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A B S T R A C T   

The utilization of nanomaterials in the biological and medical field is quickly progressing, particularly in areas 
where traditional diagnostics and treatment approaches have limited success. The success of nanomaterials in 
medical products such as biomedical implants, wound dressings and drug delivery systems rely upon their 
effective interaction between the extracellular matrix, cells, and intracellular components. Upon contact with 
mammalian cells, nanoparticles (NPs) begin to interact with the extracellular matrix, cell membrane, cytoplasmic 
proteins, nucleus, and other cellular organelles, which result in nanoparticle internalization and subsequent 
cellular responses. Such responses elicited by the mammalian cells as a result of the cell-nanomaterials in-
teractions, both at the cellular and molecular level, are mainly determined by the morphological, chemical, and 
surface characteristics of the nanomaterials themselves. This review provides an overview of how such different 
attributes, such as chemical nature, size, shape, surface charge, topography, stiffness, and functional features of 
nanomaterials, influence the cell-nanomaterials interactions.   

1. Introduction 

Owing to the tiny size and large surface area to volume ratio, 
nanomaterials exhibit different physicochemical features compared to 
their bulk form. These features are making them attractive for numerous 
applications, such as fast-moving consumer goods (FMCGs), high- 
sensitivity nanoscale sensors, high-performance electronics, biomed-
ical implants, and pharmaceutical products [1,2]. Both inorganic (metal 
or metal oxide nanoparticles, NPs) [3–5] and organic nanomaterials 
(graphene [6], carbon nanotubes, CNTs [7,8], C60 fullerene [9], carbon 
quantum dots, QDs [10]) have been used in such applications. Owing to 
the full range of applications in biomedical and consumer products, it is 
essential to understand the interactions of nanomaterials with 
mammalian cells and cellular components [11]. The outcome of various 
nanotoxicology studies indicates that [12] nanostructures can produce 
multiple adverse effects in biological systems mainly due to the pro-
duction of reactive oxygen species (ROS) that results in oxidative stress 
[13–15]. Nanomaterials can also produce toxic effects on cells by 
ROS-independent mechanisms [16,17] such as those associated with 

morphology, size, and zeta potential of nanomaterials [18–20]. Also, the 
presence of functional groups on nanomaterials and the metal ions 
released from them can influence the biological system [21]. However, 
the gap between cytotoxic and therapeutic concentrations of nano-
materials is very narrow, and it may show variation in different types of 
cells [22]. Thus, a clear understanding of nanomaterials-cell interaction 
is of prime importance to effectively explore the potential healthcare 
applications of these tiny particles with no or minimal adverse effects. 
Although there is plenty of information available in the scientific liter-
ature regarding nanomaterials-cellular interactions [23–27], a compre-
hensive reorganization in an easily understandable form is required. 

An appropriate level of interaction between nanomaterials with cells 
and intracellular organelles is fundamental in various biomedical and 
drug delivery applications [4,28,29]. To fine-tune the nanomaterial-cell 
interactions and achieve a desirable outcome [30], multiple methods 
such as surface functionalization [31–33], surface modification [34], 
and controlling the physico-mechanical properties [35] were tried [36]. 
Multiple factors such as the size, shape, net charge, stiffness, the hy-
drodynamic volume can affect the interactions between nanomaterials 
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and cell membranes, their subsequent internalization, and interaction 
with intracellular components [29,37–40]. A weak interaction between 
nanomaterials and cell membrane can result in the Brownian collisions 
of nanomaterials with the cell membrane without facilitating the 
adhesion of nanomaterials on cell membranes. However, adequate ad-
hesive forces can result in the adhesion of nanomaterials on cell mem-
branes and subsequent internalization by generating a temporary pore 
in the plasma membrane [41,42]. Such complete internalization of 
nanomaterials is mainly dependent on the shape, size, and surface 
functional groups of them [43]. Surface chemistry and stiffness can also 
play a significant impact on nanomaterial-cell interactions [44]. Apart 
from internalization, these characteristics can influence the cell 
viability, phagocytosis, biomolecular signaling, and renal excretion 
[45]. Despite the cytotoxic effects [46], several inorganic NPs are 
exploited to destroy pathogenic microorganisms and malignant cells 
[47,48]. Inorganic nanomaterials are extensively studied for their po-
tential applications in vaccine delivery and immunotherapy [49]. Thus, 
it is vital to clearly understand both the material characteristics and the 
doses of nanomaterials to draw a sharp line between the cytotoxic 
concentration and therapeutic window to use them in clinical settings. 
This needs substantial advancement in understanding the relevant in-
teractions at nanomaterial-cell interfaces by rigorous research [50]. 
Understanding the outcome of interactions between nanomaterials with 
mammalian cells and cellular components, at various levels, could help 
identify the fundamental requirements for their use in healthcare and 
FMCG sectors. In this review, we present an overview of multiple 
properties of nanomaterials that influence their cellular internalization, 
cytoplasmic transport, interaction with intracellular components, and 

overall effect on cellular behavior. 

2. Factors influencing nanomaterial-cell interactions 

There are many factors on a nanomaterial perspective that determine 
or influence the interaction between nanomaterials and cells/cellular 
components. Fig. 1 shows the possible characteristics of nanomaterials 
that influence their interactions with cells. The foremost important 
factor that influences the nanomaterials-cell interaction is the chemical 
nature of the nanomaterial itself. Features such as particle size, shape, 
texture, rigidity, charge, presence of functional groups, and hydropho-
bicity/hydrophilicity can influence cellular uptake and interaction with 
cellular components. Many endocytotic routes have been described for 
nanoparticle internalization into cells (Fig. 2). Clathrin-mediated 
endocytosis is a significant route of nanoparticle uptake by the cells as 
the blockade of clathrin-mediated endocytosis has been shown to 
decrease the cellular uptake of NPs [51]. Studies also indicated that 
nanoparticle uptake could occur through caveolae-mediated endocy-
tosis as determined by the co-localization with caveolin-1 proteins over 
internalized NPs found in the caveolae and caveosomes [52]. 
Caveolin-mediated endocytosis is responsible for the cellular uptake of 
NPs (20–100 nm), whereas clathrin-mediated endocytosis is mainly 
responsible for the cellular uptake of submicron particles (100–350 nm) 
[53]. 

Phagocytosis and micropinocytosis are the other mechanisms that 
facilitate nanoparticle internalization [54]. These pathways are mech-
anistically different and tightly controlled at the molecular level. The 
path by which NPs enter in cells decides further intracellular 

Fig. 1. Schematic representation showing the essential characteristics of nanomaterials that influence cellular uptake and subsequent interaction with 
cellular components. 
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nanoparticle transport and the resultant biological and therapeutic 
outcome [25]. Regardless of the intended result as desired for the spe-
cific application, the interaction of NPs with the target cells can be either 
advantageous or harmful to the organism as a whole. Upon entering the 
human or animal body, nanomaterials interact with the serum and 
extracellular matrix (ECM) proteins and generate a ‘protein corona’ 
around them [55]. On the one hand, this corona formation is advanta-
geous as it can prevent the agglomeration of NPs, reduce toxicity, and 
restrict them from entering the cytoplasm [56]. On the other hand, 
corona formation may affect the biological (antibacterial activity, anti-
oxidant activity, or ROS generation) and physical (fluorescence, surface 
plasmon resonance, or magnetic property) properties of the nano-
material [57]. At the molecular level, ROS generation acts as an essential 
mechanism by which the nanomaterials induce cellular responses [58]. 
ROS are double-edged swords as they can help in tissue regeneration at 
optimum concentration and harm cells by producing DNA and protein 
damage at higher concentrations [59,60]. 

The subsequent sections present detailed information regarding 
various factors that influence the interactions between nanomaterials 
and cells. 

2.1. Chemistry of nanomaterials 

Chemistry of the base material used for the synthesis of nano-
materials is a significant factor that influences their interactions with the 
cells and cellular components [61]. NPs synthesized from biopolymers 
such as chitosan [62] and metal/metal oxide NPs synthesized by bio-
logical routes are mostly cell-friendly and bioactive [63]. The beneficial 
properties of them are attributed to the occurrence of functional groups 
such as hydroxyl, carboxyl, amino, and acetamido groups [64]. 
Although not bioactive, NPs based on synthetic biopolymers such as 
polyvinyl alcohol, polycaprolactone, and polylactic acid are compatible 
with mammalian cells [65]. The cytotoxicity shown by the nano-
materials is mainly due to the inherent toxicity of the elements used for 
the synthesis. For instance, since noble metals such as platinum and gold 
are somewhat compatible with mammalian cells, NPs synthesized from 
them are harmless despite their size and morphology-associated effects 
[66–71]. However, nanomaterials based on toxic heavy metals such as 
cadmium and lead are generally toxic to mammalian cells [72]. Upon 
interaction with the biological system, nanomaterials can induce either 

systemic, local, or both toxic responses depending upon the chemical 
properties. 

Moreover, nanomaterials produce functional group dependent 
cellular responses by either specific (e.g., specific chemical molecules) 
or non-specific (e.g., presence of simple, functional groups such as –OH, 
-COOH) surface chemical features. Mainly, specific chemical properties 
of nanomaterials such as elemental chemistry, presence of specific 
biochemical molecules, and release of metal ions can play a significant 
role in the nanomaterials associated with systemic toxic effects. How-
ever, local cellular responses such as cell-cell adhesion, cell prolifera-
tion, cell-substrate adhesion, and phenotypic changes are dependent on 
non-specific chemical properties [73,74]. 

Solubility and ionization of metallic or metal-containing NPs play a 
significant role in the cellular response and toxicity induced by them at 
the molecular, cellular, tissue, and systemic level [75]. The dissolution 
and ionization of nanomaterials mainly rely upon the chemical nature of 
the NPs in the biological environment [76]. For instance, zinc oxide 
(ZnO) NPs show higher solubility in aqueous conditions and thus rela-
tively higher cytotoxicity on cells in comparison with less-soluble ones 
like titanium oxide (TiO2) NPs [77]. The plausible reason for such a 
pronounced adverse effect shown by more soluble NPs could be the 
higher amount of metal ions generated by them in aqueous conditions. It 
has also been shown that silver and copper ions generated by silver and 
copper NPs could interact with the cell wall components containing 
nitrogen, oxygen, or sulfur and damage them [78]. Functionalization 
with a suitable moiety can modify such characteristics of NPs. For 
example, when silver NPs were functionalized with citrate groups, they 
could undergo clathrin-mediated endocytosis, lysosomal dissolution, the 
subsequent release of a higher amount of silver ions, and resulting 
toxicity in Caenorhabditis elegans [79]. An interesting recent study 
demonstrated that even minor changes in surface coverage of functional 
groups would significantly influence the cellular interaction and sub-
cellular distribution of ultrasmall gold NPs [80]. The results of this study 
indicated that lower surface coverage results in fast cellular communi-
cation and strong membrane binding but low cellular uptake. 

In contrast, high surface coverage induces slow cellular interaction 
and low membrane binding but higher cellular internalization. Another 
example of the effect of materials chemistry of NPs on nanomaterials- 
cell interactions is the magnetic properties. For instance, a substantial 
decrease in F-actin remodeling [81,82], disruption of tubulin [83], 

Fig. 2. Schematic representation showing the mechanisms of nanoparticle cellular internalization such as clathrin-mediated; caveolin-mediated; clathrin- and 
caveolin-independent; phagocytosis and macropinocytosis pathways. 
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increased levels of microtubule (MT) acetylation were observed upon 
treatment with superparamagnetic iron oxide NPs (SPIONs) [84]. 

Since the inherent chemical properties of the materials employed for 
the production and surface functionalization of nanomaterials can have 
a direct effect on their interaction with cells and cellular components 
[85], the bulk and surface chemistry of them should be carefully 
assessed before recommending them for biological applications [86]. 

2.2. Size of nanomaterials 

The particle size and size distribution are among the most critical 
factors that influence cell-nanomaterial interactions. The particle size 

plays a vital role in the cellular uptake, drug release kinetics, bio-
distribution, and toxicity of nanomaterials [40,87]. Unlike micro to 
large particles, NPs are generally not identified as foreign bodies by the 
immune system [88,89]. Macrophage engulfment of nanomaterials is 
also dependent on particle size, and they can only recognize relatively 
large NPs [90]. Apart from the cellular uptake, the size of the nano-
materials also influences the kinetics of cellular uptake and intracellular 
distribution [91,92]. To facilitate effective interaction with cells and 
provide a biological response, nanomaterials should be able to traverse 
the ECM. Due to the porous mesh-like organization, ECM firmly controls 
the movement of NPs across it [93]; with the straining properties of ECM 
mainly reliant on the organization of all their macromolecular 

Fig. 3. Effect of nanoparticle size on cellular internalization. A) Schematic showing the size filtering of NPs by ECM. B) TEM micrographs of U87 cells treated with 
NP-siRNA constructs showing the presence of large particles in cytoplasm. U87 cells were incubated with (a) 13 nm sphere shaped, (b) 50 nm sphere shaped, and (c) 
40 nm star shaped constructs for 24 h period. Orange color arrows show locally disrupted membranes of vesicles and yellow color arrows indicate NPs located outside 
the vesicles. C) Presence of Au-FITC NPs with various particle sizes in MCF-7 breast cancer cells. Au-FITC NPs (green) treated MCF-7S cells, and nuclei were stained 
by Hoechst 33342 (blue). D) Cells were imaged using confocal microscopy. Difference in cellular internalization of NPs as a function of size. E) Scheme indicating the 
size-dependent internalization of NPs. Figure A adapted from [94]; Figure B reproduced with permission from [104], Figure C is reproduced from article https:// 
pubs.acs.org/doi/10.1021/nn5008572 [105] with permission from American Chemical society (Further permissions related to the material excerpted should be 
directed to the ACS), Figure D reproduced with permission from [106]. 
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components: ECM permits the penetration of NPs smaller than its mesh 
size, whereas larger NPs are restricted (Fig. 3A) [94]. Collagen fibrils of 
the ECM possess an inter-fibrillar spacing of 20–40 nm, and hence 
generally allows the transport of slightly smaller NPs [95]. Although 
there are multiple hurdles in the ECM that hinder the diffusion of 
nanomaterials, there are several factors that can significantly enhance 
nanomaterial mobility through the ECM, such as the hydrodynamic 
diameter and surface charge [96]. 

After successfully passing the ECM barrier, NPs should be successful 
in traversing the cell membrane to enter into the cells [88]. The large 
surface area to volume ratio of small NPs enables their smooth entry into 
the cells [97]. For instance, smaller fragments of single-walled carbon 
nanotubes (SWNT) (30 nm) are vigorously internalized by cells more 
than larger ones (50 nm) [98]. This shows that the effective internali-
zation of nanomaterials happens at an optimal size [87]. Nanomaterial 
size plays a significant role in determining the mechanism of uptake too. 
For example, smaller particles pass the cell membrane through 
clathrin-coated pits, whereas larger ones internalize through the 
caveolae-mediated process [99]. For instance, in the case of nanotubes, 
their length plays a crucial role in cellular uptake behavior [100]. Also, 
the size of nanomaterials has an impact on the cell membrane receptor 
activation and resulting protein expression [101]. A new study indicated 
that small mesoporous silica NPs (~100 nm, s-MSN) could adhere to Red 
Blood Cells (RBCs) without disorganizing the membrane. 

In contrast, larger mesoporous silica NPs (~600 nm, l-MSN) pro-
duced speculation and subsequent hemolysis [102]. Size-dependent 
variation in cell membrane-NPs interactions can also be observed in 
metallic NPs. For instance, 70 nm-sized gold NPs were unable to pass the 
cell membrane, whereas 20 nm ones were not restricted by the cell 
membranes [103]. To understand the effect of particle size and shape on 
gold nanoparticle uptake, Yue et al. visualized the intracellular location 
of 13 nm and 50 nm nanospheres with transmission electron microscopy 
(TEM) after 24 h of particles treatment (Fig. 3B) [104]. For those cells 
incubated with 13 nm nanosphere, almost all the particles were covered 
by a clear, thin, intact membrane (Fig. 3Ba), suggesting successful ve-
sicular transport of 13 nm nanospheres. However, many of the 50 nm 
nanospheres were found outside the vesicles (Fig. 3Bb, yellow arrows). 

On the other hand, 40 nm star-shaped gold NPs were present in the 
vesicles as large aggregates or were observed outside of the vesicles 
(Fig. 3Bc, yellow arrows). Another study examined the application po-
tential of ultrasmall 2 nm NPs as vehicles for nuclear delivery of a 
triplex-forming oligonucleotide (TFO) that interacts with the c-myc 
promoter [105]. They used fluorescent dye (FITC) conjugated Au-TIOP 
NPs for confocal laser scanning microscopy (CLSM). As can be seen in 
Fig. 3C, only 2 nm Au-FITC NP-treated MCF-7 cells showed green fluo-
rescence (from conjugated FITC) in both nucleus and cytoplasm. Cells 
treated with relatively larger NPs resulted in a FITC signal in the cyto-
plasm only. Such results imply that the smaller Au-FITC NPs (2 nm) were 
capable of entering the cell nucleus, whereas larger Au-FITC NPs (6 - 16 
nm) were not. However, among gold NPs sized 14, 50, and 74 nm, 50 nm 
gold NPs were most efficiently internalized by Hela cells [106] (Fig. 3D). 
According to the theoretical model proposed by Gao et al., optimal 
particle size for cellular uptake is decided by the outcome of competition 
between receptor diffusion kinetics and thermodynamic driving forces 
[107]. Increased elastic energy coupled with bending of the membrane 
results in the reduced driving force for membrane wrapping of NPs 
smaller than the optimal size. Hence, smaller NPs need to flock together 
to generate enough driving force for successful cellular internalization, 
as shown in Fig. 3E. This model proposed by Gao et al. also suggests that 
larger particles accommodate many receptors on the cell surface, which 
requires the diffusion of receptors over a longer distance during uptake, 
and this has led to lower internalization of larger particles. Studies using 
cancer cells also indicated that the presence of functional groups on the 
surface of NPs could not alter the size-dependent preferential uptake of 
smaller NPs [43,108]. The size distribution (polydispersity index) of 
nanostructures is another essential factor to be thoroughly investigated 

as the cellular responses may vary with the size of the particles. More-
over, agglomeration behavior of NPs can also have an impact on in-
teractions and subsequent cellular response as agglomerated NPs show a 
much higher size than individual ones [109]. 

NPs can reach the cell nucleus mainly by two distinct mechanisms: 
passive diffusion through the nuclear pore complex formation and active 
transport through the nuclear membrane pore complex. NPs should be 
very small to pass through the nuclear pore complex passively as the 
channel width comes between ~6 − 9 nm [110]. The active transport of 
NPs is accomplished by the support of a cytoplasmic protein named 
importins [111]. Nanomaterials having diameters up to 50 nm can reach 
the nucleus by active transport mechanism [112]. The kinetics of NPs to 
the nucleus is highly dependent on the size, as evident from the 
several-fold higher transport of gold NPs (2 nm in size) than 14 nm ones 
[110]. 

Similarly, functionalized smaller gold NPs (~2.4 nm) were able to 
enter the nucleus, while slightly larger ones (5.5–8.2 nm) were circu-
lated in the cytoplasm [113]. Tiny carbon-based nanomaterials can also 
interact with the cell’s nucleus by various mechanisms. In particular, 
graphene quantum dots (GO-QDs) were able to enter the nucleus due to 
their small size through DOX/GQD conjugates and deliver drug cargos 
[114,115]. 

Although there are several reports regarding the influence of nano-
particle size on NPs-cell interactions, many of such studies did not 
consider the hydrodynamic diameters (HD). HD is an indication of the 
apparent size of particles that can be calculated from the diffusional 
properties of the dynamic hydrated/solvated particle. The hydrody-
namic size is an indication of how the particle behaves in a fluid and it 
indicates the most realistic size of the NPs in cell culture systems or in 
vivo conditions. In addition to microscopic imaging techniques like TEM 
and atomic force microscopy (AFM), dynamic light scattering (DLS) 
based particle size measurement can provide information on HD. Studies 
also indicated that the form of the protein corona formed around NPs 
could significantly change the size and influence the cellular uptake 
[116,117]. For instance, a few minutes incubation of magnetite (Fe3O4) 
cores of 25–30 nm in cell culture medium resulted in protein adsorption 
and a 5-fold increase of the HD [116]. Owing to the importance of 
self-assembled NPs in various biomedical applications, the size-related 
effects of such nanostructures on cells need special attention 
[118–121]. It is interesting to note that self-assembled nanostructures 
can show pH-dependent HD variation. For instance, self-assembled ul-
trasmall luminescent gold NPs chitosan assemblies can show ~23.5 nm 
size at low pH values (pH < 6.5). 

In contrast, they transform to swollen larger particles at high pH 
values (pH 7.4)[122]. Such pH-dependent variation in size can have a 
significant impact on nanomaterials-cell interaction. Thus, it is vital to 
thoroughly characterize the NPs in physiological conditions to under-
stand the HD, facilitate cellular uptake, and achieve the desired inter-
action with intracellular components. 

2.3. Shape of nanomaterials 

Nanomaterial uptake, distribution, interactions with cellular com-
ponents, and resulting cellular functions are also influenced by the shape 
of NPs [40,123]. For instance, elongated nanomaterials generally show 
higher uptake than spherical ones due to their higher ability to suc-
cessfully adhere to the cell membranes [124]. Spherical NPs provide less 
binding sites to interact and comply with the cell membrane because of 
their curved surface and show relatively less internalization [125,126]. 
For example, various studies have reported that rod, discoid, cylinder, 
triangle sharp-shaped, and quasi-ellipsoidal nanostructures were more 
effectively internalized by cells compared to spherical particles [127, 
128]. However, disc-shaped NPs showed more effective internalization 
than rod-shaped ones [129]. Higher cellular uptake was noticed with 
cylindrical ones than spherical nanostructures [130]. 

Moreover, nanomaterials with sharp edges can penetrate the cell 
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membranes and successfully internalize. However, a different result was 
observed when spherical polymer NPs and their deformed quasi- 
ellipsoidal counterparts with varying ratios of aspect were investi-
gated [131]. Gold NPs with triangular morphology displayed higher 
uptake than spherical particles in HeLa cells [132]. Among the different 
morphologies of methyl, polyethylene glycol-functionalized gold NPs, 
star, rod, and triangular shapes showed the lowest to highest cellular 

uptake, respectively [133]. However, confocal micrographs of siRNA 
nano-constructs (NP-siRNA/ Cy5) in U87 cells indicated the relatively 
insignificant difference in cellular uptake between spherical (13 and 50 
nm sizes) and star-shaped NPs (Fig. 4A) [104]. At 24 h incubation, the 
position of these NPs within U87 cells differed among the three tested 
ones. In the case of 13 nm sphere shaped ones, most of the NP-siRNA 
constructs remained entrapped in endosomes with only minor 

Fig. 4. A) Size- and shape-dependent uptake and subsequent localizations of NP-siRNA constructs in subcellular organelle. Cy5-labeled NP-siRNA constructs (red 
color) were incubated with U87 cells for 2 h or 24 h, followed by immunostaining of lysosomes and endosomes. Co-localization of constructs with lysosomes are 
denoted by solid white arrows; co-localizations of constructs with endosomes are denoted by solid yellow arrows; constructs that are neither localized in endosomes 
nor lysosomes are denoted by hollow white arrows (scale bar is 10 μm). B) Macrophages incubated with green fluorescence PLGA particles: (a) sphere shaped. (b) 
PEGylated sphere shaped, (c) stretched (elongated), (d) PEGylated stretched (elongated), (e) no particles (control), and (f) internalized stretched particles. C) Cell 
membrane penetration of graphene sheets. C(a) Corner penetration on the surface of a human lung epithelial cell. C(b) Edge penetration of multiple macrosheets (G) 
into a macrophage (M). C(c) Edge penetration of graphene sheet in primary human keratinocytes (thick yellow arrow indicates edge entry which was nucleated at a 
protrusion). C(d) Corner penetration of a graphene sheet in a keratinocyte cell. Figure A reproduced with permission from [104], Figure B reproduced with 
permission from [134] and Figure C is reproduced with permission from [145]. 

R. Augustine et al.                                                                                                                                                                                                                              



Materials Today Communications 25 (2020) 101692

7

overlapping lysosomal signals as indicated by solid white arrows. 
However, most of the spherical nano-constructs with 50 nm diameter 
showed only slight colocalization along with either endosomes or lyso-
somes (indicated by hollow white arrows in the figure). Stars shaped NPs 
(40 nm diameter) showed a comparable trend in intracellular distribu-
tion with 50 nm ones. Mathaes et al. performed a detailed investigation 
to understand the variation of cellular uptake of elongated, 
non-spherical, and spherical poly(D, L-lactide-co-glycolide) (PLGA) 
based micro- and NPs [134]. Fluorescent microscopic images indicate 
that macrophages took up 1.23 ± 0.520 spherical PLGA particles per cell 

(Fig. 4B). However, stretched particles had a considerably reduced 
incidence of cellular uptake (0.424 ± 0.210 particles/cell), which was 
further reduced by PEGylation. 

Carbon-based nanomaterials such as fullerenes [135,136] and CNTs 
[137,138] can penetrate the cell membrane and enter the cells by 
spontaneous insertion/penetration across the membrane or by endocy-
tosis [139–141]. Studies also indicated that CNTs might pass the cell 
membrane by exploiting a lipid-mediated process [142], which may 
include multiples steps such as landing, piercing of the membrane, and 
subsequent internalization [143,144]. It is also demonstrated that tiny 

Fig. 5. Influence of nanoparticle stiffness on in vitro cellular uptake. A) Scheme showing nanoliposome–hydrogel complex. B) TEM images of NLP with different 
stiffness properties. Scale bars represent 100 nm. C) The Young’s moduli of NLP and NLGs were determined by AFM analysis. D) Fluorescent microscope images 
showing the cellular internalization of NLP and NLGs with varying elasticity in breast cancer cells (MDA-MB-231). The scale bars are 50 μm. Relative cellular 
internalization of NLP and NLGs by different cell lines such as MDA-MB-231 (E), MCF7 (F), and MCF10A (G) cells. *** indicates P < 0.001. Reproduced with 
permission from [154]. 
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graphene nanosheets can translocate through lipid bilayers [145]. Up-
take of graphene-like materials is typically started at the corners or 
uneven sides of these nanostructures [145]. Puncturing of the cell 
membrane initiates at the sharp edges of nanomaterials and propagate 
along the rest of it (Fig. 4C). Such local piercing minimizes the high 
energy barrier and helps relatively easy penetration and cellular uptake. 
However, in contrast to the internalization, the exocytosis of high aspect 
ratio nanomaterials was found to be lower than that of spherical coun-
terparts [146]. Studies also showed that Fullerenol C60(OH)36 can stay in 
peripheral blood mononuclear cells (PBMCs) without a significant effect 
on cell survival or the structure of the plasma membrane [147]. 

2.4. Topography and stiffness of nanomaterials 

Nanomaterials-cell interaction and the subsequent cellular responses 
are influenced by surface topography and stiffness [109,148]. Studies 
indicated that nanoscale surface features could alter cellular response 
[149], influence cell adhesion [150] and cell differentiation [151]. Also, 
matrix stiffness of the nanostructures can alter the nanomaterials-cell 
interaction and subsequent cellular response [152]. Huang et al. used 
polyacrylamide (PA) NPs with tunable stiffness as a model substrate to 
validate the relationship between stiffness and their internalization by 
mammalian cells [153]. They have demonstrated that a stiffer nano-
particle could undergo higher internalization per cell basis. Guo et al. 
demonstrated that the in vitro cellular internalization and in vivo tumor 
penetration of nanolipogels (NLGs) depends on the elasticity [154]. 
NGLs with controllable flexibility were spherical and composed of a 
dense alginate core and a hollow lipid bilayer (Fig. 5A, B). The Young’s 
moduli of the NLGs are given in Fig. 5C. The cellular internalization 
NLGs were studied in human breast cancer cells (MDA-MB-231 and 
MCF7) and healthy human mammary epithelial cells (MCF10A). 
Nanoliposome (NLPs) was used as a control. Representative images 
show the differential cellular internalization of NLPs and NLGs by 
MDA-MB-231 cells in Fig. 5D. Cancerous and normal cells showed 
significantly higher internalization of soft NLGs (Young’s modulus <1.6 
MPa) compared to elastic ones (Young’s modulus >13.8 MPa). 
NLP-45KPa and NLGs, labeled with Oregon Green 488-1,2-Dihexadeca-
noyl-sn-Glycero-3-Phosphoethanolamine (OG488-DHPE, a fluorescent 
lipophilic dye), exhibited diminishing cellular internalization with 
increasing of the stiffness (Fig. 5E-G). The maximum cellular internali-
zation occurred with NLP-45KPa (modulus, 45 ± 9 kPa) group, which 
was 80% higher than NLG-19 MPa groups. These findings indicated that 
the elasticity of nanomaterials could play an essential role in cellular 
uptake, and it remains a critical design parameter to improve the tumor 
delivery nanoformulations. 

Furthermore, nanofibrous matrices with topographies of the native 
in vivo ECM have been widely used as tissue engineering scaffolds [155, 
156]. Nanofibrous scaffolds have been realized using the electro-
spinning technique [157,158] The individual fiber diameter of such 
fibrous membranes usually comes below submicron range, which is 
similar to the nanotopography of native ECM [159]. Various ap-
proaches, such as controlling the solvent ratio [160], polymer concen-
tration [161], incorporation of nanofillers [19] and inducing breath 
figure formation [162] are tried to manipulate fiber diameter and sur-
face topography of nanofibers. 

2.5. Surface charge 

Nanomaterials-cell interaction, cellular uptake, and the resulting 
outcome are influenced by the surface charge of nanomaterials [4,163]. 
The net surface charge of the NPs is usually stated as zeta potential 
values [164]. ECM remains a net negative charge owing to the presence 
of glycosaminoglycans (GAGs) chains, which are abundant in negatively 
charged functional groups. Apart from the size filtering, there is a charge 
dependent mechanism for NPs trafficking across ECM, namely, inter-
action filtering [165]. Protein corona formation over the NPs in 

physiological conditions could change the original surface charge of NPs 
and the resulting interaction [166]. Mostly, NPs with net positive charge 
are internalized by cells vigorously than those with net negative charge 
[167]. This preferential internalization can be due to favorable 
positive-negative electrostatic interactions, as cell membranes are 
negatively charged [168]. However, phagocytic cells are reported for 
the selective uptake of anionic NPs [169]. In an exciting study, 
high-affinity binding of citrate-coated superparamagnetic iron oxide 
NPs with cell membranes were hampered when glycosaminoglycan 
synthesis was blocked [170]. This indicates that the interaction between 
glycosaminoglycans and the negatively charged NPs played an essential 
role in the cell membrane binding of NPs. A series of NaYF4: Yb3+, Er3+

upconversion NPs (UCNPs) with various morphological features and 
surface coatings were prepared to understand the effect of surface 
charge on the extent of cellular uptake. The results of this study high-
lighted that the cellular uptake was also higher when NPs with higher 
surface charge were used. The effect of surface charge on the cellular 
internalization was prominent in small-sized NPs, where several mech-
anisms were found to have taken part in the cellular internalization such 
as clathrin- caveolae-mediated endocytosis and physical 
adhesion-subsequent penetration. 

However, in the case of relatively bigger particles, an energy- 
dependent endocytosis mechanism played a more prominent role. 
Landgraf et al. investigated the extent of internalization of neutral, 
positively charged, or negatively charged quantum dots and the 
Au@MnO particles by confocal laser scanning microscopy [171]. Posi-
tively charged quantum dots showed the highest internalization 
(Fig. 6A). Neutral Au-NH2@MnO NPs were internalized in a greater 
magnitude than non-functionalized or NPs that were functionalized at 
the MnO domain. Hühn et al. studied the influence of charge on the 
interactions of NPs with components of biological media and subsequent 
cellular internalization [167]. For this, gold NPs with identical physical 
properties were modified with amphiphilic polymers to generate NPs 
with opposite surface charges (negative/positive) [167]. NPs with pos-
itive charge were internalized by mammalian cells to a more significant 
level than those with a negative charge (Fig. 6B). The average fluores-
cence intensity (I) per cell for NPs versus incubation time for medium #5 
(DMEM media), #7 (DMEM media with bovine serum albumin, BSA) 
and #8 (DMEM media with fetal bovine serum, FBS) (Fig. 6C) showed a 
higher uptake rate for positively charged ones than for negatively 
charged ones. This difference was mainly due to the differential inter-
action of cellular proteins with positively or negatively charged mole-
cules on the NPs. The presence of BSA or FBS in the media inhibited the 
cellular uptake of both NPs. However, the effect of FBS on the uptake 
was only marginal in the case of negatively charged NPs. Unlike purified 
BSA, FBS contains a variety of proteins, and the protein corona formed 
by them might have contributed towards this difference in cellular up-
take [172]. 

Upon contact with cells, nanomaterials can (i) cause the deformation 
of lipid membranes resulting in their internalization [173], (ii) disor-
ganize the phospholipids bilayer [174], (iii) generate “holes” in the cell 
membranes. Nanomaterials with a net positive charge are much more 
likely to create such membrane distortions than those with net negative 
and neutral charges. Such holes could result in the leakage of intracel-
lular components and result in cell death. Cationic nanomaterials can 
provide relatively robust interaction with cell membranes with net 
negative charge and result in their quick internalization with potential 
membrane distortions [175]. In contrast, owing to the similar net charge 
with cell membranes, anionic nanostructures are less harmful. Owing to 
the net negative charge, cationic NPs are thought to be electrostatically 
attracted to plasma membranes and subsequently internalized by the 
cells. Regardless of such theoretical assumptions, experimental research 
indicated that nanostructures with net negative charges are also able to 
enter the cells by traversing the negatively charged cell membrane 
[176]. In contrast to charged nanomaterials, neutral ones show only low 
affinity with cells and thus result in less internalization [87]. There are 
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Fig. 6. Effect of surface charge of NPs on cellular internalization. A) Microscopic analysis of NPs internalization after 24 h of incubation showing the charge- 
dependent internalization of different NPs by endothelial cells : SVEC4-10 cells after incubation with quantum dots (QDs) (A(a)). The QDs are denoted as red, 
the nucleus in blue and the cell membrane in green (Scale bar is 20 μm). HMEC cells after incubation with Au@MnO NPs denoted as green (A(b)). The nucleus can be 
seen in blue color. Internalized NPs are denoted by white arrows (Scale bars are 50 μm). B) 3T3 fibroblasts were cultured with charged AuNPs in different culture 
media. The microscopic images depict the cells at different time points after culturing in medium #8. C) The average fluorescence intensity (I) per cell for NPs versus 
culture time for media #5 (DMEM media), #7 (DMEM media with bovine serum albumin) and #8 (DMEM media with fetal bovine serum). Figures A is reproduced 
with Creative Commons Attribution 2.0 (CC-BY-0.2) License from [171]. Figures B and C are reprinted with permission from [167], Copyright (2013) American 
Chemical Society. 
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several other factors such as hydrophobicity may also play a significant 
role in the uptake of charged NPs, and this could be one of the reasons 
for contrasting results regarding the effect of charge on cellular uptake 
[169]. 

Nanomaterials also interact with cytoskeletal proteins depending on 
their surface charge and result in the modification of the properties of 
NPs or cytoskeletal proteins. For instance, an increase in zeta potential, 
and variation in plasmonic properties of silver NPs were observed upon 
the interaction of citrate-coated silver NPs with cytoskeletal proteins 
[177,178]. Along with these changes in the properties of NPs, such 
communications can affect cytoskeletal integrity, as evident from an 
increase of F-actin expression and the difference in cell polarity [179]. 
Metallic NPs (e.g. Silver NPs) can sometimes result in the loss of cyto-
skeleton components such as F-actins and β-tubulins [180]. Studies also 
show that cationic dendrimers can interact with actin filaments [181] 
and affect actin polymerization (at 1 μg mL− 1). However, at higher 
concentrations (≥10 μg mL− 1), actin polymerization was accelerated. 
Past research also showed the existence of multiple mechanisms behind 
the internalization of cationic liposomes, such as those mediated by 
actin networks or tubulin mediated cytoplasmic transport [182]. 

Nanomaterials with a net charge can also interact with intracellular 
organelle like mitochondria. For example, cationic and lipophilic mes-
oporous silica NPs have shown noticeable interaction with the mito-
chondrial membrane [183]. Some of the charged nanostructures can 
enter in cell nuclei and produce genotoxicity. For instance, gold NPs 
with roughly 1 nm size can enter the nucleus and bind with DNA mol-
ecules having a net negative charge [184,185]. Despite the possible 
harmful effects on DNA, such nucleus targeted NPs are exploited in 
cancer therapy [186]. 

2.6. Functional groups of nanomaterials 

The presence of various functional groups on the surface of nano-
materials can modify their interactions with cells. Such functional group 
dependent interactions have relied upon the specific interaction of cell- 
surface ligands with the surface functional groups present over the 
nanomaterials. A suitable surface functionalization could allow the 
nanomaterials to firmly interact with the cell membrane, safe membrane 
penetration, and cellular uptake. For instance, membrane penetration 
and subsequent target binding were much higher for oligonucleotide 
functionalized gold NPs compared to unmodified ones [187]. Similarly, 
PLGA NPs functionalized with poly-L-lysine have shown superior cell 
membrane affinity and uptake than blank ones [188]. 

Functionalization of nanomaterials can reduce the cytotoxicity of 
them too. Graphene functionalized with carboxyl groups showed less 
cytotoxicity due to a relatively weak hydrophobic interaction with cell 
membranes [189]. Cells treated with hydrophilic group functionalized 
NPs left wrinkles on the cell surface as a hallmark of cellular uptake. 
Functionalization with ligands such as proteins, peptides, antibodies, 
small molecules, and nucleic acids can be employed as a robust 
approach to target nanomaterials to specific cells or intracellular com-
ponents [190]. Targeting potential of nanomaterial is dependent on the 
chain length of functionalizing agents too. For instance, such a reduction 
in the binding affinity with the targeted receptor was highly evident in 
the case of gold NPs, which were anchored with a high molecular weight 
polyethylene glycol (PEG) linker between target-specific antibody 
[191]. Functionalization can inhibit protein corona formation when it 
comes into contact with serum proteins [191,192]. Owing to the ability 
to resist protein adoption, nanomaterials can be decorated with PEG to 
minimize nonspecific membrane interactions. 

Moreover, coating with PEG can avoid the agglomeration of NPs 
[193]. Functionalizing with specific biomolecules such as antibodies to 
target and facilitate internalization is a critical approach in the field of 
nanomedicine. For example, Triptorelin (a Luteinizing 
Hormone-Releasing Hormone (LHRH) agonist) functionalized magne-
tite NPs showed several-fold higher adhesion to breast cancer cells than 

to healthy breast cells [194] indicating the massive potential as targeted 
image contrast agents [195]. A new study showed that biotin incorpo-
ration into pullulan acetate self-assembled NPs could enhance the up-
take by HepG2 cells [196]. 

The surface functionalization of NPs with specific agents that have to 
be delivered in the nucleus is a promising approach [105]. For instance, 
gold NPs conjugated with a triplex-forming oligonucleotide (TFO) could 
more effectively decrease the level of c-myc protein expression than free 
TFO [105]. This indicates the more effective penetration of TFO con-
jugated NPs in the nucleus than free drug. Moreover, active trans-
portation of nucleolin-specific aptamers labeled gold nanostructures to 
the nucleus produced substantial variations in the nuclear morphology 
[197]. This was apparent from the invaginations of nuclear envelope 
near the internalized nanostructures. Such NPs associated variations in 
nuclear morphology and greater therapeutic effectiveness are highly 
encouraging for nuclear-targeted cancer therapy [105,198]. Recent 
studies also explored the applicability of functionalized NPs to minimize 
the nuclear damage due to nuclease activity. In a specific study, gold NPs 
conjugated with a cationic polyelectrolyte, namely poly-
diallyldimethylammonium chloride (PDADMAC), presented resistance 
against DNA degradation [199]. This was achieved by the 
nanoparticle-DNA interaction and subsequent formation of a nano-
particle- DNA conjugate. Self-assembled carboxymethylated (CM)-cur-
dlan hydrogel NPs showed higher interaction with HepG2 cells when 
conjugated with lactobionic acid [200]. Such hydrogel NPs are useful for 
drug delivery applications due to the ligand–receptor-mediated in-
teractions with cancer cells and subsequent controlled release of the 
loaded drug. 

Some studies investigated the cellular internalization of NPs, which 
are simultaneously functionalized with multiple groups having different 
surface charges [201]. For instance, Shahabi et al. investigated the 
cellular internalization of fluorescent silica NPs (FFSNPs) with various 
ratios of sulfonate and amino groups [201]. These NPs possessed a wide 
range of zeta potential value. Interestingly, serum proteins adsorbed 
over these charged NPs neutralized the original surface charges (irre-
spective of the negativity or positivity) and hindered the agglomeration 
of them [202]. When serum was not provided in medium, NPs with more 
positive zeta potential values were accumulated in cells than those with 
negative zeta potential values. However, in serum-containing medium, 
negatively charged FFSNPs showed higher uptake by the cells, indi-
cating the importance of sulfonate-functionalized silica NPs in clinical 
applications where the presence of serum is inevitable. Further, the 
microscopic analysis was performed to localize FFSNPs in cellular 
components such as lysosomal structures and actin cytoskeletons. In 
another study, Mao et al. generated silk fibroin (SF)-based NPs conju-
gated with polypeptides cyclic pentapeptide cRGDfk and Chlorin e6 
(Ce6) [203]. Also, genipin was used to conjugate 5-fluorouracil (5-FU) 
doped SF-based NPs (NPs). A high level of ROS was observed in the 
MGC-803 cells upon treatment with the SF-based NPs and photody-
namic therapy (PDT). ROS production resulted in higher cell death. The 
results of in vivo experiments indicated that the SF-based NPs had 
promising tumor targeting potential and the ability to inhibit tumor 
progression (Fig. 7A). Higher fluorescent intensity by flow cytometry 
(Fig. 7B) and intracellular fluorescence quantitative analysis (Fig. 7C) 
indicated the higher cellular uptake of SF-NPs. Overall, such studies 
suggest that the surface-functionalized NPs have massive potential as 
drug delivery systems in tumor therapy and could be the potential 
clinical options shortly. 

Functionalized or non-functionalized carbon-based nanomaterials 
are widely explored in various biomedical applications [204]. Cells 
exposed to pristine graphene indicated the disorganization of F-actin 
alignment in mammalian cells [189]. In contrast, functionalized gra-
phene did not produce such an effect on the cytoskeletal proteins. Past 
research also indicates that N and Cl ligands edge-functionalized gra-
phene QDs improve the nuclear uptake and histone binding in the nuclei 
[205,206]. Aminated graphene QDs provided higher cleavage and 
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cross-linking of DNA chains in macrophages mediated by H-bonding and 
π-π stacking [207]. 

2.7. Hydrophobicity/hydrophilicity of nanomaterials 

Interaction between nanomaterials and cells are highly influenced by 
the hydrophobicity/hydrophilicity of the developed nanomaterials [4, 
39,40,208]. Interestingly, nanomaterials with hydrophilic surface 
groups showed an extended circulation period due to the resistance to 
phagocytosis [209]. Macrophage polarization is also influenced by the 
hydrophilic/hydrophobic nature of nanomaterial surfaces, as evident 
from the presence of the anti-inflammatory M2-like state on hydrophilic 
surfaces [210]. Past research also indicated that cell adhesion and pro-
liferation were higher on surfaces with medium hydrophilicity [211]. 
Among NPs functionalized with –-COOH, -OH or -NH2 functional 
groups, -NH2 and -OH group functionalized NPs provided significantly 
higher cytotoxic response than -COOH functionalized ones [212]. 

Fig. 8 clearly illustrates the alteration in cellular behavior between 
NPs with varying hydrophilicity. Possible interaction of NPs with hy-
drophilic or hydrophobic surface functional groups with endothelial cell 
model membrane is shown in Fig. 8A [213]. Influence of inhibitors on 
the cellular internalization of carboxyl modified polystyrene (CPS) and 
plain polystyrene (PS) NPs by mesenchymal stem cells (MSCs) are also 
investigated [214]. From the results of this study, it is highly evident 
that dynasore inhibits the internalization of CPS NPs. However, dyna-
sore does not influence the internalization of PS NPs. Results also 
demonstrated that with the addition of dynasore, internalization of CPS 

NPs was decreased by 30% compared to the control cells without in-
hibitor; however, internalization of PS NPs remained the same. These 
results indicate that the carboxyl groups present on the CPS NPs resulted 
in the dynamin-dependent endocytosis. Studies also indicated that hy-
drophobic octane thiol surface modification of zwitterionic luminescent 
glutathione-coated gold NPs (GS-AuNPs) improved their interaction 
with the cellular membrane and resulted in higher cellular uptake 
(Fig. 8B) [215]. Fluorescence microscopic study further demonstrated 
that hydrophobicity influences endocytic kinetics, as evident from the 
average number of endosomes in cells that were incubated with NPs at 
various time points (Fig. 8C-E). As time progressed, several NPs were 
internalized by cells through the endocytosis mechanism (Fig. 8C). 
Moreover, the internalization of amphiphilic octanethiol/glutathione 
coated AuNPs (OG-AuNPs) was considerably fast in the first 2 h of 
treatment and then reached the maximum amount at 3 h (Fig. 8D) where 
42 ± 8 endosomes were observed. In contrast, the internalization pro-
cess of GS-AuNPs was much slower: after 6 h, there were only 11 ± 3 
endosomes observed (Fig. 8E). Hydrophilic sulphonate ligand bearing 
NPs (MUS), internalized by dendritic cells, provided punctate fluores-
cence signatures indicating the effective endosomal uptake [216]. 

Hydrophobic drug carriers are very important in the delivery of 
water-insoluble therapeutic agents [45,217]. For example, when succi-
nobucol (SCB), a water-insoluble vascular cell adhesion molecule-1 
(VCAM-1) inhibitor, was loaded in the self-assembled triblock polymer 
(poloxamer P188) NPs employing intermolecular hydrophobic in-
teractions, facilitated the effective delivery into target cells [218]. In the 
case of orally administered NPs, successful epithelial absorption and 

Fig. 7. Effect of surface functional groups on nanoparticle internalization. A) Confocal microscopic images of MGC-803 cells exposed to SF (a), 5-FU@SF (b), 5- 
FU@SF-cRGDfk (c) and 5-FU@SF-cRGDfk-Ce6 (d) NPs for 4 h. Scale bars are 200 μm. B) The flow cytometric comparison of fluorescence intensity of cellular 
internalization of various SF-based NPs. C) Quantitative analysis of intracellular fluorescence of MGC-803 cells exposed with various SF-based NPs. (*: p < 0.05, **: p 
< 0.01). Figures are reprinted from [203] with permission from Elsevier. 
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mucus permeation are also very challenging unless the surface of them 
are functionalized with specific molecules. For instance, when 
self-assembled cell-penetrating peptide NPs were coated with a hydro-
philic N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) de-
rivatives, mucus permeation and epithelial absorption were increased 
[219]. Furthermore, hydrophobically modified glycol chitosan (HGC) 
self-assembled NPs are reported for the successful delivery of hydro-
phobized DNA [220]. The HGC NPs provided higher transfection effi-
ciencies compared to naked DNA and a commercially available 
transfection agent, indicating its application potential in gene delivery. 

Thus, hydrophobicity/hydrophilicity of nanomaterials can play a 

significant role in determining the nanomaterial-cell interactions and 
influence the outcome of such communications. 

3. Future directions 

The outcome of nanomaterial-cell interaction, either beneficial or 
harmful to the cells or the organism as a whole, is greatly dependent on 
many factors such as chemistry, size, shape, charge, and functionaliza-
tion of NPs. Several cellular factors also influence the nanoparticle 
internalization and subsequent interaction with cellular components. 
For example, nanomaterial internalization is generally difficult when 

Fig. 8. Surface hydrophobicity or hydrophilicity dependent cellular internalization of NPs. A) Scheme showing the interaction of NPs with hydrophilic/hydrophobic 
surface groups with endothelial cell model membrane. B) Schematic representation of cellular endocytosis process of AuNPs. C) Bright-field and fluorescent 
microscopic images of live HeLa cells cultured with OG-AuNPs and GS-AuNPs in MEM at 37 ◦C for 24 h, Scale bar: 20 μm. Cellular internalization kinetics of OG- 
AuNPs in 5 h (D) and GS-AuNPs in 24 h (E). Figure A is reprinted with permission from [213], Copyright (2008) American Chemical Society. Figures B, C, D and E are 
reproduced with permission from 211, Copyright (2018) American Chemical Society. 
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the cells are highly packed [221]. This is a great challenge when NPs are 
aimed at cancer therapy [222]. Future studies should focus on the 
interaction of NPs with cells in a tightly packed state both in vitro and in 
vivo. 

The central nervous system (CNS) targeted nanomedicines are also 
susceptible to this challenge. The blood brain barrier (BBB), a tight 
junction between the brain tissue and blood circulation, prevents the 
entry of foreign materials to the brain [4]. Although there are several 
reports regarding brain targeted NPs, much focus should be given on the 
shape, size, particle chemistry, and surface functionality dependent ef-
fects of various NPs on tight junction proteins and other BBB compo-
nents. Transmembrane proteins like claudins and occludin together with 
the actin cytoskeleton, constitute the principle biomolecular structural 
elements of BBB [4,223]. Effective crosstalk of ECM components of BBB 
with nanomaterials performs a major role in the result of the corre-
sponding CNS targeted nanomaterial therapy. Thus, more detailed 
studies in such interactions may be required to use NPs in brain targeted 
therapy. Several types of NPs can alter the ECM organization also. For 
example, NPs can trigger the activation of inflammatory signaling cas-
cades and disorganize the ECM [224]. Specifically, 
nanomaterial-mediated upregulation of the expression of matrix met-
alloproteinases (MMPs) can result in damage to ECM components [224]. 
Thus, a detailed investigation of the effect of various NPs on the 
expression of various ECM components will be an important area to 
explore. Some studies indicated that carbon NPs could generate ROS, 
which can damage ECM components. in mammalian cells [225,226]. 
Such investigations need to be performed for other commonly used NPs 
too. Organic-based nanomaterials such as dendrimers and liposomes are 
highly favorable due to their rapid cellular uptake. However, the attri-
butes of such nanomaterials on the cytoskeleton are not fully analyzed 
yet. 

As a beneficial side of the interaction between nanomaterials and 
cells, cerium oxide NPs could successfully scavenge the ROS produced 
by the defective mitochondria and alleviate the damages leading to cell 
death [227]. Effects of interaction between cellular components and 
ROS modulation by enzyme mimetic NPs such as cerium oxide [228, 
229] and yttrium oxide [230] will be an exciting direction for future 
research. Detailed investigations on physico-chemical property depen-
dent effects of metallic and metal oxide NPs with the cellular compo-
nents of both normal and cancer cells can provide insights on the 
cytotoxicity and clinical application potential for cancer therapy [231]. 
MDA-MB-231 cells that were incubated with graphene for 24 h, followed 
by subsequent mitochondria-specific staining and confocal microscopic 
examination revealed that graphene could interact with the mitochon-
dria [170]. TEM analysis showed that graphene oxide (GO) could also 
accumulate in mitochondria of mammalian cells [181]. As a widely used 
material in various industrial applications, a more detailed investigation 
on the uptake of graphene by skin epithelial, airway cells, and lung 
epithelial cells and subsequent interaction with intracellular compo-
nents would be necessary. 

Although there are a few studies related to the effect of NPs on the 
expression of genes relevant to cellular structure and function, under-
standing the spatio-temporal effects of nanomaterials on gene expres-
sion is crucial. For example, cells treated with silver [232] and ZnO 
[233] NPs can lead to endoplasmic reticulum stress, as apparent from 
the elevated expression of several stress-related kinases and enzymes. 
However, detailed studies on the effect of another metal oxide NPs on 
the expression of such specific genes need to be explored in detail. Golgi 
apparatus, organelle executing post-translational modifications of 
nascent proteins, is another vital intracellular structure where nano-
materials can colocalize and produce a pronounced effect. Thus, fully 
exploring the impact of newly developed nanomaterials aimed for 
clinical applications on Golgi apparatus should also be a prime focus for 
researchers in nanomedicine. Inhibition of the function of the Golgi 
apparatus can also be crucial in some ailments where protein misfolding 
has a significant role in disease initiation and progression. Although 

there are several studies in this direction [234–237], the shape, size, 
texture, and functionalization dependent effect of NPs on the Golgi 
apparatus at the genomic level can be a future focus of active research. 

We hope future studies investigating the application of nano-
materials will give more focus on the potential effects of such nano-
structures on various cellular organelles at the molecular and genomic 
levels. A collective effort from materials scientists, chemists, engineers, 
toxicologists, and biologists are required to fully understand the possible 
interaction between nanomaterials and cellular components and explore 
its outcome. 

4. Conclusions 

Nanomaterials and their diverse range of interaction with mamma-
lian cells can influence or alter the cellular interactions and which 
should be carefully examined when considering them in healthcare and 
FMCG products. The outcome of such interaction between nano-
materials and cells or cellular components can be either advantageous or 
harmful to the biological system. Several features of nanomaterials such 
as size, shape/topography, net charge, stiffness/elasticity, functionali-
zation, and hydrophilicity/hydrophobicity can influence their interac-
tion with ECM, cell membrane, cytoskeleton, and other intracellular 
organelles. Such interactions are crucial factors to be considered when 
developing nanomaterials for biological applications. Some of the 
properties of nanomaterials like the release of toxic metal ions, can 
adversely affect cellular components. However, some other properties of 
nanomaterials such as shape, size, surface functional groups, and hy-
drophilicity elicit spatio-temporal favorable outcome in response to the 
interactions with cellular components. In light of the vast data in the 
literature, magnitude and the result of such interactions differ between 
different nanomaterials and different cells, and it is vital to carefully 
examine them case by case before considering their bench to bedside 
translation. 
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