to 2nd January at LPSPmax = 3%, REPmin = 95%.

Fig. 32. The behavior of discharge state of battery bank during 1th to 2nd
January at LPSPmax = 3%, REPmin = 95%.
5664
Fig. 33. Sensitivity analysis of wind speed on number of PV panels (a), the share
of PV panels in the ACS (b), number of wind turbine generators (c), and the
share of wind turbine generators in the ACS (d) for PV/WTG/BESS/DEG strategy
at LPSPmax = 1%.

on Fig. 34, with a 40% increase in radiation (from −20% to +

0% real radiation) at REPmin = 91%, the number of PV panels
as increased from 331 to 381 and the optimal number of wind
urbine generators has decreased from 58 to 33. In this case, the
otal annual cost of the system has decreased by 10.61%, which is
.53% less than the case of a 40% increase in wind speed.

.7.2. Price of fuel
The impact of different behaviors of fuel price on the op-

imal ACS ($), REP (%), the fuel consumption of diesel engine
enerators (Liter per year), and the annual mass of CO2 produced
y DEGs (ton), are depicted in Fig. 35a, 35b, 35c, and 35d for
V/WTG/BESS/DEG configuration for different REPmin and LPSPmax.
ccording to Fig. 35, the annualized cost of the hybrid system
nd renewable energy penetration can be affected by increment
f the cost of fossil fuel. In contrast, the consumption of fuel as
ell as the amount of emitted CO2 witnesses a downward trend.
his means that growth of fuel cost could lead to increasing pro-
uction of renewable energy resources as well as decline in using
iesel engine generators. As a proper example, for LPSPmax =

0%, REPmin = 91%, and 50% rise in the expenditure on fuel,
he number of DEG drops to zero value. Moreover, the optimal
umber of PV and BESS increase from 311 and 172 to 411 and
28, respectively. In this case, the renewable energy penetration
xperiences a growth to 100% and as a result, the amount of
reenhouse gas emission will reach zero level, as well.
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Fig. 34. Sensitivity analysis of radiation on number of PV panels (a), the share
of PV panels in the ACS (b), number of wind turbine generators (c), and the
share of wind turbine generators in the ACS (d) for PV/WTG/BESS/DEG strategy
at LPSPmax = 1%.

Fig. 35. Sensitivity analysis of fuel price on the annualized cost of the system
(a), renewable energy penetration (b), the fuel consumption of diesel engine
generators (c), the mass of CO2 produced by diesel engine generators (d) for
V/WTG/BESS/DEG strategy at REPmin = 91%.

5.7.3. Lifespan of battery
To evaluate the effect of changes in the different lifespan of

battery energy storage systems on the number of batteries, the
annualized cost of the system (%), and the excess production of
power (kW), Fig. 36(a–c) are presented. It is obvious that the
optimal number of batteries experiences a growth by increment
of the lifespan of BESS. On the contrary, two other items including
ACS and excess power decline at different values of REPmin.

. Conclusion

In inaccessible areas, based on the geographical location, dif-
erent contributions of renewable energy sources can be in-
roduced considering several constraints related to supportive
ources of energy like diesel engine generators. From this per-
pective, an optimal sizing of a real hybrid system was investi-
ated in light of a real case study in the Sistan & Balouchestan
rovince of Iran in this paper. Since accurate weather data was
5665
Fig. 36. Sensitivity analysis of battery lifespan on number of batteries (a), the
annualized cost of the hybrid system (b), excess power generated by the hybrid
system (c) for PV/WTG/BESS/DEG strategy at LPSPmax = 1%.

not readily available for use in control centers, an adaptive neuro-
fuzzy based on fuzzy c-means (ANFIS-FCM) clustering technique
was proposed to anticipate wind speed, ambient temperature,
and solar radiation data. multi-verse optimizer (MVO) demon-
strated a more satisfactory performance considering renewable
energy penetration (REP) and loss of power supply probability
(LPSP) indexes compared to another mentioned optimization
approaches e.g., GOA, GWO, DA, and SSA. Simulation results
depicted that PV/WTG/BESS/DEG contribution was considered
as the most cost-effective strategy in terms of the annualized
cost of the system for different levels of reliability (from 0% to
10%) and renewable energy penetration level (from 90% to 100%)
compared to other scenarios. Based on obtained experiences,
this pattern could be implemented to improve the reliability of
load demand in remote areas. Furthermore, deployment of meta-
heuristic algorithms, along with intelligent weather forecasting
is suggested to resolve complex energy management planning
in distant sites efficiently. Finally, CO2 emission and the effect
of change in wind speed, solar radiation, the lifespan of battery
energy storage systems, and the fuel price of diesel engine gen-
erators on annualize cost of system were reported at different
values of LPSPmax and REPmin.
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