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Meta-analyses of diagnostic accuracy studies are a fundamental com-

ponent of evidence-based medicine, and they are extensively used

in medical imaging and the clinical laboratory. Techniques specifically

developed to combine independent studies of diagnostic accuracy and

provide pooled estimates for sensitivity (Se), specificity (Sp), positive

(pLR) and negative (nLR) likelihood ratios are relatively new. In 2001,

Rutter andGatsonis proposed the hierarchical summary receiver oper-

ating characteristic (HSROC) model,1 and in 2004Macaskill described

an empirical Bayes approach.2 Soon after, in 2005, Reitsma et al. pro-

posed the bivariate random effects model,3 which has been widely

adopted and is the most commonly used method for diagnostic meta-

analysis.4

However, as pointed out by Diaz,5 the statistical performance of

the bivariate model has not been scrutinized. Diaz found that the

performance of the bivariate model deteriorates when between-study

heterogeneity increases and the number of studies decrease.5 Our

simulation studies found similar results—with moderate levels of

heterogeneity (tau2 = 1), the coverage probabilities of Se, Sp, and

the diagnostic odds ratio (DOR) with the bivariate model dropped

below the nominal level.6 Diagnostic accuracy studies usually favor

sensitivity over specificity, or vice versa leading to diagnostic 2

× 2 tables with one or more of the cells with low frequency or

zero counts. Thus, extreme DORs are more commonly observed in

diagnostic than in intervention meta-analyses, which leads to high
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levels of heterogeneity (despite the wide confidence intervals of the

studies).7

1 CASE STUDY: ELISA FOR DETECTING RABIES
ANTIBODIES

We report the results of a meta-analysis with five studies estimating

the operating characteristics of enzyme-linked immunosorbent assay

(ELISA) when compared against the reference standard, fluorescent

focus inhibition test (RFFIT), for detection of immune response (i.e.,

seropositive or seronegative status) after a rabies vaccine.8 The sam-

ple size of the studies ranged from 28 to 990. Despite the studies not

having ‘extreme’ values (range of Se: 84.2 to 100; and range of Sp: 87.1

to 100) (Table 1), large between-study heterogeneity (tau2 = 8.3) was

observed, due to low frequency of false positives and false negatives,

including cells with zero counts. The pooled estimates were calculated

using the:

- Bivariate random effects model3

- An extension of the bivariate model proposed by Chu and Cole9

which is a generalized linear mixed model with a modeling

approach for sparse data recommended when there are low cell

counts
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TABLE 1 Data from the five studies included in themeta-analysis

Author, year

Sample

size TP FP FN TN

Sensitivity

(95%CI)

Specificity

(95%CI)

Feyssaguet 2007 655 191 3 2 459 99.0

(96.3–99.9)

99.4

(98.1–99.9)

Muhamuda 2007 990 740 0 0 250 100 (99.5–100) 100 (98.5–100)

Pandit 1991 28 16 1 3 8 84.2

(60.4–96.6)

88.9

(51.8–99.7)

Welch 2009 82 32 2 2 46 94.1

(80.3–99.3)

95.8

(85.8–99.5)

Zhao 2019 428 374 4 23 27 94.2

(91.4–96.3)

87.1

(70.2–96.4)

TP, true positive; FP, false positive; FN, false negative; TN, true negative; CI, confidence interval.

TABLE 2 Comparison of pooled estimates using the bivariate models, split component method, and Bayesian HSROC

Bivariatemodel

Bivariatemodel (Chu

and Cole extension)

Split component

method

Bayesian

HSROCa

Sensitivity 98.4 (90.2–99.8) 98.5 (88.6–99.8) 95.6 (62.6–99.6) 92.7 (67.4–99.8)

Specificity 98.3 (85.4–99.8) 98.5 (82.5–99.9) 95.4 (61.9–99.6) 92.8 (75.5–99.5)

pLR 58.86

(5.93–584.63)

65.60 (4.78–899.62) 20.91

(2.04–214.02)

12.88

(2.75–199.60)

nLR 0.02 (0.00–0.11) 0.02 (0.00–0.13) 0.05 (0.01–0.48) 0.08 (0.01–0.43)

DOR 3608.5 (62.3–

208848.8)

4413.1

(42.2–461117.2)

451.1 (16.7–

12205.6)

163.7

(6.4–99301.0)

AUC 0.98 (0.89–0.99)b 0.99 (0.87–0.99)b 0.96 (0.80–0.99) –

HSROC, hierarchical summary receiver operating characteristic; pLR, positive likelihood ratio; nLR, negative likelihood ratio;DOR, diagnostic odds ratio;AUC,

area under the curve.
aReference standard for sensitivity 99.9 (99.5–100) and specificity 99.7 (99.2–100).
bAUC estimated from theDOR.

- Split component synthesis (SCS) method6 which summarizes the

study-specific ln(DOR) using the inverse variance heterogeneity

model,10 and then splits the summary ln(DOR) into its component

parts (i.e., logit(Se) and logit(Sp))

- Hierarchical summary receiver operating characteristic model

in a Bayesian latent class meta-analysis framework (Bayes-

HSROC),11 which assumes the absence of a perfect reference

standard

The analyses were conducted in Stata MP version 14.1 using the

metandi module12 for the bivariate models and the diagma module13

for the SCSmethod. The Bayes-HSROCmodel was implemented in the

R programming language using the rjags14 and runjags15 packages. The

Bayes-HSROC model applies Bayesian inference, where the posterior

distribution of the parameters of interest depends on the likelihood

function and the prior information provided. The likelihood function

was computed as a statistical model for the observed data (Supple-

mentary Material S1). Noninformative priors were used, meaning

that no external information was provided to the model. Parameter

estimates were based on analytical summaries of 500,000 iterations

of two chains after a burn-in phase of 10,000 iterations. Time series

plots were used to assessed convergence.16 The two chains converged

to the same solution and autocorrelation plots dropped-off fast

(SupplementaryMaterial S2).

The results of the four models are presented in Table 2, and point

estimates and confidence intervals (credible intervals for the Bayes-

HSROCmodel) weremore conservative with the SCSmethods and the

Bayes-HSROCmodel thanwith both bivariatemodels. The Sewas 98.4

(95% CI 90.2–99.8) with the bivariate model, while it was 95.6 (95%

CI 62.6–99.6) and 92.7 (95% CI 67.4–99.8) with the SCS method and

Bayesian HSROC respectively, with similar results for the Sp.

2 SIMULATION STUDY

The five studies included in the case study were simulated fixing

the sample size to original study and fixing the true value of Se and

Sp = 0.96 (based on the pooled estimates in Table 2). The number of

diseased (dis) and nondiseased (ndis) individuals were drawn from a

binomial distribution using the sample size and the actual prevalence

of seropositivity and seronegativity, respectively in each study. The

four cell counts (tp, fp, fn, tn) were then derived from dis and ndis, and

the Se and Sp. Next, the four counts were divided by a scale parame-

ter (minimum value = 1) that was derived from a transformation of a
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F IGURE 1 Performance comparison of the diagnostic odds ratio (triangle), sensitivity (circle), and specificity (square) between the split
component synthesis method (blue) and the bivariate model (red) at different levels of heterogeneity

hypothetically imputed bias variance to introduce systematic error.17

Both random and systematic error were introduced by regenerating a

simulated Se and Sp from a beta distribution with parameters tp/f and

fn/f;and tn/fand fp/f, respectively.Next, the studiesweregeneratedand

meta-analyzed, and 1000 meta-analyses were simulated in each of 10

runs, with run 1 representing randomerror alone (scale parameter=1)

and runs 2–10having increasing level of between-study heterogeneity.

TheStata codes for thedata generation areprovided in the Supplemen-

taryMaterial S3.

For each level of heterogeneity, summaryDOR, Se, and Spestimated

by the extension of the bivariate model (proposed by Chu and Cole)

and SCS method were compared based on mean absolute estimation

error squared (bias squared), mean squared error (MSE), width of the

confidence interval, and coverage probability.18 The distribution of

Se, Sp, and tau2 generated for each of the 10 runs are reported in the

Supplementary Material S4. The bivariate model did not converge

in 19% of the simulated meta-analyses and these were excluded

from the performance analyses for both the bivariate model and SCS

method.

The simulation study revealed that the SCS method’s DOR, Se, and

Sp estimates were less biased (Figure 1A) and had smaller MSE than

the bivariate model estimates (Figure 1B). As heterogeneity increased,

thewidth of the 95%confidence interval becamewiderwith the bivari-

atemodel (Figure 1C), yet it had lower coverage probability of the con-

fidence interval compared to the SCS method (Figure 1D). It was not

possible to compare the performance of themodels whenmoderate or

extensive heterogeneity was introduced as the bivariatemodel did not

converge in> 50% of themeta-analyses.

3 DISCUSSION

In our case study with small number of studies and large heterogene-

ity, discrepancies were observed in the confidence/credible intervals -

very narrow confidence intervals with the bivariate models, while the

confidence/credible intervals were wide with the SCS method and the

Bayes-HSROC.The simulation study revealed thatwhenheterogeneity

was introduced, there was a considerable decline in the performance

of the bivariate model. Therefore, it is very likely that the results of the

case study and other studies using the bivariate model would generate

spuriously overconfident results due to overdispersion of the data rel-

ative to themodel.

Between-study heterogeneity is the norm in meta-analyses of diag-

nostic accuracy studies. In a methodological review, Dinnes et al.19

found that there was statistical heterogeneity in 79% of diagnos-

tic meta-analyses; thus pooling methods have to be able to properly
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maintain performance when heterogeneity is present. This study

therefore suggests that newer SCS method can resolve the issue of

overdispersion with the bivariate model and needs to be prioritized

in research. Alternatively, a Bayesian approach can be used, especially

when the referencemethod is imperfect.

In conclusion, the bivariate model suffers from the same issue

of overdispersion as the random effects model in standard meta-

analysis20 and theSCSmethod seems tobeaviable alternative. The lat-

ter also avoids the issue of nonconvergence and is not unduly affected

by varying implicit thresholds given that it starts with synthesis of the

DOR. Further evaluation is therefore recommended to independently

verify these findings, so that the necessary recommendations can be

made for the research community

ACKNOWLEDGMENTS

Open Access Funding provided by The University of Queensland.

FUNDING

LFK was supported by Australian National Health and Medical

Research Council Early Career Fellowships (APP1158469).

DATA SHARING

The data that supports the findings of this study are available in the

SupplementaryMaterial of this article.

ORCID

Suhail ARDoi https://orcid.org/0000-0002-2630-2125

REFERENCES

1. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-

analysis of diagnostic test accuracyevaluations. StatMed. 2001;20(19),
2865–2884.

2. Macaskill P. Empirical Bayes estimates generated in a hierarchical

summary ROC analysis agreed closely with those of a full Bayesian

analysis. J Clin Epidemiol. 2004;57(9), 925–932.
3. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM,

Zwinderman AH. Bivariate analysis of sensitivity and specificity

produces informative summary measures in diagnostic reviews. J Clin
Epidemiol. 2005;58(10), 982–990.

4. Ochodo EA, Reitsma JB, Bossuyt PM, LeeflangMMG. Survey revealed

a lack of clarity about recommended methods for meta-analysis of

diagnostic accuracy data. J Clin Epidemiol. 2013;66(11), 1281–1288.
5. Diaz M. Performance measures of the bivariate random effects model

for meta-analyses of diagnostic accuracy. Comput Stat Data Anal.
2015;83:82–90.

6. Furuya-Kanamori L, Kostoulas P, Doi SAR. A new method for synthe-

sizing test accuracydataoutperformed thebivariatemethod. JClin Epi-
demiol. 2021;132:51–58.

7. Begg CB. Systematic reviews of diagnostic accuracy studies

require study by study examination: first for heterogeneity, and

then for sources of heterogeneity. J Clin Epidemiol. 2005;58(9),

865–866.

8. Ling W, Doi SAR, Lau CL, Mills DJ, Kostoulas P, Furuya-Kanamori L.

Diagnostic accuracy of ELISA kits for measurement of rabies antibod-

ies. J Travel Med. 2021;28(5).
9. Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity

with sparse data: a generalized linearmixedmodel approach. J Clin Epi-
demiol. 2006;59(12), 1331–1332.

10. Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Advances in the

meta-analysis of heterogeneous clinical trials I: the inverse variance

heterogeneitymodel. Contemp Clin Trials. 2015;45:130–138. Pt A.
11. Dendukuri N, Schiller I, Joseph L, Pai M. Bayesian meta-analysis of the

accuracy of a test for tuberculous pleuritis in the absence of a gold

standard reference. Biometrics. 2012;68(4), 1285–1293.
12. HarbordRM,WhitingP.metandi:meta-analysis of diagnostic accuracy

using hierarchical logistic regression; 2009.

13. Furuya-Kanamori L,Doi SAR.DIAGMA:Statamodule for the split com-

ponent synthesis method of diagnostic meta-analysis; 2020.

14. Plummer M, Stukalov A, Denwood M, Plummer MM. Package ‘rjags’.

2018.

15. Denwood MJ. Runjags: an R Package providing interface utilities,

model templates, parallel computing methods and additional distribu-

tions forMCMCmodels in JAGS. J Stat Soft. 2016;71(9), 1–25.
16. Toft N, Innocent GT, Gettinby G, Reid SW. Assessing the convergence

of Markov Chain Monte Carlo methods: an example from evalua-

tion of diagnostic tests in absence of a gold standard. Prev Vet Med.
2007;79(2–4), 244–256.

17. Doi SAR, Furuya-Kanamori L. Selecting the best meta-analytic estima-

tor for evidence-based practice: a simulation study. Int J Evid Based
Healthc. 2020;18(1), 86–94.

18. Burton A, Altman DG, Royston P, Holder RL. The design of simulation

studies in medical statistics. Stat Med. 2006;25(24), 4279–4292.
19. Dinnes J, Deeks J, Kirby J, Roderick P. Amethodological review of how

heterogeneity has been examined in systematic reviews of diagnostic

test accuracy.Health Technol Assess. 2005;9(12), 1–113.
20. Doi SAR, Furuya-Kanamori L, Thalib L, Barendregt JJ. Meta-analysis

in evidence-based healthcare: a paradigm shift away from random

effects is overdue. Int J Evid Based Healthc. 2017;15(4), 152–160.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher’s website.

How to cite this article: Furuya-Kanamori L, Meletis E, Xu C,

Kostoulas P, Doi SAROverconfident results with the bivariate

random effects model for meta-analysis of diagnostic accuracy

studies. J Evid BasedMed. 2022;15:6–9.

https://doi.org/10.1111/jebm.12467.

https://orcid.org/0000-0002-2630-2125
https://orcid.org/0000-0002-2630-2125
https://doi.org/10.1111/jebm.12467

	Overconfident results with the bivariate random effects model for meta-analysis of diagnostic accuracy studies
	1 | CASE STUDY: ELISA FOR DETECTING RABIES ANTIBODIES
	2 | SIMULATION STUDY
	3 | DISCUSSION
	ACKNOWLEDGMENTS
	FUNDING
	DATA SHARING
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


