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Here, a novel conservative chaotic oscillator is presented. Various dynamics of the oscillator are examined. Studying the dy-
namical properties of the oscillator reveals its unique behaviors. The oscillator is multistable with symmetric dynamics.
Equilibrium points of the oscillator are investigated. Bifurcations, Lyapunov exponents (LEs), and the Poincare section of the
oscillator’s dynamics are analyzed. Also, the oscillator is investigated from the viewpoint of initial conditions. The study results
show that the oscillator is conservative and has no dissipation. It also has various dynamics, such as equilibrium point and chaos.
The stability analysis of equilibrium points shows there are both stable and unstable fixed points.

1. Introduction

Chaotic dynamics have been an interesting topic for many
years. The chaotic Lorenz oscillator was proposed to model
the atmosphere in 1963 [1]. There was a hypothesis that the
chaotic attractors are associated with saddle equilibria. So,
many well-known chaotic oscillators contain a saddle
equilibrium [2, 3]. In 2011, Wei proposed a chaotic oscillator
without an equilibrium point [4]. Also, in 2012, Wang and
Chen presented a novel chaotic oscillator with one stable
equilibrium [5]. These works have shown that a flow can
have chaotic dynamics with any equilibria or without it
[6, 7]. Many studies have discussed chaotic oscillators with
lines of equilibria [8, 9]. Lyapunov exponent is a valuable
measure in the study of chaos, and its calculation has been a
hot topic [10].

Many research studies have been focused on proposing
chaotic flows with various features [11-13]. Multiscroll

dynamics were discussed in [14]. Hyperchaotic oscillators
are attractive because of their complex dynamics [15]. The
hyperchaotic dynamics are efficient in secure communica-
tions so that it is not possible to retrieve hidden messages
[16]. These oscillators also have two positive LEs and high
sensitivity to initial values [17]. In [18], a hyperchaotic
oscillator with no equilibria was studied. Oscillators with
self-excited and hidden attractors were discussed in [19, 20].
In [21], hidden dynamics in a piecewise linear oscillator were
studied. Synchronization and control of chaotic flows have
attracted much attention [22]. Multistability is a significant
feature of dynamical systems [23]. The final circumstance of
a multistable oscillator is determined by initial conditions in
a constant set of parameters [24]. In case of undesirable
multistability, the final state can be controlled by selecting
the proper parameters to transform to monostability [25].
The multistability of a piecewise linear oscillator with var-
ious types of attractors was investigated in [26]. A
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multistable chaotic oscillator with different dynamics was
proposed in [27]. In [28], a megastable system with a
particular term was studied. A megastable system and its
dynamics were discussed in [29]. The application of chaotic
dynamics in encryption [30], secure communication [31],
and robotics [32] has been a hot topic.

Chaotic dynamics can be classified as dissipative or
conservative ones. In the dissipative dynamics, the phase
space volume approaches zero when time goes to infinity;
however, in conservative dynamics, volume is constant by
changing time [33]. Conservative oscillators can conserve
energy and display chaos without damping (although energy
is not conserved in real mechanics) [33]. Studying conser-
vative chaotic oscillators has been a hot topic [34]. Con-
servative dynamics of a chaotic oscillator based on Sprott A
were discussed in [35, 36]. In [37], various groups of con-
servative oscillators were studied. The conservative flows
were categorized into four groups based on their dissipation
[37].

Here, a novel conservative oscillator with a line of
equilibria is presented. The oscillator is a simple one with five
terms. The oscillator is symmetric, which shows two sym-
metric coexisting dynamics. From the mathematical and
computational point of view, there has been a noticeable
interest in chaotic systems with special features [1-3]. The
proposed chaotic system has some important features:

(a) It is conservative, and 3D conservative chaotic sys-
tems are rare [4-6]

(b) It has a line of equilibria, and 3D chaotic systems
with a line of equilibria are rare [7-9]

(c) Itis multistable, making the system more interesting
in some applications [10]

The proposed system has all the features above, and we
are aware of no other system with those properties com-
bined. As far as we know, there is only one 4D conservative
chaotic system with a line of equilibria in [11]. Therefore, the
system itself is interesting and deserves attention. In Section
2, the oscillator is proposed, and its chaotic sea is discussed.
Also, the symmetry of the oscillator and its line of equilibria
are studied. In Section 3, various dynamics of the oscillator
are discussed. The Poincare section, bifurcation diagram,
Lyapunov exponents (LEs), and initial conditions are
studied. In Section 4, the results are concluded.

2. The Conservative Oscillator

Here, a conservative oscillator is proposed as

X =y,
y=-ax+yz, (1)
z=x"-by"

The system is a three-dimensional quadratic oscillator
containing five terms; thus, it can be considered a simple chaotic
oscillator. The oscillator shows a conservative chaotic dynamic
in a=1,b=0.68, and (x,, ¥y 2,) = (~0.57,-0.99,-0.71).
The time series and state space of the chaotic sea are plotted in

Complexity

Figure 1. The LEs of the oscillator in the mentioned parameters
are calculated with a run time of120000. The LEs are obtained as
(0.0055, 0,—0.0055); therefore, the Kaplan-Yorke dimension
(Dgy) is 3. The chaotic dynamic is conservative since Dy is 3
and the sum of LEs is zero. As a result, the oscillator has no
dissipation; i.e., energy is conserved when time goes to infinity.

Considering the equations of the oscillator, the system
has symmetry by changing (x, y,z) to (=x,—y,z). The two
coexisting conservative dynamics are plotted in Figure 2
with two initial conditions (-0.57,-0.99,-0.71) and
(0.57,0.99,-0.71). The ranges of the two chaotic seas show
that the two chaotic seas are entangled with each other. In
other words, the variable intervals of the two multistable
chaotic dynamics are approximately the same.

Calculating the equilibria of the oscillator reveals that it
has a line of equilibria at x =0,y =0. To analyze the
equilibria’s stability, the Jacobian matrix and eigenvalues of
the oscillator are calculated as equations (2)-(4) by con-
sidering parameters a = landb = 0.68:

0 1 0
] = -1 z y > (2)
2x —-1.36y 0
A -1 0
AM-Jl={1 A=z 0|=0, (3)
0 0 A
AN -zA+1) =0. (4)
Eigenvalues are obtained as

Ay =0and}, 5 = z £ Vz2 —4/2. So, the stability of equilib-
rium points is dependent on their location of z. The real and
imaginary parts of eigenvalues by changing z are shown in
Figure 3. In positive z, the real parts of A, and A5 are positive.
So the equilibrium points with positive z are unstable. In
negative z, there is not any positive eigenvalue. However, the
type of equilibria cannot be determined in that interval using
the eigenvalues. Numerical analysis shows that the equi-
librium points are stable in negative z. The imaginary part of
the eigenvalues reveals that the equilibria are spirals in the
interval z € [-2,2].

3. Dynamical Behavior

Various methods can be used to show a three-dimensional
chaotic flow in two dimensions. One of the useful methods is
the Poincare section [33]. The Poincare section of the oscillator
with a = 1,b = 0.68, and (x, ¥, 2,) = (-0.57 - 0.99 — 0.71)
by selecting a section = {(x, y) € R*|z = 0} is presented in
Figure 4. The values of the Poincare section are the values of
trajectories crossing the plane z = 0. The symmetry of the
oscillator’s dynamics can be seen in this figure.

Bifurcation diagram is one important method to in-
vestigate various dynamics of chaotic oscillators. The bi-
furcation diagram of the oscillator by varying parameter a in
the interval [1, 1.28] is plotted in Figure 5(a). The bifurcation
values are obtained using the maximum value of the x
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FIGURE 1: Time series (a) and chaotic sea with initial condition (x0, ¥0,z0) = (-0.57 — 0.99 — 0.71) and parameters (a,b) = (1,0.68) in
b)X_Y, ()X -Z,(d)Y - Z, and (e)X_Y_Z.
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FiGgure 2: Chaotic sea of the oscillator with initial conditions (-0.57,-0.99,-0.71), (a) in X =Y, (b) in X — Z, and (c) in Y — Z, and with
initial conditions (0.57,0.99,-0.71), (d) in X - Y, (e) in X — Z, and (f) in Y — Z. The two dynamics are symmetric.
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FIGURE 3: (a) Real and (b) imaginary part of eigenvalues for oscillator (1) with parameters (a,b) = (1,0.68).
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FIGURE 4: The Poincare section with crossing section.
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FIGURE 5: (a) Bifurcation diagram and (b) LEs of oscillator (1) by changing parameter a, with constant initial conditions
(X0» ¥or Z9) = (=0.57,-0.99,-0.71).
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FiIGUurRe 6: (a) Bifurcation diagram and (b) LEs of oscillator (1) by changing parameter b with constant initial conditions
(Xg» Yoo Z0) = (~0.57,-0.99, -0.71).
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FIGURE 7: Initial values for various dynamics of the proposed oscillator in (a) X-Y plane, (b) X-Z plane, and (c) Y-Z plane. The oscillatory
region is cyan, the equilibrium points are red, and the unbounded points are green.

variable in (1) with b = 0.68. The other variables show the
same dynamics, so only x,,.. is presented. To analyze an-
other parameter, x,,,, is plotted by changing b in the interval
[0.68,0.9] with parameter a = 1 in Figure 6(a). The initial
conditions for both diagrams are considered constant values
as (xg, ¥, 2¢) = (-0.57,-0.99,-0.71). The corresponding
LEs by changing the parameters a and b are shown in
Figures 5(b) and 6(b), respectively. The LEs are calculated
with run time 50000 using the wolf method [10]. According
to the bifurcation diagram and LEs, various dynamics can be
seen by changing parameters. In a = 1.239 and b = 0.85,
there is a sudden change in the dynamics of the oscillator in
which the chaotic dynamics collapse.

Basin of attraction reveals the initial conditions that are
attracted to various attractors of an oscillator. Figure 7 shows
the initial values in the region of different dynamics. In
Figure 7(a), the initial values of x and y variables are
changing in the interval x € [-1,1], y € [-1, 1]. The initial
value of the variable z is constant and is equal to zero. In
addition, initial values in X-Z and Y-Z planes are investi-
gated where yjandx, are equal to zero, respectively. Cyan
color demonstrates the oscillatory region while red color
shows equilibrium points. Moreover, there are unbounded
points that are shown with green color. The system has
symmetry by changing (x, y,z) to (-x,-y,z). The sym-
metric regions are consistent with the oscillator’s symmetry,
which was also seen in the Poincare section.

4. Conclusion

Here, an oscillator with conservative chaotic dynamics was
proposed. By calculating LEs and Dy, the dissipation of the
oscillator was investigated. The summation of LEs was equal
to zero, and Dy, was 3, which presented the conservative
dynamics of the oscillator. The oscillator had a line of
equilibria. Half of the line was unstable, while the other half
was stable. The oscillator was symmetric. This symmetry
reveals that the oscillator had a pair of the conservative
chaotic sea. The symmetry of the oscillator’s dynamics also
was seen in the Poincare section. The bifurcation diagram of

the oscillator was studied by changing parameters. The di-
agrams have shown the collapse of the chaotic dynamics by
changing the bifurcation parameter. The dynamics of the
bifurcation diagram were proved by LEs. The initial con-
ditions that have resulted in various dynamics of the os-
cillator were also discussed. This study has revealed the
uniqueness of the proposed conservative oscillator.
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