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a b s t r a c t 

This work proposes and investigates the dynamic behavior of a new memristive chaotic Sprott B system. 

One of the interesting features of this system is that it has a bias term that can adjust the symmetry of 

the proposed model, inducing both homogeneous and heterogeneous behaviors. Indeed, the introduced 

memristive system can turn from rotational symmetry (RS) to rotational symmetry broken (RSB) system 

in the presence or the absence of this bias term. In the RS system (i.e., absence of the bias term), pairs of 

symmetric attractors are formed, and the scenario of attractor merging is observed. Coexisting symmetric 

attractors and bifurcations with up to four solutions are perfectly investigated. In the RSB system (i.e., the 

bias term is non-zero), many interesting phenomena are demonstrated, including asymmetric attractors, 

coexisting asymmetric bifurcations, various types of coexisting asymmetric solutions, and period-doubling 

transition to chaos. We perfectly demonstrate that the new asymmetric/symmetric memristive system ex- 

hibits the exciting phenomenon of partial amplitude control (PAC) and offset boosting. Also, we show how 

it is possible to control the amplitude and the offset of the chaotic signals generated for some techno- 

logical exploitation. Finally, coexisting solutions (i.e., multistability) found in the novel memristive system 

are further controlled based on a linear augmentation (LA) scheme. Our numerical findings demonstrated 

the effectiveness of the control technic through interior crisis, reverse period-doubling scenario, and sym- 

metry restoring crisis. The coupled memristive system remains stable with its unique survived periodic 

attractor for higher values of the coupling strength. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Recently, research works focused on the classification of attrac- 

ors as either self-excited or hidden [1] . A self-excited attractor 

as a basin of attraction that is associated with unstable equi- 

ibrium. In contrast, a hidden attractor has a basin of attraction 

hat does not intersect with small neighborhoods of any equilib- 

ium points [2–4] . So, chaotic or periodic attractors that are asso- 
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iated with a system without any equilibrium points or with only 

table equilibria are called hidden attractors [2–4] . Some of these 

ndings are also obtained from memristive circuits designed based 

n the memristor theory [5] . It is considered as the fourth ba- 

ic electronic element, aside from resistor, capacitor, and inductor. 

o far, memristors have been widely exploited to design a large 

umber of circuits and systems, including chaotic circuits [6] , non- 

olatile memory [7] , digital logic circuits [8] , memristive neural 

etworks, and memristive synapses [9] . Therefore, a large number 

f such systems have been introduced and investigated in the lit- 

rature. Such investigations on chaotic systems are tied to various 

pplications of chaotic systems in different engineering domains. 
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C

ue to the existence of chaos in wide engineering fields, intensive 

tudies lead to many areas of implementation related to chaotic 

ystems [10–14] . Some examples of technological implementations 

f chaotic systems with either self-existed or hidden attractors 

re optimization [12] , cryptography [ 15 , 16 ], artificial neural net- 

ork [13] , communication [ 11 , 17 , 18 ], random number generator

14] , and image processing [10] . A good technic employed to design 

ome novel chaotic systems was introducing the memristor equa- 

ion in a three-dimensional (3D) system or a nonlinear feedback 

ontroller on a three-dimensional system. Both technics enable us 

o move from a 3D chaotic system to a 4D chaotic system. 

In [19] , a new autonomous 4D system without equilibrium, 

aving two nonlinear quadratic terms, two adjustable coefficients, 

nd seven terms, is studied. The system is constructed by using 

ppropriate linear feedback control. Many interesting properties 

re found in the proposed system, including hyperchaos, quasi- 

eriodic route to chaos, and coexisting stable states. A novel 4D 

haotic system with infinite coexisting attractors is presented and 

nvestigated by Qiang et al. [20] . The proposed model is con- 

tructed by injecting a sinusoidal function into an existing 4D sys- 

em. Therefore, infinite many coexisting attractors are proved nu- 

erically using phase diagrams and bifurcation diagrams. The cir- 

uit and microcontroller implementations of the model are car- 

ied out to confirm its concrete/physical meaning. In [21] , the au- 

hors introduced a novel five-dimensional memristi ve hyperchaotic 

ystem with hidden behaviors. The proposed 5D system is con- 

tructed by introducing a flux-controlled memristor model into a 

ell-known and improved 4D hyperchaotic system [22] . Coexist- 

ng attractors are discussed in the investigated model with their 

idden extreme multistability. The hyperchaotic feature is exper- 

mentally confirmed. Hidden attractors are demonstrated numeri- 

ally using Lyapunov exponents, bifurcation diagrams, and phase 

iagrams in a new 5D (five-dimensional) hyperchaotic Sprott B sys- 

em [23] . The symmetry of the proposed model is used to prove 

oexisting hidden solutions in the proposed system. Very recently, 

i et al. [24] proposed a novel 4D hyperchaotic memristor sys- 

em by introducing a magneton memristor into the 3D chaotic 

prott B system. The hyperchaotic behaviors of the proposed mem- 

istor system are demonstrated using dissipation, Lyapunov ex- 

onent, and stability. A novel memristive Hindmarsh-Rose (HR) 

euron model with electromagnetic induction was designed [25] . 

he model was constructed by introducing an ideal flux-controlled 

emristor with cosine memductance [26] into the classical HR 

euron model to characterize the electromagnetic field effects on 

eurons. Therefore, hidden homogeneous extreme behaviors were 

enerated. Constructed chaotic systems with rich dynamical prop- 

rties (e.g., extreme multistability, offset boosting, coexisting at- 

ractors, amplitude control, and symmetry) are discussed [27–32] . 

o the best of the authors’ knowledge, it is observed from Table 1 

hat no chaotic/hyperchaotic memristor Sprott B system with self- 

xcited attractors was reported in the literature. Also, this table 

ighlights the property of some 4D or 5D Sprott B systems pro- 

osed within this work. 

In particular, a chaotic signal is one positive Lyapunov expo- 

ent (LE) fingerprint in a nonlinear dynamical system. However, if 

 nonlinear system has more than one positive LE, the generated 
d

able 1 

ategorization of reported 4D or 5D Sprott B systems with various characteristics. 

Nature of the system Type of coupling 

Amplitude and 

offset control 

Numbe

attracto

5D hyper-chaotic Nonlinear feedback — 02 

4D chaotic Nonlinear feedback — Infinite

4D hyper-chaotic Memristor — —

4D chaotic Memristor Yes 02, 03, 

2 
ignal will be hyperchaotic. In 1994, Sprott constructed nineteen 

ifferent sim ple three-dimensional (3D) chaotic systems with both 

wo quadratic nonlinear elements and five terms [33] . The mem- 

istor equation is introduced to obtain a novel 4D chaotic system 

ith striking properties considering the chaotic Sprott B system. 

ne of the interesting features of this system is that it has a bias 

erm that can adjust the symmetry of the proposed model, induc- 

ng both homogeneous and heterogeneous behaviors. Recall that in 

34] , by replacing the offset boosting parameter in Sprott M chaotic 

ystem with a periodic function, infinitely many co-existing ho- 

ogeneous attractors are investigated. Therefore, a chaotic signal 

ith either polarity can be obtained by selecting different initial 

onditions. A field programmable analog array (FPAA) was used 

o construct a programmable chaotic circuit, and the predicted at- 

ractors were observed on an oscilloscope. In this paper, we pro- 

osed a novel four-dimensional chaotic Sprott B system without 

ny periodic function compared to the previous work. We show 

oth homogeneous and heterogeneous solutions in some oscilla- 

ions modes. In the RS case (i.e., the bias term is zero), pairs 

f symmetric attractors are viewed, and the scenario of attractor 

erging is analyzed. Coexisting symmetric attractors and bifurca- 

ions with up to four solutions are studied. Furthermore, in the 

SB model (i.e., the bias term is non-zero), many important phe- 

omena are demonstrated, including asymmetric attractors, coex- 

sting asymmetric bifurcations, various types of coexisting asym- 

etric solutions, and period-doubling transition to chaos. We per- 

ectly demonstrate that the new memristive system exhibits the 

xciting phenomenon of partial amplitude control (PAC) and offset 

oosting. Also, we show how it is possible to control the amplitude 

nd the offset of the chaotic signals generated for some techno- 

ogical exploitation. The technic of linear augmentation is also ap- 

lied to control the coexistence of up to four different symmetrical 

ttractors. We recall that technics of the linear augmentation has 

een already used to control the coexistence of the attractors in 

everal classes of the nonlinear dynamical systems among which 

 model of coupled Hindmarsh–Rose neuron [35] , Hopfield neu- 

al network [36] , chaos, and Hyperchaos Chua’s oscillator [ 16 , 37 ],

yper-jerk oscillator [38] , to name a few [ 39 , 40 ]. However, more

xamples of systems, including memristive ones with coexisting 

ttractors, need to be investigated based on this control technique, 

ence the interest of this work. 

This work’s plan is presented as follows: In Section 2 , the com- 

ination of the memristor equation and the Sprott B system en- 

bles obtaining the novel 4D autonomous system. In Section 3 , 

he bifurcations exhibited by the introduced system are analyzed. 

n Section 4 , the multistable behavior of the model involving the 

oexistence of the multiple stables is explored. In Section 5 , the 

henomenon of the offset and amplitude control is addressed. In 

ection 6 , the control of the coexistence of the multiple stable 

tates is addressed through the linear augmentation method. Fi- 

ally, we summarize the paper in Section 7 . 

. Model of the new 4D memristive chaotic system 

In 1994, Sprott constructed nineteen different simple three- 

imensional (3D) chaotic systems with both two quadratic nonlin- 
r of coexisting 

rs 

Type of 

attractors 

Multi-stability 

control Refs. 

Hidden — [23] 

 Hidden — [20] 

Hidden — [24] 

and 04 Self-excited Yes This work 
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ar elements and five terms [33] . The chaotic Sprott B system is 

xpressed by the following first-order, autonomous, ODE (ordinary 

ifferential equations) 
 

 

 

˙ x 1 = x 2 x 3 

˙ x 2 = x 1 − x 2 

˙ x 3 = 1 − x 1 x 2 

(1) 

hen a memristive device equation is introduced into Eq. (1) , a 

ew 4D system construct from the Sprott B model is obtained 

 

 

 

 

 

 

 

˙ x = ryz + g 

˙ y = x − y 

˙ z = 1 − mW ( u ) xy 

˙ u = axy − u 

(2) 

n Eq. (2) , all the parameters are positive. Also, the relation be- 

ween the current and the voltage of the memristive device is 

iven by Eq. (3) . 
 

 

 

i m 

= W ( u ) v m 

W ( u ) = α + γ | u | + βu 

2 

˙ u = k v m 

− u 

(3) 

here the coefficients values are α = 1 , β = 0 . 05 , γ = 0 . 5 , m =
1 , a = 1 , g = 0 . 0 and r = 3 . Recall that in Eq. (3) , α, β , and

are intrinsic coefficients of the memristive device. The mem- 

istor Eq. (3) was first introduced by Zang et al. [31] . In this

aper, a novel 4D chaotic system is constructed by modifying 

he 3D chaotic Sprott B system, using the memristor model (3). 

n system (2), the bias term g breaks the rotational symme- 

ry of the model completely. That is, in the absence of the bias 

erm (i.e., g = 0 ), rotational symmetry is observed, and thus our 

odel (2) remains undisturbed under the change ( x , y , z , u ) → 

 −x, − y, z , u ) . This symmetry property is exploited to gener- 

te pairs of symmetric chaotic attractors and their corresponding 

oincaré sections as presented in Fig. 1 in different phase planes. 

uch a transformation of state variables (i.e., symmetry) has been 

ffectively used to prove the existence of bistability (i.e., the pres- 

nce of a pair of mutually symmetrical solutions/attractors) in the 

emristive T chaotic system [31] . Next, when g � = 0 , the previous

ymmetry can no longer be discussed since the novel 4D system 
ig. 1. Coexisting pairs symmetric attractors in system (2) when r = 4 . 85 with initial va

oincaré section and phase diagram in ( x − y ) plane, b(i)-(ii) Poincare section and phase 

lane. The parameters are the same as in Fig. 1. 

3 
oes not obey the transformation ( x , y , z , u ) → ( −x, − y, z , u ) . 

his case refers to RSB, which is rarely discussed in chaotic systems 

ith memristor. This situation (i.e., breaks the symmetry) makes 

he system (2) more general. 

In addition, the evaluation of the volume contraction rate of the 

odel enables to obtain Eq. (4) . 

ivV = ∇ · V = 

⎛ ⎜ ⎝ 

∂ /∂ x 
∂ /∂ y 
∂ /∂ z 
∂ /∂ u 

⎞ ⎟ ⎠ 

·

⎛ ⎜ ⎝ 

ryz + g 
x − y 

1 − mW ( u ) xy 
axy − u 

⎞ ⎟ ⎠ 

= −2 (4) 

ince ∇V < 0 , we can conclude that the introduced 4D model is 

issipative. Then, it will be able to support chaotic stable states. 

.1. Equilibrium points and their stability 

The equilibria of the novel memristive system investigated in 

his work are obtained by solving the following equations 
 

 

 

 

 

 

 

0 = ryz + g 

0 = x − y 

0 = 1 − mW ( u ) xy 

0 = axy − u 

(5) 

fter some algebraic manipulation, it is found that the equilibria 

f our model are given by 

 ( x ∗, y ∗, z ∗, u 

∗) = 

( 

±
√ 

u 

a 
, ±

√ 

u 

a 
, −

( 

±g 

r 

√ 

a 

u 

) 

, u 

) 

(6) 

here u is obtained by solving the transcendental equation 

 − m 

(
α + γ | u | + βu 

2 
)u 

a 
= 0 (7) 

ndeed, any equilibrium point provided in Eq. (6) is obtained by 

olving the transcendental Eq. (7) . However, the numerical solution 

f this transcendental equation obtained in Table 1 shows a unique 

alue of u ( u = 0 . 08711157266 ) for the fixed set of parameters α, β ,

, m , and a . Also, 0 < u < 1 . 

For model given in Eq. (2) , the Jacobian matrix is obtained 

y the linear analysis of the system at the equilibrium point as 
lues IC = ( 0 . 5 , 0 . 2 , 0 . 1 , 0 . 1 ) for blue and ( −0 . 5 , −0 . 2 , 0 . 1 , 0 . 1 ) for red: a(i)-(ii) 

diagram in ( x − z ) plane and c(i)-(ii) Poincare section and phase diagram in ( y − z ) 
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 = 

⎡ ⎢ ⎣ 

0 r z ∗ r y ∗

1 −1 0 

−m y ∗
(
α + γ | u 

∗| + βu 

∗2 
)

−m x ∗
(
α + γ | u 

∗| + βu 

∗2 
)

0 

a y ∗ a x ∗ 0 

The stability of the model is obtained by analyzing the sign of the 

haracteristic equation obtained by solving Eq. (9) . 

4 + m 1 λ
3 + m 2 λ

2 + m 3 λ + m 4 = 0 (9) 

ith 

 1 = 2 

 2 = ( −ry ∗J 31 − rz ∗ + 1 ) 

 3 = 

(
−ar y ∗2 J 34 − 2 ar y ∗J 31 − ry ∗J 32 − rz ∗

)
 4 = −ar x ∗y ∗J 34 − ry ∗J 31 − ry ∗J 32 

J 31 = −my ∗
(
α + γ | u 

∗| + βu 

∗2 
)

J 32 = −mx ∗
(
α + γ | u 

∗| + βu 

∗2 
)

J 34 = −mx ∗y ∗( γ sign ( u 

∗) + 2 βu 

∗) . (10) 

he coefficients of the polynomial Eq. (9) are all nonzero. Based 

n the Routh–Hurwitz criterion, the real parts of the roots of 

q. (9) are positive if and only if inequalities of Eq. (11) are sat-

sfied: 

m 1 > 0 

m 1 m 2 − m 3 > 0 

 1 ( m 2 m 3 − m 1 m 4 ) − m 

2 
3 > 0 

m 4 > 0 (11) 

ased on those inequalities, the stabilities of the model around 

ome equilibrium points are discussed in Table 2 . 

.2. Kaplan-Yorke dimension 

when α = 1 , β = 0 . 05 , γ = 0 . 5 , m = 11 , a = 1 , g = 0 . 0 and r = 3 ,

he new 4D memristive system exhibit a chaotic oscillation 

see Fig. 2 ) with Lyapunov exponents (LEs): L 1 = 0 . 3140 , L 2 =
 . 0023 , L 3 = −1 . 0394 and L 4 = −1 . 2769 . According to the above

alues of the LEs, we can notice that: 

2 
 

i =1 

L i = 0 . 3163 > 0 and 

3 ∑ 

i =1 

L i = −0 . 7231 < 0 
Table 2 

fixed point of the introduced model and their stability for some values 

a = 1 . 

Control parameters Equilibrium points E( x ∗, y ∗, z ∗, u ∗) 

g = 0 and r = 3 ( 0 . 2951466969 ; 0 . 2951466969 ; 0 ; 0

( −0 . 2951466969 ; −0 . 2951466969 ;

g = 0 .03 and r = 5 . 22 ( 0 . 2951466969 ; 0 . 2951466969 ; −0 .

( −0 . 2951466969 ; −0 . 2951466969 ;

4 
0 

0 

 x ∗y ∗( γ sign ( u 

∗) + 2 βu 

∗) 
−1 

⎤ ⎥ ⎦ 

(8) 

he Kaplan-Yorke dimension or the Lyapunov dimension of the 

ew 4D chaotic Sprott B system (2) is defined as 

 KY = j + 

1 ∣∣L j+1 

∣∣ j ∑ 

i =1 

L i , (12) 

here j is the largest integer verifying 
j ∑ 

i =1 

L i ≥ 0 and 

j+1 ∑ 

i =1 

L i < 0 . 

herefore, we obtained 

 KY = 2 + 

0 . 3163 

| −1 . 0394 | = 2 . 3043 . (13) 

. Bifurcation and attractor merging 

The nonlinear system dynamics can be characterized numer- 

cally by using appropriate nonlinear tools, including phase dia- 

ram, Lyapunov exponent (LE), time series, Poincare section, fre- 

uency spectra, and basin of attraction, to name a few. However, a 

ifurcation diagram is currently used to summarize all the dynami- 

al features of the model in an appropriate range of control param- 

ters. In some cases, the bifurcation diagram is used to explain the 

ursting mechanism. Indeed, a bifurcation diagram can be obtained 

y sweeping the control parameter in upward and backward direc- 

ions. Such technic can help to capture hysteresis and other com- 

lex phenomena. The interesting phenomenon of antimonotonicity 

i.e., creation of annihilation of periodic orbit via reserve period- 

oubling sequence) is widely demonstrated by exploiting bifurca- 

ion diagrams. In this section, we use the bifurcation graphs, the 

hase diagrams, and the basin of attraction to characterize the dy- 

amics of the new 4D memristive chaotic system in the symmetric 

nd asymmetric mode of oscillations by showing how the symme- 

ry property allows merging a pair of symmetric attractors into an 

symmetric attractor. 

When the dissymmetry parameter g = 0 , the bifurcation dia- 

ram (resp. the Lyapunov exponent’s spectrum) of the system (2) 

s plotted as shown in Fig. 3 a (resp. Fig. 3 b). Indeed, the peak val-

es of the variable x are drawn by first saving them in a file. By
of the control parameters when α = 1 , β = 0 . 05 , γ = 0 . 5 , m = 11 , 

Eigenvalues and 

stability 

 . 08711157266 ) 

0 . 3885 ± 1 . 8222 i 

−1 . 7448 + 0 . 0 0 0 i 

−1 . 0321 + 0 . 0 0 0 i 

Unstable saddle-foci 

0 ; 0 . 08711157266 ) 

0 . 1973 ± 2 . 0917 i 

−1 . 3289 + 0 . 0 0 0 i 

−1 . 0657 + 0 . 0 0 0 i 

Unstable saddle-foci 

 01947210149 ; 0 . 08711157266 ) 

0 . 3885 ± 1 . 8222 i 

−1 . 7448 + 0 . 0 0 0 i 

−1 . 0321 + 0 . 0 0 0 i 

Unstable saddle-foci 

0 . 01947210149 ; 0 . 08711157266 ) 

0 . 1973 ± 2 . 0917 i 

−1 . 3289 + 0 0 0 i 

−1 . 0657 + 0 . 0 0 0 i 

Unstable saddle-foci 
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Fig. 2. The chaotic oscillation of system (2) with r = 3 , α = 1 , β = 0 . 05 , γ = 0 . 5 , m = 11 , a = 1 , g = 0 and initial values ( 0 . 5 , 0 . 2 , 0 . 1 , 0 . 1 ) : (a) phase trajectorie in ( x − y ) ; (b) 

Poincaré section in ( x − y ) ; (c) phase trajectorie in ( y − z ) ; (d) Poincare section in ( y − z ) ; 3D view in ( x, y, z ) and (e) frequency spectrum. 
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ncreasing (resp. decreasing) the control parameter r from 1.5 to 6 

ith symmetric initial points ( ±0 . 5 , ±0 . 2 , 0 . 1 , 0 . 1 ) , the graph in 

lack (resp. in magenta) is gained, indicating the scenario observed 

n our model. By analyzing the LEs spectrum of Fig. 3 b, two dis-

inct dynamics can be categorized (i.e., chaotic behavior and peri- 

dic behavior). From 1 . 5 to 2 . 4 , and 2 . 6 to 5 . 2 , the first LE (i.e., L 1 )

s positive, the second LE (i.e., L 2 ) is zero, and the last two LEs (i.e.,

 3 and L 4 ) are always negative. It is the chaotic regime of the 4D 

ystem. However, we can note a small periodical window in this 

haotic zone where the first and second LEs are zero. In addition, 

hen rε] 5 . 2 , 6 ] , the nonlinear oscillator operates entirely in its reg- 

lar area. The LEs spectrum correctly demonstrates the observed 
5 
ifurcation sequence when the coefficient r is swept upward. The 

etailed results presented in Fig. 4 show that when r = 6 , system 

2) exhibits a symmetric pair of period-1 limit cycles solutions in 

he ( x, z ) plane, and these periodic cycles solutions experience a 

eries of period-doubling as r is decreased, reaching to a symmet- 

ic pair of chaotic solution at r = 5 . 1 . One can easily observe that

nder the critical value r = 5 . 1 , the size of the chaotic attractor

rows, touching each other along their edges, inducing/creating at 

 = 4 . 55 a unique symmetric strange chaotic attractor. At r = 4 . 822 ,

he attractors are thoroughly entangled notwithstanding remaining 

n separate demarcation regions (i.e., basins of attraction). Before 

he merging, the two chaotic solutions present a complex fractal 
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Fig. 3. Bifurcation diagrams of x and Lyapunov exponents versus r of system (2) 

when 1 . 5 ≤ r ≤ 6 plotted in upward (black) and backward (magenta) directions with 

symmetric initial values ( ±0 . 5 , ±0 . 2 , 0 . 1 , 0 . 1 ) for α = 1 , β = 0 . 05 , γ = 0 . 5 , m = 

11 , a = 1 . 
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asin boundary. This demarcation region of IC is shown in Fig. 5 a. 

n this case, a perfect symmetry of the attractors is observed. 

However, the cross-section of the demarcation regions of ICs 

hen the two attractors are completely merged (resp. when the 

ingle asymmetric attractor is formed) are shown in Fig. 5 b (resp. 

ig. 5 c). When g � = 0 , the system (2) loses its symmetry property,

nd no possible attractor merging is found in the model. In other 

ords, all the attractors in the system are asymmetric, and the 

ynamic of the proposed model becomes more complex. A paral- 

el branch appears in the symmetric bifurcation region, as shown 

n Fig. 6 a for g = 0 . 03 . This bifurcation graph shows a wide area

f chaotic oscillation with rε[ 1 . 5 , 4 . 5 ] , which is well confirmed by 

ts Lyapunov exponent’s spectrum depicted in Fig. 6 b. However, in 

he region rε[ 5 . 2 , 6 ] , we can see the transition to chaos correlating 

ith the parallel branch (see Fig. 6 a) when decreasing the con- 

rol parameter r. The sequence period-2 limit cycle → period-4 

 chaos → chaos illustrated by the 3D phase diagrams of Fig. 7 

onfirm well the previous scenario revealed by the bifurcation di- 

gram. It is important to note that the apparition of the parallel 

ranch on Fig. 6 a originates the coexisting asymmetric solutions, 

hich is more reviewed in the next section. 

. Coexisting bifurcation diagrams and multistability 

.1. Case g = 0 

The bifurcation diagram shown in Fig. 3 illustrated interesting 

henomena (e.g., chaos, periodic orbits, attractor merging, sym- 
6 
etric bifurcation, and period-doubling) when the control coef- 

cient r varied upward or backward directions from 1 . 5 to 6 . 0 .

hese behaviors are generally studied in nonlinear dynamical sys- 

ems, including memristor oscillator [ 29 , 41–43 ], Chua’s circuit [37] , 

eries hybrid electric vehicle (SHEV) [ 44 , 45 ], Lorent and Lü systems 

46–48] , and hyperjerk systems [49–51] , to name a few [ 52 , 53 ].

bout these behaviors, multistability remains a hot and exciting 

opic in nonlinear dynamics. This interesting feature has been 

ery recently revealed for the first time in series hybrid electric 

ehicles [44] , with the coexistence of up to three disconnected 

olutions. This subsection aims to investigate such striking phe- 

omenon of multiple coexisting attractors/solutions or coexisting 

ifurcations diagrams. Fig. 8 presents the coexisting bifurcations 

ranches of the system (2) in the region rε[ 4 . 95 , 4 . 99 ] . These co- 

xisting branches are obtained by scanning the coefficients r in the 

pward (i.e., black and blue) and backward (i.e., magenta and red) 

irections with symmetric initial conditions as indicates in each 

ata. In Fig. 8 , when rε[ 4 . 9609 , 4 . 9801 ] , one can find up to four

oexisting branches (i.e., two period-3 branches and two chaotic 

ranches). This region demonstrates a possible existence of four 

isconnected symmetric solutions in the system (2) when fixing 

ll the system parameters and selected random initial values. 

.2. Case g � = 0 

Considering the same bifurcation diagram of Fig. 6 (i.e., when 

 = 0 . 03 ), we capture it zoom in the region rε[ 5 , 6 ] as shown

n Fig. 9 . This Figure demonstrates an interesting scenario when 

he coefficient r is varied. In particular, from 5 . 2 to 5 . 84 , we note

he coexistence of two different branches in this specific range 

f the control parameter. That is, a period-1 branch (blue) ob- 

ains in the upward direction coexists with a chaotic branch (red) 

ets in the download direction when g = 0 . 03 . Since the model

perates here in an asymmetric mode of oscillation, the coexist- 

ng solutions in this region will always be asymmetric, which is 

he pure characteristic of heterogeneous solutions. The results of 

his demonstration are provided in Fig. 10 through different phase 

iagrams plotted in the ( y, z ) plane. It is important to mention 

hat all these coexisting solutions are obtained by fixing all the 

ystem coefficients/parameters but using random ICs. For instance, 

hen r = 5 . 22 , two arbitrary initial points enable the coexistence 

f the couple (period-1, chaos). At r = 5 . 69 , an asymmetric period-

 limit cycle attractor coexists with a chaotic period-3 solution (see 

ig. 10 b). 

Similarly, when r = 5 . 55 , an asymmetric period-1 orbit coexists 

ith chaotic period-2 attractors, as shown in Fig. 10 c. The cases 

n Figs.10d and 10e also demonstrate that two distinct limit cycle 

ttractors can coexist. It can be seen that an asymmetric period- 

 orbit or an asymmetric period-2 orbit coexists with the same 

eriod-1 limit cycle. The associating cross-section of the basin of 

ttraction in the same phase plane is shown in Fig. 10 f. To our 

est knowledge, it is rarely found in the literature such combi- 

ation of coexisting heterogeneous solutions where a sequence 

f period-doubling coexists with a single periodic orbit. The en- 

argement of the diagram of Fig. 9 in the interval rε[ 5 . 34 , 5 . 4 ] is 

hown in Fig. 11 . This figure presents the region of the parame- 

er r where different bifurcation branches coexist in the system. 

ne can observe a good illustration of the coexistence of three 

istinct asymmetric branches of solutions consisting of a period- 

 family (green), the chaotic branch (red), and the period-3 branch 

hat exhibit a sequence of PD route to chaos when r is scanning 

n a downward direction (i.e., decreasing). A perfect coexistence 

f three different asymmetric attractors confirms these coexisting 

ifurcations, as shown in Figs. 12 , and 13 . The case presented in

ig. 13 b demonstrates a magnetization of the three coexisting so- 
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Fig. 4. Senario of attractor merging via period-doubling to chaos in system (2) for r = 6 . 0 , r = 5 . 3 , r = 5 . 1 , r = 4 . 838 , r = 4 . 822 and r = 4 . 55 , respectively. The rest of system 

parameters are α = 1 , β = 0 . 05 , γ = 0 . 5 , m = 11 , a = 1 , g = 0 , IC 1 = (−0 . 5 , −0 . 2 , 0 . 1 , 0 . 1) for Blue attractors and IC2 = ( 0 . 5 , 0 . 2 , 0 . 1 , 0 . 1 ) for orange and green attractors. 

Fig. 5. Cross section of the basin of attraction showing the phenomenon of attractor merging in [ x (0) − y (0) ] when z(0) = u (0) = 0 . 1 : (a) r = 4 . 838 , (b) r = 4 . 822 and (c) 

r = 4 . 55 . 

7 
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Fig. 6. Bifurcation diagrams of x and Lyapunov exponents versus r of system (2) 

when 1 . 5 ≤ r ≤ 6 plotted in upward direction with initial value ( 0 . 5 , 0 . 2 , 0 . 1 , 0 . 1 ) 

for α = 1 , β = 0 . 05 , γ = 0 . 5 , m = 11 , a = 1 . 

l

t

5

5

b

Fig. 8. Zoom of the bifurcation diagram of Fig. 3 in the interval rε[ 4 . 95 , 4 . 99 ] using 

upward and backward directions with symmetric ICs . The region of four coexisting 

dynamics can be visualized in the zone rε[ 4 . 969 , 4 . 981 ] . 

Fig. 9. Coexisting bifurcations diagrams obtained in the same regions of parameter 

r( 5 ≤ r ≤ 6 ) plotted in the upward (blue) and backward (red) directions with same 

IC = ( 0 . 5 , 0 . 2 , 0 . 1 , 0 . 1 ) for α = 1 , β = 0 . 05 , γ = 0 . 5 , m = 11 , a = 1 . 

p

i

t

c
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→

utions in a demarcation region with three different colors illus- 

rating each attractor found. 

. Offset and amplitude control 

.1. Offset boosting control 

A chaotic signal can be moved in phase space for a variable 

oostable system by adding a constant to a single variable that ap- 
ig. 7. 3D view of the transition to chaos in the asymmetric system (2) when g = 0 . 03 : 

 

chaos when varying r from 5.4 to 6 with initial point IC = ( 0 . 5 , 0 . 2 , 0 , 0 ) . 

8 
ears to the system. If the attractor is shifted in the phase space, 

ts basin of attraction will be relocated to remain in the attrac- 

or zone. In a chaotic system, variable boostable can be used to 

reate coexisting attractors (i.e., multistability). An introduction of 

 boosting controller in a symmetric system breaks this symme- 

ry without changing its attractors’ nature. As discussed by Li and 
the emergence to chaos is observed by the sequence period-2 → 

period-4 → 

chaos 
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Fig. 10. Coexisting asymmetric attractors (when g = 0 . 03 ) for the same parameters setting in Fig. 6. The initial value corresponding to the red attractor is IC1 = 

( 0 . 5 , 0 . 2 , 0 , 0 ) : (a) r = 5 . 22 with IC2 = ( 5 , 0 . 2 , 0 , 0 ) , (b) r = 5 . 69 with IC2 = ( 1 , 0 . 2 , 0 , 0 ) , (c) r = 5 . 55 with IC2 = ( 0 . 36 , 0 . 2 , 0 , 0 ) , (d) r = 5 . 63 with IC2 = 

( 0 . 36 , 0 . 2 , 0 , 0 ) , and (e) r = 5 . 75 with IC2 = ( 0 . 36 , 0 . 2 , 0 , 0 ) . (f) The magnetization space of initial values in ( y ( 0) − z(0) ) plane for r = 5 . 75 when x (0) = u (0) = 0 . 

Black region for red attractor and while region for blue attractor. 
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prott in [54] , examples of chaotic flows that provide offset boost- 

ng by a single constant in the governing equations are presented. 

he authors combine offset boosting with amplitude control to 

erform a wide range of signals without affecting their dynamic 

roperties, such as Lyapunov exponents and power spectra. They 

lso demonstrate that offset boosting in symmetric systems can 

eep bistability. The offset-boosted symmetric system can also pro- 

ide a symmetric pair of coexisting attractors in coordinate-shifted 

asins of attraction. In the same line, a simple chaos generator 
9 
f conditional symmetry induced by offset boosting is investigated 

sing an efficient methodology of dynamics editing in [55] . A novel 

yperbolic function flux-controlled memristor chaotic system with 

onditional symmetry, capable of showing attractor growing, is dis- 

overed [56] . The proposed nonlinear system was designed based 

n an existing offset-boostable chaotic system. By exploiting the 

ariable boostable in a sprott B system, infinitely many coexist- 

ng periodic or chaotic solutions are generated using single sinu- 

oidal nonlinearity [57] . Exploiting the transformation of the vari- 
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Fig. 11. Coexisting bifurcations diagrams obtained in the same regions of param- 

eter r( 5 . 34 ≤ r ≤ 5 . 4 ) for g = 0 . 03 . The rest of parameters are α = 1 , β = 0 . 05 , γ = 

0 . 5 , m = 11 , a = 1 . 
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ble z → z + δ and substituting it into the new 4D system given in

q. (2) , yields 
 

 

 

 

 

˙ x = ry ( z + δ) + g 
˙ y = x − y 

˙ z = 1 − mW ( u ) xy 
˙ u = axy − u 

(14) 

hen we fix all the system parameters as those in Fig. 1 , and

y varying the boosting-controller δ, we obtained phase diagrams 

ith attractors that can shift in the z-direction. Clearly, a positive 

alue of δ shifts attractor negatively in the z-direction while a neg- 

tive value of δ shifts attractor in the positive z-direction, as shown 

n Fig. 14 . Fig. 14 (a) is the 2D view of offset boosting realized in the

 y, z ) plane and Fig. 14 (b) is obtained in the 3D view in ( z, y, x )

lane when δε[ −5 , 0 , 5 ] and initial point IC = ( 1 , 0 . 2 , 0 , 0 ) . 

.2. Partial amplitude control (PAC) 

Recall that amplitude control modulation can be achieved in 

ynamical system through an appropriat choice of the coeficients 

f the absolute value or quadratic terms. In partial amplitude con- 

rol (PAC), the amplitude modulation parameter controls the am- 

litude of some system variables linearly compared to total am- 

litude control (TAC), where all the system’s variables are modu- 

ated simultaneously [58–60] . Besides, in both situations (i.e., PAC 

r TAC), the Lyapunov exponent (LE) spectrum remains constant. 
ig. 12. Three coexisting asymmetric attractors (when g = 0 . 03 ) in phase plane for 

 2 , 0 . 2 , 0 . 1 , 0 . 1 ) and period-3 limit cycle for IC3 = ( 0 . 52 , 0 . 2 , 0 . 1 , 0 . 1 ) . (a) 2D projecti

10 
e can examined such interesting property in our new memris- 

ive chaotic system (2). 

Suppose the following transformation of variables when g = 

 . 0 

 = 

√ 

η ˆ x , y = 

√ 

η ˆ y , z = 

ˆ z , u = 

ˆ u (15) 

y substituting Eq. (15) into Eq. (2) , we derive a new ODE in terms

f the state variable ˆ x , ̂  y , ̂  z , and ˆ u as 
 

 

 

 

 

 

 

̂ ˙ x = r ̂  y ̂ z ̂ ˙ y = 

ˆ x − ˆ y ̂ ˙ z = 1 − ηmW 

(
ˆ u 

)
ˆ x ̂  y ̂ ˙ u = aη ˆ x ̂  y − ˆ u 

(16) 

here the nonlinear function W ( ̂  u ) is given in Eq. (3) . It can be

een that the coefficients m and a are the phase reversal parame- 

ers of the system (16). 

These parameters can therefore amplify the two variables x and 

 nonlinearly. Controlled the signal’s amplitude of the 4D memris- 

ive system (16), amounts to adjusting the coefficient η. Accord- 

ngly, the outputs chaotic signals x (τ ) and y (τ ) will be rescaled 

ccording to 1 /η. When ηε[ 0 , 25 ] , the amplitudes evolvement of 

tates x and y are capture as shown in Fig. 15 a. Their correspond- 

ng bifurcation diagrams of the local maxima x and y presented in 

ig. 15 b, c confirm well the amplitude rescaling. It is observed that 

hen η varied from η = 0 to η = 25 , the amplitude of the outputs 

ignal x and y are typically controlled according to 1 /η but keep- 

ng the LEs values as shown Fig. 15 d. Partial amplitude control is 

lso confirmed using phase diagrams as depicted in Fig. 16 a, c in 

 x, y ) and ( y, u ) planes. The amplitude of the chaotic signal de- 

rease when increasing the controller η. It can be seen in Fig. 16 a

hat the amplitudes chaotic signals x and y are controlled simulta- 

eously, while in Fig. 16 c, the amplitude signals of u are not mod- 

fied/affected. Fig. 16 b indicates that offset boosting and amplitude 

ontrol can be perfectly achieved. 

. Control of multistable dynamics in the Sprott B system 

ased on linear augmentation (LA) scheme 

.1. Brief description on the control method 

The control scheme study in this section helps us suppress one 

r more coexisting attractors found in the multistable region of the 

prott B model. Clearly, the strategy help to moves from a multi- 

table system to a monostable one by introducing a simple linear 

eedback control to the original system (2). The multistable sys- 

em can be therefore controlled by adjusting a specific coefficient 
r = 5 . 39 . period-1 cycle for IC1 = ( 5 , 0 . 2 , 0 . 1 , 0 . 1 ) , chaotic attractor for IC2 = 

on in (y-z) plane, and (b) 2D projection in (x-z) plane. 
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Fig. 13. (a) Coexistence of three asymmetric attractors (when g = 0 . 03 , for r = 5 . 8 ), and (b) corresponding demarcation region of initial points in ( x ( 0) − y (0) ) plane with 

z(0) = u (0) = 0 . A period-1 cycle corresponds to magenta domain, a period-2 cycle for cyan region, and a chaotic attractor for black area. Others parameters are: α = 1 , β = 

0 . 05 , γ = 0 . 5 , m = 11 , a = 1 . 
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Fig. 14. Offset boosting of the signal in the new memristive system (2) for varying 

the boostable state δ: red signal for δ = 0 , blue signal for δ = 5 , and green sig- 

nal for δ = −5 . (a) 2D view in ( y, z ) , (b) 3D view in ( z, y, x ) . The initial point is 

( 1 , 0 . 2 , 0 , 0 ) , and the rest of the parameters are those in Fig. 1. 

E

E

f the nonlinear controlled system. To begin, suppose the general 

orm of the nonlinear multistable system 

˙ ζ = F (ζ ) , where ζ is an 

 −dimensional vector of dynamical state, and F (ζ ) represents a 

ector field. The theory of the LA scheme [ 16 , 37 , 38 , 61 ] is through

oupling a linear system (φ) to a nonlinear one as 

˙ ζ = F ( ζ ) + σφ
˙ φ = −pφ − σ ( ζ − Q ) 

(17) 

n the two-dimensional (2D) system (17), σ represents the cou- 

ling coefficient between the nonlinear oscillator and the linear 

ontrol model. The expression 

˙ φ = −pφ represents the linear dy- 

amics system coupled to the nonlinear model, and where p is the 

ecay parameter. When there is no coupling (i.e., σ = 0 . 0 ), the lin-

ar system is not felt in the whole connected multistable Sprott B 

ystem. However, the progressive increase of the coupling coeffi- 

ient σ allows passing from a region with a large number of coex- 

sting attractors toward another one with a low coexistence of at- 

ractors leading to a monostable region for higher coupling values. 

ext, we construct the new 5D system by coupling the 4D Sprott 

 system in (2) with the controlled technic described in (17). In- 

eed, the coupling can be made along with any system’s variables. 

n our case, the coupling is introduced in the third equation (i.e., 

long the z−variable) with the coupling strength σ . The new cou- 

led system is expressed by Eq. (18) . 

 

 

 

 

 

 

 

 

 

 

 

˙ x = ryz + g 

˙ y = x − y 

˙ z = 1 − mW ( u ) xy + σϕ 

˙ u = axy − u 

˙ ϕ = −pϕ − σ ( z − q ) . 

(18) 

ere, φ = [ 0 , 0 , ϕ, . . . ] T and Q = [ 0 , 0 , q, . . . ] T where T is the 

ranspose. The selection of scalar coupling was guided by recent 

esults of control and synchronization on chaotic systems [ 38 , 62 ]. 

ndeed, it has been demonstrated that control and synchronization 

f the chaotic system employing scalars present greater flexibility 

han the vector. The disadvantage of using vector than scalar for 

ontrol or synchronization is that the whole states of the systems 

re affected in the process. This means resources and energy con- 

umption. The results presented in Table 3 show sufficiently that 

he new 5D coupled Sprott B system has a single unstable equilib- 

ium E 0 = ( x, y, z, u, ϕ ) . 
11 
This fixed point E 0 given in Eq. (19) is the unique solution of 

q. (21) . 
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√ 

a 

u 

) 

, 
σ

p 

( 

±g 

r 

√ 

a 

u 

− q 

) 

, u 

] 

(19) 
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Table 3 

Fixed point E 0 and corresponding eigenvalues for discrete values of the coupling strength σ with α = 1 , β = 0 . 05 , γ = 0 . 5 , m = 11 , a = 1 , 

r = 4 . 975 , p = 0 . 8 , and q = 0 . 7 . 

σ Fixed point E 0 Eigenvalues Nature of E 0 

0 . 15 ( 0 . 29787185 , 0 . 29787185 , 0 . 0 , 0 . 08872764 , 0 . 131250 ) 

0 . 3391 ± 2 . 4680 i , 

−1 . 6350 + 0 . 0 0 0 i , 

−0 . 7995 + 0 . 0 0 0 i , 

−1 . 0436 + 0 . 0 0 0 i 

Unstable saddle-foci 

0 . 6 ( 0 . 33627319 , 0 . 33627319 , 0 . 0 , 0 . 11307965 , 0 . 5250 ) 

0 . 3443 ± 2 . 8135 i , 

−1 . 6384 + 0 . 0 0 0 i , 

−0 . 7941 + 0 . 0 0 0 i , 

−1 . 0560 + 0 . 0 0 0 i 

Unstable saddle-foci 

1 . 0 ( 0 . 39724878 , 0 . 39724878 , 0 . 0 , 0 . 15780659 , 0 . 8750 ) 

0 . 3538 ± 3 . 3720 i , 

−1 . 6394 + 0 . 0 0 0 i , 

−0 . 7892 + 0 . 0 0 0 i , 

−1 . 0790 + 0 . 0 0 0 i 

Unstable saddle-foci 

Fig. 15. The signal changing diagram in term of the parameter η evolment in 4D system (16) for r = 4 . 7 in interval η ∈ [ 0 , 25 ] . (a) signal amplitude evolvement curve, (b), 

(c) bifurcation diagrams in the spaces x − η, and y − η, (d) Lyapunov exponent spectra. The rest of parameter as well as initial conditions are fixed as in Fig. 6. 
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here u is obtained by solving the transcendental Eq. (20) 

 

(
α + γ | u | + βu 

2 
)u 

a 
+ 

σ 2 

p 

( 

±g 

r 
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a 

u 

− q 

) 

= 1 (20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ryz + g = 0 

x − y = 0 

1 − mW ( u ) xy + σϕ = 0 

axy − u = 0 

(21) 
−pϕ − σ ( z − q ) = 0 

12 
.2. Results and discussion of linear augmentation control scheme on 

ultistable Sprott B system 

In Fig. 17 , the linear control strategy implementation results are 

hown through the coexisting bifurcations branches of the control 

arameter σ . These coexisting diagrams are obtained by saving the 

eak values of each state variable and by increasing the coupling 

trength coefficient σ from 0 . 0 to 1 . 0 . Indeed, four different ICs

re used to gain the coexisting diagrams of Fig. 17 in the same 

ange of parameter σ . The red and yellow branches are obtained 

sing the symmetric ICs = ( ±0 . 4 , 0 , 0 , 0 ) , while the branches in 

reen and black are plotted using ICs = ( ±0 . 2 , 0 , 0 , 0 ) . When the 
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Fig. 16. Partial amplitude control (PAC) of the chaotic signal for varying η in system (16) for η = 1 (green), η = 5 (blue), and η = 15 (red): (a)-(c) controlled phase diagram 

without offset ( δ = 0 ) in ( x − y ) , and ( y − u ) planes, (b) controlled phase diagram with offset boosting ( δ = −5 ) . 

Fig. 17. Maximal Lyapunov exponents (MLE) and corresponding bifurcation diagram 

of the peak state y showing the evolution of the coupled system (18) when the 

coupling force σ increase from 0 to 1 . Four different sets of data are superimposed, 

corresponding to the upward direction values of the control parameter. r was fixed 

as 4 . 975 to ensure the four coexisting solutions, as depicted in Fig. 8. 
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oupling coefficient σ is scanned (i.e., upward direction) in the in- 

erval σε[ 0 . 0 , 1 . 0 ] , four attractive regions (namely I , I I , I I I , and I V )

re observed in the coupled Sprott B system (18). All these inter- 

sting dynamics enable the system to move from the multistable 

reas (with four or two coexisting attractors) to a monostable re- 

ion with a single surviving periodic attractor. The transition from 

ultistable to monostable dynamics is confirmed through an in- 

erior crisis followed by a scenario towards chaos with a reverse 

eriod-doubling when σ increases. Demarcation regions of attrac- 

ion (i.e., the cross-section of the basin of attraction) and 3D phase 

iagrams are used to confirm this transition, as shown in Fig. 18 . 

ndeed, when the coupling coefficient σ is selected in the region 

of Fig. 17 (i.e., σε[ 0 . 0 , 4 . 10 −2 ] ), up to four coexisting solutions 

re found (see Fig. 18 a). For instance, when the coupling coeffi- 

ient is zero ( σ = 0 . 0 ), the demarcation domain of coexisting so-
13 
utions is distributed in four different colors (see Fig. 18 a(i)), re- 

ulting in four coexisting solutions in Fig. 18 a(ii). After the criti- 

al value σ = 4 . 10 −2 where an interior crisis is viewed, more pre- 

isely in the region I I (i.e., σε] 4 . 10 −2 
, 16 . 10 −2 ] ), the green and 

agenta areas disappear completely (see Fig. 18 b(i)), and only a 

airs symmetric chaotic attractors coexists as shown in Fig. 18 b(ii). 

n other words, the space magnetization is attracted by two coex- 

sting chaotic solutions. Past the critical value σ = 16 . 10 −2 (i.e., in 

he domain I I I ( σε] 16 . 10 −2 
, 90 . 10 −2 [ ) ), a series of reverse period- 

oubling is observed until σ ≈ 90 . 10 −2 . In this region, we ob- 

erve the coexistence of solutions pairs with the following se- 

uence P m 

→ P 8 → P 4 → P 2 when σ increases slowly. However, the 

ross-section of the basin of attraction expands as σ increase but 

emains confined with two coexisting attractors, as illustrated in 

ig. 18 c. Next, it is observed from Fig. 18 d (particularly in region

V ) that the pairs coexisting solutions of Fig. 18 c (region I I I ) merge

o form a unique survived symmetric period-1 attractors at the 

ritical value σ = 16 . 10 −2 where symmetry restoring crisis is ob- 

erved. The bound area where the survived attractor in the monos- 

able region is plotted for σ = 1 . 0 . 

Similarly, the annihilation process originates the single survived 

olution of the system can also be demonstrated using the system’s 

ontrol coefficient r for different coupling strengths σ . When the 

oupling coefficient takes the values σ = 0 . 0 , σ = 0 . 18 , σ = 0 . 4 ,

nd σ = 0 . 99 , the various bifurcation diagrams of the control pa- 

ameter r are presented in Fig. 19 . The asymmetric bifurcation 

ranch (see Fig. 19 d) illustrating the unique survived attractor is 

btained for a higher value of σ . Note that the control strategy can 

e applied in both cases (i.e., for g = 0 . 0 and g � = 0 . 0 ). However, to

imit the length of the paper, we have chosen one case as a case 

tudy. This case corresponds to the regime where the memristive 

ystem exhibits four coexisting solutions for the same system’s pa- 

ameters. 

. Discussion and conclusion 

This paper proposes a novel 4D memristive chaotic Sprott B sys- 

em, and its collective nonlinear aspects have been investigated. 

he introduced model has a bias term that controls the symme- 

ry property of the chaotic oscillator and is therefore responsible 

or both heterogeneous and homogeneous dynamic behaviors. Us- 

ng appropriate nonlinear analysis tools like bifurcation diagrams, 

D and 3D phase diagrams, the basin of attractions, Poincaré sec- 

ion, and Lyapunov exponent’s spectrum, the collective nonlinear 

spects of the new oscillator are uncovered. We correctly prove 

hat pairs of symmetric attractors are emerged/formed in the RS 

ystem (i.e., when there is no bias term), and the phenomenon of 

ttractor merging is observed. Also, coexisting symmetric attrac- 

ors and bifurcations with four solutions are perfectly investigated. 

owever, in the RSB system (i.e., the bias term is different to zero), 

xciting dynamics/phenomena are found, including asymmetric at- 
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Fig. 18. Space magnetization of the coexisting attractors and corresponding 3D view in the controlled Sprott B system (18). (a) Four coexisting symmetric attractors for 

σ = 0 . 0 , (b) pair chaotic attractors for σ = 0 . 1 , (c) pair symmetric period-2 attractors for σ = 0 . 8 , and (c) the unique survived period-1 attractor for σ = 1 . 0 . 
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Fig. 19. Bifurcation diagrams of the peak state y vs. the control parameter rε[ 4 . 95 , 4 . 99 ] showing the effect of the linear augmented controller on the Sprott B system (2) 

for distinct values of the coupling force σ . (a) four coexisting branches for σ = 0 . 0 obtain in the upward and backward directions (cyan and red when ICs = ( 0 . 5 , 0 , 0 , 0 , 0 ) 

and cyan, black branches for ICs = ( ±0 . 5 , 0 , 0 , 0 , 0 ) ), (b) two coexisting chaotic branches for σ = 0 . 18 (upward and backward directions with ICs = ( 0 . 5 , 0 , 0 , 0 , 0 ) ), (d) two 

coexisting periodic branches for σ = 0 . 4 with same ICs, and (e) the unique branch for σ = 0 . 99 . 
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ractors, coexisting asymmetric bifurcations, various types of coex- 

sting asymmetric attractors, and period-doubling scenarios. Apart 

rom all these rich dynamics, by investigating the exciting phe- 

omenon of PAC (i.e., partial amplitude control) and offset boosting 

roperty, we demonstrate how it is possible to control the ampli- 

ude and the offset of the chaotic signals generated for some prac- 

ical applications. 

Moreover, coexisting attractors found in the novel memristive 

ystem are further controlled based on a linear augmentation (LA) 

cheme. Our numerical findings demonstrated the effectiveness of 

he control technic through interior crisis, reverse period-doubling 

cenario, and symmetry restoring crisis. The coupled memristive 

ystem remains stable with its unique survived periodic attractor 

or higher values of the coupling strength. All these results suffi- 

iently prove that the objective of this work has been achieved. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Ramesh Ramamoorthy: Formal analysis, Writing – origi- 

al draft. Karthikeyan Rajagopal: Investigation, Conceptualiza- 

ion, Formal analysis, Software. Gervais Dolvis Leutcho: Method- 

logy, Conceptualization, Investigation, Writing – review & edit- 

ng. Ondrej Krejcar: Formal analysis, Investigation, Writing – orig- 

nal draft. Hamidreza Namazi: Software, Validation, Visualization. 

qtadar Hussain: Supervision, Writing – review & editing. 

cknowledgment 

This work is partially funded by Center for Nonlinear Sys- 

ems, Chennai Institute of Technology, India vide funding num- 

er CIT/CNS/2021/RD/007. This work was also supported in part by 

he project (2022/2204), Grant Agency of Excellence, University of 

radec Kralove, Faculty of Informatics and Management, Czech Re- 

ublic. This work also has been supported by the project of Oper- 

tional Programme Integrated Infrastructure: Independent research 

nd development of technological kits based on wearable electron- 

cs products, as tools for raising hygienic standards in a society ex- 

osed to the virus causing the COVID-19 disease, ITMS2014+ code 

13011ASK8. Projects are co-funding by European Regional Devel- 

pment Fund. 

eferences 

[1] Leutcho GD , Khalaf AJM , Njitacke Tabekoueng Z , Fozin TF , Kengne J , Jafari S ,

et al. A new oscillator with mega-stability and its Hamilton energy: infinite 
coexisting hidden and self-excited attractors. Chaos Interdiscip J Nonlinear Sci 

2020;30:033112 . 
15 
[2] Jafari S , Sprott J , Nazarimehr F . Recent new examples of hidden attractors. Eur

Phys J Spec Top 2015;224:1469–76 . 
[3] Kingni ST , Rajagopal K , Tamba VK , Ainamon C , Orou JBC . Analysis and FPGA

implementation of an autonomous Josephson junction snap oscillator. Eur Phys 

J B 2019;92:1–8 . 
[4] Ren S , Panahi S , Rajagopal K , Akgul A , Pham VT , Jafari S . A new chaotic flow

with hidden attractor: the first hyperjerk system with no equilibrium. Z Natur- 
forschung A 2018;73:239–49 . 

[5] Strukov DB , Snider GS , Stewart DR , Williams RS . The missing memristor found.
Nature 2008;453:80–3 . 

[6] Njitacke Z , Fotsin H , Negou AN , Tchiotsop D . Coexistence of multiple attractors

and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit. 
Chaos Solitons Fractals 2016;91:180–97 . 

[7] Shaarawy N , Emara A , El-Naggar AM , Elbtity ME , Ghoneima M , Radwan AG .
Design and analysis of 2T2M hybrid CMOS-Memristor based RRAM. Microelec- 

tron J 2018;73:75–85 . 
[8] Dong Z , He Y , Hu X , Qi D , Duan S . Flexible memristor-based LUC and

its network integration for Boolean logic implementation. IET Nanodielectr 

2019;2:61–9 . 
[9] Lin H , Wang C , Hong Q , Sun Y . A multi-stable memristor and its application in

a neural network. IEEE Trans Circuits Syst Express Briefs 2020;67:3472–6 . 
[10] Noshadian S , Ebrahimzade A , Kazemitabar SJ . Optimizing chaos based image 

encryption. Multimed Tools Appl 2018;77:25569–90 . 
[11] Mandal S , Banerjee S . Analysis and CMOS implementation of a chaos- 

based communication system. IEEE Trans Circuits Syst Regul Pap 
2004;51:1708–22 . 

[12] Zhang J , Zhang C , Feng F , Zhang W , Ma J , Zhang QJ . Polynomial chaos-based

approach to yield-driven EM optimization. IEEE Trans Microw Theory Tech 
2018;66:3186–99 . 

[13] Balakrishnan HN , Kathpalia A , Saha S , Nagaraj N . ChaosNet: a chaos based ar-
tificial neural network architecture for classification. Chaos Interdiscip J Non- 

linear Sci 2019;29:113125 . 
[14] Cicek I , Pusane AE , Dundar G . A novel design method for discrete time chaos

based true random number generators. Integration 2014;47:38–47 . 

[15] Nestor T , De Dieu NJ , Jacques K , Yves EJ , Iliyasu AM , El-Latif A , et al. A mul-
tidimensional hyperjerk oscillator: dynamics analysis, analogue and embed- 

ded systems implementation, and its application as a cryptosystem. Sensors 
2020;20:83 . 

[16] Njitacke ZT , Sone ME , Fozin TF , Tsafack N , Leutcho GD , Tchapga CT . Control of
multistability with selection of chaotic attractor: application to image encryp- 

tion. Eur Phys J Spec Top 2021;230:1839–54 . 

[17] Abd EL-Latif AA , Abd-El-Atty B , Venegas-Andraca SE , Mazurczyk W . Efficient
quantum-based security protocols for information sharing and data protection 

in 5 G networks. Future Gener. Comput Syst 2019;100:893–906 . 
[18] Abd EL-Latif AA , Abd-El-Atty B , Abou-Nassar EM , Venegas-Andraca SE . Con- 

trolled alternate quantum walks based privacy preserving healthcare images 
in internet of things. Opt Laser Technol 2020;124:105942 . 

[19] Li C , Sprott JC . Coexisting hidden attractors in a 4-D simplified Lorenz system.

Int J Bifurc. Chaos 2014;24:1450034 . 
20] Lai Q , Kamdem Kuate PD , Pei H , Fotsin H . Infinitely many coexisting attractors

in no-equilibrium chaotic system. Complexity 2020;2020:1–17 . 
[21] Wan Q , Zhou Z , Ji W , Wang C , Yu F . Dynamic analysis and circuit realization

of a novel no-equilibrium 5D memristive hyperchaotic system with hidden ex- 
treme multistability. Complexity 2020;2020:1–16 . 

22] Zhou L , Chen Z , Wang J , Zhang Q . Local bifurcation analysis and global dynam-

ics estimation of a novel 4-dimensional hyperchaotic system. Int J Bifurc Chaos 
2017;27:1750021 . 

23] Ojoniyi OS , Njah AN . A 5D hyperchaotic Sprott B system with coexisting hid-
den attractors. Chaos Solitons Fractals 2016;87:172–81 . 

24] Xiaoxia L , Xue W , Zhixin F , Qiyu Z . Dynamics analysis and circuit realization
of Sprott-B hyper-chaotic system based on memristor. Chin J Quantum Electron 

2021;38:393 . 

25] Zhang S , Zheng J , Wang X , Zeng Z . A novel no-equilibrium HR neuron model
with hidden homogeneous extreme multistability. Chaos Solitons Fractals 

2021;145:110761 . 
26] Chen M , Ren X , Wu HG , Xu Q , Bao BC . Periodically varied initial offset boosting

behaviors in a memristive system with cosine memductance. Front Inf Technol 
Electron Eng 2019;20:1706–16 . 

http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0001
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0001
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0001
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0001
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0001
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0001
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0001
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0001
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0002
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0002
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0002
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0002
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0003
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0003
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0003
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0003
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0003
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0003
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0004
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0004
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0004
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0004
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0004
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0004
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0004
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0005
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0005
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0005
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0005
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0005
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0006
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0006
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0006
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0006
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0006
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0007
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0007
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0007
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0007
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0007
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0007
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0007
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0008
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0008
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0008
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0008
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0008
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0008
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0009
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0009
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0009
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0009
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0009
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0010
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0010
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0010
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0010
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0011
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0011
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0011
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0012
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0012
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0012
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0012
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0012
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0012
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0012
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0013
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0013
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0013
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0013
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0013
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0014
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0014
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0014
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0014
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0015
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0015
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0015
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0015
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0015
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0015
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0015
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0015
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0016
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0016
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0016
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0016
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0016
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0016
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0016
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0017
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0017
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0017
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0017
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0017
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0018
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0018
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0018
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0018
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0018
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0019
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0019
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0019
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0020
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0020
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0020
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0020
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0020
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0021
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0021
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0021
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0021
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0021
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0021
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0022
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0022
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0022
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0022
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0022
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0023
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0023
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0023
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0024
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0024
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0024
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0024
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0024
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0025
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0025
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0025
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0025
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0025
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0026
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0026
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0026
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0026
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0026
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0026


R. Ramamoorthy, K. Rajagopal, G.D. Leutcho et al. Chaos, Solitons and Fractals 156 (2022) 111834 

[  

[  

[  

[  

 

[  

[
[  

[  

[  

[  

 

[  

[  

[  

 

[  

[  

[  

[

[  

[  

[  

[  

 

[  

[  

[

[  

[  

[  

[

[  

[

[  

[  
27] Bao B , Bao H , Wang N , Chen M , Xu Q . Hidden extreme multistability in mem-
ristive hyperchaotic system. Chaos Solitons Fractals 2017;94:102–11 . 

28] Bao BC , Xu Q , Bao H , Chen M . Extreme multistability in a memristive circuit.
Electron Lett 2016;52:1008–10 . 

29] Kengne J , Leutcho GD , Telem ANK . Reversals of period doubling, co-
existing multiple attractors, and offset boosting in a novel memristive 

diode bridge-based hyperjerk circuit. Analog Integr Circuits Signal Process 
2018;101:379–99 . 

30] Kengne LK , Pone JRM , Fotsin HB . On the dynamics of chaotic circuits based on

memristive diode-bridge with variable symmetry: a case study. Chaos Solitons 
Fractals 2021;145:110795 . 

[31] Zang H , Gu Z , Lei T , Li C , Jafari S . Coexisting chaotic attractors in a memristive
system and their amplitude control. Pramana 2020;94:1–9 . 

32] Xu Q , Cheng S , Ju Z , Chen M , Wu H . Asymmetric coexisting bifurcations and
multi-stability in an asymmetric memristive diode-bridge-based Jerk circuit. 

Chin J Phys 2021;70:69–81 . 

33] Sprott JC . Some simple chaotic flows. Phys Rev E 1994;50:R647 . 
34] Li C , Thio WJC , Sprott JC , Iu HHC , Xu Y . Constructing infinitely many attractors

in a programmable chaotic circuit. IEEE Access 2018;6:29003–12 . 
35] Tabekoueng Njitacke Z , Sami Doubla I , Kengne J , Cheukem A . Coexistence of

firing patterns and its control in two neurons coupled through an asymmetric 
electrical synapse. Chaos Interdiscip J Nonlinear Sci 2020;30:023101 . 

36] Njitacke ZT , Isaac SD , Nestor T , Kengne J . Window of multistability and its con-

trol in a simple 3D hopfield neural network: application to biomedical image 
encryption. Neural Comput Appl 2021;33:6733–52 . 

37] Fonzin Fozin T , Megavarna Ezhilarasu P , Njitacke Tabekoueng Z , Leutcho G ,
Kengne J , Thamilmaran K , et al. On the dynamics of a simplified canoni-

cal Chua’s oscillator with smooth hyperbolic sine nonlinearity: hyperchaos, 
multistability and multistability control. Chaos Interdiscip J Nonlinear Sci 

2019;29:113105 . 

38] Leutcho GD , Kengne J , Fonzin Fozin T , Srinivasan K , Njitacke Tabekoueng Z ,
Jafari S , et al. Multistability control of space magnetization in hyperjerk oscil- 

lator: a case study. J Comput Nonlinear Dyn 2020;15(5):051004 . 
39] Sharma PR , Shrimali MD , Prasad A , Kuznetsov NV , Leonov GA . Controlling dy-

namics of hidden attractors. Int J Bifurc Chaos 2015;25:1550061 . 
40] Yadav K , Kamal NK , Shrimali MD . Intermittent feedback induces attractor se-

lection. Phys Rev E 2017;95:042215 . 

[41] Lai Q , Wan Z , Kamdem Kuate PD , Fotsin H . Dynamical analysis, circuit imple-
mentation and synchronization of a new memristive hyperchaotic system with 

coexisting attractors. Mod Phys Lett B 2021;35:2150187 . 
42] Lai Q , Wan Z , Kengne LK , Kuate PDK , Chen C . Two-memristor-based chaotic

system with infinite coexisting attractors. IEEE Trans Circuits Syst Express 
Briefs 2020;68:2197–201 . 

43] Ma S , Zhou P , Ma J , Wang C . Phase synchronization of memristive systems by

using saturation gain method. Int J Mod Phys B 2020;34:2050074 . 
44] Meli MIT , Yemélé D , Leutcho GD . Dynamical analysis of series hybrid electric

vehicle powertrain with torsional vibration: antimonotonicity and coexisting 
attractors. Chaos Solitons Fractals 2021;150:111174 . 
16 
45] Tametang Meli MI , Leutcho GD , Yemele D . Multistability analysis and nonlinear 
vibration for generator set in series hybrid electric vehicle through electrome- 

chanical coupling. Chaos Interdiscip J Nonlinear Sci 2021;31:073126 . 
46] Lai Q , Norouzi B , Liu F . Dynamic analysis, circuit realization, control design

and image encryption application of an extended Lü system with coexisting 
attractors. Chaos Solitons Fractals 2018;114:230–45 . 

[47] Wei Z , Zhang W . Hidden hyperchaotic attractors in a modified Lorenz–
Stenflo system with only one stable equilibrium. Int J Bifurc Chaos 

2014;24:1450127 . 

48] Wei Z , Wang R , Liu A . A new finding of the existence of hidden hyperchaotic
attractors with no equilibria. Math Comput Simul 2014;100:13–23 . 

49] Leutcho G , Kengne J , Kengne LK . Dynamical analysis of a novel autonomous
4-D hyperjerk circuit with hyperbolic sine nonlinearity: chaos, antimono- 

tonicity and a plethora of coexisting attractors. Chaos Solitons Fractals 
2018;107:67–87 . 

50] Leutcho GD , Kengne J , Kengne LK , Akgul A , Pham VT , Jafari S . A novel chaotic

hyperjerk circuit with bubbles of bifurcation: mixed-mode bursting oscilla- 
tions, multistability, and circuit realization. Phys Scr 2020;95:075216 . 

[51] Leutcho GD , Wang H , Kengne R , Kengne LK , Njitacke ZT , Fozin TF . Symme-
try-breaking, amplitude control and constant Lyapunov exponent based on sin- 

gle parameter snap flows. Eur Phys J Spec Top 2021;230:1887–903 . 
52] Abd el-Latif AA , Abd-el-Atty B , Amin M , Iliyasu AM . Quantum-inspired cas-

caded discrete-time quantum walks with induced chaotic dynamics and cryp- 

tographic applications. Sci Rep 2020;10:1–16 . 
53] Tsafack N , Sankar S , Abd-El-Atty B , Kengne J , Jithin K , Belazi A , et al. A new

chaotic map with dynamic analysis and encryption application in internet of 
health things. IEEE Access 2020;8:137731–44 . 

54] Li C , Sprott JC . Variable-boostable chaotic flows. Optik 2016;127:10389–98 
(Stuttg) . 

55] Li C , Lei T , Wang X , Chen G . Dynamics editing based on offset boosting. Chaos

Interdiscip J Nonlinear Sci 2020;30:063124 . 
56] Gu J , Li C , Chen Y , Iu HH , Lei T . A conditional symmetric memristive system

with infinitely many chaotic attractors. IEEE Access 2020;8:12394–401 . 
57] Lai Q , Kuate PDK , Liu F , Iu HHC . An extremely simple chaotic system with

infinitely many coexisting attractors. IEEE Trans Circuits Syst Express Briefs 
2019;67(6):1129–33 . 

58] Li C , Sprott J . Finding coexisting attractors using amplitude control. Nonlinear 

Dyn 2014;78:2059–64 . 
59] Li C , Sprott JC , Yuan Z , Li H . Constructing chaotic systems with total amplitude

control. Int J Bifurc Chaos 2015;25:1530025 . 
60] Li CB, Wang HK, Chen S. A novel chaotic attractor with constant Lyapunov ex- 

ponent spectrum and its circuit implementation. 2010. 
61] Sharma P , Shrimali M , Prasad A , Kuznetsov N , Leonov G . Control of multista-

bility in hidden attractors. Eur Phys J Spec Top 2015;224:1485–91 . 

62] Lian KY , Liu P , Chiang TS , Chiu CS . Adaptive synchronization design for chaotic
systems via a scalar driving signal. IEEE Trans Circuits Syst I Fundam Theory 

Appl 2002;49:17–27 . 

http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0027
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0027
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0027
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0027
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0027
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0027
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0028
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0028
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0028
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0028
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0028
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0029
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0029
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0029
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0029
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0030
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0030
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0030
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0030
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0031
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0031
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0031
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0031
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0031
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0031
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0032
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0032
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0032
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0032
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0032
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0032
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0033
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0033
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0034
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0034
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0034
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0034
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0034
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0034
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0035
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0035
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0035
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0035
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0035
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0036
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0036
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0036
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0036
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0036
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0037
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0037
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0037
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0037
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0037
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0037
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0037
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0037
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0038
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0038
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0038
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0038
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0038
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0038
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0038
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0038
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0039
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0039
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0039
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0039
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0039
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0039
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0040
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0040
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0040
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0040
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0041
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0041
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0041
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0041
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0041
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0042
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0042
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0042
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0042
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0042
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0042
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0043
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0043
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0043
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0043
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0043
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0044
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0044
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0044
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0044
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0045
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0045
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0045
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0045
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0046
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0046
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0046
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0046
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0047
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0047
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0047
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0048
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0048
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0048
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0048
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0049
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0049
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0049
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0049
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0050
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0050
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0050
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0050
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0050
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0050
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0050
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0051
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0051
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0051
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0051
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0051
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0051
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0051
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0052
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0052
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0052
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0052
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0052
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0053
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0053
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0053
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0053
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0053
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0053
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0053
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0053
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0054
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0054
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0054
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0055
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0055
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0055
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0055
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0055
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0056
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0056
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0056
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0056
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0056
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0056
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0057
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0057
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0057
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0057
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0057
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0058
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0058
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0058
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0059
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0059
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0059
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0059
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0059
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0061
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0061
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0061
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0061
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0061
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0061
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0062
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0062
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0062
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0062
http://refhub.elsevier.com/S0960-0779(22)00045-5/sbref0062

	Multistable dynamics and control of a new 4D memristive chaotic Sprott B system
	1 Introduction
	2 Model of the new 4D memristive chaotic system
	2.1 Equilibrium points and their stability
	2.2 Kaplan-Yorke dimension

	3 Bifurcation and attractor merging
	4 Coexisting bifurcation diagrams and multistability
	4.1 Case g  0
	4.2 Case 

	5 Offset and amplitude control
	5.1 Offset boosting control
	5.2 Partial amplitude control (PAC)

	6 Control of multistable dynamics in the Sprott B system based on linear augmentation (LA) scheme
	6.1 Brief description on the control method
	6.2 Results and discussion of linear augmentation control scheme on multistable Sprott B system

	7 Discussion and conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	References


