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Nonlinear dynamical systems with hidden attractors belong to a recent and hot area of research.
Such systems can exist in different forms, such as without equilibrium or with a stable equilibrium
point. This paper focuses on the dynamics of a new 4D chaotic hyper-jerk system with a unique
equilibrium point. It is shown that the new hyper-jerk system effectively exhibits different hidden
behaviors, which are hidden point attractor, hidden periodic attractor, and hidden chaotic state.
Collective behaviors of the system are studied in terms of the equilibrium point, bifurcation
diagrams, phase portraits, frequency spectra, and two-parameter Lyapunov exponents. Some
remarkable and exciting properties are found in the new snap system, such as period-doubling
transition, asymmetric bubbles, and coexisting bifurcations. Also, we demonstrate that it is
possible to generate different varieties of two, three, four, or five coexisting hidden and self-
excited attractors in the introduced model. In addition, the amplitude and offset of the hidden
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chaotic attractors are perfectly controlled for possible application in engineering. Furthermore,
a circuit design has been implemented to support the physical feasibility of the proposed model.

Keywords : Hyper-jerk system; stable equilibrium; hidden attractor; multistability; control.

1. Introduction

Nonlinear problems are of interest to mathemati-
cians, physicists, and other scientists because most
physical systems are nonlinear. Complex phenom-
ena, including chaos, can be observed when mod-
eling some natural physical systems, such as a
Hybrid Electric Vehicle (HEV) [Meli et al., 2021;
Tametang Meli et al., 2021] or electrical hair clip-
pers [Hu et al., 2018a; Hu et al., 2018b; Nana
et al., 2018], just to name a few. In artificial neural
networks, for example, nonlinearities can be delib-
erately introduced to allow certain calculations.
Under certain conditions, nonlinear systems exhibit
sensitivity to initial values (IC), intermittency, and
chaos [Strogatz, 1994]. In a nonlinear dynamical
system, chaotic behavior is the fingerprint of at
least one positive Lyapunov exponent. Such behav-
ior has been found in several categories of systems,
including physical, biological, ecological systems,
electronic circuits, mechanical systems, and so on
[Strogatz, 1994; Bao et al., 2020a]. Notice that
although most chaotic systems are of hyperbolic
type, there are still many that are not. In other
words, it will be surprising to show that systems
with only one stable equilibrium exhibit chaos.
For this particular class of system, one would
almost certainly expects asymptotically conver-
gent behaviors. In this regard, Wang and Chen
[2012] presented a surprising possibility of finding
autonomous quadratic chaotic systems with only
one stable equilibrium. Since this discovery, other
interesting chaotic systems with one stable equilib-
rium have been reported and investigated [Pham
et al., 2017]. Such systems from the viewpoint of
computation have been classified as systems with
hidden attractors. From a computational perspec-
tive, systems with stable equilibrium have been clas-
sified as systems with hidden attractors [Leonov &
Kuznetsov, 2013]. Remember that if the basin of
attraction for the attractor does not intersect with
small neighborhoods of any equilibrium points, then
that strange attractor is hidden. Otherwise, it is
self-excited [Leonov et al., 2015]. This topic of
chaotic systems with hidden strange attractors has

been the subject of various discussions and research
in the scientific community. Other chaotic systems
in which hidden strange attractors occur are sys-
tems with infinite equilibria, stable or no equilibria,
as discussed in [Yu et al., 2020; Zhang et al., 2019;
Chen et al., 2020]. Also, systems with multistabil-
ity [Bao et al., 2020b], megastability [Giakoumis
et al., 2020; Jafari et al., 2019; He et al., 2018],
and extreme multistability [Chen et al., 2019] are
of noticeable interest.

In a mechanical system, the derivative of the
position gives velocity, the second derivative of
the position gives acceleration, and the deriva-
tive of acceleration gives jerk. This is why jerk
systems [Malasoma, 2000] are expressed as

...
x =

J(ẍ, ẋ, x), where J = (·) is called the “jerk
function”. For such jerk system, several have
already been reported in the literature, and the
results have indicated some very rich and strik-
ing phenomena, including symmetric properties,
Hopf bifurcation, symmetry-breaking, symmetry
bubbles, period-doubling scenario, the coexistence
of multiple bifurcations mode, and coexistence of
multiple attractors [Kengne et al., 2020b]. Thus
in jerk systems, an extensive repertoire of nonlin-
ear behavior is recorded. In the literature [Leutcho
et al., 2018; Munmuangsaen & Srisuchinwong,
2011], the fourth time derivative d4x/dt4 is called
a “snap”. Hyper-jerk systems are classified as high-
order dynamical systems but have the mathemati-
cal distinction of having a “simple” and “elegant”
structure. For these reasons, new hyper-jerk sys-
tems/circuits capable of generating both series and
parallel bubbles of bifurcation are introduced and
analyzed in recent years [Leutcho et al., 2020a;
Leutcho et al., 2020b]. The authors generated
such complicated behaviors (i.e. coexisting bubbles,
bursting oscillations, and so on) by introducing
exponential nonlinear terms into the mathemati-
cal model. In 2018, Ren et al. [2018] introduced
the first hyper-jerk chaotic system with nonlinear
quadratic terms and having hidden dynamics. They
exploited well-known dynamical tools to investigate
its dynamics in its fractional order. Very recently,
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Table 1. Characterization of reported chaotic systems with specific equilibrium points and the number of coexisting
attractors.

Number of Number of
Nature of the Hyper-Jerk Coexisting Nonlinear

Chaotic System Type of Attractors Attractors Terms References

4D with no equilibrium point Hidden × 04 [Ren et al., 2018]
4D with a stable equilibrium point Hidden 02 03 [Singh et al., 2018]
4D with a unique equilibrium point Hidden and Self-excited 02, 03, 04, 05 02 This work

Fouodji Tsotsop et al. [2020] examined a new hyper-
jerk system with three equilibria. The authors have
explored the dynamic properties of the proposed
system with hyperbolic sine nonlinearity. Also, the
case reported in their work represents a unique one
that displays the coexistence of stable fixed points
and self-excited chaotic attractors. It is observed
from Table 1 that no 4D hyper-jerk system with
up to five coexisting hidden attractors and two
nonlinear terms was proposed in the literature. To
the best of the authors’ knowledge, the introduced
hyper-jerk system represents the unique and “ele-
gant” model with only one equilibrium point that
can show a plethora of coexisting hidden and self-
excited states.

This paper is structured as follows. Section 2 is
concerned with the system description. Some prop-
erties of the system, such as fixed points, stability,
and dissipation, are examined. Bifurcation analy-
sis, route to chaos, and two-parameter Lyapunov
exponents are analyzed in Sec. 3. Also, coexisting
bifurcations, multistability, offset boosting control,
total amplitude control, and antimonotonicity are
analyzed. The feasibility of the proposed system on
PSIM (Power Simulation) based simulation is car-
ried out in Sec. 4. A concluding remark is presented
in Sec. 5.

2. The 4D Hyper-Jerk System

2.1. Model description

In this paper, the mathematical model of a new 4D
autonomous hyper-jerk system is introduced. The
model is expressed by the differential Eq. (1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = y,

ẏ = z,

ż = w,

ẇ = −ax − by − cw − dy2 + exz − f,

(1)

where x, y, z, and w are the state variables; a,
b, c, d, e, and f are six positive real constants
with one bias term, which is f . It is clear that
the new model possesses only two quadratic non-
linear terms, which can be implemented easily with
analog multiplier chips. Furthermore, no apparent
symmetry can be observed from Eq. (1) despite
the presence of quadratic nonlinearities since the
model is variable under the substitution (x, y,
z, w) → (−x,−y,−z,−w). More importantly, the
new hyper-jerk oscillator Eq. (1) can be considered
in the general hyper-jerk form as follows:

d4x

dt4
= −ax − b

dx

dt
− c

d3x

dt3

− d

(
dx

dt

)2

+ ex
d2x

dt2
− f. (2)

2.2. Dissipation

Dissipation (i.e. volume contraction) is a common
property in nonlinear dynamical systems. This dis-
sipation is used to show if the phase space is con-
served or not. An attractor can be characterized
in nonlinear systems by calculating its dissipation.
That is, if and only if this dissipation is negative. In
this section, the dissipation is calculated using the
definition as

Λ =
∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
+

∂ẇ

∂w
= −c. (3)

We clearly remark that the volume contraction is
negative since coefficient c is positive. Thus, the new
hyper-jerk system with its unique fixed point is dis-
sipative and presents attractors.

2.3. Equilibrium points and
stability

Let ẋ = ẏ = ż = ẇ = 0 then, the equilibrium points
of (1) is calculated as: E{(x∗, y∗, z∗, w∗) |x∗} =
−f/a; y∗ = z∗ = w∗ = 0. Thus the hyper-jerk

2250063-3



April 20, 2022 19:36 WSPC/S0218-1274 2250063

M. D. Vijayakumar et al.

Table 2. Eigenvalues λj{j = 1, 2, 3, 4} of equilibrium point E(−f/a, 0, 0, 0) for b = 0.54,
f = 2.39, c = 0.54, d = 1.07, e = 1.97.

a λ1,2 λ3,4 Natures

0.1 −0.2643 ± i6.8560 −0.0057 ± i0.0457 Stable saddle-focus
0.52 −0.2415 ± i2.9851 −0.0285 ± i0.2391 Stable saddle-focus
1 −0.2204 ± i2.0954 −0.0496 ± i0.4720 Stable saddle-focus
1.45 −0.2119 ± i1.6143 −0.0581 ± i0.7373 Stable saddle-focus
1.6 −0.2207 ± i1.4522 −0.0493 ± i0.8597 Stable saddle-focus
1.8 −0.3469 ± i1.2128 0.0769 ± i1.0608 Unstable saddle-focus
3.5 −0.9226 ± i1.0844 0.6526 ± i1.1405 Unstable saddle-focus

model depicted in (1) possesses a unique equi-
librium point. The Jacobian matrix of the new
4D hyper-jerk system evaluated at any equilibrium
E(x∗, y∗, z∗, w∗) is given by,

J =

⎡
⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−a + ez∗ −b − 2dy∗ ex∗ −c

⎤
⎥⎥⎥⎥⎦. (4)

The eigenvalues of the Jacobian matrix J are the
roots of the characteristic equation |J − λId| = 0,
where Id is the 4 × 4 identity matrix and λ the
eigenvalues, which can be calculated as

λ4 + cλ3 +
ef
a

λ2 + bλ + a = 0. (5)

Consider the following polynomial

p4 + m3p
3 + m2p

2 + m1p + m0 = 0. (6)

All the roots of the real parts of Eq. (6) are negative
according to the Routh–Hurwitz stability method
[Zambrano-Serrano & Anzo-Hernández, 2021] if and
only if the following conditions are satisfied

mi > 0 (i = 0, 1, 2, 3),

m1m2m3 − m2
1 − m0m

2
3 > 0.

From the above condition, we obtained the suf-
ficient condition of stability of the characteristic
polynomial (5) and thus of the unique fixed point
E(x∗, y∗, z∗, w∗) accordingly as

a, b, c > 0,
ef
a

> 0 and, b2 + ac2 >
cbef

a
.

So, if the system (1) is stable, we confirm that the
system belongs to the category of hidden attractors
with a stable equilibrium point. Based on Eq. (5),
we have provided Table 2 showing various behaviors
(hidden/self-existed) that can be found in a new
hyper-jerk system under consideration.

3. Nonlinear Dynamics of the
Oscillator

3.1. Bifurcation analysis and route
to chaos

The dynamics of the new hyper-jerk system (1) are
numerically analyzed in this section using a fourth-
order Runge–Kutta integrator with a fixed time grid
Δt = 3 × 10−3. The diagrams of bifurcation and
graphs of Lyapunov exponents are two main tools
that are presented to gain more information about
different behavior to chaos in the new 4D chaotic
hyper-jerk system when parameters are changed.
The bifurcation diagram of the system represents
the plot of the local maxima of the variable x or w
in terms of the control parameter a and f . At the
same time, the graphs of Lyapunov exponents are
obtained using the algorithm proposed by Wolf and
co-workers [Wolf et al., 1985]. Sample results are
provided in Figs. 1 and 2. In particular, Fig. 1 shows
different paths related to the system’s dynamics,
considering the variation of the parameter a in the

Fig. 1. Bifurcation diagrams of w versus a of system (1)
plotted in the region 1 ≤ a ≤ 2. Upward direction (Blue)
and downward direction (red) with the IC (0, 0, 0.1, 0.6) for
b = 0.54, f = 2.39, c = 0.54, d = 1.07, e = 1.97.
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Fig. 2. Bifurcation diagrams of w versus f of system (1)
plotted in the region 0.5 ≤ f ≤ 2.5. Upward direction (Blue)
and downward direction (black) with the IC (0, 0, 0.1, 0.6).
The graph in red is obtained by reinitializing the initial con-
dition IC = (0, 0, 0.1, 0.6). The remaining parameters are
b = 0.65, a = 1.55, c = 0.54, d = 1.07, e = 1.97.

interval 1 ≤ a ≤ 2. The graph in blue and red corre-
spond to increasing and decreasing a, respectively.
In Fig. 2, the bifurcation diagrams of the variable w
versus f are obtained using three methods. The blue
and black diagrams correspond to the upward and
downward directions, respectively, while the graph
in red is obtained with fixed initial points.

Similarly, Fig. 3(a) shows a bifurcation graph
of the state variable x when varying a in the range
1.5 ≤ a ≤ 1.565 and the corresponding graph of
Lyapunov exponents [see Fig. 3(b)]. From Fig. 3, it
is observed that the new hyper-jerk system devel-
ops a reverse period-doubling transition to chaos
when parameter a slowly increased or decreased in
the range 1.5 ≤ a ≤ 1.565. Figure 4 demonstrates
very well the transitions of the diagram provided in
Fig. 3. That is, (a) period-1 limit cycle is plotted
at a = 1.5, (b) period-2 limit cycle at a = 1.53,
(c) period-4 limit cycle is shown for a = 1.537,
(d) a strange hidden chaotic attractor is observed
for a = 1.55, (e) period-4 limit cycle is obtained
again for a = 1.561 and (f) period-2 attractor at
a = 1.565. This sequence of behaviors found in
the unique hyper-jerk system with a stable equi-
librium also demonstrates the interesting path to
chaos observed in many chaotic systems reported
in the literature.

3.2. Two-parameter Lyapunov
exponents (LE)

This section aims to investigate the general dynam-
ics of the new hyper-jerk system (1). To gain more

perception of the dynamics features and the per-
formance of Eq. (1), two-parameter Lyapunov
Exponents (LE) is provided. It is possible that
the performance of the nonlinear systems also
depends on the two-parameter LE diagram. The
general dynamics behavior of the system is impor-
tant for further application in engineering. The two-
parameter graph also gives a possibility to use the
oscillator in specific regions when parameters are
changed simultaneously. In [Rech, 2017; Stegemann
et al., 2011], two-parameter LE is presented for
chaotic or hyperchaotic systems to summarize their
complex dynamical behavior. Two-parameter Lya-
punov exponent is used to define a region of the
possible existence of chaos or hyperchaos in the
parameter space when two control bifurcations are
changed simultaneously [Fonzin Fozin et al., 2019].
In some situations, a two-parameter LE diagram

(a)

(b)

Fig. 3. Transition to chaos of parameter a in system (1):
(a) Graph of bifurcation in the range 1.5 ≤ a ≤ 1.565
and (b) Lyapunov exponent. IC is (x(0), y(0), z(0), w(0)) =
(−1.82, 0.2, 0.2, 0.5). b = 0.54 ,f = 2.39, c = 0.53, d = 1.07,
e = 1.97.
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Fig. 5. Two-parameter LE diagrams showing different oscillation modes (chaotic or periodic modes) of the hyper-jerk sys-
tem (1) in (a–b) plane when f = 2.39, c = 0.54, d = 1.07, e = 1.97; in (a–d) plane when b = 0.54, f = 2.39, c = 0.54, e = 1.97;
in (a–e) plane with b = 0.54, f = 2.39, c = 0.54, d = 1.07; in (f–a) plane for b = 0.54, c = 0.54, d = 1.07, e = 1.97; in (f–b)
plane for a = 1.55, c = 0.54, d = 1.07, e = 1.97, and in (f–e) plane for b = 0.54, a = 1.55, c = 0.54, d = 1.07. Initial point is
(0.1, 0, 0, 0).

is exploited to demonstrate different regions of coex-
isting attractors and coexisting bifurcations in the
parameter space, as reported in [Negou & Kengne,
2019]. The two-parameter Lyapunov exponent (LE)
defined in this paper present the general oscillation
modes of the new hyper-jerk system when adjust-
ing two control parameters. Indeed, two-parameter

Lyapunov exponents (LE) are drawn by simulta-
neously adjusting two control parameters of the
4D system (1) through the establishment of appro-
priate colorful diagrams. The colorful graphs are
obtained by numerically calculating the Lyapunov
exponent spectrum using the algorithm proposed
by the Wolf method [Wolf et al., 1985], on a grid

2250063-7
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time of 400 × 400 values of the chosen parameters.
However, the two-parameter bifurcation diagram is
directly associated with the two-parameter LE since
it allows to distinguish the different oscillation zones
such as periodic oscillations (i.e. negative LE) and
chaotic oscillations (i.e. positive LE). In this paper,
we present two-parameter Lyapunov exponent dia-
grams that help us find all these dynamic behaviors
in the introduced hyper-jerk system. The dynam-
ics of the introduced hidden oscillator are detailed
as shown in Fig. 5 in different parameters space of
Eq. (1). It can be seen from these graphs that when
two control parameters are varied, chaotic and, reg-
ular oscillation modes can be distinguished in terms
of the calculated LE value. For example, blue or
Cyan shows negative or zero LE; a continuously
changing green-yellow scale represents positive LE
while the most positive LE is shown by red color.

3.3. Coexisting bifurcation
diagrams and multistability

This part’s main objective is to show the presence
of a multitude of coexisting bifurcations and
thus coexisting attractors in the new hyper-jerk
system. The coexistence of many attractors strongly
depends on the choice of initial conditions and
parameter space. In addition, the coexistence of sev-
eral solutions and thus multistability is carried out
using bifurcation diagrams defined by sweeping the
control parameters (i.e. upward and backward con-
tinuation). Clearly, exploiting the two-parameter
diagrams presented in Fig. 5, for a discrete value
of b = 0.54, f = 2.39, c = 0.54, d = 1.07, e = 1.97,
and varying a in the appropriate range, the coex-
isting bifurcation diagrams are computed. These
diagrams are obtained using the well-known contin-
uation technique [Meli et al., 2021; Tametang Meli
et al., 2021], where the final state of each itera-
tion is used as the initial condition for the next
iteration. Sample results show coexisting bifurca-
tion of the new hyper-jerk oscillator as depicted in
Figs. 6(a) and 6(b). This figure represents a zoom
of the bifurcation diagram of Fig. 1 in the range
1.523 ≤ a ≤ 1.5325. Each graph corresponds to
increasing the control parameter a (see Fig. 6).
These superimposed branches in Figs. 6(a) and 6(b)
justify the coexistence of four different attractors
in phase space, as shown in Figs. 7(a) and 7(b).
That is a period-1 limit cycle attractor; a period-2
limit cycle and a strange chaotic attractor coex-
ist with point attractor, as shown in Fig. 7(a).

(a)

(b)

Fig. 6. Coexisting bifurcation diagrams obtained in the
same regions of parameter a (1.523 ≤ a ≤ 1.5325) plotted in
the upward direction with different ICs for b = 0.54, f = 2.39,
c = 0.54, d = 1.07, e = 1.97.

In Fig. 7(b), two asymmetric period-2 limit cycles
and an asymmetric strange attractor coexist with a
point attractor.

Other zooms (see Figs. 8 and 10) of the bifurca-
tion diagram of Fig. 6 are shown in Figs. 8 and 10,
highlighting different dynamics of the hyper-jerk
system. Up to four bifurcation branches coexist and
can be used to explain different groups of coexisting
attractors in the new oscillator. From the graphs in
Fig. 8, four data correspond respectively to increase
parameter a (see Table 3 for more details). Thus,
the coexisting branches of Fig. 8 help to demon-
strate the coexistence of many asymmetric attrac-
tors (up to five asymmetric attractors) in the new
oscillator (see Fig. 9). It can be seen in Fig. 9(a)
that two strange chaotic attractors, a period-1 limit
cycle and a period-2 limit cycle, coexist with a point

2250063-8
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(a) (b)

Fig. 7. Coexistence of different attractors in system (1): (a) Period-1 attractor, period-2 attractor, chaotic attractor and
point attractor for a = 1.523. IC1 (−1.83, 0.2, 0.2, 0.5), IC2 (−0.66, 0.2, 0.2, 0.5), IC3 (−0.75, 0.2, 0.2, 0.5), and IC4 (−2.5,
0.2, 0.2, 0.5) and (b) two period-2 attractors, a chaotic attractor and a point attractor for a = 1.529 with IC1 (−0.75, 0.2, 0.2,
0.5), IC2 (−0.66, 0.2, 0.2, 0.5), IC3 (−1.53, 0.2, 0.2, 0.5), and IC4 (−2.5, 0.2, 0.2, 0.5) respectively.

attractor under five distinct initial values. Also, two
strange chaotic attractors coexist with asymmet-
ric period-2 cycle, asymmetric period-4 cycle, and
point attractor, as depicted in Fig. 9(b).

Similarly, Fig. 10 shows that coexisting
branches can be exploited to justify the coexis-
tence of four different asymmetric attractors with-
out fixed-point attractors in the model. The method
used to gain each diagram is summarized in Table 3
for more exploitation. These coexisting attractors
can be periodic or chaotic. For example, by selecting
four random initial values, two different asymmet-
ric period-1 limit cycles coexist with two distinct

strange attractors, as shown in Fig. 11(a). The situ-
ation where three different hidden chaotic attractors
coexist with the period-1 limit cycle is highlighted
in Fig. 11(b).

By using the same strategies, it is possible
to track other coexisting branches and coexisting
solutions. A strict analysis of the proposed hyper-
jerk system, based on Table 3 reveals other regions
where parallel bifurcations coexist. The results of
this analysis are shown in Fig. 12–14. In partic-
ular, the coexistence of several parallel bifurca-
tion branches with hysteresis can be visualized in
Fig. 12 (see Table 3 for more details). All these

(a) (b)

Fig. 8. Coexisting bifurcation diagrams obtained in the same regions of parameter a (1.538 ≤ a ≤ 1.546) plotted in the
upward direction with different ICs for b = 0.54, f = 2.39, c = 0.54, d = 1.07, e = 1.97. This figure helps to gain up to five
different asymmetric coexisting attractors.

2250063-9
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(a) (b)

Fig. 9. Coexistence of five different attractors with different shape including: (a) Period-1 attractor, period-2 attractor, two
chaotic attractors and point attractor for a = 1.538 with ICs (−0.75, 0.2, 0.2, 0.5), (−1.8, 0.2, 0.2, 0.5), (−0.9, 0.2, 0.2,
0.5), (−1.56, 0.2, 0.2, 0.5), and (−2.5, 0.2, 0.2, 0.5) and (b) period-2 attractor, period-4 attractors, two asymmetric chaotic
attractors and point attractor for a = 1.543 using ICs (−1.68, 0.2, 0.2, 0.5), (−1.98, 0.2, 0.2, 0.5), (−0.48, 0.2, 0.2, 0.5), (−1.29,
0.2, 0.2, 0.5), and (−2.5, 0.2, 0.2, 0.5), respectively.

(a) (b)

(c)

Fig. 10. Zoom diagram of Fig. 1 in the range 1.577 ≤ a ≤ 1.584 plotted in the downward direction with different ICs. This
figure shows the other coexisting solution region in the system (1).
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Table 3. Procedures used to plot coexisting branches of Fig. 12. Other parameters are b = 0.65, a = 1.55,c=0.54, d = 1.07,
e = 1.97.

Fig. No. Color Graph Parameter Range Sweeping Direction Initial Values (x(0), y(0), z(0), w(0))

12 Green 2 ≤ f ≤ 2.364 Decreasing (0, 0, 0.1, 0.6)

Black 2 ≤ f ≤ 2.25 Decreasing (0, 0, 0.1, 0.24)

2.25 ≤ f ≤ 2.364 Increasing (0, 0, 0.1, 0.24)

Red 2 ≤ f ≤ 2.25 Decreasing (0, 0, 0.1, 0.36)

2.25 ≤ f ≤ 2.364 Increasing (0, 0, 0.1, 0.36)

(a) (b)

Fig. 11. Coexistence of four different asymmetric attractors without any point attractor: (a) Period-1 attractor, and three
asymmetric chaotic attractor for a = 1.584 with ICs (−2.5, 0.2, 0.2, 0.5), (−1.77, 0.2, 0.2, 0.5), (−0.84, 0.2, 0.2, 0.5), and
(−0.93, 0.2, 0.2, 0.5) and (b) a pair of period-1 attractors, and a pair of chaotic attractors for a = 1.579 and ICs (−0.45, 0.2,
0.2, 0.5), (−2.5, 0.2, 0.2, 0.5), (−1.8, 0.2, 0.2, 0.5), and (−1.47, 0.2, 0.2, 0.5), respectively.

investigations demonstrate that the introduced
hyper-jerk oscillator is capable of a plethora of coex-
isting behaviors. The demarcation region of ini-
tial values is defined to show different domains of

Fig. 12. Zoom diagram of Fig. 2 for the range of parameters
2 ≤ f ≤ 2.364 plotted in the upward and downward direc-
tions with different ICs as summarized in Table 3.

some coexisting solutions. This demarcation region
represents cross-sections of the basin of attraction
in the different planes with other initial points fixed
to zero, as shown in Fig. 15.

3.4. Control

3.4.1. Offset boosting control

In general, offset boosting is used in nonlinear sys-
tems to shift chaotic signals or the basin of attrac-
tion in phase spaces. This interesting feature can
be exploited to induce multistability (i.e. coexist-
ing attractors) in dynamical systems. Also, one can
break the symmetry of a dynamical system by intro-
ducing a boosting controller [Li et al., 2020b; Lu
et al., 2019; Lu et al., 2020]. A simple chaos gen-
erator of conditional symmetry induced by offset
boosting is investigated using an efficient method-
ology of dynamics editing in [Li et al., 2020a]. Using
the transformation of the variable x → q + x and
substituting it into the new hyper-jerk system given

2250063-11
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(a) (b)

(c) (d)

Fig. 13. Coexistence of three different attractors with different shapes, including (a) a pair of chaotic attractors, (b) period-1
attractor and point attractor illustrated by time series in (c) for f = 2.25. Initial conditions (x(0), y(0), z(0), w(0)) are (0, 0,
0.1, 0.24), (0, 0, 0.1, 0.28), and (0, 0, 0.1, 0.36) respectively. The frequency spectra of the chaotic and periodic attractors are
represented in (d).

(a) (b)

Fig. 14. Solutions coexist in the system (1) for f = 2.323 including (a) a chaotic attractor, (b) period-3 attractor and
(c) period-2 attractor with IC1 (0, 0, 0.1, 0.28), IC2 (0, 0, 0.1, 0.38), and IC3 (0, 0, 0.1, 0.18), respectively, and their
corresponding frequency spectra in (d).
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(c) (d)

Fig. 14. (Continued)

in Eq. (1), yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = y,

ẏ = z,

ż = w,

ẇ = −a(q + x) − by − cw − dy2

+ e(q + x)z − f.

(7)

In Fig. 16, offset boosting is provided in (x, z) and
(x,w) planes when adjusting the constant q. We
observe that when q > 0, the chaotic signal x is
shifted in the negative direction, and when q < 0,
this chaotic signal shifts in the positive direction.

3.4.2. Total amplitude control

Consider the following transformation necessary to
control the amplitude in the system (1):

x =
1
d
x̂, y =

1
d
ŷ, z =

1
d
ẑ, w =

1
d
ŵ. (8)

When the transformation, given in Eq. (8), is
applied to the nonlinear Eq. (1), we obtained the
new 4D hyper-jerk system as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ˆ̇x = ŷ,

ˆ̇y = ẑ,

ˆ̇z = ŵ,

ˆ̇w = −ax̂ − bŷ − cŵ − ŷ2

d
+

ex̂ẑ

d
− f

d
.

(9)

One can remark that Eq. (9) is identical to Eq. (1)
for d = 1. Thus, the constant term d in the 4D

hyper-jerk oscillator can be exploited to control the
amplitude of all variables proportionally and simul-
taneously according to 1/d. This control technique
is called total amplitude control (TAC) [Gu et al.,
2021; Leutcho et al., 2021; Li & Sprott, 2014; Zang
et al., 2020] because all the states in the chaotic
hyper-jerk system can be controlled when chang-
ing the coefficient d. The amplitude control of the
strange chaotic attractor of the system (1) in differ-
ent planes when changing d is shown in Fig. 17. In
electronic circuit design, this amplitude coefficient
can be realized using only a potentiometer.

Fig. 15. Attraction domain in the different planes with other
IC = 0: The magenta region is the zone where two chaotic
attractors coexist while the domain of initial values (where
the two period-1 limit cycles coexist) is represented in green.
Parameters are b = 0.54, a = 1.579, c = 0.54, d = 1.07,
e = 1.97, f = 2.97, respectively.
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(a) (b)

Fig. 16. Offset boosting of the chaotic signal in the new hyper-jerk system for varying boostable states q as follows: Green
attractor for q = −2.5, red attractor for q = −0.86, and blue attractor for q = 0.3. It is observed that chaotic signals can be
moved through the x-axis. The initial point is (0, 0, 0.1, 0.18), and the rest of the parameters are those in Fig. 1.

(a) (b)

(c) (d)

Fig. 17. (a)–(d) Amplitude control of the chaotic signal of system (1) plotted for d = 1.065 (blue), d = 1.1 (red) and d = 1.22
(yellow). IC (0, 0, 0.1, 0.18) and the rest of the parameters are those in Fig. 1.
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3.5. Antimonotonicity

Let us emphasize that the birth of periodic orbits
followed by their annihilation by an inverse PD
transition when a control parameter is slowly mod-
ified is called an antimonotonicity [Kyprianidis
et al., 2000]. This interesting property has been
investigated in many nonlinear systems, including
laser systems [Parlitz & Lauterborn, 1985], Chua
circuit [Dawson et al., 1992], Duffing oscillator

[Kengne et al., 2018], and autonomous MLC oscil-
lator [Kocarev et al., 1993]. In 2018, the first explo-
ration of antimonotonicity in 4D hyper-jerk circuits
with hyperbolic sine nonlinearity was conducted
[Leutcho et al., 2018]. In [Leutcho et al., 2020b],
the authors proposed different bifurcations in which
bubbles coexist in series or in parallel. Also, a
chaotic bubble can coexist with a periodic bubble
when the symmetric of a chaotic system is broken,

(a) (b)

(c) (d)

(e) (f)

Fig. 18. Asymmetric bubbles of bifurcation computed for the same parameter setting in Fig. 1 in the range 1.51 ≤ a ≤ 1.57
with initial conditions (−1.82, 0.2, 0.2, 0.5) when scanning the parameter upward (continuation method).
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as presented in [Kengne et al., 2020a]. Recall before-
hand that for a nonlinear system to change period-
doubling bifurcations forward and backward, the
presence of periodic islands in the parameter space
is required [Negou & Kengne, 2019]. In Fig. 18, a
sample result of antimonotonicity (i.e. asymmetric
bubbles) in the new 4D hyper-jerk system for a
specific parameter b is presented. For b = 0.546,
period-2 bubble is obtained, at b = 0.54, period-4
bubble is formed, at b = 0.534, the bifurcation illus-
trates period-8 bubble. The first chaotic bubble is
formed at b = 0.532. It is easy to see that the type
of bubble changes when b is correctly chosen. As
b is further decreased smoothly, more asymmetric
bubbles are generated.

4. Design of the Circuit

PSIM (Power Simulation) is software used to design
and simulate power electronics devices, motor, and
order power devices. It can also be used to sim-
ulate simple electronic circuits based on conven-
tional components. An interesting aspect of using
such simulator software like PSIM based simula-
tions (PSIM Professional Version 9.0.3.400 x32) is
the possibility of easily introducing the initial state
of the components like capacitor and inductor, thus
in the wished case track the different coexisting
attractor in the circuit. To achieve that goal, let us

consider the electronic circuit depicted in Fig. 19.
The circuit consists of components, such as oper-
ational amplifiers, capacitors, resistors, analogue
devices AD633 multipliers.

Applying Kirchhoff’s laws, the circuit of Fig. 19
is described by the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV 1

dt
=

1
RC 1

V2,

dV 2

dt
=

1
RC 2

V3,

dV 3

dt
=

1
RC 3

V4,

dV 4

dt
= − 1

RaC4
V1 − 1

RbC4
V2 − 1

RcC4
V4

− 1
RdC4

V 2
2 +

1
ReC4

V1V 3 −
1

RfC4
Vcc.

(10)

In order to avoid the saturation of the operational
amplifiers, we reduce the scale of the amplitudes of
the system by proceeding to the following change of
variables:

V1 =
X

10V
; V2 =

Y

10V
; V3 =

Z

10V
; V4 =

W

10V
.

(11)

Fig. 19. Circuit realization of the new hyper-jerk system.
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We obtained the following nonlinear four order dif-
ferential equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX

dt
=

1
RC 1

Y,

dY

dt
=

1
RC 2

Z,

dZ

dt
=

1
RC 3

W,

dW

dt
= − 1

RaC4
X − 1

RbC4
Y − 1

RcC4
W

− 1
10RdC4

Y 2 +
1

10ReC4
XZ − 10

RfC4
Vcc.

(12)

Choosing time changes as t = τRC with C = C1 =
C2 = C3 = C4 = 10 nF and R = 10 KΩ, the param-
eters of Eq. (1) are expressed in terms of the values
of capacitors and resistors as follows:

R

Ra
= a;

R

Rb
= b;

R

Rc
= c;

R

10Rd
= d;

R

10Re
= e;

10RVcc

10Rf
= f.

(13)

From Fig. 20, one can observe some sample number
of attractors confirming the phenomenon of a large
number of attractors observed during the numerical
integration.

(a) (b)

(c)

Fig. 20. PSIM based simulation result showing some of the coexisting attractors depicted in Fig. 10(a). This figure
shows the coexistence of periodic attractors and one chaotic attractor with initial conditions (x(0), y(0), z(0), w(0)) :
(−0.0247, 0.02, 0.03, 0.05), (−0.2, 0.02, 0.08, 0.015), and (−0.02, 0.02, 0.03, 0.05). The other resistors are fixed as Ra = 6.337 KΩ,
Rb = 18.52 KΩ, Rc = 18.52 Ω, Rd = 0.93 KΩ, Re = 0.51 KΩ, Rf = 627.6 KΩ.
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5. Concluding Remarks

This contribution has focused on the dynamics of
a new chaotic hyper-jerk system with a unique
equilibrium. The nonlinear behavior observed in the
newly introduced hyper-jerk system comes from two
nonlinear quadratic terms. Based on the traditional
nonlinear diagnostic tools such as bifurcation dia-
grams, phase portrait, frequency spectra, and two-
parameter Lyapunov exponents, it has been found
that the new hyper-jerk system effectively exhibits
three types of hidden attractors, including hidden
point attractor, hidden periodic attractor, and hid-
den chaotic attractor. The results indicate some
interesting properties in the new hyper-jerk system,
such as PD bifurcation, antimonotonicity, hysteretic
dynamics, and coexisting strange attractors (up to
five asymmetric hidden and self-excited attractors
were found). The amplitude and offset of the hidden
signals have been studied and perfectly controlled.
Finally, the electronic analog of the model has been
constructed and simulated in PSIM to confirm the
occurrence of hidden behaviors.
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