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A B S T R A C T   

Hypertension is a major risk factor for cardiovascular disease (CVD) as well as a major contributor to all-cause 
mortality and disability worldwide. The pathophysiology of hypertension is highly attributed to a dysfunctional 
endothelium and vascular remodeling. Despite the wide use of pharmacological therapies that modulate these 
pathways, a large percentage of patients continue to have uncontrolled hypertension, and the use of non- 
pharmacological interventions is increasingly investigated. Among these, caloric restriction (CR) appears to be 
a promising nutritional intervention for the management of hypertension. However, the mechanisms behind this 
effect are not yet fully understood, although an evolving view supports a significant impact of CR on vascular 
structure and function, specifically at the level of vascular endothelial cells, vascular smooth muscle cells along 
with their extracellular matrix (ECM). Accumulating evidence suggests that CR promotes endothelium- 
dependent vasodilation through activating eNOS and increasing nitric oxide (NO) levels through multiple cas
cades involving modulation of oxidative stress, autophagy, and inflammation. Indeed, CR diminishes phenotypic 
shift, and suppresses proliferation and migration of VSMCs via pathways involving NO and mTOR. By regulating 
transforming growth factor-β and matrix metalloproteinases, CR appears to reduce ECM and collagen deposition 
in vascular walls. Here, we offer a detailed discussion of how these mechanisms contribute to CR’s influence on 
reducing blood pressure. Such mechanisms could then provide a valuable foundation on which to base new 
therapeutic interventions for hypertension.   

1. Introduction 

Cardiovascular disease (CVD) is the leading cause of mortality 
worldwide accounting for 17.9 million deaths each year, an estimated 
31% of global deaths [1]. This disease is intimately associated with 
many risk factors such as smoking, obesity, high cholesterol, diabetes, 
family history, and hypertension. Among all others, hypertension is the 
single leading contributor to all-cause mortality and disability world
wide [2]. It is estimated that 874 million people suffer from hyperten
sion globally, with an associated mortality of 9.4 million deaths per year 
[2]. Moreover, hypertension is associated with many CVDs such as 

coronary artery diseases, heart failure, and peripheral artery disease 
[3,4]. It increases steadily with age, excessive sodium and low potassium 
intake, obesity, alcohol intake, and physical inactivity [5]. The patho
physiology of hypertension is related to impaired control of blood 
pressure determinants, including dysfunctional endothelium, sodium 
homeostasis, renin-angiotensin-aldosterone system, natriuretic pep
tides, sympathetic nervous system, and inflammation [6]. 

Several classes of drugs have been employed to reduce blood pres
sure. These include angiotensin-converting enzyme inhibitors, angio
tensin II receptor blockers, calcium channel blockers, thiazide-type and 
thiazide-like diuretics, and beta adrenergic blockers [6]. Despite the 
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wide use of these efficacious drugs, a large percentage of patients con
tinues to have uncontrolled hypertension [7]. While poor adherence 
may partly explain this, it is becoming evident that, in patients taking at 
least three anti-hypertensive drugs at the maximum tolerated dose, 
resistance is a key player in the failure to reduce blood pressure [7]. 

It is becoming increasingly clear that concomitant adoption of non- 
pharmacological interventions or lifestyle modifications is crucial for 
managing high blood pressure and improving patients’ quality of life 
[8]. One approach that appears to favorably modulate many cardio
vascular parameters, including hypertension, is caloric restriction (CR), 
which is defined as a decrease in caloric intake compared to ad libitum 
diet, without causing malnutrition [9]. Despite various reports on the 
role of CR in reducing blood pressure and the underpinning mecha
nisms, a unified context for the effect of CR on blood pressure reduction 
at the level of the vascular wall in specific has not been forthcoming. 
This review, thus, aims to put together and reconcile the various mo
lecular and cellular players involved in such an effect on the vasculature 
and consequently on blood pressure. 

2. CR and blood pressure 

A considerable body of evidence implicates CR in reducing blood 
pressure and ameliorating hypertension. Indeed, studies show that 
calorie-restricted diets cause significant reductions in both systolic and 
diastolic blood pressure (SBP and DBP) in rats [10-13] and humans [14- 
16]. Importantly, this significant effect of CR in humans was reported in 
studies of different designs including cross-sectional [14-16] random
ized controlled [17,18] and non-randomized [19-23] studies in both 
men and women with variable baseline characteristics with subjects 
being obese, overweight, diabetic, having metabolic syndrome, or 
healthy non-obese [14-23]. 

The effect of fasting and energy restriction on blood pressure in 
adults has also been studied [24]. A recent meta-analysis of 23 studies 
with a total of 1397 participants revealed that fasting and calorie- 
restricted diets could reduce both SBP and DBP [24]. These findings 
are cemented by The CALERIE study, a phase 2, multi-center random
ized controlled trial carried for two years in young and middle aged 
(21–50 years old), healthy non-obese men and women in three clinical 
centers in the USA [25]. Patients were randomly allocated to a control 
ad libitum diet group and a CR group, which sustained a 11.9% reduction 
in caloric intake. The results showed that compared to baseline, CR 
induced a significant and persistent reduction in several conventional 
cardio-metabolic risk factors, including SBP and DBP [25]. Another 
randomized controlled study, The ENCORE, enrolled 144 subjects that 
were grouped intro healthy, pre-hypertensive or stage 1 hypertensive 
subgroups. This study determined how DASH diet (Dietary Approaches 
to Stop Hypertension) alone, or in combination with weight loss and 
exercise can affect blood pressure [26]. Compared to control diet, DASH 
diet significantly reduced both SBP and DBP [26]. However, when DASH 
was accompanied with 500-calories-per-day deficit, further significant 
reduction in SBP and DBP was noticed [26]. Importantly, a one-year 
follow up of the ENCORE study showed that the reduced blood pres
sure persists for 8 months after the conclusion of the 16-week ENCORE 
program, albeit with some changes in the benefits [27]. Another multi- 
arm parallel, randomized, single-blind controlled experimental trial, 
The EXERDIET‑HTA Randomized Trial Study, was conducted on 167 
primary hypertensive, overweight/obese, or non-physically active sub
jects for 16 weeks. This study revealed that a DASH diet with 25% 
reduced energy intake accompanied with aerobic exercise significantly 
decreased SBP in both men and women [25]. Taken together, it is 
becoming increasingly evident that CR is effective as a behavioral 
intervention for reducing blood pressure. The mechanisms that 
contribute to this effect are variable and multiple players come to play at 
the cellular and molecular levels. 

3. Vascular endothelial function and hypertension 

The vascular endothelium plays a critical role in maintaining the 
function and health of blood vessels, as well as the surrounding tissues 
[28]. In addition to being a structural barrier, the endothelium synthe
sizes and secretes an array of vasoactive molecules in an autocrine and/ 
or paracrine manner. These molecules play vital roles in vascular he
modynamics and vasotone. Indeed, blood flow and pressure are regu
lated by the balance between vasodilators such as nitric oxide (NO), 
endothelium-derived hyperpolarizing factor (EDHF) or prostacyclin 
(PGI2), and vasoconstrictors such as endothelin (ET), platelet-activating 
factor (PAF), angiotensin II and thromboxane-A2 (TXA2) [29]. While 
each of these mediators is implicated in modulating vasoreactivity, this 
paper focuses on NO and, to a lesser extent, ET as important mediators 
between CR and hypertension. 

3.1. NO, hypertension, and CR 

NO is a gasotransmitter that is synthesized from the amino acid L- 
arginine by the endothelial nitric oxide synthase (eNOS) [30,31]. Once 
produced, NO diffuses from the endothelium into the surrounding 
smooth muscle cells where it activates the soluble guanylyl cyclase 
(sGC) which catalyzes the formation of the intracellular second 
messenger cGMP from GTP [31,32]. cGMP activates protein kinase G 
(PKG) which phosphorylates ion channels and downstream mediators 
that subsequently decrease intracellular calcium concentrations. PKG 
also phosphorylates myosin light chain kinase (MLCK), which then de
creases its activity and ability to phosphorylate myosin light chain 
(MLC), thereby leading to VSMC relaxation [32-34]. By modulating 
vascular tone, NO plays an important role in the regulation of blood 
pressure. 

Any imbalance in the vasodilators and vasoconstrictors released by 
the endothelium, particularly the reduction in NO bioavailability, can 
impair endothelium-dependent vasodilation in response to chemical (e. 
g. acetylcholine, bradykinin) or mechanical (e.g. shear stress) stimuli 
[35]. In fact, an association between endothelial dysfunction and high 
blood pressure is well-established [35,36], especially in patients with 
essential hypertension [37-39]. The Framingham heart study cohort 
suggests that the degree of impairment of endothelial function is posi
tively associated with the severity of hypertension [40]. Similarly, a 
significant development of systemic hypertension was observed in rats 
with 2 months NO-blockade by the NO synthase inhibitor Nω-nitro L- 
arginine methyl ester (L-NAME) [41]. 

Considerable experimental evidence has shown that CR upregulates 
eNOS, increases NO production, and improves endothelial dysfunction 
in animal models as well as in humans [42-45]. As such, the first part of 
this review will investigate the various signaling mechanisms through 
which CR increases NO production and bioavailability. 

3.1.1. Adiponectin – AMPK – eNOS pathway 
Adiponectin, an adipokine family hormone, is released by the adi

pose tissue [46] and is known to be elevated following CR [10,47]. 
Although many of the adipokines (leptin, resistin, tumor necrosis alpha 
(TNF-α), interleukin (IL)-6, transforming growth factor beta (TGF-β), 
plasminogen activator inhibitor (PAI)-1, among others) mediate various 
vascular and metabolic complications of adiposity [48], adiponectin in 
particular is an important anti-inflammatory, anti-atherosclerotic, and 
anti-diabetic hormone [48-51]. 

Several studies report that adiponectin levels are significantly 
decreased in patients with coronary artery disease, suggesting a corre
lation between reduced adiponectin and vasculopathies [52,53]. 
Moreover, hypoadiponectinemia is an independent risk factor for the 
development of hypertension [54,55]. Similarly, after a high salt-diet, 
adiponectin knockout (KO) mice have higher systemic blood pressure 
than their wild-type (WT) counterparts, and adenoviral replenishment 
of adiponectin in these mice reverses hypertension [56]. 
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Accumulating evidence supports the notion that adiponectin pre
vents hypertension through an endothelium-dependent vasodilatory 
mechanism [56-58]. For instance, human studies show a positive asso
ciation between plasma levels of adiponectin and the forearm vasodi
lator response to a reactive hyperemia [57]. No significant correlation is 
noted between adiponectin levels and nitroglycerin-induced hyperemia 
[57]. Similarly, adiponectin-KO mice had significantly reduced 
acetylcholine-induced vasorelaxation compared to WT, but no differ
ence was documented between both groups upon administration of so
dium nitroprusside, an endothelium-independent vasodilator [57]. This 
suggests an endothelium-dependent mechanism that is further 
confirmed by an impaired eNOS activation and NO production in aortic 
rings isolated from adiponectin-KO mice [59]. These changes were also 
reversed upon treatment with recombinant adiponectin [59]. Likewise, 
eNOS activity and total NO levels are also increased in response to re
combinant adiponectin administration in rats with dietary obesity [58]. 

Most of the cardio-protective and vasodilatory mechanisms mediated 
by adiponectin are related to the activation of the AMP-activated protein 

kinase (AMPK) [10,47,60-62]. AMPK, a ubiquitously expressed serine/ 
threonine kinase, is an integral cellular energy sensor that is activated by 
low energy status. The rise in the AMP:ATP ratio, such as occurs in CR, 
activates AMPK independently from adiponectin, and stimulates many 
cellular catabolic pathways in order to increase ATP levels [63,64]. 
Furthermore, the expression of AMPK in endothelial cells plays a role in 
improving vascular functions through the regulation of eNOS activity, 
lipid metabolism and redox status [65,66]. The signaling pathway 
through which adiponectin stimulates eNOS phosphorylation through 
AMPK has not been fully elucidated. Evidence shows that adiponectin 
induces AMPK phosphorylation at Threonine172 [58,67] which in turn 
leads to eNOS phosphorylation at Serine1177 [58,68] or at Serine1179 

[67]. In line with this, PI3-kinase inhibitors (e.g. Wortmannin) block the 
adiponectin/AMPK-induced eNOS phosphorylation and NO production 
[67,69], suggesting that AMPK functions upstream of PI3-kinase. 
However, a discordance in the literature pertaining to whether Akt 
(protein kinase B) acts downstream of the AMPK-PI3-kinase axis or not is 
noted. Few studies argue that the AMPK signaling pathway is 

Fig. 1. The integrated signaling 
pathway linking adiponectin, AMPK and 
SIRT-1 to the biological effects of caloric 
restriction on nitric oxide (NO) produc
tion in the cardiovascular system. CR 
reduces energy state of cells by 
exhausting cellular respiration, thus 
increasing NAD+ and AMP levels, which 
in turn activate SIRT-1 and AMPK, 
respectively. CR also increases the 
expression of SIRT-1 protein in endo
thelial cells, as well as the circulating 
adiponectin levels. In the cytosol of 
endothelial cells, activated SIRT-1 
deacetylates eNOS at lysine (K) resi
dues 496 and 506. This promotes eNOS 
activation and NO production. In paral
lel, SIRT-1 deacetylates the transcription 
factors FOXO1 and FOXO3a in the nu
cleus leading to a rise in eNOS mRNA 
expression thereby increasing NO avail
ability. On the other hand, increased 
levels of adiponectin and AMP indepen
dently stimulate the phosphorylation of 
AMPK at threonine172. This activated 
AMPK in turn phosphorylates PI3-K and 
possibly Akt leading to the phosphory
lation of eNOS at serine1177/1179 and 
subsequently NO production. NO dif
fuses from the endothelium into nearby 
vascular smooth muscle cells (VSMCs) 
where it activates the soluble guanylyl 
cyclase (sGC) responsible for GTP to 
cGMP conversion. Subsequently, cGMP 
stimulates protein kinase G (PKG) to 
decrease intracellular Ca2+ concentra
tions and to phosphorylate myosin light 
chain kinase (MLCK) decreasing MLC 
phosphorylation, leading smooth muscle 
cells relaxation. This mechanism por
trays the enhanced endothelial- 
dependent vasodilation mediated by CR 
which contributes to the reduction of 
blood pressure.P: phosphorylation, AC: 
acetylation, K: lysine, S: serine.   
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independent of Akt [58,67,68] as the expression of dominant-inhibitory 
mutant of Akt does not significantly affect adiponectin-induced NO 
production [67]. In contrast, other studies confirm the involvement of 
an adiponectin-AMPK- PI3k- Akt- eNOS axis, since dominant negative 
AMPK suppresses the activating Akt phosphorylation at Ser473 in 
endothelial cells [69,70]. Similarly, the reduction in blood pressure in 
obese (fa/fa) Zucker rats subjected to mild CR is also linked to the 
involvement of PI3-k/Akt downstream of AMPK in activating eNOS 
[11]. 

Perhaps it is more solid to argue that Akt functions downstream of 
AMPK as this is consistent with data obtained from other signaling 
pathways involving AMPK, independent of adiponectin. For example, 
vascular endothelial growth factor [71], sphingosine-1-phosphate [71], 
as well as propionyl-L-carnitine [72] are shown to have a protective 
effect on the vasculature by stimulating eNOS activity through the same 
AMPK-PI3k-Akt signaling pathway described above (Fig. 1). As such, CR 
exhibits one of its cardioprotective effect through an adiponectin/ 
AMPK-mediated increase in the phosphorylation of eNOS, which is 
followed by increases NO bioavailability. This NO is integral to the 
vasodilatory effect that improves endothelial dysfunction and conse
quently hypertension. 

3.1.2. Sirt1 – eNOS pathway 
The mammalian sirtuins family are nicotinamide adenine dinucleo

tide (NAD+)-dependent deacetylases that activate energy preserving 
pathways in response to metabolic stress or an increase in the cellular 
NAD+: NADH ratio [73]. SIRT-1, one of the seven sirtuin enzymes, plays 
a critical role in regulating vascular functions by deacetylating various 
proteins including histones, and transcription factors. It modulates 
genomic and non-genomic mechanisms in endothelial cells [74], and as 
an energy sensor, it also contributes to the vasculoprotective effects of 
CR [75,76]. 

CR evokes elevation in the NAD+: NADH ratio which subsequently 
increases levels and activates SIRT-1 [42,75,77]. In the cytosol of 
endothelial cells, SIRT-1 deacetylates eNOS at lysine residues 496 and 
506 in the eNOS calmodulin-binding domain, thereby promoting eNOS 
activation and NO production [45]. In parallel, SIRT-1 acts in the nu
cleus to deacetylate the forkhead box O (FOXO) transcription factors 
FOXO1 and FOXO3a. This deacetylation increases mRNA levels of eNOS 
and indirectly increases NO bioavailability [78,79] (Fig. 1). Moreover, 
inhibiting SIRT-1 in the endothelium of mice arteries prevents 
endothelial-dependent vasodilation and reduces NO production, further 
supporting the premise of CR-precipitated SIRT1-mediated NO produc
tion [45,80] (Fig. 2). Interestingly, pharmacologic or genetic inhibition 
of NO by L-NAME or eNOS knockout, respectively, decreases SIRT-1 

Fig. 2. Caloric restriction inhibits superoxide 
formation and increases its clearance. NADPH 
oxidase (NOX) is the main generator of reactive 
oxygen species, producing superoxide (O2

•− ). Su
peroxide, which can be cleared by the enzyme 
superoxide dismutase (SOD), reacts with nitric 
oxide (NO) non-enzymatically to form peroxyni
trite (ONOO− ). Peroxynitrite promotes the 
oxidation of eNOS cofactor tetrahydrobiopterin 
(BH4) resulting in an uncoupled enzyme that 
produces superoxide instead of NO. The oxidized 
form of BH4 is dihydrobiopterin, it can be 
reduced back into BH4 through the enzyme 
dihydrofolate reductase (DHFR). Aging is re
ported to stimulate NOX and inhibit SOD. Simi
larly, Inflammation stimulates NOX. Caloric 
restriction, however, through Sirt and AMPK 
activatiom, stimulates SOD activity.   
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expression in white adipose tissue of mice [42] as well as in endothelial 
cells [81]. Therefore, a positive feedback loop involving eNOS, NO and 
SIRT-1, amplifies the beneficial effects of CR in the vasculature. 

3.1.3. Inflammation and endothelial dysfunction 
The correlation between inflammation and hypertension is well- 

established. Inflammation causes endothelial dysfunction and oxida
tive stress, both of which contribute to hypertension [82]. Inflammation 
involves recruitment of leukocytes that adhere to endothelium and cross 
the capillaries into the site of immune reaction. These leukocytes pro
duce various chemokines and factors that mediate inflammatory pro
cesses, such as TNF-α, IL-1β, and IL-6 [83]. Although inflammation 
protects the body from pathogens and promote tissue repair, prolonged 
inflammatory insults contribute to, or even mediate, the progression of 
many chronic diseases such as atherosclerosis [84], rheumatoid arthritis 
[85], and systemic lupus erythematosus [86]. 

The relationship between inflammation and hypertension has been 
delineated in various studies. Indeed, elevation of the plasma level of C- 
reactive protein (CRP), an inflammatory marker, is noted in hyperten
sive [87-92] and prehypertensive patients [93]. Moreover, in non- 
hypertensive individuals, elevated CRP levels are associated with 
increased risk of hypertension [94-96]. Similarly, hypertensive patients 
exhibit significantly higher plasma levels of IL-6 [97-99], IL1-β 
[100,101], and TNFα [97,102,103] than non-hypertensive individuals. 
These inflammatory mediators can downregulate eNOS expression by 
different mechanisms. For instance, CRP [104] and TNF-α [105] desta
bilize eNOS mRNA resulting in lower translation of the enzyme, while 
IL-17 activates Rho kinase which phosphorylates (at threonine 495) and 
inhibits eNOS [106]. IL-17 levels have also been known to increase after 
infusion of angiotensin II, a hypertensive hormone [107]. Similarly, salt 
was found to promote the differentiation of CD4+ T-cells into IL-17 
secreting cells (TH17) [108]. Together, these observations show how 
inflammation could impair endothelial-dependent vasodilation by 
reducing NO production resulting in an increased blood pressure 
(Fig. 2). 

Many studies demonstrate the effect of CR on decreasing inflam
mation and its markers especially in the adipose tissue. Two-month 
(short-term) 40% CR in Fischer 344 rats reduces plasma CRP levels by 
61% compared to age-matched controls [109]. Similarly, long-term 40% 
CR attenuates the age-related increase in plasma CRP levels by 60% 
[109]. In addition, lower levels of CRP and IL-6 in plasma or adipose 
tissue, respectively are achieved following 6-month CR in obese mice 
[110]. Similarly, CR evoked a decrease in TNFα, IL-1β and IL-6 expres
sion in white adipose tissues (WAT), namely epidydimal, subcutaneous, 
and perirenal (eWAT, sWAT, and pWAT respectively) as well as brown 
adipose tissue (BAT) in Wistar rats [111]. By suppressing these inflam
matory mediators, CR might attenuate their inhibitory effect on eNOS 
expression, possibly playing a role in NO-dependent vasodilation and to 
the consequent drop in blood pressure. However, further studies estab
lishing a clear causative relationship are still needed to cement this 
argument. 

3.1.4. Reactive oxygen species 
The effect of inflammation on endothelial cells can be direct as dis

cussed above, or indirect via an oxidative milieu (Fig. 2). Inflammation 
is indeed a major instigator of oxidative stress, especially when immune 
cells synthesize and release large amounts of reactive oxygen species 
(ROS) such as superoxide and hydrogen peroxide to kill pathogens 
[112]. The major source of ROS is the enzyme nicotinamide adenine 
dinucleotide phosphate-oxidase (NADPH) oxidase, also known as NOX, 
expressed in both immune and endothelial cells. NADPH oxidase 
transfers electrons from NADPH to molecular oxygen to produce su
peroxide (O2•− ), a reactive free radical [113]. The enzyme superoxide 
dismutase (SOD) acts as an antioxidant enzyme that transforms super
oxide into molecular oxygen (O2) and hydrogen peroxide (H2O2) [114]. 
Superoxide can also be produced from mitochondria through electron 

transport chain, especially complex I; this production is augmented in 
cases of high proton motive force and high NADH:NAD+ ratio [115]. 
Here, we discuss the effects of oxidative stress as pertains to both 
inflammation and mitochondria. 

Oxidative stress becomes more pronounced with age, mainly due to 
increased production and decreased breakdown of ROS [116] (Fig. 2). 
Superoxide and hydrogen peroxide generation by mitochondria indeed 
increase with age, likely following increased expression of NOX2 [111]. 
Such increased levels of superoxide react with NO to produce perox
ynitrite (ONOO–) [117], thus consuming the NO that is much needed for 
vasodilation. This reaction takes place at a faster rate than superoxide 
clearance by dismutase (SOD) [118]. Peroxynitrite further inhibits NO 
production by inhibiting eNOS through the oxidation and inactivation of 
its cofactor 4-tetrahydrobiopterin (BH4) resulting in a defective 
uncoupled eNOS that produces superoxide instead of NO [119]. This 
further promotes a cycle of NO consumption and superoxide production, 
and consequently abolishes eNOS-dependent endothelium-evoked 
relaxation [120] (Fig. 2). 

CR slows this age-related increase in mitochondrial superoxide and 
hydrogen peroxide [121]. Indeed, animal studies show that long term 
CR decreases mitochondrial ROS in the heart [121,122], brain 
[121,123], kidneys [121], liver [124], skeletal muscles [125,126], and 
aorta [76]. In line with this, expression of NOX2 is suppressed in adipose 
tissues of Wistar rats subjected to CR [111]. Moreover, CR increases liver 
NO, glutathione (an anti-oxidative agent) and mitochondrial SOD ac
tivity in rats [127]. Contextually, life-long CR in mice reduces aortic 
NADH oxidase (NOX) activity and increases aortic levels of catalase, the 
enzyme responsible for breakdown of hydrogen peroxide [128]. 

In humans, a randomized clinical trial shows that 25% caloric 
reduction significantly decreases oxidative stress in obese women in 5 
days [129]. Another clinical trial shows that CR for 12 weeks improves 
redox status evident by decreased thiobarbituric acid reactive sub
stances (TBARS) and increased total antioxidant capacity [130]. Simi
larly, moderately overweight volunteers subjected to 6 months of low 
glycemic dietary load CR exhibit increased plasma glutathione peroxi
dase activity, a cytosolic antioxidant enzyme that reduces hydrogen 
peroxide to water and oxygen [131]. Further, obese subjects with type 2 
diabetes mellitus subjected to 12-week moderate energy-restricted diet 
with or without exercise show reduced plasma levels of malondialde
hyde, an oxidative stress marker [132]. Together, these and other 
studies show how CR increases NO bioavailability by suppressing 
accumulation of ROS [128]. 

The mechanisms by which CR decreases oxidative stress are still 
under investigation. NAD+ is hypothesized to be an important link be
tween aging, inflammation and oxidative stress. Importantly, it is 
depleted with aging and increased with CR, indicative of how CR could 
indeed reverse or counteract aging-induced oxidative stress. Part of its 
effects could be attributed to its role as a substrate for SIRT family of 
transcription factors as discussed previously [133]. Interestingly, high- 
calorie diet feeding decreases SIRT3 levels in rat hippocampus while 
also increasing neuronal ROS and apoptosis [134]. Contrarily, CR 
upregulates SIRT3 expression in neuroendocrine cells and protects them 
from H2O2-induced apoptosis [135]. In line with these findings, 
knockdown of SIRT1 abolishes the anti-oxidant and anti-inflammator
y effects of CR serum [76]. CR-induced SIRT1 activation deacetylates 
the forkhead box O (FOXO) transcription factors that upregulate 
MnSOD, catalase, periredoxins, and thioredoxins, all functioning as anti- 
oxidant enzymes [136] (Fig. 1). CR-induced AMPK can also mitigate 
oxidative stress by upregulating MnSOD in endothelial cells [137]. 
Taken together, these findings highlight the possible mechanisms that 
could underpin a role for CR in the NO-mediated vasculo-protective and 
antihypertensive effects. 

3.2. Vascular aging and autophagy 

Autophagy is a natural cellular mechanism in which cellular 
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components such as proteins and organelles are engulfed into mem
branous vesicles forming autophagosomes. These subcellular structures 
fuse with lysosomes so that degradation of the engulfed material ensues. 
The process is initiated by the formation of a phagophore, a precursor 
membrane that expands then seals off to form an autophagosome [138]. 
Phagophore formation is induced through one of two pathways: (i) the 
activation of unc-51 like autophagy activating kinase 1, also known as 
ULK1 or Atg1 (Autophagy related gene 1), which is otherwise inhibited 
by mTORC1 (mammalian target of rapamycin complex 1), and (ii) the 
formation of beclin-1/Vsp34 complex, with Vsp3 being a class III 
phosphatidyl inositol 3 kinase (PI3K) and beclin-1 being its positive 
modulator, also known as Atg6 (Fig. 3). This induction step is followed 
by the expansion of the phagophore, a step that acquires lipids through 
many Atg proteins to form a complete vesicular membrane. It finally 
fuses with the lysosome to form an autolysosome [139-143]. 

Autophagy is closely linked to aging; while autophagic markers 
decrease with age, inhibiting autophagic pathways induces cellular 

senescence [144]. Defects in autophagic pathways are indeed correlated 
with many chronic diseases such as neurodegenerative disorders, 
metabolic syndrome, cancer, kidney diseases, and CVD [145-147]. 
Autophagy is rather viewed as an important anti-aging mechanism that 
reduces cellular injury and protects cells from oxidative stress, glycation 
end products and lipotoxicity. It mediates the clearance of cytotoxic 
glycation end products, protects the cell from lipid overload-induced 
toxicity, and increases overall cell survival [148,149]. Indeed, expres
sion of autophagy markers is dramatically decreased in older subjects, 
and this decrease significantly impaired arterial endothelium-dependent 
dilatation [150]. In this context, primary hypertension is aggravated 
when autophagosomes are decreased [151], clearly indicative of the 
important role for autophagy in maintaining a physiologic blood 
pressure. 

Autophagy promotes pro-survival stress response in endothelial 
cells. Although the outcome of autophagy depends on the nature of the 
stress imposed on endothelial cells, most responses are cytoprotective. 

Fig. 3. Caloric restriction promotes auto
phagy through different pathways. CR or low 
energy state results in increased [NAD+]/ 
[NADH] and AMP levels. AMP, in addition to 
adiponectin, stimulates AMPK which phosphory
lates tuberous sclerosis 2 (TSC2) that inhibits 
mTORC1, thus releasing the inhibition from 
ULK1. Calcium/calmodulin-dependent protein 
kinases β (CaMKKβ) activates DAPK (death acti
vated protein kinase) which phosphorylates and 
activates beclin-1 directly, and Vsp34 through 
protein kinase D (PKD). ULK1 is part of ULK1 
complex, and beclin-1/Vsp34 is part of PI3K 
complex, each of which can initiate the formation 
of phagophores. NAD+ stimulates Sirt1, which 
deacetylates and activates autophagy related 
proteins (Atg5 and 7) and FOXO transcription 
factor. FOXO promotes autophagy-related gene 
expression. The products of these genes, in addi
tion to Atg5 and 7 promote the elongation of the 
phagophore, which then closes and fuses with the 
lysosome.   
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Albeit via unknown mechanisms, autophagy also appears to augment 
eNOS expression [152,153], thereby promoting vasodilation. And vice- 
versa, inhibiting autophagy reduces NO production resulting in reduced 
arterial endothelium-dependent dilatation [150]. In this context, agents 
that promote autophagy have been reported to ameliorate hypertension 
in spontaneously hypertensive rats [154]. Importantly, reduced caloric 
intake or CR increases autophagy [155-163], via three different path
ways: AMPK, Sirt-1, and possibly increased intracellular calcium 
(Fig. 3), as discussed below. 

3.2.1. AMPK and autophagy 
Following reduced ATP levels resulting from CR, levels of the cellular 

energy sensor AMPK increase. AMPK phosphorylates tuberous sclerosis 
2 (TSC2) which inhibits mTORC1, thus releasing the inhibition from 
ULK1. AMPK can also phosphorylate and activate ULK1 and beclin-1, 
thus activating both pathways of autophagy induction [164,165]. 
Interestingly, the activity of AMPK decreases under conditions of high 
concentrations of glucose and fatty acids [166]. 

3.2.2. Sirt1 and autophagy 
Sirt-1, activated by the CR-elevated levels of high [NAD+]/[NADH] 

ratio, can deacetylate and activate the FOXO family of transcription 
factors, which upregulate the expression of autophagy related genes 
[167-170]. Sirt1 can also deacetylate and activate autophagy related 
proteins Atg5 and Atg7 which may contribute to increased autophagy 
[171,172] (Fig. 3). 

3.2.3. Increased intracellular calcium and autophagy 
Amino acid starvation has been reported to increase intracellular 

calcium levels [173]. This increase in calcium activates calcium/ 
calmodulin-dependent protein kinases β (CaMKKβ) which in turn stim
ulates AMPK, thus inducing autophagy as discussed before (Fig. 3). 
CaMKKβ can also activate DAPK (death activated protein kinase) which 
phosphorylates and activates beclin-1 and Vsp34, also inducing auto
phagy [174]. 

3.3. Endothelins, hypertension, and CR 

Endothelins represent a family of endothelial-derived vasoactive 
agents that cause sustained vasoconstriction [175]. Three isopeptides of 
endothelin, namely endothelin-1 (ET-1), ET-2, and ET-3, have been 
recognized with ET-1 being the most potent vasoconstrictor and the 
most predominantly expressed in vasculature [176,177]. In addition to 
its vasoconstricting effects, ET-1 modulates salt and water homeostasis, 
stimulates the renin–angiotensin–aldosterone and sympathetic nervous 
systems, and plays an ionotropic and mitogenic roles [178]. ET-1 acts on 
two receptor subtypes, ETA and ETB [179,180]. ETA receptors are most 
highly expressed in the aorta, heart, kidney, but not endothelial cells, 
whereas ETB receptors are mostly expressed on endothelial cells 
[181,182]. Importantly, these receptors have opposing effects. Upon 
activation, ETA receptors of the vascular smooth muscles cause vaso
constriction and blood pressure elevation whereas endothelial and renal 
ETB activation causes vasodilation and natriuresis thus depressing blood 
pressure. The resultant effect of ET-1 thus depends on the balance be
tween ETA and ETB mediated effects [178]. Combined blockage of both 
ETA and ETB receptors proves to decrease peripheral vascular resistance 
and also blood pressure but to a lower extent, which hints that the 
overall physiological effect of endothelin is to elevate blood pressure 
[183]. 

The literature dissecting the possible effect of CR on endothelin 
levels or function is rather scant. Animal studies show that rats which 
fasted up to 48 h, or were on 40% CR diet for 2 weeks had lower levels of 
ET-1 and 2 compared to ad libitum fed rats [184]. Several other human 
studies hint to the possible effect of CR on lowering ET-1 levels, although 
this decrease may not be sufficient to dramatically lower blood pressure. 
Indeed, in a study involving 15 obese hypertensive men following a diet 

of 800 kcal/day for 12 weeks, it was found that 7 out of the 15 had a 
significant decrease in their blood pressure, a drop that was accompa
nied by decreased ET-1 levels [185]. While the remaining 8 did not have 
their blood pressure normalized, their ET-1 levels nonetheless signifi
cantly decreased [185]. Similar results were reported in another report 
utilizing a protocol of 12 weeks of CR [186]. Furthermore, another study 
following 14 people who exercised for 40 min daily, 3 days per week, for 
3 weeks with their daily caloric intake reduced by 500 kcal/day shows 
significantly decreased endothelin levels [187]. In another study, 
following a 3-month program of CR and weight loss in seven obese men, 
a linear relation that reaches statistical significance is found between 
reduction of blood pressure and reduction in plasma ET-1 levels [188]. 
Taken together, these results suggest that a decrease in endothelin is 
associated with CR, and could be part of the mechanism by which CR 
decreases blood pressure. However, further mechanistic studies are 
warranted before a conclusive notion can be observed. 

4. Vascular smooth muscle cells (VSMCs) and hypertension 

VSMCs play important roles in phsyiology and pathology of the 
vasculature. They greatly control tissue perfusion and blood pressure. 
VSMC hypertrophy, proliferation, and migration, in addition to ECM 
deposition are well established contributors to vessel wall structure al
terations that are associated with elevated blood pressure. Under normal 
physiologic conditions, VSMCs assume a quiescent non-proliferative 
phenotype, also referred to as contractile phenotype. This phenotype 
is characterized by expression of proteins like α-isoform of actin, the SM- 
1 and SM-2 myosin heavy chain isoforms, and others, which are all 
involved in the contractile apparatus [189-191]. However, VSMCs 
retain high plasticity that allows them to de-differentiate into a syn
thetic, migratory phenotype in response to mechanical/biochemical 
signals which are associated with CVDs like atherosclerosis and hyper
tension [192,193]. Upon de-differentiation, VSMCs migrate from tunica 
media to the tunica intima, where they further proliferate as well as 
increase synthesis and deposition of ECM [194,195].This 
pathophysiologically-driven phenotypic shift from the contractile 
phenotype to a synthetic phenotype occurs via loss in contractile mol
ecules and increase in protein synthesis-related organelles [194]. 
Increased proliferative and migtatory capacities of synthetic VSMCs 
drive intimal thickening, alter vessel wall structure and mechanics, and 
decrease vessel lumen diameter, all contributing to the onset or exac
erbation of hypertension. Indeed, early physiological and morphometric 
studies show an increase in both large and small artery wall thickness in 
hypertensive animals [196-200] and humans [201], and attribute this 
increase partly to an increase in smooth muscle mass. This increase in 
muscle mass is mediated by an increase in hypertrophy, hyperplasia, or 
both. 

CR and its effects on the molecular and cellular levels can contribute 
to changes in vascular smooth muscle functions and phenotype which 
could lead to reversal or attenuation of their role in hypertension. In this 
section, we attempt to delineate some of the mediators and mechanisms 
that could govern this effect on the cellular and molecular level. 

4.1. Phenotype switch 

Curbing VSMC phenotypic switch could be one of the mechanisms by 
which CR lowers blood pressure. Phenotypic switching can be incited by 
various stimuli including growth factors, mitogens, inflammatory me
diators and mechanical stimuli [192,193]. By virtue of its ability to 
suppress inflammation and its mediators, CR could be also indirectly 
contributing to the decrease in VSMC phenotypic switch and the 
consequent effects on vessel wall and hypertension. Aging, for example, 
is associated with increased inflammation as a key event on the mo
lecular and cellular level. This inflammatory environment contributes to 
arterial intimal thickening by promoting phenotypic shift, where 
platelet-derived growth factor (PDGF) being an essential signaling 
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molecule in the process [202,203]. In this context, a 40% CR is capable 
of decelerating age-associated proliferation, migration, matrix deposi
tion and by retarding phenotypic shift of VSMCs and governing PDGF-B 
signaling [204]. Indeed, CR could retard the age-associated arterial 
remodeling including the increased intimal wall thickness, fragmenta
tion of elastin lamina, increased collagen deposition in all vascular wall 
layers, and increased VSMCs number in intima [204]. CR also decreased 
the level of PDGF and its intima-media gradient which is usually 
elevated in old rats [204]. Apart from PDGF, a two-week CR regimen on 
rats that were previously fed a high-calorie diet suppresses vascular IL- 
1β level, ERK1/2 phosphorylation, and medial hypertrophy, as well as 
reduces sensitivity to contractile agonists [205] and the pressor response 
to phenylephrine [206]. Together, these studies suggest an important 
role for CR in abolishing phenotypic shift, thus potentially ameliorating 
the pathogenesis or decelerating the onset of hypertension. 

4.2. NO and VSMC proliferation 

NO plays a pivotal role in maintaining homeostasis in the vascula
ture. In addition to mediating vasodilation by relaxing VSMCs, NO 
contributes to vascular remodeling by a dose-dependent inhibition of 
VSMC proliferation. This is observed in VSMCs of different vascular beds 
both in humans and rats [207-209]. NO affects cell cycle progression, 
particularly at the G1/S checkpoint [208,210,211], by upregulating the 
cyclin-dependent kinase inhibitor p21Waf1/Cip1/Sdi1 [208,209,212], 
while also downregulating cyclin A and cyclin-dependent kinase 2 
[208,212]. Moreover, NO appears to modulate cell proliferation through 
targeting important mitogenic tyrosine kinase receptors and their 
downstream signaling cascades, such as the epidermal growth factor 
receptor [212-214]. As discussed in previous sections, amongst the 
major effects of CR is to increase NO production. Therefore, it is 

Fig. 4. Caloric restriction inhibits mTOR- 
mediated VSMC hypertrophy. mTOR activity, 
predominantly regulated by nutrient availability, 
stimulates cellular growth and protein synthesis 
pathways. In vascular smooth muscle cells 
(VSMCs), mTOR and its downstream p70s6 ribo
somal protein kinase (p70s6k) enhance growth 
and protein translation leading to VSMC hyper
trophy. CR leads to a state of decreased nutrient 
availability, which inhibits mTOR/p70s6k 
signaling. This pathway is also inhibited by SIRT- 
1 and AMPK, both of which stimulated by CR.   
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tempting to speculate that CR mediates part of its anti-hypertensive 
effect a NO-mediated suppression of VSMC proliferation. 

4.3. mTOR and VSMC hypertrophy 

mTOR is a conserved threonine/serine kinase that regulates cellular 
metabolism and growth by integrating multiple environmental cues and 
energy states. In contrast to other energy sensing metabolites like SIRT-1 
and AMPK, mTOR activity is inhibited, rather than activated, by reduced 
nutrient availability since it is usually involved in cellular growth and 
protein synthesis [215]. In fact, SIRT-1 and AMPK can also inhibit mTOR 
and regulate its activity in low energy status [216,217] (Fig. 4). 

An interesting interplay between CR and mTOR has been receiving 
increased attention. Apparently, long term CR in rats and mice 
decreased the phosphorylated levels of arterial mTOR and its down
stream p70 S6 ribosomal protein kinase [128,218]. Aside from the 
enhanced autophagy discussed previously, inhibition of mTOR/P70S6K 
signaling decreases protein synthesis and thus affects vascular remod
eling by decreasing aortic vascular smooth muscle cell hypertrophy 
[219]. VSMC hypertrophy, which involves elevated p70S6K activity 
[219,220], is commonly seen in hypertension, which partly explains 
why spontaneously hypertensive rats have higher aortic mass than their 
wild type controls [221]. In contrast, a reduction in p70S6K phosphor
ylation, consistent with a reduced hypertrophy of VSMCs and decreased 
arterial wall thickness, is observed in spontaneously hypertensive rats 
subjected to CR [10]. Therefore, we postulate that CR could relieve 
vascular resistance, and thus hypertension, by decreasing VSMC hy
pertrophy, and that this effect of CR occurs via suppressing the activity 
of mTOR/P706K and the anabolic cellular signaling pathways (Fig. 4). 

5. ECM deposition and hypertension 

The extracellular matrix (ECM) is a cardinal component of the con
nective tissue surrounding cells. Structural proteins like collagens, 
elastin, fibronectin, and proteoglycans make up the lion’s share of this 
matrix. In the vasculature, the ECM plays a substantial role in the 
maintenance of the structural and mechanical integrity of the vessels, 
and in the regulation of cell-cell signaling and interaction. The balance 
between the different structural proteins greatly determines the 
biomechanical properties of vessels. Under physiologic conditions, 
deposition and turnover of collagen as well as the collagen/elastin ratio 
are kept under control. However, increased disintegration of elastin fi
bers and/or excess desposition of collagen and fibronectin, reminines
cent of a pro-inflammatory microenvironment, contribute to ECM 
remodeling, fibrosis and increased arterial stiffness [222,223], which 
consequently alter vessel biomechanics. Diminished elasticity/compli
ance or increased stiffness often lead to elevated systolic blood pressure 
and increased cardiac work load, thus precipitating cardiac hypertrophy 
and increased risk of cardiovascular complications. [224,225] (Fig. 4). 
At the molecular and cellular level, ECM deposition and remodeling are 
mediated by many paramaters, prime of which are TGF-β and matrix 
metalloproteases (MMPs). 

The TGF-β superfamily of proteins encompasses more than 40 
members that play important roles in many physiologic and patho
physiologic processes. Disruption of the TGF-β signaling has been asso
ciated with vascular fibrosis and arterial aging [226]. Indeed, TGF-β1, 
the isoform expressed in endothelial cells, VSMCs, myofibroblasts, and 
vascular adventitial macrophages, is usually upregulated during fibrotic 
processes and ECM remodeling [227]. Indeed, TGF-β1 and its down
stream SMADs augment the expression of collagen, fibronectin, and PAI- 
1 and connective tissue growth factor (CTGF) [226,228,229]. TGF-β is 
also involved in regulating collagenases and tissue inhibitors of metal
loproteinases (TIMPs), which in turn affect ECM [230]. It is important to 
mention that other non-SMAD pathways are also involved in the pro- 
fibrotic signaling pathway of TGF-β. These pathways involve c-Jun N- 
terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38 

MAPK, and phosphoinositide 3-kinase/Akt signaling [231]. 
Matrix metallopeptidases (MMPs) are a family of endopeptidases 

that play a major role in ECM degradation and remodeling [232]. 
Degradation of collagen, elastin, and other ECM proteins by MMPs is 
linked to a pro-inflammatory microenvironment that prompts a direc
tion of secretion, proliferation, migration, and senescence in endothelial 
cells and vascular smooth muscle cells. This contributes to increased 
intima thickness and arterial stiffness through fibrosis, calcification, and 
further endothelial dysfunction [227]. The effect of MMPs on vascular 
fibrosis as pertains to hypertension remains to be fully elucidated as both 
stimulatory and inhibitory modulation has been described for different 
MMP isoforms [233]. MMP9 potentiates fibrosis and DNA damage 
[234], and MMP2 increases collagen deposition and fibronectin secre
tion [235,236]. Furthermore, an association between elevated blood 
pressure and increased levels of MMP-2 and MMP-9 has been reported 
[237-240]. Inconsistent results have, however, been shown in hyper
tensive patients with reported unchanged [241-243], increased [244], 
or decreased [245] MMP-2 levels. Variable study designs, hypertension 
severity and comorbidities, and other analytic factors in the studies 
might be at the basis of such discrepancies [246], hence the need for 
further studies. 

Several animal studies emphasize the effect of CR on the vascular 
ECM deposition and hints to the modulation that happens in the pro
cesses at the molecular level. Increased stiffening of large elastic arteries 
with aging is thought to be driven by alterations in the major structural 
proteins involving collagen deposition and elastin fragmentation as we 
have alluded to earlier [247-250]. In rodents, lifelong CR was shown to 
prevent stiffening of large elastic arteries by abolishing the age-related 
increase in collagen deposition or elastin degradation [128,204,251]. 
Recently, it was reported that moderate CR potentiates exercise-induced 
improvements in proximal aortic stiffness [252]. Consistent with this, 
the fibrotic process in the aortae of aging rats was markedly reduced in 
rats subjected to CR compared to ad libitum, evident by a remarkable 
decrease in TGFβ1 and collagen levels [253]. This study also revealed 
that CR decreased the activity of Jun-N-terminal kinase (JNK) and p38 
[253], both of which are implicated in the non-SMAD fibrotic signaling 
pathways of TGF-β as mentioned earlier. It appears that the anti-fibrotic 
effect of CR occurs via a reduction in TGF-β1, PDGF-BB, and MMP2 
signaling. [254,255]. 

MMP-9, which has a role in vascular fibrosis, elastin degradation, 
and blood pressure elevation, also mediates the effect of CR on ECM 
composition. Indeed, lifelong CR prevents the increase in MMP-9 
expression, thus curbing the effects of this enzyme on vascular stiff
ening and the consequent elevation in blood pressure [128]. The link 
between CR and MMP-9 is mediated by SIRT-1 deacetylase activity, 
which is increased in lifelong CR as discussed above. MMP-9 transcrip
tion is enhanced by the acetylation of its promoter region at the NF-κB 
binding site, and the direct acetylation of NF-κB at lysine residue 310 
also increases its affinity for the MMP-9 promoter, which together result 
in increased expression of MMP-9 and subsequent adverse alterations in 
the arterial ECM [256] (Fig. 5). Contextually, overexpression of SIRT-1 
deacetylase enzyme in isolated macrophages, known to be a major 
source of MMP-9 secretion into vascular tissue [257], could decrease the 
facilitatory effect of acetylation of NF-κB and MMP-9 gene promoter on 
MMP-9 expression. The increased SIRT-1 deacetylase activity that hap
pens in lifelong CR could thus contribute to decreased MMP-9 activity 
and subsequent reduction of ECM adverse changes and arterial stiffening 
[128], thus possibly ameliorating to the pathology of hypertension 
(Fig. 5). By reducing arterial stiffness through this MMP-9 activity 
modulation in addition to the reduction of oxidative stress and inflam
mation, CR could thus contribute to an overall protection from cardio
vascular disease morbidity and mortality risk factors (Fig. 6). Patients on 
restricted calorie diets had decreased levels of TGF-β1 along with the 
reduced blood pressure when compared to subjects on western diet [15]. 
Data from both animal and human models provide evidence that CR can 
modulate ECM deposition in vascular walls. Favorable alterations in the 

A.A. Al Attar et al.                                                                                                                                                                                                                             



Biochemical Pharmacology 200 (2022) 115035

10

matrix may greatly improve arterial compliance, and thus possibly 
contribute to the decrease in blood pressure (Figs. 5 and 6). 

6. Conclusion 

Despite significant advances in medicine and pharmacotherapeutics, 
the burden of CVD on the healthcare sector remains high. The positive 
effects of CR on cardiovascular health parameters prove to be promising 
means of non-pharmacological intervention that could mitigate CVD 
progression and complications. The effect of CR in reducing high blood 
pressure by reversing the vascular dysfunction is of unique importance 
especially with the absence of complete success of traditional anti- 
hypertensive medication in controlling hypertension in some cases. 
We have dissected the different mechanisms that mediate CR’s effect by 
linking different pathways involving inflammation, ROS, ECM deposi
tion, NO, and others. However, it is important to mention here that 
further studies are still needed to establish causal relationships. Finally, 
the question whether weight loss is required to achieve the beneficial 

effects of CR requires further observation and analysis. Controlled 
studies are thus necessary to isolate the major effects of fasting, in 
absence of body weight variation, hence verifying whether the sole 
activation of the energy-sensing pathways is sufficient to mimic the ef
fects of CR on the vasculature. 
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