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ABSTRACT 

KUTTY, ADEEB A., Doctorate: June: 2022, Doctor of Philosophy in Engineering 

Management 

Title: Linking Sustainability, Resilience, and Livability with Smart City 

Development: Building a Novel Hybrid Decision Support Model for Composite 

Performance Assessment 

Supervisor of Dissertation: Dr. Murat M. Kucukvar. 

 

Smartening development in cities have reinvented hopes to melt down predicaments 

in early 2000s’. At the embryonic stage, it is vital for cities of today to gain a more 

consistent understanding on how resilience, livability, and sustainability can be co-

created into smart city planning models under a unified umbrella. In that respect, this 

dissertation attempts to understand smart city development through the lens of 

sustainability, urban resilience, and livability by proposing a novel hybrid decision 

support performance assessment model, as cities evolve to achieve the descriptive 

goal of “Futuristic cities”.  

State-of-the art contribution of this dissertation brings in-house novelty in 

terms of the subject handled and the approach used to solve the problem. The hybrid 

decision support model brings in; systems thinking, non-parametric optimization-

based envelopment analysis, explainable machine learning based assessments and 

multi-criteria based combinatorial evaluations all under a unified frame at various 

levels of measurement. Systems thinking aids in understanding the complexities from 

a non-fragmented system-of-system perspective. A double-frontier slacks-based 

measure data envelopment analysis model, a true input-output desirability inclusion 

model under extended strong disposability assumptions is proposed to evaluate the 

sustainability performance of smart cities. A relative multivariate metric distance-
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based approach is proposed to weight the indicators across various dimensions of 

resilience and livability combining machine learning techniques. Then, the extended 

version of the Evaluation Based on Distance from Average Solution (EDAS) method 

combined under a spherical fuzzy (SF) environment with the Analytic Hierarchy 

Process (AHP) is used to select the best performing smart city and rank them based on 

the triple criteria of futuristic smart cities (sustainability + resilience + livability). This 

marks the development of the aspiring “Futuristic Smart City” (FSC) composite 

index.  

Data from 35 European smart cities ranked in the top 50 global best smart 

cities list is taken to empirically evaluate the sustainability, resilience, livability, and 

their unified performance. The results of the non-parametric optimization-based 

envelopment analysis revealed significant difference in the productivity progress 

values from the optimistic and pessimistic viewpoint, thus exemplifying the 

significance for the proposed aggregate productivity progress measurement model. 

The results of the machine learning based assessment revealed Gradient Boosting 

Machine (GBM) as the best classification and predictive model for the resilience, 

liveability, and aggregate performance assessment. The composite index proposed 

through the SF-AHP & extended EDAS method revealed London as the top ranked 

smart city that co-create sustainability, resilience, and livability holistically into their 

development model. Dusseldorf, Zurich, Munich, Oslo, Dublin, Amsterdam, 

Hamburg, Rome, Moscow, and Stockholm were no exemption to addressing the triple 

criteria. The proposed hybrid model augments planned decision making and policy 

constitution from a strategic level for urban planners and smart city development 

authorities to support the meta goal of futuristic cities in tech-driven intelligent living 
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units. Tailored towards data-driven and intelligent system approaches, the findings of 

this dissertation finds applicability not only in the proposed regions as case studies, 

but in a global scale for any aspiring cities that intent for transition towards futuristic 

cities.  
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CHAPTER 1: INTRODUCTION 

1.1. Theoretical Background 

According to the statistics by United Nations, there has been an increase in the 

world urban population from 751 million in 1950 to 4.2 billion in 2019, which 

accounts for around 55% of the global population in 2019 inhabiting the urban area 

(United Nations, 2019). The United Nations estimate the world population occupying 

the urban cities to increase by 68% until 2050, thus giving rise to several challenges. 

Modern cities are up against frontlines of serious urban challenges, most recently, 

compounding environmental (urban sprawl, overpopulation, land management, waste 

disposal, climate change and pollution), social (poverty and suburbanization) to 

economic (outsourcing, unemployment, and economic globalization) challenges 

(Zander & Mosterman, 2013). These challenges bring the concept of cities as 

consumers than preservers of urbanism, distorting the ecological balance, thus posing 

a threat to future sustenance of cities (Shmelev and Shmeleva, 2018). These threats 

also raise huge concerns among public authorities and urban planners on how cities 

can be remodeled to stay safe and secure from unexpected predicaments.  

As a response to these threats and challenges, technological advancement in 

cities have paved ways to smart cities, a solution to numerous unfathomable 

challenges (Dodgson and Gann, 2011). Nonetheless, smart cities have succeeded in 

bringing high standards of living to its residents (Angelidou and Mora, 2019). In other 

words, smart cities strive to improve city services and urban management for the 

citizens, by creating a socially advanced environment. Thus, smart cities are 

undoubtedly the engines of global prosperity and innovation (Yigitcanlar et al., 2020; 

Bibri, 2021a). However, in the midst of unfettered urban flux, Laissez-faire 

urbanization has drenched the leapfrogging possibilities of smart solutions and digital 
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intelligent platforms to turn cities into more livable units thus, failing to offer a 

dignified standard of living to the urban inhabitants (Calzada, 2017; Sun et al., 2020). 

Thus, akin to the merits of smart cities lies a litany of prodigious challenges in 

bringing out an equitable balance between the production and consumption patterns, 

carbon neutrality goals, sustainable urban growth, and quality of life, all of which can 

be at stake due to the expected population growth rate by 2050 (Shamsuzzoha et al., 

2021; Singh and Ohri, 2021). Expecting an increase in the urban ecological footprint 

has left smart cities to mobilize actions for embracing nature based solutions targeting 

long-term sustainability (Kutty et al., 2020; Way and Peng, 2021; D’Amico et al., 

2021; Glaeser, 2021). Illuminating smart cities with global sustainability practices can 

help address several development challenges such as human development, pollution 

and climate change adaption, biodiversity, circular economy, natural calamity 

preparedness and energy consumption (Kutty et al., 2020; Kourtit, 2021; Elhmoud 

and Kutty, 2021). The “United Nations’ Sustainable Development Goals (SDGs)” 

offer untapped opportunities for cities and urban spaces to drive powerful 

transformations and nullify the prevailing development challenges (Mata, 2018; 

Yigitcanlar, 2021). Accounting to the sustainable urbanization practices can help 

smart cities significantly in not only shaping their energy and resource utilization, but 

also tackling all the development challenges across each SDGs to bring smartness and 

sustainability practices under one umbrella (Yigitcanlar et al., 2019a; Repette et al., 

2021). Thus, the ultimate goal of techno-centric development started to show a shift 

towards improving the sustainability of the city (Toppeta, 2010; Shehab et al., 2021). 

Nonetheless, city planners argue that the use of advanced technologies will by-nature 

improve the environmental outcomes of the city based on the pervasive use of real-

time data and monitoring systems (Bibri, 2021b). For instance, the installation of 
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smart trash bins that monitor real-time waste alert municipality officials in 

understanding the fill and assist in taking necessary actions in collecting the waste for 

appropriate disposal. Similarly, the self-powered smart streetlights respond to the 

urban density flow and illuminate in accordance so as to support the energy saving 

initiatives through smart practices. However, several contradictory studies (see: Kutty 

et al., 2020; Bibri, 2021c) in recent years show that these smart technologies require 

continuous communication through internet channels to acquire data to keep these 

smart systems running. This requires a great deal of energy usage and outweighs the 

potential benefits acquired through the use of smart infrastructures (Bibri, 2021d).  

Furthermore, as discussed, digital solutions provide opportunities for development, at 

the same time pave ways for abuse (DeRolph et al., 2019). Howbeit, the use of smart 

technologies in cities have intensified beyond borders of utilitarianism to the extent of 

implying pressure on the infrastructure (Lee et al., 2021). When rethinking strategic 

autonomy in the digital era, smarter cities, a paradigm beyond smart cities framed to 

optimize challenges, present a mesmeric case in tremendously ameliorating 

interconnectivity with less focus on creating value for urban inhabitants (Boykova et 

al., 2016). These smarter cities are moving up the ladder of digital development where 

techno-centricity takes the driver’s seat (Yigitcanlar and Lee, 2014). Digital solutions 

in cities scale with users (Hatuka and Zur, 2020). However, embarking on 

technological development beyond a point where technology has met the user 

requirement, involves risk. Despite smart technologies being a prerequisite in 

intuitively bridging gaps and concerns of urban inhabitants, the bureaucratic barriers 

have led to uncoordinated drive for the technologies to scale when attempting to 

engage city residents for these technologies to work (Ramboll, 2020). Smart city 

experience of today focus on city dwellers as a means for testing smart solutions with 
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less concern being paid on their values, beliefs, and liveability (Mouratidis , 2021). 

When scaling technological developments within the urban context, the concept of 

liveability requires special attention, as people and their interactions are the key 

drivers for technologies to find their application in the smart ecosystem (Sutriadi and 

Noviansyah, 2021). The British Standards Institute (BSI), the national standards body 

of the United Kingdom, supported that a smart city must include the efficient 

integration of physical, digital, and human systems in the built infrastructure in order 

to create a sustainable, prosperous, and inclusive future for its inhabitants (BSI, 2014). 

This emphasis on the habitability and inclusivity of the urban environments 

particularly underlines the social nature of smart cities. Via the use of digital 

intelligence, tools can be designed that save lives, prevent crime, and reduce the 

disease burden. These can save time, reduce waste, and even help boost social 

connectedness (McKinsey, 2018). To continue, without human settlements, cities 

don’t exist and thus focusing on the concerns of city residents and including the 

dimensions of people and communities when addressing the concept of smart city is 

crucial, thus livability. 

The concept of liveability can thus transform intelligent units to habitable 

spaces (Pan et al., 2021). However, techno-centric development must not only focus 

on liveability as the soul to an endurable unit, but also on the ability of a city to 

rebound post stress, thus offering a dignified standard of living to the urban 

inhabitants. Cities are often vulnerable to unexpected predicaments such as economic 

upheaval, anthropogenic disruptions, climate change, geopolitical instability, public 

health crisis, and diplomatic embargos (Pranadi et al., 2022). Smart cities of today 

despite realizing the importance of resilience are no exception to these uncertainties. 

The Covid-19 outbreak in Wuhan, central China is a classic exhibition of insufficient 
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city resilience (Chu et al., 2021). The Covid-19 pandemic has left lime lighted 

questions on urban resilience and liveability of tech-driven smart cities around the 

globe (Feng et al., 2022). The pandemic paradigm has left opportunities for smart and 

mega-cities to optimize urban systems to cope with future external disruptions for a 

sustainable, livable, and resilient habitable unit. 

The smart technologies deployed thus need to be lean, cost efficient and 

targeted not only in reducing the CO2 emissions and refining the energy efficiency of 

the city, but also on the welfare of the city dwellers, fiscal sustainability, enhanced 

safety and security, adaption to stress and shocks, economic stability, quality of life, 

social cohesion and many more (Shmelev and Shmeleva, 2019; Alsarayreh et al., 

2020). The concept of smartness and sustainability in cities can be viewed as a 

buildout archetype that came into practice in late 20th century in order to respond to 

the public needs, investigate the growth patterns in the city, to deliver sustainable and 

smart way of life to the inhabitants and, help cities achieve their competitive 

advantage (Kramers et al., 2014; Bingöl, 2022; Alagirisamy and Ramesh, 2022). 

Similarly, resilience planning dates back to the ancient era when flood resilient 

sewerage network systems were built by Romans in 4th century BC (Galderisi et al., 

2020). Liveability dates back to even ancient times back during the time of Plato and 

Aristotle, with a plethora of conceptualization at different period of time (Yu, 2001). 

All these concepts are closely interrelated despite several variations in their growth 

patterns (Shehab et al., 2021). The consciousness of unsustainable resource usage 

patterns by humans in the cities integrated with advanced technologies to monitor the 

resource utilization, quality of growth in the urban ecosystem, knowledge of socio-

economic disparities and decision support strategies that aid transformation of cities 

towards smart, resilient, sustainable, and livable units have all enabled these concepts 
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to work along the same direction. For a city to embrace practices of sustainability, 

resilience, and engagement of urban inhabitants to live with better standards, the city 

must attempt to remodel its services and management infrastructure, enhance 

partnerships, adopt a radical reform in its production and consumption practices, 

generate less waste, and transform all the by-products to useful resources that can re-

enter the value chain. This cannot be achieved only by using digital intelligent 

technologies but requires participatory governance, involvement of multifarious 

stakeholders and a citizen inclusive ecosystem. This integration would help us not 

only to attain SDG 11 proposed in the United Nations Development Programme 

(UNDP), which is to transform cities into being smart and sustainable living units, but 

also to connect the cities and communities with other SDGs to make cities resilient to 

shocks and stresses and, livable for present and future communities. The “Future 

cities we want” need to integrate resilience, liveability, and sustainability with urban 

smartness under a single umbrella. For the same, initially, it is important to 

understand how these elements interact in an urban context across several actors using 

an integrated system-of-system approach. Further, to make decision support effective 

and transform smart cities into futuristic smart cities, it is essential to have tools, 

techniques, and measurement systems that are custom tailored to assess sustainability, 

resilience, and livability individually and, under a unified frame in a composite 

manner. 

1.2. Problem Description 

Smart cities can be perceived as one that utilizes the possibilities offered by 

information and communication technologies (ICTs) in enhancing the local prosperity 

and competitiveness by adopting an integrated urban development approach that 

involves multiple actors, stakeholders, and multi-dimensional perspectives 
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(Paskaleva, 2009). Cities driven by ICT-based technocentric approaches can help in 

reducing the root causes associated with most of the pressing concerns (Margarita et 

al., 2020). However, ICT-centered approaches often face risk when attempting to 

stabilize unsustainable development patterns, as tech-driven smart cities often focus 

on smart targets which does not automatically bring sustainability, in turn makes 

development models obsolete over time (Yigitcanlar and Kamruzzaman, 2019). For 

instance, the question of sustainable accessibility of smart public transportation 

system in cities is a social concern due to the territorial allocation of public transit 

infrastructure networks and regionalized development around profitable territories 

paving ways to “smart territories” than smart sustainable cities (Kamruzzaman et al., 

2020). On the contrary, these emergent systems prioritize development that rise to 

prominence by adapting to the market behavior and not evolving over time 

(Esmaeilpoorarabi et al., 2020; Kutty et al., 2020). However, attempting to optimize 

systems do not deliver complete efficiency (Mora et al., 2019; Kourtit et al., 2021).  In 

addition, most self-designed smart cities are business-driven models that function on 

public-private collaboration that target the cash-cow maturity curves than equitable 

growth and sustainable development (Yigitcanlar et al., 2019b). Thus, smart cities are 

focusing more onto profit-driven strategies than extending wings to address 

sustainability and sustainable growth patterns. Hence, smart cities despite the sworn 

oath to sustainability, in reality is a zero-sum-game due to the fact that “the positive 

and negative impacts tend to cancel each other out”. A better understanding on “how 

sustainable are smart cities in long-run ?” is an area of research to conquer so as to 

tackle the deficiencies in the existing cities to plan better for a transformation towards 

futuristic cities. 

Furthermore, envisioned to discretely answer the call of improved local 
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liveability and susceptance to unexpected predicaments, effective implementation of 

city resilience and urban liveability face numerous obstacles. A recent review 

published by Ramirez-Lopez and Grijalba Castro (2020) on resilience in smart cities 

revealed a lack of integrity in practically addressing the multi-dimensional facets of 

city resilience, where a biocentric vision of territorial urban planning and capacity 

building is undertaken than a human centric approach to better living. Similarly, a 

review conducted by Paul and Sen (2020) revealed that, the developed western cities 

that often act as benchmarks for Dickenson cities account liveability from a physical 

aspect (such as mobility options, transit-oriented design, and fiscal supremacies) than 

from a socio-economic perspective. It is to note that, shocks are meant to occur within 

cities that are termed smart, but to what speed can the cities rebound to its natural 

state is a question that institutions and policy makers must answer to better protect 

cities when under chaos. This requires a standardized lens for city leaders to analyze 

the resilience capacity to position adaptation to unexpected predicaments and 

liveability frame of reference to envision a human centric development targeted for 

better living standards. 

To continue, it is seen that smart cities are complex urban ecological systems 

built to optimize challenges and improve the resident quality of life with the 

ubiquitous use of data. Future cities are insufficient and non-self-preservative without 

integrating the triple criteria with smartness. It is crucial to make best decisions 

according to different preferences in situations where multiple criteria exist (Ho, 

2008). The cities we want, “Futuristic smart cities” need to integrate sustainability, 

resilience and, livability criteria with urban smartness under a single umbrella; a 

composite index. Composite indices are communication tools for benchmarking 

regional or institutional performance (Greco et al., 2019). Summarizing and 
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condensing the complexity of a dynamic system, they are identified as efficient 

instruments for policy evaluation and communication (Mazziotta and Pareto, 2013). 

Such indices describe and represents the different dimensions of a concept through a 

precise numerical combination of multiple-criteria and sub-criteria (Saisana and 

Tarantola, 2002). The Smart City Environmental Sustainability Index (SCESI) 

developed by Singh and Ohri, (2021) monitors the progressive environmental 

sustainability of smart cities in India. The SCESI focuses only on the environmental 

sustainability of smart cities. While the comprehensive Smart City Resilience Index 

(SCRI) developed by Dong et al., (2020) for Chinese smart cities focuses on the 

resilience criteria alone. The complex smart resilience index developed to explore the 

territorial characteristics of Hungarian smart cities by Szép et al., (2020) measures the 

adaptive capacity of smart cities to external shocks. The world-renowned “IMD-

STUD Smart City Index” aims to offer a balance between the economic and human 

dimensions of smart urban living with focus on a techno-centric development, ruling 

out the environmental dimensions for a smart and sustainable urban living. Similarly, 

the well-established ‘Global Liveable and Smart Cities Index (GL-SCI)’ addresses 

quality of life from a materialistic point of view, ignoring community well-being and 

other social cohesion aspects. In addition, the well-known indicator sets proposed by 

the International Trade Union (ITU) under the ‘United 4 Sustainable Smart City’ 

(U4SSC) initiative to shape future cities focus only on integrating sustainability with 

smartness under the dimensions: Economy, Environmental and, Society and Culture 

(ITU, 2019). Despite targeting the soul agenda of urban smartness and sustainability, 

the initiative promises on making future cities more resilient. However, the indicators 

under U4SSC fails to address urban resilience in depth across multiple dimensions of 

resilience. It is thus seen that studies often pursue the three principles (‘resilient + 
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sustainable + liveable’) on independent tracks with their associated indicators, lacking 

a single composite index to achieve the futuristic smart city goal. It is unclear as to, 

‘Where does the world cities fall within the combined dimension of resilience, 

sustainability, and livability?’.  

1.3. Research significance and Objectives 

Cities reflect the inspiration and desire of humans to nurture sustainable, 

livable, and resilient societies (Kutty et al., 2020; Curşeu et al., 2021). “Sustainable-

resilient” cities voice our need of the previous decades (Beatley and Newman, 2013). 

While “smart-sustainable” cities are the voice of the current decade (Kramers et al., 

2014). The concept of ‘Sustainability’ is known to pivot the circular balance of 

demand, consumption, and supply while minimizing the environmental and ecological 

footprint (Kutty et al., 2022). Additionally, these cities ensure the continued existence 

in the face of natural disasters by upholding resilience through adaptability and 

flexibility (Tapsuwan et al., 2018). Shedding light on our ever-evolving perceptions of 

city qualities, a faultless question arises as, “What desires do we want to associate 

with the future city to ensure prosperity and quality of life?”. To ensure quality of life 

and prosperity, the smart sustainable cities of today must re-model their development 

patterns adding the most indispensable concept of liveability with resilience. 

Recalling these qualities, integrating the triple criteria of ‘Sustainability, Resilience 

and Livability’ to support future smart cities is pivotal. Thus, the central agenda when 

making incremental technological improvements in smart cities must include the 

traditional involvement of technology, ecosystem, people, and strategies to address 

the challenges in an urban scale; in short, sustainability, resilience and livability. 

Thus, co-creating livability and resilience in cities to scale digital solutions in a 

sustainable manner has become a top priority, thus the underlying rationale of this 
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dissertation. It is highly important to explore and understand on how smart cities 

address the concept of resilience, liveability, and sustainability and, to what extend 

leading smart cities address these paradigms in planning for next-generation cities.  

In addition, the complex flow of materials and resources within the system has 

added up to the existing challenges of bringing about right decisions to maximize 

combinatorial performance under these paradigms. The possible interactions in these 

complex systems can be studied using a hybrid model that integrates a series of 

analytical techniques to quantitatively and qualitatively assess sustainability, 

resilience and livability individually and under a combined platform; a composite 

index. Decision support models combine data with analytical techniques for improved 

decision making. While several techniques exist, insufficient amount of systematic 

and integrated research on decision support models that address the triple criteria of 

futuristic cities is absent in the literature. To this end, this dissertation explores the 

aforementioned quandaries in smart city research and attempts to develop a novel 

hybrid decision-support model for smart city performance assessment, ending in a 

composite index, the “Futuristic Smart City (FSC)” index that brings in the criteria of 

sustainability, resilience, and livability with multiple sub-criteria under a unified score 

and ranking system. To achieve the meta goal of developing the hybrid decision-

support model, the following objectives are set to be addressed, namely; 

a) Discover the possible interactions of various dimensions under the resilience, 

livability, and sustainability criteria of futuristic cities, using a systems 

thinking approach. 

b) Develop a novel non-parametric optimization-based benchmarking model to 

assess the sustainability performance of smart cities. 
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c) Build a novel resilience and livability performance assessment model 

integrating multi-variate distance based analysis with machine learning models 

for smart cities. 

d) Advance a novel fuzzy-expert based multi-criteria assessment model for 

composite performance assessment integrating the criteria sustainability, 

resilience, and livability across multiple dimensions. 

e) Implement each developed model in b), c) and d) to a case of 35 leading high-

tech European smart cities to validate and identify the robustness of the 

proposed models in performance assessment. 

1.4.Dissertation Outline 

The dissertation is organized into 8 chapters. Chapter 1 gives a theoretical 

background on the state of the current smart cities and explains the relevance of the 

concept on integrating sustainability, resilience, and livability under a unified 

composite index for transitioning into the so called “futuristic smart cities”. Problem 

description, research significance, and scientific objectives form a part of this chapter. 

Chapter 2 presents a detailed review of the prior art knowledge both from a theoretical 

and a methodological perspective to add novelty to the contributions presented in this 

dissertation. This chapter also includes a section dedicated to the state-of-the art 

contribution and how the dissertation will add novelty to the existing body of 

knowledge in terms of the techniques applied in creating the hybrid decision support 

model. Chapter 3 is the core of this dissertation, where the novel hybrid decision-

support model is presented and the core modules of the decision-support model with 

the novel analytical techniques adopted in constructing these modules is presented in 

detail. Chapter 4, 5, 6 and 7 discusses in detail the implementation of the proposed 

hybrid decision support model applying the case of European smart cities. 
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Significance of the proposed model, objectives tailored for the model implementation, 

research data and other parts of the analysis form a common pattern in each of these 

chapters. Chapter 4 presents the results and discussions of the systems thinking 

module, followed by the implementation of the non-parametric optimization-based 

benchmarking model for the sustainability assessment of smart cities in Chapter 5. 

Chapter 6 discusses the implementation and results of the machine-learning module 

for the resilience and livability assessment. Chapter 7 implements the fuzzy-expert 

based multi-criteria assessment module and discusses the results in detail with a 

sensitivity and comparative analysis. This module delivers the output of the hybrid 

decision-support model in terms of the scores and ranks of the European smart cities, 

taken as the case and thus the composite index. Chapter 8 is the final chapter of this 

dissertation, summarizing the findings and opening doors for future avenues in 

research. Limitations are also pointed out in this section. 
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CHAPTER 2: REVIEW OF LITERATURE  

2.1. Prior-art knowledge 

This section of chapter 2 is dedicated to understanding the existing works 

related to the development of the hybrid decision support model. The literature review 

is tailored targeting both the theoretical and methodological “know-how” in the 

proposed research domain to identify the gaps needed to assert novelty and propose 

the current art contribution. Initially, the review dives into knowing a little in detail 

about smart cities and the current smart city initiatives. Post to knowing the smart city 

initiatives, the review extends its search on several recent existing decision support 

models developed and used in the area of smart cities. Further, we attempt to 

understand a little in detail about systems thinking and why systems thinking is 

relevant in the context of smart city research. The review further explores the area of 

knowledge pertaining to sustainability assessment in smart cities and a little about the 

well-known non-parametric optimization-based benchmarking model, the “Data 

Envelopment Analysis” (DEA). The review then excavates the body of knowledge in 

the area of resilience and livability assessment in smart cities, focusing on the studies 

relevant to the area, machine learning. The review is completed with knowing in 

detail on multi-criteria analysis and expert-based decision support models for 

composite indexing in the area of smart cities. 

2.1.1. Smart city initiatives 

The phrase “smart city” has transpired to address several challenges and 

possibilities in urban planning and city development for a vast majority of the 

population across several disciplines. The concept has also gained immense 

popularity all over the research community (Camero & Alba, 2019). In simple terms, 

cities that strive to make it “smarter” is termed as smart cities (Hamman et al., 2017; 
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Chourabi et al., 2012). Smart city initiatives are transformational initiatives aimed at 

reforming the city services to deliver a better quality of life to the citizens (Giffinger 

et al., 2010; Odendaal, 2003). As of 2018, estimates show that there are around 473 

smart city projects (both inclusive of on-going and completed projects) in 57 countries 

around the globe (SCEWC, 2018). In particular, countries like South Korea and 

Singapore have invested huge shares of spending on IoT based solutions to digitalize 

and sustainably transform the nation into an intelligent nation. These smart city 

initiatives aim at implementing smart technologies to address the prevailing 

challenges in urban areas such as inaccessibility to safe and clean drinking water, lack 

of proper public health services, lack of employment opportunities and social 

prosperity, poverty, traffic congestion, global climatic changes, inadequate sustainable 

infrastructure, community living, etc. 

Although the scope and objective of each smart city initiative vary widely, the 

primary objective of these initiatives is to transform cities into being smarter, greener, 

and sustainable. This offers a better quality of life to the citizens and increased 

economic opportunities. Smart city initiatives use a wide range of ICT based 

intelligent services to deliver comfort and efficiency at fingertips (Rodrigues & 

Franco, 2019), starting from capturing and disseminating information across the city 

through data centers to connecting people through smart apps or web-based services. 

According to Lava Active inflow report, several government agencies are partnering 

with private firms to optimize city services and develop more sustainable and 

intelligent solutions by adopting open data and geospatial intelligence. The anti-

poverty initiative, “The Poverty in NYC’’ partnered with the Poverty Research Team, 

is a good example of using open data sources to tackle the social inequality problems 

(Murray, 2018). These deep-lobed partnerships support decision making to address 
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the concerns of citizens. For instance, the innovative funding mechanism pictured by  

the municipal government in Rio De Janeiro has been initiated to tackle the funding 

issues to support urban development and city transformation. Statistics show that 

around 35% of the investments to support the city development activities are managed 

through private investors. The municipality has leveraged the bureaucratic restrictions 

imposed on private investments by certain policy reforms to encourage public-private 

partnerships (Srinivasan, 2017). City administrations extend the concept of Public-

Private Partnerships (PPP) to invite not only foreign investments but also several 

service providers and asset builders who partner with the government to work on their 

behalf. An example of such a kind of PPP arrangement can be seen in the case of the 

General Outpatient Clinic PPP Programme launched in Hong Kong, 2014. In this 

program, all the general outpatient services are outsourced to private healthcare 

service providers who substitute the Hong Kong Hospital Authority (HA) in 

providing these services to the city residents (Onag, 2018). This initiative ensures 

proper health and sanitation benefits to all its citizens. Here the government acts as an 

enabler, policy reformer, and procurer of city services, thus stimulating economic 

growth. 

As these examples suggest, smart city initiatives help in mitigating several 

urban development obstacles by utilizing data and services from intelligent 

technologies, like location intelligence, Geospatial technology, Internet of Things, Big 

data, Cloud systems, etc. thus, catering the needs of the city residents, improving city 

stakeholder involvement, and providing a better understanding on the city operations. 

Although the concept of sustainable urban development in smart cities seems very 

practical and viable, in reality, however, it is very complex, demanding, and context 

determined. Assessing the environmental sustainability performance remains a great 
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challenge (Egilmez et al., 2015) along with several array of challenges that includes 

but are not limited to the inability of matching the urban sustainability demands to the 

real-time applicability context, lack of proper alignment in policy and technology 

implementation and coercion on social and regional solidarity that demand diverse 

governance solutions. 

2.1.2. Decision Support Models for smart city research 

Extending the light on decision support models from a city level perspective, 

we can see several scholarly works over the years have spread across this area of 

research. For the interconnected management of urban infrastructure assets, Wei et 

al., (2020) developed a knowledge based expert model using modular ontologies and 

rule base for sub domain interdependencies. Similarly, a smart decision support tool 

integrating “Building Information Modelling (BIM)” and “Geographic Information 

System (GIS)” was devised by Marzouk and Othman, (2020) to identify the 

infrastructure utility needs in an attempt to plan smart solution retrofits for traditional 

residential stocks. Papadopoulou and Hatzichristos, (2020) developed a “Spatial-

Decision Support Model” (S-DSM) combining the “Geographic Information system” 

(GIS) and “Multi Criteria Decision Analysis (MCDA)” for the smart exploration of 

possible livable spaces in Greece. The urban space management system included an 

ICT support platform for effective land use management incorporating living labs and 

crowdsourcing in its architecture. A web-based data driven decision support model 

was developed by Marinakis et al., (2018) to support the management of intelligent 

energy services for smart cities using a cross-domain data platform encompassing 

high level architecture. The proposed model aids in making insightful decisions by 

simplifying the data gathering procedures from multiple sources relating to the cities 

energy performance. A model named Apus-Kul using “Simple Additive Weighting 
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(SAW)” algorithm was developed by Ayu, (2020) to measure the decisions related to 

choosing business directives and materials for food business in smart cities. The 

model attempted unstructured problems using the SAW algorithm to bring insightful 

judgements based on people’s perception towards taste, food materials and 

ingredients for opening food and beverage industry. Hartatik et al., (2019) developed 

a decision-support model tailored towards smart city development through smart 

health planning using a naive Bayes method that detects acute skin diseases based on 

expert judgements. Dermatological self-diagnosis pathways and big data technology 

supports the Dipen-ku model. A transportation planning DSS named BISTRO was 

developed to support high-level regional planning, promoting smart urban mobility 

that act as a human intervened cyber-physical system by Feygin et al., (2020). The 

model used an agent-based simulation with optimization for scenario-based design of 

urban transportation management. D’Aniello et al., (2020) proposed an ontology-

based service model for smart cities based on assertion and reasoning of processes 

whose information were shared by the city residents. The smart city service model 

aimed at delivering services to the city residents to ensure a high quality of life 

through service science theories. Nasution et al., (2020) devised a decision support 

model utilizing TOPSIS to analyze the eligibility of 10 major cities of Sumatra to 

becoming a smart city. The urban infrastructure, share of population, land use and 

economic status were the alternatives used in the assessment to rank the eligibility of 

the selected cities. Thus, research have spanned in the area of smart cities and 

decision support to model several challenges and bring about plausible 

recommendations to support effective decision making. 

2.1.3. Smart cities and systems thinking 

In order to tackle the prevailing challenges faced by cities, cities have started 
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adopting smart initiatives (Marsal-Llacuna et al., 2015). These smart city initiatives 

are often assumed to be a successful approach in curbing possible city challenges. 

Despite this hypothesis, cities still face a tremendous deal of criticism, challenges, and 

difficulties when it comes to the deployment and implementation of the triple criteria 

of sustainability, resilience, and livability into the pre-conceptualized vision of smart 

city (Bibri and Krogstie, 2017). The literature investigates systems thinking in depth, 

keeping hold of the scope of the research. Table 1 highlights several peer-reviewed 

research articles published in the field of smart cities and systems thinking during the 

past decade. These emphasize the abundance of research works in the field of smart 

cities using a system-thinking approach, thus adding more quality to the research 

agenda of using systems thinking to link sustainability, resilience, and livability under 

smart city development. 

Table 1. Literature review on studies using systems thinking in smart cities 

No. Article Abstract Source 

01. Towards a system-

thinking based view for 

the governance of a smart 

city’s ecosystem: A 

bridge to link Smart 

Technologies and Big 

Data. 

The research utilizes a 

system-thinking approach to 

investigate the challenges 

faced in several domains of 

smart city and act as a guide 

in managing several 

dimensions and paths of 

social dynamics. 

(Caputo et al., 

2019) 

02. Systems thinking for 

developing sustainable 

complex smart cities-

based on self-regulated 

agent systems and fog 

computing 

The study adopts a system-

thinking approach along 

with self-regulating agent 

systems and fog computing 

techniques for molding the 

futuristic concept of 

complex smart systems. 

(Abbas et al., 2018) 

03. Applying System Science 

and Systems Thinking 

Techniques to BIM 

Management 

The study adopts system 

science and the system- 

thinking to revitalize 

management norms on 

infrastructure development 

projects using augmented 

designs. A problem analysis  

(Redmond and 

Alshawi, 2018) 
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No. Article Abstract Source 

  and interpretation method 

are used by the author on a 

construction project in the 

UAE to validate the 

strategies proposed in the 

study. 

 

04. Functional resonance 

analysis method based- 

decision support tool for 

urban transport system 

resilience management 

The research connects the 

Functional Resonance 

Analysis Method with a 

system-thinking approach in 

order to develop a 

Resilience Decision Support 

tool using smart data, thus 

helping to manage complex 

infrastructure resilience. 

(Bellini et al., 2016) 

05. Case study of energy 

behavior: A system-

thinking approach 

A system-thinking approach 

is used in order to develop a 

three-tier based framework 

for smart city, focusing on 

changing the energy 

consumption behavior. The 

research outcomes focus on 

people who live in the 

greater part of New York 

City. 

(Khansari et al., 

2015) 

06. Industrial and business 

systems for Smart Cities 

The research adopts systems 

thinking approach along 

with continuous engineering 

and IoT based concepts to 

develop an integrated set of 

best practices for smart 

cities and several industries. 

(Amaba, 2014) 

07. Conceptual modeling of 

the impact of smart cities 

on household energy 

consumption 

The impact of smart city 

technologies on the 

behavioral change of 

household energy 

consumption using systems 

thinking and cognitive and 

learning approaches is 

attempted in this study 

(Khansari et al., 

2014) 

08. Living labs, innovation 

districts, and information 

marketplaces: A systems 

approach for smart cities 

Develops a candidate model 

for implementing the smart 

city concept into practice by 

incorporating systems 

thinking and integrating the 

living lab and innovation 

district concept. 

(Cosgrave et al., 

2013) 
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Systems thinking provides a broader understanding on how a system functions 

by investigating the relations and changes within the system. When understanding the 

concept of systems thinking vis-à-vis smart cities, city challenges are perceived as a 

product of structured relations between selective parameters that address the 

challenges, rather than just identifying causes and behavioral changes separately like 

the traditional linear thinking. These parameters are considered as a part of the city 

holistically, or pillars that address the challenges of the city, where the smart city is 

seen as an integration of systems (Dirks and Keeling, 2009). Any alteration to these 

parameters will affect the system as a whole. Thus, bringing systems thinking into the 

context of smart cities, we can troubleshoot flaws that affect the overall dynamics of 

the city with marginal effort. Systems theory has recently been used to formalize 

smart city visions by playing a vital role in strategic city planning. Several other tools, 

along with systems thinking, are used to tackle the prevailing challenges in urban 

planning like Kitemark recognition, Bench-learning, Progress monitoring, etc. 

(Pichler, 2017). System theory outweighs all other tools, because of its systematic 

behavior in integrating systems, the ability to predict composite changes within the 

system, and understanding the relevance of feasible divergence. Systems thinking 

addressed in context with smart cities considers socioeconomic and environmental 

characteristics and their dependencies with several systems and subsystems in a 

model that helps in strategic city planning (Shmelev & Shmeleva, 2018). This paves 

ways to sustainable urban development in smart cities (Pretorius et al., 2014). 

Systems thinking as a tool can aid cities in framing a better idea on several input-

output parameters like population, urban space, air, water, waste, energy, safety, and 

transportation. It helps in a better understanding of how these parameters hold 

influence in the governance stage, like how vulnerable these parameters are to 
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frequent changes in the pattern of development, availability, usage, and price 

elasticity. 

2.1.4. Why systems thinking in smart cities ? and how it works. 

Cities are often considered as complex systems (Mora et al., 2017; Portugali, 

2016; Berkowitz, et al., 2003). These systems constitute several subsystems that are 

interconnected and interrelated with each other to perform specific functions 

(Bertalanffy, 1976). Functions are often related, and they tie-in connecting several 

elements within the system. Considering an example of the road as a function, we can 

see that the road functions to move vehicular traffic acting as a mediator for the 

movement- connecting people and vehicles from the source to destination. Thus, 

understanding these functions helps us in associating various elements and processes 

that are essential in filling these functions and facilitates us with a broader 

understanding of the results obtained when these functions are filled. Thus, applying 

systems thinking to understand these functions act as a potential leverage point since, 

systems thinking identifies necessities (Onat et al., 2017), possible knowledge gaps, 

correlations, and goals. Additionally, it helps in locating possible system paralysis, 

absent elements, inefficiencies in urban dynamics, and possible links that form a part 

of the function’s work cycle. 

Cities, when visualized as an urban ecological system,  contain several 

subsystems (for example, but are not limited to population, urban space, air, water, 

energy, food, waste, safety, health, and transportation) that act as a system itself in the 

network of systems. A slight disruption in the functioning of either of these 

subsystems would result in undesirable consequences in other subsystems within the 

network of systems, thus affecting the overall dynamics and efficiency of the system. 

This can be understood by considering the following example of unoptimized 
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resource allocation within a city. A city plans to reduce the number of medical 

dispensaries and healthcare centers as an effort to reallocate its budget on several 

other infrastructure development programs and concentrate resources. As a result, city 

dwellers need to consult other distant dispensaries, which requires them to travel long 

distances. This, in turn, increases their car trips leading to more road traffic 

congestions and harmful exhaust emissions at the same time. This increases several 

health hazards, thus affecting their health life. Thus, city challenges are often 

complicated and mysterious; and solving them is extremely difficult. 

City officials and municipal organizations often work in silo mentality while 

attempting to curb several city challenges; for example, transportation and logistics-

related issues are dealt with by the transportation modelers and logistics planners, 

while energy-related issues are handled by inspectors and energy managers. From the 

supplier’s point of view, any water-related challenges are attempted to be solved by 

the water supply authority and energy-related challenges by the energy suppliers. 

When analyzing in-depth, the challenges faced by each department are interrelated 

and solving these city challenges becomes easy when attempting to adopt integrated 

management and thematic approach. ‘Systems thinking’ is thus an answer to all these 

questions and challenges, where systems thinking acts as a support tool in addressing 

complexities, uncertainties and identifying “what if” impacts (Onat et al., 2017),. 

Systems thinking interconnects several elements of a system to the point of interest, 

better identified as a purpose. For example, let us say that the traffic and 

transportation modelers in a city wish to redesign the transportation system that has 

been existing as an integral part of the city infrastructure for the past 50 years. The 

conventional planning model of the city’s transportation network would hold 

‘transportation’ as its prime focus. However, in a smart city, the modelers would 
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extend their point of interest on factors such as smart mobility, zero-emission 

transportation alternatives, and increased connectivity for the city residents. 

2.1.5. Sustainability assessment in smart cities 

Despite technology playing a prominent role in transforming a city into being 

smart, there are several desired outcomes that need to be addressed when trying to 

mitigate several social, economic, and urban challenges in a city, which hinders urban 

development in a sustainable manner (Kamruzzaman and Giles-Corti, 2019; Bibri, 

2020). Smart city concepts have been perceived as an ICT driven concept focusing on 

improving the quality of life of the citizens (Bibri and Krogstie, 2020). However, 

smart cities need to extend their focus from the perspective of sustainable urban 

development (Yigitcanlar et al., 2019c). Initially, the concept of smart city was 

regarded as a strategic tool to underline the increasing importance of ICT and social 

and environmental capital in sculpting the competitiveness of modern cities (Schaffers 

et al., 2012). Consequently, smart city definitions that encompass the environmental 

dimension of sustainability frequently include the social dimension. Schaffers et al. 

(2012) argued that this is due to the distinctive attributes that social and 

environmental capital can offer to smart cities compared to the “more technology 

laden counterparts,” frequently mentioned in the literature as digital or intelligent 

cities. Thus, the distinction between digital or intelligent cities and smart cities 

appears to be the prevalence of the human element in the latter.  

As an attempt to understand the methodological approaches, and tools 

developed to assess urban sustainability in smart cities, a review was carried out based 

on a series of latest research studies, and several indexing reports published in the 

field. The screening process of both scientific and gray literature was conducted with 

the aid of several search engines and Scopus online database, with a view to include a 
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wide spectrum of journals, books, and technical reports with high relevance to smart 

city and urban sustainability assessment. The purpose of this bibliographical search 

was to identify the most well-known and widely-accepted sustainability assessment 

tools, indices, and methodologies used in smart cities for sustainability assessment 

from the last decade. We note that even though sustainability goes beyond local and 

urban areas, and several composite indices tackle country or global scale evaluation, 

we have restricted our study to urban sustainability in smart cities alone. Our research 

indicates that a variety of models and tools have been developed for the evaluation 

and comparability of sustainability in smart cities. These tools are based on composite 

indices that assess critical dimensions of sustainability. A good example of a 

composite index offered also as an interactive tool, that introduces both technology 

maturity and sustainability aspects in urban development is the “Networked Society 

City Index” (Ericsson, 2016). The Green City tool is another initiative on a European 

Union (EU) level and under the “European Green Capital framework” (European 

Green Capital, 2021), aiming to facilitate sustainable urban planning with a prime 

focus on offering best practices and guidance. It provides a simple, straightforward 

tool, limited to generic qualitative inputs of self-assessment for cities. In general, 

composite indices provide some key outcomes, such as ranking and benchmarking of 

cities, facilitating research and analysis in the urban design (Buldeo Rai et al., 2018) 

and assisting in sharing knowledge for the development of smart and sustainable cities 

(Abu-Rayash and Dincer, 2021). However, given that city sustainability entails a 

multitude of aspects and domains (Ali-Toudert and Ji, 2017), all these evaluation 

frameworks and indices present methodological gaps and conflicts, as they capitalize 

on different definitions of urban performance and development (Molinaro, 2020), 

while showing imbalance between smartness and sustainability. 
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Although there are many similarities among characteristics of evaluation 

frameworks, rating systems, or composite indices, they differ considerably in 

conceptualization, focus, and goals, due to the determined diverse city needs, 

boundaries and expected outcomes of the smart and sustainable cities under 

assessment, as well as the perspectives of the relevant stakeholders and experts. A 

majority of applications, experiments, projects, and initiatives use as a guiding 

principle the “triple bottom line (TBL)” in order to evaluate sustainability 

performance which integrates social, economic, and environmental variables (Chen 

and Zhang, 2020). A good illustration of this is the China’s urban sustainability 

indices (USI), the last version of which launched in 2016 and uses 23 indicators 

categorized under the 3 dimensions of TBL for ranking 185 Chinese cities of diverse 

sizes and development stages assessing their sustainability performance level between 

2006 and 2014 (The China Urban Sustainability Index, 2016). Furthermore, some 

indices represent strong sustainability while others present a weak sustainability 

assessment. A representative index with strong sustainability criteria is the sustainable 

development of energy, water, and environment systems index (SDEWES) that 

assesses the sustainable performance of 120 cities across 7 dimensions, while 

identifying best practices for policy learning and adoption (Kılkış, 2016). There are 

also indices that primarily focus on environmental sustainability, such as the 

European Green City Index, grounded on 30 individual indicators to assess and 

compare the environmental performance of 30 big European cities from different 

countries (Shields et al., 2009), or indices that explore only specific urban aspects, 

such as urban mobility, air quality, business development, etc. (Akande et al., 2019), 

e.g., the index developed by Collins et al. (2019) that builds upon geographic, 

meteorological, and socio-economic data and k-means clustering to determine which 
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out of 119 U.S. cities included in the analysis are bicycling-friendly cities (Collins et 

al., 2020). 

Several indices used to assess sustainability also hold drawbacks that lie in the 

difference and multiplicity of the data sources used for results’ comparison, owing to 

lack of data for some indicators or even due to inconsistency of the framework 

approach. In some cases, country-level data are utilized, or extrapolation techniques 

are implemented, while data are also obtained from other indices to calculate a 

number of their metrics (for example see., e.g., Cohen, 2012; Innovation Cities Index, 

2019). In the case of a city evaluated by two or more different indices, results lead to 

diverse type of rankings, implying an indication of subjectivity. A good illustration of 

this is the city of London when assessed via the IESE Cities in Motion Index 2020 

and the IMD Smart City Index 2020. The city ranks top in the first index and on the 

15th place in the second, due to the different approaches in the smart and sustainable 

city concept and its dimensions, as well as the number of cities and indicators of city 

evaluation between the two indices, leading to extremely difficult comparison of 

results. In addition, it is also to note that several major differences and incoherence 

are observed among composite indices regarding the normalization, weighting, and 

aggregation methods used to evaluate sustainability performance. However, non-

parametric approaches such as the Data Envelopment Analysis (DEA)  uses 

normalized values for all the indicators from linear scaling in the min-max range. The 

technique allows the analyst to endogenously assign weights for the partial indicators, 

yielding an overall score that depicts the analyzed decision making unit in its best 

possible light relative to the other observations. 

2.1.6. DEA models for sustainability assessment 

Data Envelopment Analysis (DEA) is a non-parametric quantitative 
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optimization-based benchmarking technique developed by Charnes, Cooper, and 

Rhodes, (1978) to assess the relative efficiency of productive units. In this approach, 

the values of the selected input and output parameters are multiplied with appropriate 

weights calculated to obtain the desirable efficiency scores. The proposed model by 

Charnes, Cooper, and Rhodes, (1978) (formally known as the CCR model) based on 

“constant returns to scale (CRS)” was further modified by Banker, Charnes, and 

Cooper, (1984) (so called BCC model) entitling “variable returns to scale (VRS)”.  In 

a classic DEA model, appropriate weights for each “Decision Making Units” (DMU) 

are formulated using mathematical programming. In contrast to DEA, a less 

frequently used non-parametric technique for efficiency calculation is the “Free 

disposal hull (FDH) approach” proposed by Deprins et al., (1994), which later on was 

modified by Lovell et al., (1994). Till date, DEA models are based on two measures, 

the radial DEA model proposed by Charnes, Cooper, & Rhodes, (1978) and the Slack 

based measure (SBM) DEA model developed by Tone, (2001). 

Through the years, various DEA models have been extended from the classical 

CCR and BCC models to calculate the relative efficiency of the DMUs. Tayala et al., 

(2020) applied the BCC model with constant input to calculate the efficiency and 

select the most sustainable facility layout plan, combined with machine learning, K-

means clustering and meta heuristics approaches. An SBM-DEA model combined 

with energy analysis was used to assess the urban metabolic performance of eight 

Chinese communities by Tang et al., (2020). The frontier approach has brought all the 

sustainability assessment indicators under the composite sustainability framework. A 

meta frontier DEA approach was used to study the territorial eco-efficiency patterns 

in 282 European regions for the years from 2006 till 2014 by (Bianchi et al., 2020). 

Yasmeen et al., (2020) used a “super-efficiency” DEA model combined with a system 
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generalized method of moment estimator to study the ecological productivity of 30 

provinces of Mainland China under the COP-21 agreement. The impact of pivotal 

factors contributing towards national and regional sustainability were also identified 

and targeted for possible improvements. A multi power system network-based DEA 

model was used to monitor the degree of sustainability by Tavassoli et al., (2020) 

within the context of Iran’s electricity distribution grid. The model included several 

undesirable outputs, excess inputs, and system re-work indicators whose weights were 

assigned based on expert judgements. A similar network DEA approach was used by 

Wang & Song, (2020) to measure the degree of sustainable airport development for 

12 Asian airports from the grey model using real time and forecasted data. Castellano 

et al., (2020) made use of a “multi-stage DEA” model to assess the relative 

environmental and economic prosperity of 24 Italian seaports. The model estimated 

the diligence of economic efficiency when considerable adjustments were made in the 

ecological costs and pro-ecological commitments. A multistage DEA-ratio data model 

developed by Mozaffari et al., (2020) was used to estimate the sustainable efficiency 

of 20 fire station supply chain (SC) based on a set of dependent variables. The model 

utilized the Genetic Algorithm (GA) as a means to obtain the productive weights of a 

multi-echelon SC model. Ibrahim & Alola, (2020) applied an “Autoregressive 

Distributed Lag (ARDL)” method with “Pooled Mean Group (PMG) estimation” 

approach to understand the non-renewable resource efficiency for a set of response 

variables like GDP growth rate, energy usage and aggregate natural resource rent. 

While a similar study was conducted using a DEA model to evaluate the efficiency 

for renewable energy and, socio-economic and ecological development. Thus, DEA 

can be seen as a powerful tool in assessing sustainable development capacity across 

several domains. 
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Progressive efficiency can be assessed by understanding the technological 

changes as a whole over the years. Productivity measurement is an important topic to 

account for when understanding sustainability. The DEA based Malmquist 

Productivity Index (MPI), as an effective tool has long been used to measure the 

productivity change in efficiencies over time for a set of representative units. A DEA-

MPI model was used by Pan et al., (2021) to measure the sustainable development of 

electronic agriculture-based infrastructure in 31 provinces of China. The integrated 

approach rules out bias in estimation of production efficiency associated with the use 

of cross-sectional or time series data. To assess the ecological productivity of 30 

Chinese cities from a time series perspective, Zhu et al., (2019) developed a common 

weight DEA approach combined with Biennial-MPI. Zhang et al., (2020) employed a 

super efficiency DEA-MPI to create an evaluation index system to understand the 

impact of IoT with real economy for an economic sustainability assessment. To study 

the productivity change in eco-efficiency and technology catch-up indices, a non-

radial meta frontier Malmquist-Luenberger DEA model was used by Tang et al., 

(2020a) over time on 30 Chinese provinces. Double bootstrapped MPI was used by 

Kularatne et al., (2019) to analyze on how environmentally sustainable practices can 

make Sri Lankan hotel industry more efficient, by measuring productivity change 

over period from 2010-2014. Wang and Li, (2018) employed DEA-MPI to analyze 

the carbon emission performance of petrochemical producers in United States over 

time. Combined with super efficiency DEA-MPI and kernel density estimation, Ge et 

al., (2021) studied the eco-efficiency performance of 40 growing cities. DEA-

Malmquist-Luenberger productivity index was used in combination with Difference 

in Difference-Propensity Score Matching (PSM-DID) approach to estimate the 

productivity progress of low-carbon emission pilot cities of China by Fu et al., (2021). 
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Wang, (2019) used DEA-MPI to understand the sustainability performance and 

productivity change of 40 world-wide cities across 6 prime dimensions. 

2.1.7 DEA with undesirable factors 

The literature till date provides two intuitive approaches when dealing with 

undesirability while calculating the efficiency performance. The most commonly 

employed approach is the application of suitable data transformation to the 

undesirable factors in the PPS to make them desirable. Non-data transformation 

approaches are also used to preserve the true input-output relationship of the 

production process. A non-parametric DEA model using the directional distance 

function (DDF) under the assumption of weak free disposability was proposed by 

Färe & Grosskopf (2004) and Yu (2004) to treat both undesirable inputs and outputs 

in the linear conventional BCC-DEA model. A single-process DDF approach to treat 

undesirable outputs in a network DEA model was proposed by Lozano et al., (2013) 

when computing the airport efficiency scores. Based on the classification invariance 

property, the performance of the inefficient DMU can be improved by maximizing the 

undesirable inputs and desirable outputs with minimizing the undesirable outputs and 

desirable inputs. This was applied by Seiford & Zhu, (2002) in understanding the 

performance of 30 paper production mills in the United States. The undesirable input 

XUI
ko was multiplied by “-1” and then a translational vector “w” was added to convert 

the negative XUI
ko to a positive form. Here, the undesirable input XUI

ko is increased. A 

“Semi-Oriented Radial Measure DEA (SORM-DEA)” model presented by 

Emrouznejad (2010) dealt with negative undesirable inputs/outputs. A modified 

extension to the conventional SBM-DEA model proposed by Tone (2001) was used 

by Sharp et al., (2007) to addresses the desirability concerns in the input and output 

variables that are present in the technology set. A restricted DEA model using optimal 
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shadow pricing considering the undesirability in the output was used by Guo and Wu 

(2013) to rank DMUs based on “Maximal Balance index”. 

Several data transformational approaches exist in literature to deal with 

desirability concerns in inputs and/or outputs when measuring relative performance. 

Lovell et al., 1995 used the multiplicative inverse approach to treat the undesirable 

outputs (monotone decreasing transformation) to achieve the desirable state. For 

instance, any undesirable output can be treated in the form f (Y) = 1/ YUO
vj {(v = 

1,2,3,.…...t) ϵ Tc} to use it as a set of desirable output for the efficiency assessment. 

Data translations of the form  f (Y) = – Y + δ was used in the studies conducted by 

Pastor (1996) and Scheel (2001) to transform undesirable outputs to their desirable 

forms. Reducing dimensionality of the data set to its intrinsic dimension can help in 

capturing the significant inputs and outputs to be included while measuring the 

relative efficiency scores. Liang et al., (2009) used a monotone increasing data 

transformation on a selected set of principal components to rule out negative 

undesirable outputs when attempting to understand the ecological performance of 17 

Chinese cities.  

2.1.8. The evolution of urban resilience and livability 

Ecological modernization and socio-biophysical uncertainties in cities have 

raised consensus of urban planners in the opinion to include the concepts of liveability 

and resilience in the existing development model. Since the classical era, Aristotle in 

his best-known work Ēthika Nikomacheia mentions the term “Eudaimonia” which 

means living a reconciled life (Yu, 2001). American psychologist Carol Ryff in 1989 

extended Aristotle’s Eudemonic well-being of what she regarded as psychological 

well-being under: autonomy, personal growth, self-acceptance, sense of purpose in 

life, environmental mastery and positive relations with others (Ryff, 1989). Thus, 
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liveability is known from ancient time dating back to Plato and Aristotle, with a 

plethora of conceptualization at different period of time. The late 1960s and 1970s 

saw the emergence of liveability with The “Electors Action Movement (TEAM)” in 

Vancouver, as a people-centric concept to the then existing growth-centred approach 

on the economy. Geographer David Lay argued on the existing liveability approach of 

late 1970s as a discursive approach to showcase political power amidst the quality-of-

life proposition (Lay, 1980). In 1981, Donald Appleyard, an American landscaper, 

introduced liveability in the field of urban planning and design for the first time 

through his book ‘Liveable streets, protected neighbourhoods’. Appleyard et al., 

(1981) characterised liveability as an unmeasurable definition to the quality of life 

through urban redevelopment plans, focusing on the infrastructure and transportation 

sector. Appleyard mentions that cities have different stage of attractiveness and thus 

different stage of liveability. A Liveable city is one where people aspire to live and 

can afford to live (Newman, 1999). The late 1990s’ in the view of scholars was an era 

that focused on liveability discourse as a means to address the concerns of the elite 

class and nobles; a neo-liberal agenda (Uitermark, 2009). The 21st century saw the use 

of liveability as an integrative concept that connected human values with the social 

environment, rather than a profit-centred development agenda. Brenner et al., (2009) 

in his publication ‘Cities for People, Not for Profit’, exemplifies liveability as “an 

alternative, post-capitalist form of urbanization”. There are many criteria that define 

liveability of a city, where the criteria defining liveability is either objective or 

subjective to an individual’s personality, culture, national background, traditions, and 

expectations. Dutch sociologists Tonkens and Constandse however argues on the 

objective notion of liveability in cities, as it rips human-centric urbanization with the 

division of functionalism on cities, thus tarnishing the social fabric of community-
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living (Kaal, 2011). Thus, liveability in modern era is a malleable concept translated 

into spatial levels to add quality to human lives, conceptualized under diverse 

contexts (Higgs et al., 2019). 

Liveability is obtained by re-creating small neighbourhoods so-called new 

urban villages with an eye to combat unprecedented urbanization (Weichselgartner 

and Kelman, 2014; Benita et al., 2020). These so-called urban villages are a part of 

complex ecological systems that are susceptible to several shocks and operate under 

numerous exogenous and endogenous uncertainties. Dealing with uncertainties is 

crucial for cities to thrive when attempting to recover from adversity (Nitschke et al., 

2021). Building resilience in ecological systems is a vital endeavour towards reducing 

the exposure to extreme events and peace-building in city (Sanchez et al., 2018). 

Etymologically the word "resilience" originates from the Latin word “resilio”, 

meaning “to-bounce back” (Manyena et al., 2011). Resilience planning dates back to 

the ancient era, long since the Romans in 4th Century BC built the Cloaca Maxima 

sewer pipeline; a flood resilient sewerage network system (Galderisi et al., 2020). 

Resilient studies focus on understanding a systems performance pre and post 

disruptive events (Hudec et al., 2018). Reggiani et al., (2015) identifies resilience as; 

the ability of a regional system to return to equilibria post disruption (engineering 

resilience), or the extent to which urban systems can handle chronic stresses and 

shocks (ecological resilience). Martin, (2012) recognizes adaptive resilience as the 

ability of a system to reorganize post stress to facilitate system operation through 

endless change and reduced recursion of shocks. While Lagravinese et al., (2015) 

defines economic resilience as an adaptive capacity of regions/local areas to resist 

recessionary shocks. Socio-ecological resilience as identified by Rodin, (2014), 

recognizes urban system as a nonlinear system susceptible to change in an 
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evolutionary pattern. The degree of resilience can support explanations on why some 

regions are capable to withstand stress and the reason why some adversely affected 

regions recover in a relatively short period of time post disaster compared to other 

regions. Thus, the concept of urban resilience and liveability is multi-dimensional and 

does not hold a ‘fixed boundary’ in terms of its definition and interpretation.  

2.1.9. Are smart cities addressing resilience and livability ? 

Transforming a city into being smart with the use of innovative technologies is 

vital and inseparable to achieve better living standards for urban residents (Mdari et 

al., 2022). Smart cities are vessels of intelligence and an efficient incubator of 

empowered spaces which clearly holds tight the importance of the themes: 

intelligence, well-being, resilience, and spatial development (Rios, 2008). Although 

these concepts are of high importance, they are addressed only marginally by several 

authors in their proposed definitions of the smart city. Livable cities shape residents to 

be better citizens, intelligent scientists, potential workforce, effective policy reformers 

and better enablers of smart services (Kutty et al., 2020). While resilient cities act as 

shields against undesirable externalities by working in ‘smarter ways’ with relentless 

focus on civic life and communities’ adaptive capacities (Patel and Nosal, 2016). 

Thus, an intimate philosophical kinship exists between these paradigms. In vain, 

livability and resilience paradigm have been used interchangeably in several context 

targeting the soul agenda; quality of life with a smart growth strategy.  

Despite philosophical kinship between both the paradigms, their application 

has spanned across diverse dimensions specific to social needs and diverse 

functionalism of cities. Although the objectives remain same, i.e., to enhance quality 

of living and provide a sustainable way of life to the inhabitants, most cities have 

diversified this objective to attain city specific goals to meet the needs of city 
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dwellers. The Russian capital city Moscow addresses the bedeviled road traffic 

congestion issues by initiating alternative mobility plans and implementing intelligent 

transport systems (a clear example of pan-city development) geared at delivering a 

sustainable mode of work and life to the citizens (Golubchikov and Thornbush, 2020; 

Danilina and Slepnev, 2018; Chudiniva and Afonina, 2018). In Jaffa-Tel Aviv, the 

smart city practice is viewed as an ideal strategy to tackle the prevailing challenges of 

education, health, sanitation, and culture to promote sustainable development and 

community well-being (Toch and Feder, 2016). In the case of Singapore, the smart 

city program focuses on big data by implementing a nationwide network of digital 

sensors intended to provide city officials with real-time information on the 

happenings of the city by gathering, allocating, analyzing, and interpreting the data 

with the sole objective of transforming the country into an intelligent nation 

(Shamsuzzoha et al., 2021). Thus, offering a dignified standard of living to the 

citizens through smart practices. While the Msheireb downtown smart city project in 

Doha, Qatar which is an urban regenerative development program built with a strong 

and unique Qatari identity complementing Islamic architectural language aims at 

delivering a better and a greener standard of living to its citizens and expat 

community (Sharif and Pokharel, 2021). The city intends to practice green 

transportation system by adopting zero emission mobility-electric tram system. In 

addition, it also focuses on another important goal, which is to transmit knowledge 

and diversify the broadband connectivity. This initiative would aid the community to 

attract foreign investments into their market thus helping in boosting the smart 

economy with a touch of livability (Ringel, 2021). To understand the vulnerability of 

smart city development to climate change, nature based-solutions are integrated with 

built-up spaces to improve livability under the Smart City Mission in Bhubaneshwar, 
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India (Pandey, 2021). Livability conditions were assessed in the city of Bhopal, India 

for smart mobility services based on socio-economic profiling (Chatterjee et al., 

2020). Administrators in the city of Bhopal believe smart transportation as a measure 

to integrate community needs for economic and social development. Thus, a smart 

city can be viewed as a multi-objective concept tailored to achieve livability. 

Reconfiguring urban development in light of sustainability requires integrating 

resilient features with digitalized smart solutions. A resilience-based ontology was 

structured to assess and elaborate the real time data streams from smart city 

technologies in the city of Florence, Italy under the “RESOLUTE” project (Bellini et 

al., 2017). A real-time assessment of dynamic resilience of smart infrastructures was 

made possible through the Smart Resilience Project (SRP) by constructing a 

benchmarking matrix, the “resilience cube” (Jovanovic et al., 2019). The impact of 

critical infrastructure retrofits; smart rainwater harvesting mechanism on urban 

resilience was studied by Oberascher et al., (2021). To understand the impact of smart 

city development on urban resilience in China, Zhou et al., (2021) constructed an 

urban resilience model, where policy performance was assessed using the PSM-DID 

approach. While, based on the geomorphological characteristics, a mixed approach 

using machine learning (ML) classifiers and GIS was used to identify the hotspot 

areas prone to flood in Lisbon city, Portugal by Motta et al., (2021). A flood risk 

index was then constructed for the city within every 100 m3 cell. To improve the 

power distribution network resilience in Milan, Italy, Bosisio et al., (2021) used ML 

with GIS algorithm to understand the surges in the network under variable load 

conditions. 

2.1.10. Bringing machine learning to smart city research 

Machine learning (ML) is a hypernym term that encompasses several tools 
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and techniques to explicitly perform tasks based on self-learning and adapting to 

patterns on their own (Alpaydin, 2020). ML models assist in understanding system 

behaviours by executing functions through learned trends and patterns rather than any 

predefined set of procedural codes. ML algorithms act as powerful tools in decision 

making scenarios where knowledge execution through strict complex algorithms 

becomes a tedious task (Meyer, et al., 2014). Machine learning has found applications 

in several areas including social media platforms like Facebook that pops friend 

recommendations and content suggestions captured through previous user interference 

with the platform (Bishop, 2006). Image recognition features such as face detection 

has brought smart phone development to the next level (Zoph et al., 2018), which is 

one of the most notable ML techniques. Sentiment analysis for identifying the tone of 

text and content filtering for unauthenticated bank transactions (Habernal et al., 2013) 

are some of the common applications of ML on a day-to-day basis. 

ML techniques also play a significant role in the areas that aim to foster 

smartness and sustainability from a city level perspective. Majumdar et al., (2021) 

used ML approaches to predict the congestion propagations on road networks using a 

LSTM network architecture based on motor vehicle speed data. A univariate and 

multivariate predictive model was built, and the predictive accuracy of the models 

were estimated. Wang and Gohary, (2017) proposed several data-driven predictive 

models to understand the level of building energy in terms of consumption for smart 

infrastructures. Here, prediction using the smart metrices from historic data, along 

with feature selection identifying the required data quantity were based on ML 

algorithms. While, LASSO algorithm dealt with feature selection, three ML 

techniques were used for model implementation and testing. While Nutkiewicz et al., 

(2017) combined data driven machine learning model with an energy simulation 
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model to address the influence of transition spaces on building energy usage. The 

integrated model provided recommendations in addressing sustainable practises at the 

building design, management, and energy utilization phases. Li et al., (2019) 

developed and implemented an improved deep machine learning model by integrating 

“genetic algorithms (GAs)” and the “extended Kalman filter (EKF)” for effective 

computation, prediction, and accuracy of infrastructure smartness. This modified deep 

belief network (DBN) was trained using a “back-propagation algorithm (BP-DBN)”, 

or new algorithm based on EKF. Gomez et al., (2020) used supervised modelling to 

develop a sustainability category forecasting framework to assess the comprehensive 

community perspective at micro territorial levels. The decision-making model used 

ML tools such as “decision trees (DT), support vector machines (SVM), and artificial 

neural networks (ANN)”. This involved three procedures, namely, indicator depiction 

within study area, developing a sustainable development index (SDI) based classified 

labelled supervised learning model and developed machine learning models. 

Considering time dimensionality, Sehovac et al., (2020) developed a novel energy 

load forecasting method integrating RNN with “Sequence-to-Sequence (S2S) deep 

learning algorithm”. Two S2S models namely “Gated Recurrent Unit (GRU)” and 

LSTM were used to test electrical data consumed by a single building level post-smart 

retrofits at different forecasting lengths.  

Machine learning techniques have also been applied to improve medical 

diagnosis in smart healthcare sector such as; to estimate the adverse patient risk when 

administered to antibiotics (Wiens et al., 2014), accurate prediction of zoonotic 

disease outbreak in communities (Han et al., 2015), pattern detection-based automatic 

classification in radiographic imaging (Guo et al., 2015) and patient behaviour based 

on heart rate monitoring through wearable smart devices (Huynh-The et al., 2020) and 
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many more. ML techniques have also been used extensively in identifying the pattern 

of cybercrimes in cities (Alrashdi et al., 2019) and outlining the breach patterns in the 

IoT network traffics (Lourenco et al., 2018). 

2.1.11. Multi-criteria methods for composite indexing 

MCDM is a decision-making technique that analyses (ranks, classifies, 

chooses) a series of potential alternatives while considering different criteria. 

Consequently, it is imperative to identify and understand different MCDM methods 

used in literature for constructing composite indices. MCDM is defined as a set of 

methods that facilitates a high flexibility in the process of decision making when more 

than one criterion is involved (Cinelli et al. 2014). Among the diverse approaches, one 

of the most extended categories distinguishing the MCDM approaches are the “Multi-

Objective Decision-Making (MODM)” and the “Multi-Attribute Decision-Making 

(MADM)”. The former is used in design problems with infinite alternatives, while the 

latter deals with a limited (discrete) number of alternatives. For simplicity and clarity, 

this section categorizes the MCDM methods adopted by different researchers to 

construct composite indices into three categories. These include: (1) the elementary 

methods, (2) the outranking relation approach, and (3) the distance function-based 

methods. The elementary methods form the base of MCDM methods, whereby simple 

conditions are adopted to select a preferred option by reducing the complex problem 

into a simple one (Lai et al., 2008). For instance, the “Simple Additive Weighting 

(SAW)” and the “Weighted Product (WP)” are the two most used elementary 

methods. Next category infuses all those methods responsible for drawing 

comparisons between pairs of selected alternatives, termed as the outranking relation 

approach. For example, this approach drives the decision-making process by 

determining if the “option a is at least as good as option b”. Within this group, 
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ELECTRE and PROMETHEE (“Preference Ranking Organization Method for 

Enrichment Evaluations”) are among the two most widely used methods (Lai et al., 

2008). The third category describes the distance function-based methods, where the 

basic idea lies in substituting the maximization of a function by the minimization of 

the distance between alternative points with favorable properties (Díaz-Balteiro et al., 

2017). The MCDM methods are further explored under the respective categorization 

as discussed: 

1. Elementary methods: Using the elementary methods of weighted sum 

approach, a few preliminary studies successfully constructed composite 

indices. In this regard, notable is the Composite Environmental Index (CEI) 

constructed by Kang et al., (2002), where an AHP was used to assign weights 

to the environmental problems. Similarly, Torres-Sibille et al., (2009) assessed 

the impact of wind farm installations on the perceived aesthetics of landscapes 

using a composite indicator constructed using a weighted sum approach. The 

weights assigned to this indicator were decided by a panel of experts and 

further analyzed using AHP. The UTASTAR MCDM method was employed 

by Papapostolou et al., (2017) to evaluate the compliance of seven Western 

Balkan countries in promoting renewable energy sources while assessing the 

achievement of the “Directive 2009/28/EC joint project development”. Using 

the state-of-the art neighborhood sustainability assessment tools and expert 

SAW methods, Haider et al., (2018) developed a set of sustainability 

indicators addressing all the sustainability dimensions associated with small-

sized neighborhoods.  

2. Outranking relation approach: A study conducted by Petrovic et al. (2014) 

established a methodological framework based on ELECTRE, to assign 
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hierarchical ranks to European Union (EU) member states against the Digital 

Agenda key performance target attainment. Further, studies have employed 

PROMETHEE to determine the overall sustainability performance of 30 

European countries through the analysis of 38 composite indicators over a 

duration of 10 years (2004 –2014) (Antanasijevic et al., 2017). Further, by 

combining an optimization procedure with normative judgements, Amado et 

al., (2016) proposed a methodological framework to quantify the active ageing 

in the European Union countries. Based on Data Envelopment Analysis 

(DEA) approach, the team developed a model of 22 indicators with virtual 

weight restrictions categorized under four main domains. Furthermore, a 

common weight MCDA-DEA approach was developed by Hatefi and Torabi, 

(2010), which was further validated by constructing two composite indicators, 

namely the Sustainable Energy Index and the Human Development Index. 

Motivated by the multi-criteria method of PROMETHEE II family, Abreu et 

al. (2020) utilized the LTI method to rank the overall sustainability of 

countries based on their CO2 emissions against the criteria established in the 

Kaya identity indicator. The country rankings were determined based on the 

combined indicators of economic projection and energy efficiency.  

3. Distance function-based methods: Adopting a Double Reference Point (DRP) 

based methodology, Ruiz et al., (2017) proposed a set of synthetic indicators 

in comparison to the Ease-of Doing-Business indicators suggested by the 

World Bank. Here, authors use the Fuzzy Degree of Similarity between 

rankings to investigate the different degrees of comparisons based on 

ambiguity, and uncertainty of the data. Using TOPSIS, a novel mixed model 

approach was developed by Wang et al., (2012) to integrate the different 
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indicators meticulously and objectively into a composite one. Further, the 

team proposed a methodological extension through a smart MCDM 

framework based on TOPSIS to assess the air pollutant and economic 

development dependent factors for the city of Wuhan in China (Wang et al., 

2017). Enhancements to the TOPSIS approach in the form of fuzzy TOPSIS 

was adopted by Escrig-Olmedo et al., (2017) for integrating the 

environmental, social and governance performance criteria into social asset 

evaluations. Similarly, an improved hierarchical fuzzy TOPSIS model was 

proposed by Bao et al., (2012) to develop an overall safety performance index 

by combining multilayer performance indicators based on experts’ knowledge. 

Considering the importance of MCDM techniques in the linear ordering of 

cities, Hajduk and Jelonek, (2021) proposed the TOPSIS method for assessing 

critical energy enterprise locations in smart cities. The model used 21 

alternatives analyzed using 7 ISO 37120 indicators to rank 6 smart cities based 

on the urban energy context. Milošević et al., (2020) applied the fuzzy 

(Trapezoidal and Triangular) and interval grey AHP methods to assess the 

management of architectural heritage in smart cities from the perspectives of 

heritage and smart city development experts. Here, the trapezoidal AHP 

showed better stability, while interval grey approach ranked the heritage 

indicators more significantly. 

4. Hybrid Approaches: Using the composite indicator of GDP per capita, Morais 

and Camanho, (2011) measured the effectiveness of local authorities in 

promoting quality of life for a given economy. Using DEA, the composite 

indicator combined the single indicators based on the quality of life and local 

management performance targets. Further, comparisons of cities and countries 
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were executed using goal programming. De-Mare et al., (2015) developed, 

tested, and validated the efficacy of using the simplified linear aggregative 

model, SMART and the PROMETHEE II model in expanding synthetic 

indexes for ranking urban development investments. Darmawan et al., (2020) 

carried out the critical factor investigation modelling for smart districts using 

the Balanced Scorecard technique combined with the hierarchy structure 

modelling using the Fuzzy TOPSIS approach. This hybrid model enabled in 

the easy mapping and validation of the associated criteria and alternatives in 

smart districts. A competitive evaluation framework was developed by Ozkaya 

and Erdin, (2020) based on the combined advantage of the “Analytical 

Network Process (ANP)” and the TOPSIS approach to propose smart and 

sustainable city planning decisions. Here, the dimensions of smart cities were 

weighted using the ANP, while comparison results of 44 cities were made 

using TOPSIS.  

2.1.12. Fuzzy-based expert models for decision support 

Expert-based models are models that emulate decision making skills based on 

judgements from field experts (Turban, 1993). These models are developed to solve 

complex problems with a set of rules rather than procedural codes by translating the 

expert thinking to reach desirable outcomes. Expert models are classified into; a) 

Rule-Based Expert Models (RBEM) where the knowledge base is represented by a 

series of “If-then” linguistic rules; b) Frame-Based Expert Models (FBEM) that 

utilize frames for knowledge representation (Minsky, 1974); c) Hybrid Expert Models 

(HEM) that makes use of integrated rule and frame approaches; d) Readymade Expert 

Models (RMEM) that are ready to use systems off the rack for multi-criteria 

assessments and; e) Real time knowledge based models that are custom made models 
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with expert knowledge. All these categories of expert-based models are data-driven 

models that depend on the data collected through previous research and 

experimentation (Babanli, 2019). One of the prime concerns on expert-based models 

that deal with data include, the level of uncertainties that accompany during 

evaluation and unreliable or partially reliable information associated with the set of 

indicators. To tackle these challenges, fuzzy logic approaches are best suggested. The 

spectrum of fuzzy-based expert model application spans to several areas of 

technological development. A fuzzy expert-based evaluation technique (FET) was 

used by Ivanova et al., (2020) to bring out decisions in the area of cerebral palsy 

learning blocks using fuzzy algorithms and k-means clustering. While, Liao and Lee 

(2004) used an FET, to identify the power quality disturbances in the transmission 

system combined with a Fourier transform and physiological system analysis. Oh et 

al., (2012) used a fuzzy RBEM for product portfolio management applied to Korean 

electronics firms under uncertain conditions. The strategic bucket tool combined with 

portfolio matrixes and scoring models were used to build the FBEM framework. A 

modular indicator set for solar radiation models were proposed using expert-based 

fuzzy logic modelling used to assess the quality of performance by Bellocchi et al., 

(2002). Thus, expert-based models have been used to solve multi-attribute problems 

across several areas involving multiple criteria and sub-criteria. 

Several studies over the years have also used fuzzy theories for decision 

making with expert elicitation in the field of urban and city planning as well. Among 

them, fuzzy set theories are the most commonly used in smart city related assessment. 

To accomplish certain levels of environmental sustainability, an AHP combined with 

Fuzzy Inference System (FIS) was designed by Kim et al., (2018). This model aided 

in illustrating the risk mitigation and reduction scoring measures of infrastructure 
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projects in smart cities. Previously, researchers at the University of Columbia 

developed an adaptable analytical framework using fuzzy set theory to evaluate 

sustainable development goals with diverse indicator sets. Identified as a modifiable 

model with transparent assumptions, this method evaluated the progress of Canadian 

smart transportation systems in accomplishing social and eco-environment 

sustainability goals (Montemayor et al., 2018). Recently, a fuzzy expert-based model 

was developed by Frare et al., (2020) to characterize a decision tree for creating an 

urban livability and sustainability index for small sized municipalities. Here, initially 

a fuzzy-Delphi technique was used for the indicator selection process. Similarly, 

studies by Lin et al., (2020) proposed a selection and evaluation model for selecting 

urban inhabitants based on human development indicators. The efficiency of fuzzy 

systems in dealing with uncertainty was used by Cavallaro, (2020) in developing a 

sustainable and smart energy technology index based on an intelligent FIS. This study 

measured the environmental impacts due to usage of electricity power production 

technologies in smart cities. Fallahpour et al., (2020) integrated the “Fuzzy Preference 

Programming (FPP)” with the FIS to develop a MCDM model to assess the 

sustainability and infrastructure resilience of smart buildings in cities. By replacing 

the Fuzzy-AHP with FPP as a modification, the solution to the selection problem 

attained high reliability and robustness. While Santos et al., (2020) developed and 

applied an expert model based on fuzzy logic to select a single preferred solution from 

a set of optimized pavement maintenance and rehabilitation strategies in cities. Fuzzy 

expert judgements combined with blockchain protocol on EOS.IO ecosystem 

developed by Aguilera et al., (2021) was used to plan the optimal allocation of sensors 

and obtain sensor readings from infrastructures in smart networks. Thus, expert based 

models have been used in recent studies related to smart cities for planned composite 
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outcomes.  

2.2. Novelty and State-of-the art contribution 

Several studies as observed through the umbrella review in the area of smart 

cities have attempted to address concerns related to city based challenges and have 

devised solutions by structuring several decision support models. However, from most 

of all the studies reviewed, it can be seen that all the developed decision support 

models were tailored to focus only on the inter-dimensional elements of smart cities 

like smart health (Hartatik et al., 2019), smart infrastructure (Wei et al., 2020; 

Marzouk and Othman, 2020), smart mobility (Feygin et al., 2020), smart people (Ayu, 

2020) etc.,. Similarly, all the proposed decision support models for cities focused on 

addressing concerns from a regional perspective and not from a global perspective 

where the scope of applicability in a global scale is often restricted. Alternatively, 

among the studies that focused on sustainability and resilience planning criteria in 

light of smart cities often focused on SDG-11 of the UNDP 2030 agenda (building 

sustainable and resilient cities) alone, ruling out all other possible indicators and 

dimensions trivial for futuristic smart city development aligned with other sustainable 

development goals. The well-established U4SSC initiative is one great example with 

the soul agenda to achieve SDG 11: “make cities and human settlements inclusive, 

safe, resilient and sustainable" alone, ruling out other possible SDGs for smart city 

transformation. Most importantly, all the developed decision support models for 

smart/sustainable/resilient cities reviewed were mostly isolated stand-alone systems. 

While no research has yet attempted to develop a hybrid decision support model 

addressing the resilience, livability, and sustainability criteria of the futuristic smart 

cities under a unified frame of assessment to evaluate performance for informed 

decision making. Additionally, no hybrid decision support model powered by novel 
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analytical methods such as a double frontier optimistic and pessimistic DEA model, 

multi-variate metric-distance based weighting and scoring approach combined with 

machine learning classifier models, systems thinking models across the SRL concept, 

and fuzzy multicriteria assessment techniques combined expert model have ever been 

employed in the past, to support the transition of smart cities to futuristic smart cities. 

To this end, this dissertation attempts to develop a hybrid model to base decisions at 

four different level of performance assessment to overcome the challenges that occur 

in smart cities of today. The hybrid decision support model proposed in this 

dissertation is novel in many important aspects: 

1. The futuristic smart city (FSC) index developed as an output to the decision 

support model uses multiple set of indicators (118 indicators) across multiple 

dimensions (13 dimensions) under the triple criteria concept (sustainability + 

resilience + livability) of futuristic smart cities to represent the composite 

performance. Such a comprehensive monitoring model is unique in its design 

for improvement decision making and discursive transformation. 

2. The hybrid decision support model design focuses on the typology of 

indicators namely; input-output indicators, coverage/activity based indicators 

and outcome indicators which are specific across each “levels of 

measurement”. Such detailed focus in design is a least sought approach or an 

often ruled out scheme for computational simplicity, in previously developed 

models when attempting to understand the composite performance. 

3. The use of novel advanced analytical techniques across each level of 

performance measurement in the decision support model is unique in ruling 

out uncertainties and vagueness associated with the use of existing methods. 
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4. The use of 35 top ranked European smart cities as a case to implement the 

proposed decision support model and, understand sustainability, resilience, 

liveability, and combined performance of smart cities is fairly justifiable. The 

selected smart cities cover nearly three-quarter of the list of top 50 leading 

global smart cities, making the sample size fairly large for the results to be 

economically extrapolated to a global level when understanding sustainability, 

resilience, and liveability in any current smart city development models. 

The contribution of this dissertation brings in-house novelty in terms of the 

subject handled and the approach used to solve the problem. Thus, we further dive 

into explaining the novelty in terms of the methods used within the hybrid decision 

support model. To continue, the 2030 Agenda for Sustainable Development 

accentuates the importance of techno-centric development in transforming urban 

spaces to more smarter living units (World Urban Forum, 2018). However, it is 

unclear on how well these technological retrofits and advancements can bring 

sustainable outcomes or improve sustainability. Studies over the years have focused 

on attempts to transform smart cities into smarter living units in belief that 

technological advancements can pave ways to sustainability. Nevertheless, recent 

research contradicts this paradigm to support the smart sustainable city concept. This 

study tries to explore the true essence of the concept of sustainability (in one level of 

measurement) in leading European smart cities through a novel data-driven analytical 

approach for performance assessment. In addition, traditional production theories, as 

seen in our literature analysis, often ignores the presence of undesirability 

(undesirable input and undesirable output) in the technology set while computing 

relative efficiencies for representative units to rule out the computational difficulties. 

However, this does not reflect the true production possibility set. Studies have 
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considered the inclusion of undesirable outputs from an efficiency frontier perspective 

for sustainability assessment. However, no mention on the undesirable input and 

simultaneous inclusion of undesirable input and output reflecting their true technology 

set characteristics could be seen in the literature. In the real-world scenario, the 

efficiency measure for each representative units or DMU depends on the presence of 

certain undesirable inputs and outputs in the technology set, which rarely can be 

ignored as it does not reflect the real situation, ending up giving bias in the results. 

Furthermore, most of all the studies conducted till date analyzed the relative 

sustainability performance based on the efficiency frontier alone, disregarding the 

anti-ideal frontier. Recent research has revealed the essence of simultaneous inclusion 

of the efficiency and anti-efficiency frontiers for the performance assessment of 

representative units (see Entani et al., 2002; Azizi and Ajirlu, 2010; Azizi, 2011; 

Azizi, 2014; Ganji and Rassafi, 2019). However, all the studies ignored the presence 

of undesirability (undesirable inputs and undesirable outputs) and their simultaneous 

inclusion while computing the pessimistic and optimistic efficiencies from the double-

frontier approach. Furthermore, in some of the DEA models, optimistic and 

pessimistic efficiencies are used to form an interval (see Entani et al., 2002; Wang and 

Yang, 2007; Jahanshahloo et al., 2011). These models considered the efficiency of a 

DMU as the interval between the optimistic and pessimistic values. However, these 

DEA models for computation of the pessimistic efficiency of each DMU holds a 

major drawback; namely, it does not consider some of the input and output data. 

These methods practically consider the data of only one input and one output for the 

DMU under evaluation and ignores the rest of the input and output data. Similarly, 

these models are not able to identify DEA-inefficient DMUs adequately. In addition, 

our literature review reveals that existing MPIs for productivity measurement are all 
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proposed from the optimistic DEA point of view by using optimistic DEA models. No 

attempt has been made to examine the MPI from the pessimistic DEA point of view 

with due consideration to the input-output undesirability. This inevitably ignores 

some very useful information on productivity changes because the MPI values 

measured from different points of view are hardly the same and none of them can be 

replaced by each other. More importantly, measuring the MPIs from both the 

optimistic and the pessimistic DEA points of view can provide a comprehensive 

assessment and panoramic view of the productivity changes over time. To this end, 

the sustainability assessment of smart cities from a methodological perspective targets 

to bridge the existing knowledge gaps identified by; 

1. Proposing a novel modified DF-SBM bounded Malmquist-DEA model, 

extending the desirability inclusive DEA model of Liu et al., (2010) to a 

unified presentation of sustainability performance based on the DF-SBM 

approach. 

2. Including desirability while considering the technology set for the 

sustainability assessment to simultaneously increase some selected set of input 

indicators (along with decreasing the desirable input indicators) and decrease 

selected set of output indicators (maximum value outputs included). The 

proposed model simultaneously considers the inclusion of undesirable factors 

to reflect the true production possibility set. 

3. Conducting the first of its kind sustainability performance assessment of 

leading European smart cities in view of both the optimistic and pessimistic 

performances simultaneously (as bounded efficiency scores), with a true 

reflection of the technology set with multiple indicators across several 
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dimensions of sustainable development, to make the concept of smart 

sustainable cities actionable. 

Furthermore, moving on to the resilience and livability assessment part, it is 

seen that urban resilience and liveability paradigms share multidimensionality 

(Bruzzone et al., 2021). Most of the existing resilience framework do not address 

socioecological and multi-dimensional facets of city resilience (Zhou et al., 2021). 

Indeed, most of the urban resilience assessments focus on addressing risk-specific 

events including natural calamities like flood, earthquake etc. with mere consideration 

of social connectivity, institutional resilience, and infrastructural aspects. Similarly, 

the current liveability indices address quality of life from a materialistic point of view, 

ignoring well-being and other social aspects. The well-known Economist Intelligence 

Unit (EIU) ‘Global Liveability Index’ (GLI) fails in addressing many environmental 

factors such as the access of green urban areas, sports, and recreational facilities, 

population claiming to suffer from noise pollution and, to what extend the citizens are 

active in the city (O’Sullivan, 2020). 

In addition, most of the studies have used ML techniques to understand the 

smartness of cities across each Giffinger’s dimensions (see Giffinger et al., 2007) with 

relatively no studies focusing on the use of ML techniques to understand resilience 

and liveability in smart cities as a joint analysis. To continue, none of the studies have 

attempted to capture resilience and liveability using ML techniques from a broader 

picture including a mix of materialistic and socio-economic conditions, political 

commitments, and resident engagement all under an indicandum. The use of ML 

classifiers in predicting the degree of resilience and liveability of smart cities across a 

broad spectrum of themes is unique. Furthermore, the subjective weights assigned to 

indicators often increases uncertainty in the scores analysed (Becker et al., 2017; Gan 
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et al., 2017). Similarly, the use of equal weights for indicators ignores the relative 

importance and trade-offs between the indicators used in the assessment process 

(Paracchini et al., 2008; Greco et al., 2019). The current existing liveability indices 

such as the OECD ‘Better Life Index’ and the EIU Global Liveability Index, which 

act as the ‘best’ among many existing performance assessment frameworks for 

liveability are all based on equal weights assigned to each indicator, dimensions, and 

sub-dimensions. Similarly, the well-established Arup ‘City Resilience Framework’ 

uses expert-based weights for all the indicators, aspects, and sub-aspects within the 

framework to construct a composite index to quantify resilience. Thus, to this end, 

this research attempts to close the prevailing knowledge gaps by proposing a novel 

two-stage joint assessment framework for resilience and liveability assessment with 

several novel elements within as follows; 

a) First of its kind joint analysis in smart cities using machine learning 

techniques that considers the intricate facet of connectivity lodged in the urban 

resilience and liveability concepts for smart cities. 

b) The liveability assessment presented in this research includes a mix of 

materialistic and socio-economic conditions that intertwine each other to 

support the multidimensional perspective of liveability; a unique approach 

least applied to the current existing liveability frameworks. 

c) The urban resilience indicators chosen for the assessment is unique in its 

ability to access the potential response capacity of city from a multi-

dimensional perspective that includes political commitments and resident 

engagement. 
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d) An unbiased novel weighting scheme based on the relative metric-distance 

with reference to a benchmark entity being processed in the observed set is 

used to score and rank the performance of smart cities under multiple aspects 

of the resilience and liveability framework. 

Now, moving on to the use of fuzzy expert-based muti-criteria assessment,  we 

can see that the central agenda tends towards ranking and scoring the high-tech smart 

cities based on their performance towards addressing sustainability, resilience and 

liveability under a unified composite index using a novel integrated approach. When 

investigating prior-art from a methodological perspective, the current fuzzy 

extensions such as the hesitant fuzzy sets restricts the membership degrees to take 

values beyond the interval [0, 1], thus preventing decision makers (DM) to express 

preferences in a larger space. For Intuitionistic fuzzy sets (IFSs), introduced by 

Atanassov (1986), the sum of membership and non-membership degrees cannot 

exceed 1. While, “Pythagorean Fuzzy Set (PFSs)”, presented by Yager (2013), which 

are a generalization to the IF sets, can handle the uncertainty in some conditions better 

than the IF sets. In the latter case, the sum of membership and non-membership 

degrees can exceed 1. However, IF sets and PF sets cannot cope with inconsistency 

and indetermination of decision makers effectively. Several PF set extensions also fail 

to handle conditions such as uA(x) + vA(x) + πA(x) > 1, in real time selection 

problems. Hence, “Neutrosophic Fuzzy Sets (NFSs)” are developed to complete the 

gaps in this area including a truth-membership, an indeterminacy-membership, and a 

falsity-membership function. A generalization of PFS and NFS is the Spherical Fuzzy 

Sets (SFSs) presented by Kutlu Gündoğdu and Kahraman, (2020). The novel concept 

of SFS helps in resolving the uncertainties present in the existing structures as 

discussed for satisfactory results in similar MCDM problems. In SFS, decision 
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makers should define their hesitancy degrees just like other dimensions that are 

membership and non-membership functional parameters. The spherical representation 

of fuzzy sets enables decision-makers to calculate the hesitancy degrees independent 

of the membership and non-membership functions unlike other fuzzy set theories, 

such as the type-1 and type-2 FS, providing a larger preference domain. Unlike 

Neutrosophic or Intuitionistic-type 2 fuzzy membership functions, the squared sum of 

functional parameters in the membership function of SFS is somewhere between zero, 

and the value of each parameter can be independently defined between 0 and 1 in a 

non-linear 3D space. Furthermore, no research to the best of our knowledge deals 

with covering further uncertainties related to the AHP technique under a spherical-

fuzzy (SF) environment, with no studies extending wings in the context of smart city 

related problems. Similarly, distance-based Multi-Criteria Assessment Techniques 

(MCAT) such as the EDAS approach is well-known for fewer computations while 

evaluating alternatives compared to methods like TOPSIS and VIKOR. Existing 

EDAS methodology for composite scoring and ranking in the field of smart city 

selection problems based on multiple criteria and sub-criteria have not been benefited 

with the integration of SF-AHP method to address vagueness till date. To this end, 

this study brings in several inventive steps to assert novelty to the prior-art knowledge 

by; 

1. Combining the extended EDAS method under a spherical-fuzzy environment 

to elicit expert preference supported with AHP technique for multi-attribute 

composite performance monitoring. 

2. Integrating SF-AHP and extended EDAS method with an unsupervised 

partitioning algorithm, the fuzzy c-means clustering to group the decision 

making entities into clusters with similar characteristics. 
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3. Constructing a comprehensive FSC index integrating the themes of 

sustainability, urban resilience and livability within the smart city context 

using the proposed novel approach to assess the unified performance of cities,  

taking high-tech European smart cities as the case. 

4. Carrying out a comparative study employing different recent distance-based 

MCAT such as: “Operational Competitiveness Rating Analysis (OCRA)”, 

“Multi-Attributive Ideal-Real Comparative Analysis (MARCOS)” and “Multi-

Attributive Border Approximation Area Comparison (MABAC)” combined 

with SF-AHP is conducted to check the validity and robustness of the results 

obtained through the proposed novel model (SF-AHP with extended EDAS 

methodology). Similarly, the extended EDAS approach is combined with 

several MCDM models that integrate fuzzy logic theory with AHP technique 

such as “Pythagorean Fuzzy-AHP (PF-AHP)”,  “Intuitionistic Fuzzy-AHP (IF-

AHP)”, and “Interval-Valued Neutrosophic-Fuzzy AHP (IVNF-AHP)” for a 

comparative analysis. 

2.3. Chapter summary 

This chapter conducted a detailed umbrella review to investigate the prior-art 

knowledge centered around the research agenda and identified the gap to assert 

novelty to the state-of-the art. The succeeding chapter, Chapter 3 will explain the 

development of the hybrid decision support model adhering to the caveats identified 

through the review and incorporating the aforementioned novel elements into the 

model for improved performance assessment. 

  



  

57 

 

CHAPTER 3: MODEL DEVELOPMENT 

A hybrid decision support model (DSM) integrates a series of analytical 

techniques to perform data analysis and deliver composite information to the decision 

makers. The proposed hybrid data-driven model integrates four general modules 

namely, a systems thinking module (module 1), a sustainability assessment module 

(module 2), a resilience and livability assessment module (module 3) and, a multi-

criteria based composite performance assessment module (module 4). In module 1, 

systems thinking is used to develop mental models that offer an understanding on how 

multiple elements interact across several actors under the sustainability (S), resilience 

(R) and livability (L) criteria of “futuristic cities”. In module 2, a novel double 

frontier non-parametric quantitative optimization-based benchmarking model is 

proposed to understand the relative sustainability performance of smart cities. In 

module 3, a novel metric distance based-multivariate analysis combined with several 

machine learning models is proposed for the relative performance assessment of smart 

cities in terms of resilience and livability. In module 4, a novel fuzzy expert-based 

multi-criteria decision support model is proposed to assess the composite performance 

of smart cities, aggregating the SRL criteria with multiple sub-criteria. Accordingly, 

the hybrid DSM will provide a sound ground for examining the sustainability, 

resilience, and livability performance of smart cities both independently and under a 

unified umbrella, a composite index, ideally the “Futuristic Smart City (FSC)” index 

being the DSM output.  

Systems thinking as a tool presented in module 1 will facilitate impeccable 

legitimacy of judgments for the intercession and a collaborative approach to support 

decision making in understanding the interactions of elements within the existing 

urban development models under the SRL criteria. These aim at providing the best 
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possible solutions for discursive judgement making. The system thinking framework 

considers all the interdependencies among various subsystems and considers multiple 

dimensions under the SRL criteria, offering support in framing urban policies and in 

planning better on what indicators much be considered while constructing the 

comprehensive FSC index under respective dimensions of the SRL criteria. The 

double-frontier non-parametric optimization based benchmarking model presented in 

module 2 will stand as a robust assessment technique in evaluating the relative 

sustainability performance of decision making entities (i.e., smart cities) that utilizes a 

set of input and output indicators, both from the efficiency and anti-efficiency 

perspective. The output of module 2 will be interval-valued bounded efficiency scores 

across 6 dimensions of sustainability namely, Energy and Environmental Resources 

(ER), Governance and Institution (GI), Economic dynamism (E), Social cohesion and 

solidarity (SC), Climate Change (CC) and, Safety and Security (SS). Further, 

combining a novel metric-distance based weighting approach with machine learning 

algorithms in module 3 will provide advanced capabilities for the prediction and 

performance assessment of resilience and livability using a set of ‘coverage’ 

indicators. The output of module 3 will be composite scores for a selected set of 

decision making entities across the dimensions of resilience (social, economic, 

environmental, and institutional resilience) and livability (accessibility, community 

well-being and economic vibrancy). The novel fuzzy-based expert model using the 

multi-criteria analysis in module 4 will then utilize the results obtained from module 2 

and module 3 as ‘outcome’ indicators, whose weights will be assigned through a 

panel of experts under a spherical fuzzy environment. Sustainability, resilience and 

livability will be the main-criteria and all the dimensions under the SRL criteria, 

whose results were obtained from module 2 and 3 with the sub-criteria for the multi-
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criteria analysis in module 4. The output of module 4 will be composite scores of the 

FSC index and segmented outputs based on the clustered performance with each 

decision making entities ranked in accordance with their comprehensive performance. 

Thus, the proposed hybrid DSM will aid in executing long term optimum 

management solutions that are effective for transformational policies to makes cities 

smarter, sustainable, resilient and livable. Further, the novel approaches used helps in 

managing uncertainties related to data and decision-making processes. Figure 1 shows 

the structure of the proposed hybrid DSM for smart city performance assessment. The 

following sections will then discuss in detail the setting and design of each module. 
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Figure 1. Schematic diagram of the proposed novel hybrid decision support model 

 

3.1. System Thinking Module 

Systems-thinking approach uses the causal loop diagram to visualize the 

system behavior. In this module, causal loop diagrams with feedback loops as 

reinforcing, denoted by R and balancing, denoted by B is constructed to capture the 

dynamism across each dimensions of the SRL concept. To proceed with the 

construction of the causal loop diagram, initially, a rich picture was used to 

understand the complex situation. An iterative process was conducted to re-work on 
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the existing perceptions of each group member, who were siloed while creating the 

rich picture. The individual mental modals were then grouped to form a good rich 

picture with a better understanding of the scenario. Once the rich picture was 

developed and the major elements in the system identified, an interrelationship 

digraph (IRD) was constructed. A paper and pen were used to create the IRD. The 

IRD approach provides a better understanding of the key drivers in the system and 

helps in identifying the feedback loops. The causalities between each element in the 

system were backed by expert judgements, literature reviews and author’s 

conceptualization. These diagrams were constructed with elaborate behaviors and 

realistic hypotheses. Finally, the IRD was converted to causal loop diagrams through 

an iterative process. The causal loop diagrams were built using the Vensim PLE 

modelling package developed by Ventana Corporation. Under the urban liveability 

model, the inter-dynamics between the elements in the system is understood across 

the dimensions of accessibility, community well-being and economic vibrancy; while 

for the urban resilience model, the key dimensions considered were social, economic, 

environmental, and institutional resilience. The dynamics of urban sustainability in 

smart cities were explained through the dimensions climate change, natural and 

energy resources, safety and security, governance and institution and, society and 

well-being; the key drivers in fostering a sustainable city. The causalities between the 

elements under various dimensions of urban liveability, resilience and sustainability 

model is depicted in Figure 2, Figure 3, and Figure 4 respectively. Table 2, Table 3, 

and Table 4 shows the respective loops and, their interconnections and feedback 

mechanisms for the urban liveability, resilience, and sustainability model.



  

62 

 

 

Figure 2. Causal loop diagram for the urban liveability model 

 

Table 2. The causal loops and feedback relations for the urban liveability model 

Loops  Interconnections and feedbacks 

B1 Urban population – Ease of access to goods, services, and public facilities – 

Urban attractiveness – Meaningful community participation – Urban 

population. 

B2 Urban population – Ease of access to goods, services, and public facilities – 

Economically active population – Disability-free “Healthy Life Years” – 

Public health and welfare – Community Well-being – Urban population. 

B3 Urban population – Ease of access to goods, services, and public facilities – 

Urban attractiveness – Meaningful community participation – Public health 

and welfare – Community Well-being – Urban population. 

B4 Urban population – Ease of access to goods, services, and public facilities – 

Service utilization – Experience of unpleasantness – Political pressure for 

better conditions – Investment in infrastructure and built environment – 

Quality of local environment – Total quality of service and infrastructure – 

Urban attractiveness – Urban population. 

B5 Labor hours – Labor productivity –  Value added per unit of product – 

Gross domestic product – Education – Labor hours. 

B6 Labor hours – Labor productivity –  Value added per unit of product – 

Gross domestic product – Research and development – Investment in 

technologies – Labor hours. 

B7 Labor hours – Production volume – Unemployment rate – Gross domestic 

product – Education – Labor hours. 
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Loops  Interconnections and feedbacks 

B8 

 

Labor hours – Production volume – Unemployment rate – Gross domestic 

product – Research and development – Investment in technologies – Labor 

hours. 

R1 Ease of access to goods, services, and public facilities – Individual 

dependance on private mode of transit  – Use of publicly available resources 

per unit – Total use of natural/ man-made resources – Remaining potential 

for added value – Gross domestic product – Research and development – 

Investment in technologies – Technology integration – System performance 

– Optimum performance – Total quality of service and infrastructure – 

Urban attractiveness – Urban population – Ease of access to goods, 

services, and public facilities. 

R2 Service utilization – Experience of unpleasantness – Political pressure for 

better conditions – Investment in infrastructure and built environment – 

Ease of access to goods, services, and public facilities – Service utilization 

 

 

Figure 3. Causal loop diagram for the urban resilience model 
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Table 3. The causal loops and feedback relations for the urban resilience model  

Loops  Interconnections and feedbacks 

B1 Urban resilience – Urban population – Population density – Institutional 

resilience – Ability to adaptively manage changes – Urban resilience. 

  

R1 Urban resilience – GDP per capita – Public investment – Investment in 

infrastructure – Access to public infrastructure – Infrastructure and Built 

environment resilience – Stress in communities – Urban resilience. 

R2 Urban resilience – GDP per capita – Public investment – Investment in 

education and health care services – Access to health and education – Social 

resilience – Probability of attacks and pressure – Damage to service 

continuity – Urban resilience. 

R3 Urban resilience – GDP per capita – Public investment – Access to services 

– Stress in communities – Urban resilience. 

R4 Urban resilience – GDP per capita – Federal revenue – intrinsic desire for 

economic prosperity – Economic cohesion and trust in society – Economic 

resilience – Urban resilience. 

R5 Economic resilience – Infrastructure and Built environment resilience – 

Social resilience – Institutional resilience – Economic resilience 

 

 

Figure 4. Causal loop diagram for the urban sustainability model  
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Table 4. The causal loops and feedback relations for the urban sustainability model 

Loops  Interconnections and feedbacks 

B1 Quality of life – Urban population – Quality of green spaces – Urban 

attractiveness – Community participation – Active population – Social 

cohesion – Quality of life. 

B2 Resource for development – Economic growth – Overconsumption of 

natural resources – Natural resource depletion – Resource for development. 

  

R1 Urban population – Need for services, infrastructures, and facilities – 

Quality of services/infrastructure – Community participation – Active 

population – Social cohesion – Quality of life – Urban population. 

R2 Energy demand – Access to reliable energy resources – Resource 

consumption – GHG emissions – Anthropogenic GHG concentration – 

Climate variables – Energy use and climate nexus – Energy demand. 

R3 Economic growth – Energy demand – Access to reliable energy resources – 

Resource consumption – GHG emissions – Climate effects – Government 

policy change – Economic growth. 

R4 Institutional framework with sustainability mandate – Transparency in 

decision-making – Degree of civil-society mobilization – Social welfare 

prioritization – Extend of social welfare reforms – Strength of cooperation 

incentives – Institutional framework with sustainability mandate. 

R5 Institutional framework with sustainability mandate – Transparency in 

decision-making – Degree of civil-society mobilization – Degree of 

accountability – Institutional framework with sustainability mandate. 

R6 Institutional framework with sustainability mandate – Advocacy for 

sustained attention and resources – Budgetary allocation – Degree of civil-

society mobilization – Degree of accountability – Institutional framework 

with sustainability mandate. 

R7 Safety and security – Success probability of attacks and threats – Damage to 

service continuity – Probability of being attacked – Risks and threats – 

Current level of security – Social capital – Safety and security. 

 

3.2. Sustainability Assessment Module 

In this module, a novel double frontier optimistic and pessimistic Slack Based 

Measure (SBM) Data Envelopment Analysis (DEA) model to assess the relative 

sustainability performance of smart cities is proposed. The bounded aggregate 

sustainability performance assessment model is further proposed and a modified 

double frontier Malmquist Productivity Index model to assess the progressive 
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performance is developed. 

3.2.1. Double Frontier SBM (DF-SBM) approach  

The model assumes to evaluate n smart cities, represented by the response unit 

DMUj ( j = 1,2,3,.….n ) were each DMU consumes m desirable inputs XDI
ij (i = 

1,2,3,…....m) ϵ T and p undesirable inputs XUI
kj (k = 1,2,3,.…...p) ϵ T to produce s 

desirable outputs YDO
rj (r = 1,2,3,…...s) ϵ T and t undesirable outputs YUO

vj (v = 

1,2,3,.…...t) ϵ T.  

Assuming extended strong disposability and convexity, the technology set 

Toptimistic ⊆ T , for the optimistic SBM (represented by OSBM) reads as presented in  

Eq. (1): 

Toptimistic = { (XUI
k , X

DI
i , Y

UO
v , Y

DO
r) : X

UI
k ≤ ∑  Xkj

UIλj
n
j=1 , XDI

i ≥ ∑  Xij
DIλj

n
j=1 , 

       YUO
v ≥ ∑ Yvj

UOλj
n
j=1  , YDO

r ≤  ∑ Yrj
DOλj

n
j=1  , ∑ λj=1,n

j=1  λj ≥ 0; ∀ j, k, i, r, v}        

           (1)                                       

The OSBM approach to find whether the response unit DMUj lies in the efficient 

frontier or not can be achieved through the fractional programming model presented 

in  as: 

Minimize Γoptimistic =
1 - (

1
|m| + |t|

) (∑ si
XD-m

i=1 / Xio
DI + ∑ sv

YU-t
v=1 / Yvo

UO)

1 + (
1

|s| + |p|
) (∑ sr

YD+s
r=1 / Yro

DO + ∑ sk
XU+p

k=1
/ Xko

UI)
                (2) 

Subject to         

∑  Xkj
UIλj

n
j=1  – sk

XU+ = Xko
UI                                                                                           (3)            

∑  Xij
DIλj

n
j=1  + si

XD- = Xio
DI                                                                                             (4)                                                                                                             

∑ Yrj
DOλj

n
j=1  – sr

YD+ = Yro
DO                                                                                           (5)       
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∑ λj
n
j=1 =1 for Variable Returns to Scale (VRS)                                                           (6)                       

Λj, sk
XU+, si

XD-, sr
YD+, sv

YU- ≥ 0; ∀j, k, i, r, v                                   (7) 

Were, 

XDI
ij = The ith desirable input of DMUj 

YDO
rj = The rth desirable output of DMUj 

XUI
kj = The kth undesirable input of DMUj 

YUO
vj = The vth undesirable output of DMUj 

λj = weights of efficient DMU  

sk
XU + = slack variable for the undesirable input 

si
XD - = slack variable for the desirable input 

sr
YD + = slack variable for the desirable output 

sv
YU - = slack variable for the undesirable output 

The proposed OSBM-DEA model (Eqs. 2-7) simultaneously minimizes the input and 

output inefficiencies. The mean rate of input minimization and the inverted mean rate 

of output maximization can be defined through the equations (1/|m|+|t|) 

[∑ (Xio
DI– s

i

XD-
)m

i=1 / Xio
DI + ∑ ( Yvo

UO– s
v

YU-
)t

v=1 / Yvo
UO] and, [(1/|s|+|p|) 

{∑ (Y
ro

DO
+ s

r

YD+
)s

r=1 / Yro
DO + ∑ ( Xko

UI + sk
XU+)

p

k=1 / Xko
UI}]-1 respectively. The fractional 

programming model (Eqs. 2-7) can be converted into a linear programming (LP) 

model (Eqs. 8-15) by multiplying both the numerator and denominator of model (8) 

using a positive scalar variable f > 0 to form: 

Minimize η 
optimistic

=f–[(
1

|m| + |t|
) (∑ SI

 XD -m
i=1 / Xio

DI + ∑ Sv
 YU -t

v=1 / Yvo
UO)]          (8)                           

Subject to 

1=f+[(
1

|s| + |p|
) (∑ Sr

YD+s
r=1 / Yro

DO + ∑ Sk
XU+p

k=1 / Xko
UI)]                                                   (9)       
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∑  Xkj
UIn

j=1  Λj – Sk
XU+

 = f Xko
UI                                                     (10)                                                              

∑  Xij
DIn

j=1 Λj + SI
 XD-

 = fXio
DI                                                                                        (11)             

∑ Yrj
DOn

j=1 Λj – Sr
YD+

 = fYro
DO                                                               (12) 

∑ Yvj
UOn

j=1 Λj + Sv
 YU-

 = fYvo
UO                                                            (13) 

∑ Λj 
n
j=1 = 1 for Variable Returns to Scale (VRS)                                        (14)                                       

Λj, Sk
XU+

, SI
 XD-

, Sr
YD+

, Sv
 YU-

 ≥ 0; ∀ j, k, i, r, v and f  > 0                                            (15) 

where Λj = f λj ,  SI
 XD-

= f sI
 XD-, Sv

 YU-
= 𝑓s

v

 YU-
, Sr

YD+
 = f sr

YD+ ,  Sk
XU+

 = f sk
XU+. The 

index η optimistic and Γoptimistic ranges between a value from 0 to 1. Greater the value of 

the index, greater the performance of each smart city towards sustainable 

development. The optimal solutions for model (2) and model (8) are (η*= Γ*, Λj
*, f *, 

SI
 XD-*, Sv

 YU-*, Sr
YD+*, Sk

XU+*) and (Γ* = η*; λj
*= Λj

*/ f *; sk
XU *+ = Sk

XU+*/ f *; si
XD *- = 

SI
 XD-*/ f *; sr

YD *+ = Sr
YD+*/ f *, sv

YU *- = Sv
 YU-* / f * ) respectively. The DMU is termed to 

be efficient when, η*
optimistic = Γ*

optimistic = 1. Here, the input excess: sk
XU +, si

XD – and, 

the output shortfall: sr
YD +, sv

YU -  should be equal to zero. In other case, the DMU is 

termed to be inefficient.  

Considering the pessimistic SBM (represented by PSBM) DEA model, the 

technology set Tpessimistic ⊆ T for the model reads as in Eq. (16) as: 

Tpessimistic = { (XUI
k , X

DI
i , Y

UO
v , Y

DO
r) : X

UI
k ≥ ∑  Xkj

UIλj
n
j=1 , XDI

i ≤ ∑  Xij
DIλj

n
j=1 ,      (16)       

YUO
v ≤ ∑ Yvj

UOλj
n
j=1  , YDO

r ≥  ∑ Yrj
DOλj

n
j=1  , ∑ λj=1,n

j=1  λj ≥ 0; ∀ j, k, i, r, v}    

The fractional programming model to calculate the anti-efficiency for each DMU can 

be achieved using Eqs. (17-23) as: 

Maximize Γpessimistic=

1 + (
1

|m| + |t|
) (∑ si

XD+m
i=1 / Xio

DI + ∑ sv
YU+t

v=1 / Yvo
UO)

1 - (
1

|s| + |p|
) (∑ sr

YD-s
r=1 / Yro

DO + ∑ sk
XU-p

k=1
/ Xko

UI)
              (17) 
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Subject to                        

∑  Xkj
UIλj

n
j=1  + sk

XU- = Xko
UI                                                                                         (18) 

∑  Xij
DIλj

n
j=1  – si

XD+ = Xio
DI                                                                                          (19) 

∑ Yrj
DOλj

n
j=1  + sr

YD- = Yro
DO                                         (20)                      

∑ Yvj
UOλj

n
j=1   – sv

YU+ = Yvo
UO                                                                                       (21)         

∑ λj
n
j=1  = 1 for Variable Returns to Scale (VRS)                                                        (22) 

Λj, sk
XU-, si

XD+, sr
YD-, sv

YU+ ≥ 0; ∀ j, k, i, r, v                                                              (23) 

The proposed PSBM model (Eqs. 17-23) maximizes the mean rate of input expansion 

as well as the inverted mean rate of output reduction through (1/|m|+|t|) 

[∑ (Xio
DI+ s

i

XD+
)m

i=1 / Xio
DI + ∑ ( Yvo

UO+ s
v

YU+
)t

v=1 / Yvo
UO] and, [(1/|s|+|p|) 

{∑ (Y
ro

DO– s
r

YD-
)s

r=1 / Yro
DO + ∑ ( Xko

UI – sk
XU-)

p

k=1 / Xko
UI}]-1 respectively. The fractional 

programming PSBM model can be converted into the LP model (Eqs. 24-31) by 

multiplying both the numerator and denominator using a positive scalar variable f > 0, 

similar to the OSBM to form: 

Maximize η 
pessimistic

= f + [(
1

|m| + |t|
) (∑ SI

 XD +m
i=1 / Xio

DI + ∑ Sv
 YU +t

v=1 / Yvo
UO)]           (24) 

Subject to 

1 = f – [(
1

|s| + |p|
) (∑ Sr

YD -s
r=1 / Yro

DO + ∑ Sk
XU -p

k=1 / Xko
UI)]                                            (25) 

∑  Xkj
UIn

j=1 Λj + Sk
XU- = f Xko

UI                                                                                       (26) 

∑  Xij
DIn

j=1 Λj – SI
 XD +

 = f Xio
DI                                                                                      (27) 

∑ Yrj
DOn

j=1 Λj + Sr
YD -

 = f Yro
DO                                                                                                      (28)                                                   

∑ Yvj
UOn

j=1 Λj–Sv
 YU +

=fYvo
UO                                                                                         (29) 

∑ Λj 
n
j=1 = 1 for Variable Returns to Scale (VRS)                                                       (30) 
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Λj, Sk
XU -

, SI
 XD +

, Sr
YD -

, Sv
 YU +

 ≥ 0; ∀ j, k, i, r, v and θ > 0                                         (31)                                     

where Λj = f`λj ,  SI
 XD+

= fsI
 XD+, Sv

 YU+
= 𝑓s

v

 YU +
, Sr

YD -
 = fsr

YD - ,  Sk
XU -

 = fsk
XU-. All the 

optimality conditions for the PSBM approach is equivalent to that of the optimistic 

SBM model. The DMU is termed to be anti-efficient when, η*
pessimistic = Γ*

pessimistic = 1. 

This highlights the fact that the corresponding DMU lies on the anti-efficient frontier. 

Such a condition should have all the slack variables sI
 XD +, sv

 YU +, sr
YD – and sk

XU - = 0. 

To measure the relative sustainable development capacity of n European smart cities 

over time t, t+1,…t+n, refer the optimistic and pessimistic SBM in time (see 

Appendix A). 

3.2.2. Bounded model for aggregate sustainability performance 

The aggregate sustainability performance of each smart city will be studied 

using Azizi, (2011)’s bounded-DEA model, which is modified further to include 

undesirable factors both in the inputs and outputs. Both the pessimistic and optimistic 

efficiency scores are represented within an interval, after considerable modifications 

to the pessimistic efficiency scores. The modified pessimistic efficiency is φ̃j
*= α × 

ηpessimistic
*. φvj

* is the pessimistic efficiency of the virtual (v) DMU ‘j’, where φvj
* is 

obtained using the LP model applying Charnes and Cooper, (1962)’s transformation. 

The model is presented in Eqs. (32-40) which reads as follows; 

Min φvj* = 1 + (∑  Xio
minλi

m

i=1

 + ∑ Yvo
minλv

t

v=1

)(∑ Yro
maxλr

s

r=1

 + ∑  Xko
maxλk

p

k=1

)                (32) 

Subject to 

(∑  Xij
DIλij

m
i=1  + ∑ Yvj

UOλvj
t
v=1 )  − (∑ Yrj

DOλrj
s
r=1  + ∑  Xkj

UIλkj
p

k=1 )≥0;                          (33) 

(∑ Yro
maxλr

s
r=1  + ∑  Xko

maxλk
p

k=1 ) ≤ (
1

|m| + |t|
);                                                               (34)                                                   

(∑  Xio
minλi

m
i=1  + ∑ Yvo

minλv
t
v=1 ) ≤ (

1

|s| + |p|
) [1 + (∑  Xio

minλI
m
i=1  + ∑ Yvo

minλv
t
v=1 ) −
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(∑ Yro
maxλr

s
r=1  + ∑  Xko

maxλk
p

k=1 )];                                                                                 (35)                      

For λI, λv, λr, λk ≥ ε; ∀ k, i, r, v                                                                                  (36)  

  Were, 

  Xi
min= minj{X

ij

DI}, For i = 1,2,3,…....m;                                                        (37) 

 Xk
max= maxj{X

kj

UI}, Fork k = 1,2,3,.…...p;                                                     (38)                                          

 Yr
max = maxj{Y

rj

DO
}, For r = 1,2,3,…....s;                                                      (39)                                               

 Yv
min= minj{Y

vj

UO}, For v = 1,2,3,.…...t;                                                        (40)                                                  

The value of α is determined as α= θmin
* φvj

*⁄ , where the aggregate 

sustainability performance score is represented within an interval of [α, 1]. It is to 

note that the estimate value “α” must satisfy the criterion αηpessimistic
*≤ θmin

* ∀ 

[αηpessimistic
*, θj

*] (j= 1,2,3…n).  

We have, θmin
*= min{ηoptimistic}∀ j = 1,2,3...n and φvj

* ≥ max {ηpessimistic}∀ (j = 

1,2,3...n. The interval efficiency is represented as [αηpessimistic
*, θj

*] = [φ̃j
*, θj

*] = [ηo
L*, 

ηo
U*] where L = lower bound efficiency and U = upper bound efficiency measured 

from the pessimistic and optimistic perspective respectively. 

To rank each smart city based on the interval efficiency score, the midpoint 

m(Ai) and range w(Ai) of each interval efficiency score obtained using model 

presented in Eqs. (32-40) is calculated. Smart cities are then ranked in the ascending 

order based on the midpoint values. The smart city with the largest m(Ai) value is 

ranked 1 followed by other smart cities in the descending order of their m(Ai) values. 

The m(Ai) and w(Ai) are calculated using Eq. (41) as; 

m(Ai) =
1

2
 (ηo

L*+ ηo
U*) and w(Ai) =

1

2
 (ηo

U*- ηo
L*)                                                      (41)  

3.2.3. Malmquist Productivity Index 
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Smart cities are often driven by technology and their progressive efficiency 

can be assessed by understanding the technological changes as a whole over the years. 

The MPI optimistic for each smart city represented by DMUj for optimistic efficiencies 

can be calculated using the following formulation in Eq. (42) as; 

MPI optimistic = 

[
α0

t (w t+1
io, x t+1

ko, y t+1
ro, z t+1 

vo)

α0
t (w t

io, x tko, y tro, z t vo)
 .

α0
t+1(w t+1

io, x t+1
ko, y t+1

ro, z t+1 
vo)

α0
t+1(w t

io, x tko, y tro, z t vo)
 ]

1/2

                    (42) 

Where, α0
t (w t

io, x tko, y tro, z t vo) is the OSBM in time t;and  α0
t+1 (w t+1

io, x t+1
ko, y t+1

ro, 

z t+1 
vo) is the OSBM in time t +1. Similarly, α0

t (w t+1
io, x t+1

ko, y t+1
ro, z t+1 

vo) calculates 

the optimistic efficiency in time t+1 utilizing the technology in time 𝑡; and 

α0
t+1(w t

io, x tko, y tro, z t vo) evaluates the optimistic efficiency in time 𝑡, making use of 

the technology in time t+1. To better understand on the growth index for productivity 

change measurement, see Sueyoshi, (1998). 

Model (42) measures the productivity change in efficiencies for smart cities 

from time t to t+1. A progress is marked in productivity when MPI optimistic > 1, while 

if MPI optimistic = 1, then there is no change in the level of productivity, and an 

MPI optimistic < 1 indicates a decrease in the productivity level from time t to t+1 (Färe 

et al., 1992). 

Similarly, from a pessimistic point of view, the productivity change in 

efficiencies can be calculated taking the geometric mean of the pessimistic 

efficiencies, α0
t (w t+1

io, x t+1
ko, y t+1

ro, z t+1 
vo) / α0

t (w t
io, x tko, y tro, z t vo) and 

α0
t+1(w t+1

io, x t+1
ko, y t+1

ro, z t+1 
vo) / α0

t+1(w t
io, x tko, y tro, z t vo). The MPI pessimistic for 

each smart city in time t to t+1 can be calculated using Eq. (43) as: 
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MPI pessimistic               

= [
α0

t (w t+1
io, x t+1

ko, y t+1
ro, z t+1 

vo)

α0
t (w t

io, x tko, y tro, z t vo)
 .

α0
t+1(w t+1

io, x t+1
ko, y t+1

ro, z t+1 
vo)

α0
t+1(w t

io, x tko, y tro, z t vo)
 ]

1/2

              (43) 

Where, α0
t (w t

io, x tko, y tro, z t vo) is the PSBM in time t;and  α0
t+1 (w t+1

io, x t+1
ko, y t+1

ro, 

z t+1 
vo) is the PSBM in time t +1. Similarly, here α0

t (w t+1
io, x t+1

ko, y t+1
ro, z t+1 

vo) 

calculates the pessimistic efficiency in time t+1 utilizing the technology in time 𝑡; and 

α0
t+1(w t

io, x tko, y tro, z t vo) evaluates the pessimistic efficiency in time 𝑡, making use of 

the technology in time t+1. 

Similar to the MPI optimistic based on to Färe et al., (1992) assumptions, an 

increase in the productivity level is noticed when MPI pessimistic > 1. A regression over 

time t to t+1 is when MPI pessimistic < 1. There is no noticeable change in the 

productivity over time when MPI pessimistic = 1. 

To achieve consistency in the evaluation of the Malmquist productivity index 

and arrive at concrete conclusions, it is essential to integrate the proposed point of 

views to accurately understand the productivity changes for each smart city under 

selected dimensions over time. Thus, combining the geometric means of Eq. (42) and 

(43), we obtain the Double Frontier Malmquist productivity index (DF-MPI) for the 

jth smart city, which is presented in Eq. (44) as follows; 

DF-MPIj = [MPI optimistic .  MPI pessimistic]
1/2

                                                            (44) 

Table 5. Pseudo code for the proposed novel DF-SBM MPI based DEA model 

DF-SBM MPI-DEA 

For a DMUj ϵ j = 1,2, 3…. n 

Stage 1: // Optimistic and pessimistic efficiency evaluation 

1. Solve model (8) to obtain ηoptimistic with optimal solutions ηo
*; λj

*, sk
XU *+, si

XD 

*-, sr
YD *+ and sv

YU *- 

2. Solve model (24) to obtain ηpessimistic with optimal solutions ηp
*; λj

*, sk
XU *- , 

si
XD *+, sr

YD *- and sv
YU *+ 
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     DF-SBM MPI-DEA 

3. if   η*
optimistic = Γ*

optimistic = 1 for model (8) then 

4. DMUj is optimistic efficient ∀ sk
XU +, si

XD –, sr
YD +, sv

YU - = 0 

5. else 

6. DMUj is optimistic non-efficient ∀ sk
XU +, si

XD –, sr
YD +, sv

YU - ≠ 0 

7. if η*
pessimistic = Γ*

pessimistic = 1 for model (24) then 

8. DMUj is pessimistic inefficient ∀ sk
XU -, si

XD +, sr
YD -, sv

YU + = 0 

9. else 

10. DMUj is pessimistic non-inefficient ∀ sk
XU -, si

XD +, sr
YD -, sv

YU + ≠ 0 

11. end if 

12. end if 

Stage 2: // Bounded interval efficiency calculation for integrated sustainability 

performance 

13. Find:   Xi
min = minj{X

ij

DI}, i = 1,2,3,…....m; //min value for the set of desirable 

inputs of DMUj 

 Xk
max = maxj{X

kj

UI}, k = 1,2,3,.…...p; //max value for the set of undesirable 

inputs of DMUj 

Yr
max = maxj{Y

rj

DO
}, r = 1,2,3,...s; //max value for the set of desirable outputs 

of DMUj 

Yv
min = minj{Y

vj

UO}, v = 1,2,3,.....t; // min value for the set of undesirable 

outputs of DMUj 

14. Solve model (32) to find φvj
* //pessimistic efficiency of virtual DMUvj 

15. if   θmin
*= min{ηoptimistic}; φvj

* ≥ max {ηpessimistic}∀ j= 1,2,3...n then 

16. estimate α = θmin
* φvj

*⁄  

17. end if 

18. Calculate η-bounded as [αηpessimistic
*, θj

*] = [φ̃j
*, θj

*] ∀ αηpessimistic
*≤ θmin

* 

Stage 3: // productivity change using DF-Malmquist index model 

19. Solve model (42) to obtain MPI optimistic and model (43) to obtain 

 MPI pessimistic ∀ time t to t+1 then 

20. Calculate DF − MPIj = [MPI optimistic .  MPI pessimistic]
1/2

ϵ j = 1,2, 3…. n 

21. if  DF-MPIj > 1 then //same applies for MPIoptimistic and MPIpessimistic 

22. DMUj has a productivity progress across time t to t+1 

23. else if 

24. DF-MPIj < 1 then //same applies for MPIoptimistic and MPIpessimistic 

25. DMUj has a decline in productive performance across time t to t+1 

26. else 

27. DMUj has no productivity progress/regress across time t to t+1 

28. end else if 

29. end if 

End Loop 
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Figure 5. Schematics of research flow 

 

3.3. Resilience and Livability Module 

In this module, a novel two-stage assessment approach combining multivariate 

analysis and various machine learning models is proposed to thoroughly investigate 

the resilience and livability of smart cities over time using a set of indicators. In stage 

1, a novel metric-distance based weighting and scoring approach is used initially to 

assign weights to all the indicators and obtain desired scores across each dimension 
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under resilience (social, economic, infrastructure and built environment and, 

institutional resilience) and liveability (accessibility, community well-being and 

economic vibrancy) criteria. In stage 2, two types of data-driven analysis are 

performed namely; clustering as one of the unsupervised machine learning technique 

and classification, a supervised ML technique. The Fuzzy c-means clustering 

algorithm as a simple clustering technique is used to identify the optimum number of 

clusters and label the smart cities to different clusters based on their performance as 

high, medium, and low. The classification techniques, “Naïve Bayes, k-nearest 

neighbor (kNN), Support Vector Machine (SVM), Classification and regression tree 

(CART), Random Forest (RF), and Gradient Boosting Machine (GBM)” are used to 

predict the level of liveability and resilience of smart cities, as categorical variables, 

based on the values of the indicators under each dimension of resilience and livability.  

3.3.1. Metric-distance based weighting and scoring 

Multi-criteria performance assessment combines numerous heterogenous 

indicators across several aspects in a standardized manner to a single synthetic score 

that explains the behavior of the phenomenon to be measured. In this stage, we 

propose a novel three-step multivariate metric-distance based approach to weight the 

indicators and obtain a homogenized score for each dimension under resilience and 

liveability criteria. 

Multi-criteria performance indicators have different measuring units (Abdella 

et al., 2019). To remove the variability and achieve dimensional consistency, all these 

compound indicators must be normalized (Abdella et al., 2017). Besides, 

normalization helps in improving the training stability and performance of the model 

(Quackenbush, 2002). As a data pre-processing step, prior to weighting and scoring, 

the linear min-max scaling, a common data normalization technique is used. The 
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overall indicator-matrix in time t, t+1…, t+N,  denoted by Xk
ijt,t+1…t+N, when 

considering the ith indicator column under the kth dimension for the jth smart city under 

study is as shown below: 

Xk
ijt,t+1…t+N = 

[
 
 
 
 
Xk

11t Xk
11t+1 … Xk

11t+N Xk
21t Xk

21t+1 … Xk
21t+N … Xk

m1t Xk
m1t+1 … Xk

m1t+N 

Xk
12t Xk

12t+1 … Xk
12t+N Xk

22t Xk
22t+1 … Xk

22t+N … Xk
m2t Xk

m2t+1 … Xk
m2t+N 

Xk
13t Xk

13t+1 … Xk
13t+N Xk

23t Xk
23t+1 … Xk

23t+N … Xk
m3t Xk

m3t+1 … Xk
m3t+N

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮ … ⋮ ⋮ … ⋮
Xk

1nt Xk
1nt+1 … Xk

1nt+N Xk
2nt Xk

2nt+1 … Xk
2nt+N … Xk

mnt Xk
mnt+1 … Xk

mnt+N

 

]
 
 
 
 

 

where i = 1,2,3…. m; j = 1,2,3…n and; Xk
ijt , Xk

ijt+1, and Xk
ijt+N represent the ith 

indicator column under the kth dimension over time t, t+1, and t+N, respectively for 

the jth smart city considered for the assessment. Initially, the indicators are categorized 

based on the degree of desirability i.e., on how an indicator would contribute to the 

outcome of the phenomenon to be estimated (see Appendix B. Table B1 and Table 

B2). If the indicator value contributes in a positive manner to the desired outcome, it 

is ascribed as a positive-indicator (e.g., in the selected city resilience indicators, the 

indicator “span of bicycle network per km2” has ‘positive’ desirability). Other else, 

the indicator is attributed as a negative-indicator (e.g., the indicator “Percentage of 

population with no access to health insurance coverage ” has ‘negative’ desirability 

among the other urban liveability indicators).  

The normalized scores for the positive-indicators are calculated using Eq. (45): 

Xk
ijs = k + 

(Xk
ijs -Minjs

k )(K1- k0)

(Maxjs
k − Minjs

k )
 ;∀ s = t, t+1…, t+N                                              (45) 

where Minjs
k

 and Maxjs
k  are the minimum and maximum values of the jth smart city 

under the kth aspect for over the respective time ‘s’. Eq. (45) is further modified to Eq. 

(46) to find the normalized scores of the negative-indicators (i.e., to reverse the 

desirability on the normalized score) as follows; 
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Xk
ijs = k + 

(Minjs
k

 - X
k

ijs)(k0 − K1)

(Maxjs
k − Minjs

k )
 ;∀ s = t, t+1…, t+N                                         (46) 

K1 with an assigned value of 1 is the upper bound, while k0 with an assigned value of 

0 is the lower bound of the normalized data set. Assigning 1 and 0 to the upper and 

lower bound respectively can give a range of unit length to the resulting normalized 

scores. 

Post data normalization, the novel three-step multivariate metric-distance 

based approach is used to weight the indicators and obtain a homogenized score for 

each dimension under city resilience and liveability. The steps involved in the metric-

distance based approach is detailed as follows; 

Step 1: For a selected set of standardized indicators, Xk
ij = [Xk

1j , Xk
2j ,∙∙∙∙∙ X

k
mj] 

determined to represent the decision-making entities (in this case, European smart 

cities), the metric distance of a homogenous decision-making entity eu = (Xk
1u , Xk

2u ,∙∙

∙∙∙ Xk
mu) with respect to a benchmark entity ev = (Xk

1v , Xk
2v ,∙∙∙, Xk

mv) is calculated 

using Eq. (47) as: 

D(v, u) = ∑
|di (v, u)|

σ(Xk
i)

m

i =1

∏(1- Rĵi. 12… ĵ-1  )

i -1

ĵ =1

                                                               (47) 

where, Rĵi is the partial correlation coefficient between Xk
i and Xk

ĵ | (i > ĵ); σ(Xk
i) is 

the standard deviation of Xk
i and, di (v, u) is the distance between the values of 

indicator Xk
iu and Xk

iv (i.e., discriminate effect), which is obtained using Eq. (48) as: 

di (v, u) = xk
iv – xk

iu,i ∈ {1,2,∙∙∙m}                                                                              (48) 

To rule out the presence of negative correlation and negative partial correlation 

coefficient, Eq. (47) is further modified as; 



  

79 

 

D2(v, u) = ∑
|di

2
 (v, u)|

Var (Xk
i)

m

i =1

∏(1 - Rĵi. 
2 )

i -1

ĵ =1

                                                                       (49) 

Step 2: Adequate weights are assigned to each independent variable (indicators). For 

the same, the stability of each indicator in the overall-indicator matrix is looked into 

by determining the Pearson correlation (r) between the calculated metric distances and 

the indicators. The proposed metric-distance approach assigns importance to each 

indicator based on the empirical Pearson’s correlation, rather than subjective weights. 

Furthermore, the calculated metric-distance values and each indicator in the overall-

indicator matrix are continuous variables, thus making bivariate correlation a suitable 

approach for the analysis. In this step, the new weight (wi) is assigned to each 

indicator (using Eq. 50) established by weighting the Pearson's r, i.e., the correlation 

coefficient values are divided by the aggregate correlations; where ∑ wi = 1.  

wi = 
ri

∑ rĵ
m
ĵ =1

  ∀ i =1,2,3 ∙∙∙∙∙ m                                                                                              (50) 

ri is the bivariate correlation between the calculated metric-distance value and the 

value of the ith  indicator. It is to note that, to calculate the metric-distance, a fictive 

decision-making entity with minimum values for each of the indicators in the 

indicator-matrix is utilized as the benchmark entity, since the metric-distance values 

in the “n-dimensional space” for other entities is calculated based on the distance 

from the benchmark entity.  

Step 3:  Composite score (Sj) for each entity (i.e., smart city) under the respective 

dimension is obtained by following the aggregation process as in Eq. (51): 

Sj = ∑ wi

m

i=1

∙ 𝑥𝑖𝑗
𝑘                                                                                                             (51)  
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3.3.2. Machine learning based-assessment 

In this stage, two machine learning based data analytics is carried out namely; 

clustering as one of the unsupervised partitioning technique and classification, a 

supervised machine learning technique. The machine learning-based assessment is 

carried out to predict the degree of liveability and resilience, as categorical variables, 

based on the values of the indicators under each dimension. For the same, Fuzzy c-

means algorithm is used as the first step to partition the composite scores obtained 

from each dimensions of resilience and livability into high, medium and low 

performance category and in the second step, six classification algorithms are tested 

to propose the best predictive model for livability and resilience assessment. Both 

these steps are discussed in detail in the succeeding paragraphs. 

Step 1: Fuzzy c-means algorithm is an unsupervised fuzzy partitioning technique 

used first by Dunn, (1973) to partition a dataset X into fuzzy groups as outputs with a 

certain degree of membership. The membership matrix [Yjk](c ∙ n) indicates the degree 

of membership of the jth smart city to the kth fuzzy cluster as in Eq. (52), where Yjk 

∈ [0,1].  

Mf (Y) = {
Y ∈ Rc.n | ∑ Yjk = 1; 0 < ∑ Yjk < nn

j=1
c
k=1

Yjk ∈ [0,1]; 1 ≤ k ≤ c; 1 ≤ j ≤ n
}                                                   (52) 

Accordingly, with random value initialization of Yjk, Eq. (53) iteratively minimizes 

the objective function: 

Kw = ∑∑ Y
jk

w∥xj - ck∥2

n

j =1

c

k =1

                                                                                          (53) 

where, {ck}k=1

c
 represents the centroids of ‘c’ fuzzy clusters, w is a weighting 

exponent on the membership matrix highlighting the degree of fuzziness in the 

classification output with 1< w <∙∞, and ∥∙∥ is the Euclidean p-norm of xj and ck in ℝn. 
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The degree of fuzzy membership attributed to each cluster, at every iteration, 

starting from random ‘c’ cluster centroids is calculated using Eq. (54) as follows; 

Yjk =
1

∑ (
∥xj - ck∥
∥xj - cp∥

)

2
w-1c

p=1

                                                                                                       (54) 

According to the fuzzy membership values, the centroid of each cluster is then 

computed using Eq. (55) as follows; 

Ck =
∑ Y

jk

w∙ xj
n
j =1

∑ Y
jk

wn
j =1

                                                                                                                    (55) 

The iterative optimization is terminated on satisfying the condition in Eq. (56) i.e., 

when the centroid of each cluster remains the same. 

abs |K
w

t
 – K

w

t-1| < ε                                                                                                        (56) 

Step 2: In this step, a total of six classification algorithms are examined to arrive at 

the best predictive model with the highest predictive performance/accuracy for 

resilience, liveability, and aggregate performance of smart cities. The six 

classification algorithms used are namely; Naïve Bayes classifier, kNN, SVM 

classifier, CART, RF classifier, and GBM classifier. The graphical outline of the 

proposed machine learning techniques and model deployment is presented in Figure 

6. Some basic definitions and mathematical operations related to the classification 

algorithm used in this research are stated here in as; 

Definition 1. Naïve Bayes classifier is a supervised learning algorithm that is based 

on Bayes’ theorem with a strong (naïve) independence assumption between the input 

features. This assumption enables the multiplication of the conditional probabilities to 

determine the response variable. Given a class variable 𝑦 based on n input features 

{xI} i=1

n
, the Bayes’ theorem states as (see Eq. 57): 
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P(y|x1, x2,…,xn)=
P(y)P(x1, x2,…,xn|y)

P(x1, x2,…,xn)
=

P(y) ∏ P(xi|y)n
i=1

P(x1, x2,…,xn)
 (57) 

Definition 2. K-nearest neighbors (KNN) is a non-parametric machine learning 

algorithm that uses the observations of K nearest neighbors to make predictions. It can 

be used for both regression and classification problems. Given a training dataset 

(X,Y)={(xI, yI
)} 

i=1

n
, where X is the input variables and Y is a class label, kNN 

estimates the conditional probability of 𝑌 given 𝑋 and groups an observation to the 

class with the highest probability. Given a positive integer 𝑘, the KNN algorithm first 

identifies 𝑘 observations that are closest to a test observation 𝑥 and estimates the 

conditional probability of observation 𝑥 to be in class 𝑚 as presented in Eq. (58): 

p
k
(X)=Pr(Y = m / X = x) = 

1

k
∑ I (y

i
 = m)

i ϵ Nk

  (58) 

where Nk is the set of k observations closest to a test observation and I (y
i
= m) is an 

indicator variable equal to unity if a given observation (xI, yI
) is in class m and zero 

otherwise.  

Definition 3. Support vector machine (SVM) is a popular supervised ML algorithm 

that can be used for classification as well as regression problems. The goal of SVM is 

to map the input data into high-dimensional space where they can be linearly 

separable by implementing kernel function. Given a training dataset {(xI, yI
)} 

i=1

n
 , the 

objective of SVM is to find a classification rule to predict the label of the response 

variable by solving the optimization problem in Eq. (59):  

min
w, b,ξ 

1

2
‖w‖2 + C ∑ ξ

i

N

i=1

                                                                                                           (59) 

Subject to   
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y
i
 (wT ϕ (xi) + b) ≥ 1-ξ

i
, ∀i                                                                           (60)           

ξ
i
 ≥ 0,∀i                                                                                                                                       (61)                                                            

where C > 0 is a regularization parameter introduced to penalize the misclassified 

points via the slack variables ξ
I
, b is the intercept, and w is the weight. 

The solution to the above optimization problem is given by Eq. (62): 

∑ y
i
αiK(xi, x)+b

iϵ SV

   (62) 

where K(xI, x) is the kernel function, SV denotes support vectors, which are subsets 

of training data points, and αI is the Lagrange multiplier. The four popular kernel 

types include linear kernel, polynomial kernel, hyperbolic tangent (sigmoid) kernel, 

and radial basis function (RBF).  

Definition 4. Classification and regression tree (CART) also referred to as decision 

tree is a set of non-parametric supervised learning algorithms that can be used for both 

classification and regression predictive modelling problems by learning a simple tree 

model (Breiman et al., 1984). The CART method splits the feature space into multiple 

smaller disjoint regions with similar response values using a set of rules to predict a 

class label (in classification) and value (in regression) of the response variable. Each 

internal node in CART specifies a test on an attribute of the data, while each branch 

represents the test output. The root node, which is the topmost node in CART denotes 

the most relevant feature, while the leaf node or terminal node provides the predicted 

class label. Given training dataset of 𝑁 size, the algorithm firstly partitions the 

predictors space into 𝐷 disjoint regions: {R1, R2, …, RD} based on the Gini Index 

(Alpaydin, 2020). In the next step, tree pruning is performed to reduce overfitting. 

The performance of the CART model can be optimized by tuning its hyperparameters 
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including the maximum depth of the tree, minimum number of samples required to 

split an internal node, and minimum number of samples required to be at a 

leaf/terminal node.  

Definition 5. Ensemble models are supervised machine learning paradigm that 

integrate multiple single learners (a.k.a. base learners or weak learners) into one 

model to reduce variance error, bias, and produce a strong model with enhanced 

generalization capability and superior performance (Breiman et al., 1984). The most 

popular type of meta-algorithms that combine base learners are bootstrap aggregation 

(bagging) (Breiman, 1996) and boosting (Sutton, 2005) ensembles. In bagging 

ensemble (e.g., random forest), multiple base learners are trained independently in 

parallel on a different bootstrap sample, while in boosting ensemble (e.g., gradient 

boosting) the base models are trained sequentially. 

As its name suggests, random forest (RF) is a forest of randomly created 

CART models. Each decision tree predictor in the RF algorithm uses bootstrap 

samples, which are samples drawn from the original dataset with replacement. 

Moreover, random subsets of input features are considered when splitting nodes in the 

decision tree on the best split among a random subset of the features selected at every 

node (Svetnik et al., 2003). The split at each node is performed in two steps. Firstly, a 

random subset of input features is selected from the bootstrap sample (Svetnik et al., 

2003). The best subset feature is then selected to perform the decision split at each 

node of a decision tree (Svetnik et al., 2003). Each tree predictor outputs a class 

prediction, then the final prediction of the RF classifier is taken as the class with the 

most votes. Similarly, Gradient boosting machine (GBM) is a powerful boosting 

algorithm, which combines a sequence of weak learners to generate an additive model 

whose performance is significantly enhanced compared to the base learners (Bishop, 
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2006). In the first step, equal weight is assigned to each data point. In the subsequent 

steps, the model is retrained by assigning more weight to the observations that were 

incorrectly classified by the base learner in the previous step. In each step, the GBM 

introduces a base learner (decision tree) to overcome the shortcomings of the existing 

base learner(s). The learning rate controls how hard each base learner attempts to 

correct the errors of the previous learner in the sequence.  

Definition 6. The predictive performance of the ML model is highly dependent on the 

values of its hyperparameters which are the parameters that control the learning 

process of the model (Abdella et al., 2020a). Hence, it is crucial to explore the 

combination of the hyperparameters that produce the best model. In the current study, 

a tuning technique known as grid search, that exhaustively searches the optimum 

values of hyperparameters considering all possible combinations of user-specified 

hyperparameters was used to optimize the hyperparameters. Besides, standard k-fold 

cross-validation is used to overcome the problem of overfitting (Abdella and Shaaban, 

2021). The k-fold cross-validation is performed in the following procedures: (a) split 

the training dataset into 𝑘 equal parts, (b) use 𝑘 − 1 parts to train the model and the 

remaining one part to validate the model, (c) repeat step (b) until each part is used for 

both the training and validation set, and (d) finally compute the performance of the 

model as the average performance of the 𝑘 estimations. Grid search is combined with 

10-fold cross-validation (𝑘 =10) in this study to optimize the hyperparameters of the 

classification algorithms. 
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Figure 6. Graphical outline of the proposed machine learning approach 

 

3.4. Multi-Criteria Assessment Module 

In this module, a novel fuzzy expert-based multi-criteria decision support 

model is proposed to assess the composite performance of a group of DMU and rank 

them based on the composite score. The proposed model encompasses a 3-stage 
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integrated approach, where stage 1 uses the SF-AHP method to assign weights to each 

main-criteria and sub-criteria based on expert elicitation. Hierarchical comparison of 

the criteria and sub-criteria (dimensions) is conducted through comparison matrices 

based on the provided linguistic scale and their spherical fuzzy equivalence. Weight 

matrices based on spherical fuzzy criterion are obtained which then are aggregated 

through the weighted geometric and arithmetic mean operators. Based on the assigned 

weights using SF-AHP to each criteria and dimensions with appropriate aggregation 

techniques, the extended EDAS methodology proposed by Keshavarz-Ghorabaee, 

(2021) is then used in stage 2 to rank each DMU. The extended EDAS method uses 

both the positive and negative distances from the average solution to obtain composite 

score for each alternative, with the ability to cope with negative element and zero 

value in the average solution through simple data transformation. The DMUs are 

ranked in the decreasing order of their composite performance. In stage-3, Fuzzy c-

means clustering algorithm as a simple clustering technique is used to identify the 

optimum number of clusters and label the DMUs to different clusters based on their 

performance as high, medium, and low. Further, a comparative study employing 

several fuzzy-based weighting approaches with the extended EDAS method, and the 

proposed integrated expert-based multi-criteria decision support model is conducted. 

Alternatively, a comparative study with several distance-based MCAT and SF-AHP is 

carried out to validate the use of spherical sets in fuzzy environment. Further, two 

different sensitivity analysis is conducted to validate the result of the proposed SF-

AHP and extended EDAS method by changing the threshold parameter (λ). 

3.4.1 Concepts and definitions of spherical fuzzy sets 

First introduced by Zadeh (1965), the Fuzzy Sets (FS) quantitatively 

characterize the ambiguity and vagueness in decision making with multiple goals and 
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criteria. The traditional FS have been extended later on to Type-n FS by Zadeh (1975) 

that considers further uncertainties associated with the membership functions. Later 

on,  Zadeh (1975) presented the interval-valued fuzzy set (IVFS). To accommodate 

the concept of hesitation margin in a fuzzy set, Atanassov (1986) introduced the 

Intuitionistic fuzzy sets (IFS). A general extension to the FS, the hesitant fuzzy set 

was later on proposed by Torra, (2010), where membership degrees take interval 

values than crip numbers. Atanassov, (1999) developed intuitionistic type- 2 FS 

(IT2FS). While Yager, (2013) presented Pythagorean fuzzy sets (PFS), a 

generalization of IFS to address the vagueness and complexity in defining 

membership grades in fuzzy-based MCDM problems. The Spherical Fuzzy Sets 

(SFSs) developed by Kutlu Gündoğdu and Kahraman in (2019) are an extended form 

of PFS and picture fuzzy sets satisfying the condition 0 ⩽ uA
2(x) + vA

2(x) + π A
2(x) 

⩽1. The squared sum of functional parameters in the membership function of SFS is 

somewhere between zero, and the value of each parameter can be independently 

defined between 0 and 1 in a non-linear 3D space, where the squared sum is at most 

equal to 1 (Kutlu Gündoğdu and Kahraman, 2019; Kutlu Gündoğdu and Kahraman, 

2020). This provides a larger preference domain for decision makers when using the 

novel concept of SFS (Kutlu Gündoğdu and Kahraman, 2020). For instance, a 

decision maker may assign his/her preference for an alternative with respect to a 

criterion with (0.5, 0.4, 0.6). It is clearly seen that the sum of the parameters is larger 

than 1 whereas the squared sum is 0.77. In SFS, decision makers should define their 

hesitancy degrees just like other dimensions that are membership and non-

membership.  

In the following section, we provide the review of basic definitions and 

notations for the linguistic variables of SFS and its operations (Kutlu Gündoğdu and 
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Kahraman, 2019; Kutlu Gündoğdu and Kahraman, 2020): 

Definition 7. The spherical fuzzy set Ãs of a universal set “U” is defined by the 

following expression (see Eq. 63-65) 

uAs̃
: U→[0,1], vÃs

: U→[0,1], πÃs
:U→[0,1]                     (63)                                                                    

and  

0 ≤  u
Ãs

2 (u) + v
Ãs

2 (u) + π
Ãs

2 (u) ≤ 1      (u ∈ U)                                                 (64)                                                                            

Ãs= {〈u, (uÃs
(u),vÃs

(u),πÃs
(u))〉 |u∈U}                                                                    (65)                                                                

For each u , the value uÃs
(u),vÃs

(u),and πÃs
(u) are the degree of membership, non-

membership, and hesitancy of u to Ãs , respectively.  

Definition 8. Let U1 and U2 be two universes. Let two spherical fuzzy sets Ãs and B̃s 

of the universe of discourse U1 and U2. Geometrical representation of SFS and 

distances between Ãs  and B̃s economics illustrated in  

Figure 7 (Antonov, 1995; Yang and Chiclana, 2009).  

 

Figure 7. 3D geometrical representation of Spherical Fuzzy Sets 

 

D (Ãs , B̃s) = 
2

π
∑ arccos (1 − 0.5 × [(uÃs

-uB̃s
)

2
+ (vÃs

− vB̃s
)

2
+ (πÃs

− πB̃s
)

2
])   (66)

n

i:1
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were, 0 ≤ D (Ãs , B̃s) ≤ n;  

Using u
Ã 
2 + v

Ã
2  + π

Ã 
2 = 1,  we obtain the normalized distances between Ãs and B̃s is 

presented in Eq. (67) as follows: 

Dn (Ãs , B̃s) = 

2

nπ
 ∑ arccos (uÃs

(ui) × uB̃s
(ui) + vÃs

(ui) × vB̃s
(ui) + πÃs

(ui) × πB̃s
(ui))                  (67)

n

i:1

 

where, 0 ≤ Dn (Ãs , B̃s) ≤ 1 

Definition 9. Operators 

a) Addition 

       Ãs ⊕ B̃s= {√u
Ãs

2 + u
B̃s

2 − u
Ãs

2 . u
B̃s

2 , 

       v
Ãs

2 . vB̃s

2 ,√((1 − u
B̃s

2 ) π
Ãs

2 + (1 − u
Ãs

2 ) π
B̃s

2 − π
Ãs

2 . π
B̃s

2 )}                                            (68) 

b) Multiplication 

Ãs ⨂ B̃s= {u
Ãs

2 . uB̃s

2 ,√v
Ãs

2 + v
B̃s

2 −  v
Ãs

2 . v
B̃s

2 , 

√((1 − v
B̃s

2 ) π
Ãs

2 + (1 − v
Ãs

2 ) π
B̃s

2 − π
Ãs

2 . π
B̃s

2 )}                                                    (69)                                                  

c) Multiplication by a scalar 

Ãs⨂ x= {√1- (1-u
Ãs

2 )
x

,v
Ãs

x ,√(1-u
Ãs

2 )
x

- (1-u
Ãs

2 -π
Ãs

2 )
x

}                                          (70) 

d) Power of Ãs 

Ãs

x
= {u

Ãs

x , √1 − (1 − v
Ãs

2 )
x

,√(1-v
Ãs

2 )
x

− (1 − v
Ãs

2 − π
Ãs

2 )
x

}                                (71) 

e) Union 

Ãs ⋃ B̃s = {max (u
Ãs

2 , uB̃s

2 ), min (v
Ãs

2
.vB̃s

2 ), min (1 − ((max (u
Ãs

2 , uB̃s

2 ))
2

+
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(min (v
Ãs

2 , vB̃s

2 ))
2

) , max (π
Ãs

2 ,πB̃s

2 ))}                                                                 (72) 

f) Intersection 

Ãs ∩ B̃s = {min (u
Ãs

2 , uB̃s

2 ), max ( v
Ãs

2
.vB̃s

2 ),min (1

− ((min (u
Ãs

2 , uB̃s

2 ))
2

+ (max (v
Ãs

2 , vB̃s

2 ))
2

) , min (π
Ãs

2 , πB̃s

2 ))}  (73) 

Definition 10.  

Ãs ⊕ B̃s= B̃s ⊕ Ãs                                                                                          (74)                                               

Ãs ⨂ B̃s= B̃s ⨂ Ãs                                                                                                     (75)                                              

X (Ãs⊕B̃s) = x.Ãs ⊕ x.B̃s                                                                                        (76)                        

x1.Ãs⊕ x2.Ãs = (x1+x2) Ãs                                                                                       (77)                          

(Ãs⨂B̃s)
x
= Ãs

x
 .B̃s

x
                                                                                                   (78)                               

Ãs

-x
⨂Ãs

-y
= Ãs

-x-y
                                                    (79)

                                                                                                  

Definition 11. “Spherical Weighted Arithmetic Mean (SWAM)” with respect to, w = 

(w1, w2,……, wn);   ∑ wi
n
i:1 =1  SWAM is defined as follows (Eq. 80): 

SWAMw (Ãs1, Ãs2, …., Ãsn) = w1Ãs1+ w2Ãs2 +...+ wnÃsn =                                   (80) 

{√1 − ∏ (1 − u
Ãsi

2 )
wi

n

i:1

, ∏ v
Ãsi

wi

n

i:1

,√∏ (1 − u
Ãsi

2 )
wi

− ∏ (1 − u
Ãsi

2 − π
Ãsi

2 )
wi

n

i:1

n

i:1

} 

Definition 12. “Spherical Weighted Geometric Mean (SWGM)” with respect to,  w = 

(w1, w2,……, wn);   ∑ wi
n
i:1 = 1  SWGM is defined as follows (Eq. 81): 

SWGM w (Ãs1, Ãs2,….,Ãsn) = Ãs1

w1
 + Ãs2

w2
 + … + Ãsn

wn
                                             (81) 

= {∏ u
Asĩ

wi

n

i:1

,√1 − ∏ (1 − v
Asĩ

2 )
wi

n

i:1

,√∏ (1 − v
Asĩ

2 )
wi

− ∏ (1-v
Asĩ

2 − π
Asĩ

2 )
wi

n

i:1

n

i:1

} 

Definition 13. Score functions and Accuracy functions of sorting SFS are defined 
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using Eq. (82) and Eq. (83) respectively; 

Score (Ãs) = (uAs̃
− πAs̃

)
2
− (vAs̃

− πAs̃
)

2
                                                  (82) 

Accuracy (Ãs) = u
Ãs
2 + v

Ãs
2 + π

Ãs
2                                                                                  (83)                                    

Note: Ãs< B̃s ⟺ Score (Ãs) < Score (B̃s) or Score (Ãs) = Score (B̃s) and Score 

(Ãs) < Score (B̃s). 

3.4.2. Fuzzy expert-based multi-criteria decision support 

In this section, we present the integrated SF-AHP and extended EDAS method 

with Fuzzy c-means clustering approach. As highlighted previously, in Stage 1, we 

determine the weights of each criteria and sub-criteria (dimensions) using the SF-

AHP technique. In Stage 2, the total alternatives are ranked based on the composite 

score obtained using the extended EDAS approach. In Stage 3, fuzzy c-means 

algorithm, an unsupervised partitioning approach is used to segregate the alternatives 

with similar characteristics and group them into clusters. The detailed steps involved 

in executing each stages of the proposed model is explained below; 

Stage 1: Determine the weights of each main-criteria and sub-criteria using spherical 

fuzzy AHP. 

The steps involved in the SF-AHP method are as follows: 

Step 1. Establish the hierarchical structure of the model, specifying the main-criteria 

and sub-criteria. 

Step 2. Constitute pairwise comparison matrices utilizing spherical fuzzy judgment 

matrices based on the linguistic terms given in Table 1. Eq. (84) and (85) are used to 

obtain the Score Indices (SI). The SI values corresponding to each linguistic scale is 

presented in Table 6. 
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Table 6. Linguistic scale, Score Index, and the corresponding SF Sets 

Linguistic scale Abbreviation Score Index  (u, v,π) 

Absolutely more importance  AMI 9 (0.9,0.1,0.0) 

Very high importance  VHI 7 (0.8,0.2,0.1) 

High importance  HI 5 (0.7,0.3,0.2) 

Slightly more importance SMI 3 (0.6,0.4,0.3) 

Equally importance  EI 1 (0.5,0.4,0.4) 

Slightly low importance  SLI 1/3 (0.4,0.6,0.3) 

Low importance  LI 1/5 (0.3,0.7,0.2) 

Very low importance  VLI 1/7 (0.2,0.8,0.1) 

Absolutely low importance  ALI 1/9 (0.1,0.9,0.0) 

  

For AMI, VHI, HI, SMI, and EI 

SI =√|100× ((uÃs
-πÃs

)
2
- (vÃs

-πÃs
)

2
)|                           (84) 

For EI; SLI; LI; VLI; and ALI; 

SI
 -1

= 1

√|100× ((uÃs
-πÃs

)
2
- (vÃs

-πÃs
)

2
)|

⁄
                               (85) 

Step 3. Calculate the global and local weights, under a spherical fuzzy environment 

using SWAM and SWAG operators as per Eq. (80) and Eq. (81) respectively with 

respect to each main and sub-criterion. 

Stage 2: The extended EDAS method 

Consider a decision making problem with u alternatives/DMU (A1, A2, A3….Au), v 

criteria (C1, C2, C3….Cv) and wj being the weight of the respective criteria. The 

computing steps of the basic EDAS algorithm to evaluate the selected set of 

alternatives for the given criterions are stated as below: 

Step 1: Define the evaluation matrix (Y), as shown in Eq. (86): 

Y = [ αij]u∙v =

[
 
 
 
 
 
α11 α12 ⋯ α1j ⋯ α1v

α21 α22 ⋯ α2j ⋯ α2v

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
αi1 αi2 ⋯ αij ⋯ αiv

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
αu1 αu2 ⋯ αuj ⋯ αuv]

 
 
 
 
 

                          (86) 
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Compared to the conventional EDAS approach Keshavarz-Ghorabaee, (2021) added a 

transformation, άij = αij - minjαij to the decision matrix Y in Eq. 87, to cope with the 

negative and zero element in the average solution. The transformed decision matrix Ý 

is defined as follows; 

Ý = [ άij]u∙v =

[
 
 
 
 
 
 
ά11 ά12 ⋯ ά1j ⋯ ά1v

ά21 ά22 ⋯ ά2j ⋯ ά2v

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
άi1 άi2 ⋯ άij ⋯ άiv

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
άu1 άu2 ⋯ άuj ⋯ άuv]

 
 
 
 
 
 

                                                 (87) 

We now use the transformed decision matrix (Ý) and the value of άij in the 

succeeding steps to arrive at the composite score. 

Step 2: Calculate the average solution (x̄j) for the selected set of attributes using Eq. 

(88). 

x̄j = 

∑ άij

u

i = 1

u
                                                                                                                           (88) 

Step 3: Determine the positive (Pij
+) and negative (Nij

- ) distance based on the cost (C̅) 

and benefit (B̅) criteria using Eq. (89) and Eq. (90) respectively as; 

Pij
+ = {

max (0, άij - x̄j)  

x̄j 

max (0, x̄j - άij)

x̄j 

 
          ∀ j ∊ B̅

          ∀ j ∊ C̅

                                                                             (89) 

Nij
- = {

max (0, x̄j -  άij)

x̄j 

max (0, άij - x̄j)  

x̄j

 
          ∀ j ∊ B̅

          ∀ j ∊ C̅

                                                                              (90) 

Step 4: Calculate the additive weights of Pij
+ and Nij

-  for all the alternatives, as per Eq. 

(91) and Eq. (92) respectively as; 

Pi
w=∑ wj  Pij

+
u

j = 1

                                                                                                         (91)                                                                               
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Ni
w=∑ wj  Nij

-
u

j = 1

                                                                                                       (92)                           

Step 5: Regularize the results of Pi
w and Ni

w for  each  alternative   following   Eq. (93) 

and Eq. (94) 

Pi
r =

Pi
w

maxi (Pi
w)

                                                                                                                          (93) 

Ni
r = 1 - 

Ni
w

maxi (Ni
w)

                                                                                                                 (94) 

Step 6: Calculate the composite Score (CS) for each alternative as in Eq. (95): 

CSi = 
1

2
 ( Pi

r + Ni
r)                                                                                                                 (95) 

Step 7: Rank the alternatives in the descending order of the composite score (CS). The 

decision making entity with the highest CS value is termed as the best performing 

alternative. 

Stage 3: Fuzzy c-means clustering 

In this stage, we use “Fuzzy c-means clustering technique” to segment the composite 

scores obtained from stage 2, for each DMU and categorize them into respective 

clusters. The steps enumerated through the Eq. (52) till Eq. (56) is repeated post the 

results obtained from Eq. (95) to find the optimal number of clusters and perform the 

clustering process. A comprehensive outline of the proposed novel integrated 

approach is presented in Figure 8.  
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Figure 8. The proposed SF-AHP & extended EDAS Model with Fuzzy partitioning 

technique 
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CHAPTER 4: MODELING INTERCONNECTIONS USING SYSTEMS 

APPROACH 

4.1. General Remarks 

Systems thinking acts as a support tool in addressing complexities, 

uncertainties and identifying “what if” impacts. Systems thinking in smart cities can 

interlink the concepts of production and consumption patterns for a sustained future 

(sustainable development), while delivering quality of life to the urban dwellers of the 

present (urban livability), unparalleled by the smooth operating systems that form the 

nervous system of urban development that can resistant and rebound to shocks with 

minimal recovery time (urban resilience). This chapter discusses in detail the results 

of the causal feedback loop diagrams developed in chapter 3 under the systems 

thinking module (module 1), an integral part of the proposed hybrid decision support 

model. Causal feedback loop diagrams (CLD) are used to understand the 

interrelations between several elements that operate in the system across multiple 

dimensions that define the corner stones of SRL concepts. 

4.2. Motivation and objectives 

Smart cities are complex urban systems built to offer a dignified standard of 

living to all its denizens (Mukhlis, 2021). However, smart cities of today pose an 

enigmatic nature in addressing people concern (Rosati and Conti, 2016). Being 

platforms to multi-billion investments, smart cities of today lack cohesion due to its 

silo mode of functioning for business benefits rather than ensuring safety, security, 

livability, and inclusive growth in its development. Such business-centered 

development patterns have ruptured the smart city fabric in delivering the true essence 

of sustainable development. Pinning patches on the urban fabric to render quality of 

life with touches of sustainability, urban resilience and livability requires adopting the 
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idea of having an interconnected nature throughout the city. This can be achieved 

through a system-of-system approach, where systems thinking helps in identifying 

leverage points within the complex urban network. To this end, system thinking 

approach as a tool is used to close the existing gap in smart city development models 

from a mere techno-centric perspective to interlinking sustainability (S), resilience (R) 

and livability (L), collectively termed as the SRL concepts under a unified umbrella to 

pave ways for “Futuristic Cities”. The interactions are studied using the balancing and 

reinforcing mechanisms and are explained further in the succeeding section.  

4.3. Results and Discussion 

The dynamics of urban livability in smart cities is explained through 

accessibility, community well-being and economic vibrancy; the key drivers in 

fostering a livable city (see Figure 2). Ideating public participation into the urban 

planning model fosters sociability when urban attractiveness is made apparent in the 

design conditions of the city (Guedoudj et al., 2020). Ease of socio-cultural and 

economic pursuits in urban areas spur urban attractiveness (Correia et al., 2020), 

which results in people moving into cities. Such ease of access to services and public 

facilities create a “Disability-free community” comprised of active population with 

sound health and welfare, a key driver to community well-being (Buch et al., 2014). 

Enhanced urban attractiveness is a key determinant for migrants moving into cities 

(Stead, 2003). The community well-being dynamics is captured well in the balancing 

loops B1, B2, and B3. Do, (2008) identifies a positive correlation between the ease of 

access to available services in cities with service utilization. However, as services 

become easily accessible to anyone-anytime-anywhere, an experience of 

unpleasantness creep as an enduring problem (Di et al., 2021). This can cause 

pressure to the municipal planning authorities to bring better conditions into the city, 
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thus demanding further investments in the area of infrastructure and built-

environment. Such investments can boost the quality of dwelling units, which in turn 

increases the urban attractiveness, leading to migrant in-flow (see loop R2 and B4 in 

Figure 2). To continue, a vibrant economy is a productive, progressive, and 

prosperous economy with successful value addition to the services offered to its 

inhabitants. Loops B5 through B8 captures the dynamics of economic vibrancy. As 

the economy booms, a change in the volume of production in goods and services is 

seen to meet the growing population demands (Li, 1996). This in turn has a direct 

influence on the unemployment rates. Studies show a significant decline in 

unemployment rate as production volume increases (Kreishan, 2011). Furthermore, an 

economy that aspires to deliver better health and welfare conditions to its labor force 

produces a productive work force with efficient use of labor hours (Tsoukatou, 2019). 

Labor productivity is closely linked with value addition per unit of goods produced 

which holds a positive impact on the GDP growth rate (Mourre, 2009). In addition, 

education, and investment in alternative technologies through R&D initiatives 

increases economic growth, henceforth leading to a stable economy. Similarly, the 

accessibility-economic vibrancy nexus is captured in the reinforcing loop R1 (see 

Figure 2). 

While understanding urban resilience through systems thinking (see Figure 3), 

it is seen that an increase in per capita GDP increases the aggregate demand which 

holds a positive impact on the citizen spending and federal revenue through increased 

taxes in the latter case and better employment opportunities in the former (Yin, 2009). 

Public investments provide access to multitude of services to urban inhabitants which 

impacts the quality and standard of living (Chakraborty and Dabla-Norris, 2011), thus 

alleviating urban stress and improving product level accessibility. This is evident from 
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the reinforcing loop R3 in Figure 3. Public investments have enormous potential to 

bring prolonged benefits to the cities and urban inhabitants (Czudec and Zając, 2021). 

With public policies encouraging income generation, investments in education, health 

care services, public infrastructure, capacity building, carbon-neutral transition and 

investments tailored to harmonize socio-economic growth in an inclusive manner can 

shield cities from possible socio-environmental threats and improve service continuity 

(loops R1 and R2). This can support the social system to collectively built tolerance, 

adaptively manage to change, and sustainably cope with unplanned stress and shocks 

accompanied by urban sprawl (loop B1). Furthermore, a possible impact on the 

annual revenue levels can exert an upward push to the economy, leading towards 

prosperity, thus bringing in an economic upheaval and a path for higher economic 

growth (Abdel-Razek, 2021). Economists identify such growth in the size of economy 

as a “long-term phenomenon” due to its ability to suppress challenges and return to a 

stable operating state (Mele, 2021), thus leading to urban resilience due to a 

strengthened crisis repellent economy (R4). 

Moving on, we attempt to understand the dynamic interactions of all the 

elements under various dimensions of urban sustainability through the causal loop 

diagram presented in Figure 4. Smart cities of today are criticized for their ambiguous 

growth patterns that lack cohesion between entrepreneurial mind-sets and social 

progress (Jonek-Kowalska, and Wolniak, 2021). However, smart cities are no 

exception in providing a dignified standard of living to all the inhabitants including 

migrants that seek quality in life. Enhanced quality of life boosts the inflow of 

working-age immigrants to cities in search of jobs (Mubangizi, 2021). As the urban 

population increases, there is a huge market for the economy to progress in terms of 

innovation and technological advancements, thus increasing competition at the same 
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time risk of security (Abdella et al., 2019; Ullah et al., 2021; Abdella and Shaaban, 

2021). Such breach in security levels can damage the service continuity in smart cities 

that are driven on ubiquitous data from sensors and tech-driven platforms. 

Investments in technical safety can increase the social capital, thus increasing 

resilience to threats and adaption capacity to insecurities (Andrade et al., 2020). The 

dynamics is represented in the reinforcing loop R7. When exploring the society and 

well-being dynamics (loops R1 and B1), an increase in population can trigger a 

demand for better services, infrastructures and facilities in cities which hold a positive 

impact on quality of service to be offered (Kutty et al., 2020a; Kutty et al., 2020b). 

Howard-Grabman et al., (2017) using the “Research Evidence framework” identified 

service quality as a key facilitator for effective community participation, which in turn 

generates an active and socially cohesive society. Factors that seek to enhance social 

cohesion hold a positive correlation on the quality of life (Paramita et al., 2021). 

Furthermore, as population increases, the physical and physiological accessibility to 

green urban areas are compromised, which hinders community participation (Menconi 

et al., 2021). Community participation positively predicted better quality of life when 

a pool of active population in a socially cohesive environment was put under study by 

Chen and Zhang, (2021). When understanding the dynamics of natural and energy 

resources in smart cities, studies over the years show a significant correlation between 

economic growth and energy demand (see B2-R3 in Figure 3) . A positive impact is 

observed on the variables ‘access to reliable energy resources’ due to the demand 

generated, which in turn affects the consumption of available resources. Excess 

consumption can result in depleting the current sources, that are the anticipated 

resources for future developments in cities (Kucukvar et al., 2016; Kucukvar et al., 

2019). The natural and energy resource utilization dynamics is depicted in loops B2 
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and R3. While, over resource consumption leads to resource depletion, an optimal 

amount to meet the increasing demand can also lead to emissions related to the use of 

resources (Abdella et al., 2020; Abdella et al., 2021). This can create a concern for the 

government to instill sustainable behavior in the consumption and resource utilization 

patterns for the economy to thrive. At the same time, if unattended, this can result in 

climatic changes that can alter the balance in the energy-climate nexus as in loop R2 

(Kucukvar et al., 2016; Kucukvar et al., 2018).  Smart cities of today are power 

houses of greenhouse gas (GHG) emissions due to the increased energy consumption 

while assimilating data from sensors that run 24/7 to improve its core functions, 

including reducing the environmental impacts of our cities. An increase in urban 

population can actually create the possibility for a better quality life and a lower 

carbon footprint through more efficient infrastructure and planning (loop R1) (Spanos 

et al., 2021). An equitable balance needs to be maintained in terms of the resources 

available for consumption, as smart cities of today face numerous sustainability 

challenges along with climate change (Kucukvar et al., 2021). For the same, an 

‘institutional framework with sustainability mandate’ is essential for transparent 

decision making in civil society, which prioritizes social welfare through strengthened 

cooperation incentives (see loop R4). Such frameworks hold potential in harnessing 

the growing power of “social mobilization”, an important means to bring 

responsiveness and accountability when addressing people concern (loop R5). 

4.4. Chapter synopsis 

This chapter investigations the possible interactions in cities through the lens 

of sustainability, urban resilience, and liveability, for the causal feedback loop models 

proposed in Chapter 3, so as to broaden the concept of the existing smart cities to a 

sustainable, resilient, and livable dwelling unit. Possible elements of importance 
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based on the extensive conceptualizations conducted have resulted in a base to 

understand the prime actors across the sustainability, resilience, and livability 

assessment models. These support in selecting possible indicators in the data 

collection process while implementing and validating the succeeding modules of the 

hybrid DSM and, thus the indicator system for the FSC index. 
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CHAPTER 5: A NOVEL DOUBLE-FRONTIER DATA ENVELOPMENT 

ANALYSIS-BASED SUSTAINABILITY ASSESSMENT 

5.1. General outline 

The urban revolution in smart cities needs to be backed by sustainability, since 

smart cities are the epicentre of untapped opportunities for the future generation. This 

chapter presents a numerical solution to the proposed Double Frontier (DF) Slacks-

Based Measure (SBM) Data Envelopment Analysis (DEA) model, the module 2 in the 

hybrid decision support model, taking the case of 35 high-tech smart cities in Europe. 

A grouped performance assessment is then carried out using the quartile clustering 

technique to classify smart cities in accordance with their performance. A progressive 

productivity performance assessment is conducted using the novel double-frontier 

Malmquist productivity index backed by a comparative analysis from both the 

optimistic and pessimistic viewpoint. This chapter starts by presenting the 

significance of the research, highlighting the essentiality in conducting relative 

sustainability assessment in smart cities using non-parametric techniques and the true 

essence of the proposed model in light of sustainable development capacity 

assessment. 

5.2. Significance and Objectives 

At urban scale, functions and environments are more consistent, with input 

and output variables designed with the coverage of considerations of economic, 

environmental, and societal aspects (Kucukvar et al., 2021). Assessing the 

sustainability performance of smart cities is often crucial when planning development 

strategies. The insurmountable challenges of smart cities can reach better conclusions 

when assessed through the lens of sustainable development goals. For the same, 

several approaches are being used to understand the sustainable development capacity 
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of smart cities. Till date, the literature contains two assessment techniques namely the 

parametric and non-parametric approach for the sustainability performance 

assessment, in general efficiency assessment. The frequently applied non-parametric 

linear programming-based performance assessment technique is the “Data 

Envelopment Analysis” (DEA). DEA is one of the mainstream methods for evaluating 

sustainability performance of cities; during the infancy of this method, the DEA 

method was considered suitable for studying economically complex cities, and it was 

also used to evaluate twenty-eight major cities in China by the pioneer of the method 

(Charnes et al., 1989). Zhu, (1996) built on this research and compared the results of 

the DEA method with those obtained using other contemporary methods and provided 

evidence for the effectiveness of this method. These studies were focused on 

evaluating the economic output of cities, and it was only later when the DEA method 

was used to evaluate the environment and sustainability of Chinese cities. Yuan et al., 

(2015) used the DEA method to study the ability of sixty-five cities to respond to 

natural disasters, while Yang et al., (2016) used this method to evaluate the 

sustainability of cities in Taiwan. However, no comprehensive assessment of the 

sustainable development ability of European smart cities has been performed. The 

reason for the low frequency of usage of the DEA method, as noted by Li et al. 

(2005), is the limited availability of statistical data at the city level. In reality, the 

DEA method is perfectly suitable for comprehensive evaluation of a city’s efficiency, 

and several case studies that have already been performed abroad using this method 

(Honma and Hu, 2008; Storto, 2016). In addition to a comprehensive assessment, as 

noted by Mega (1996), an increasing number of researchers has regarded 

sustainability in cities as a process rather than as an endpoint.  
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The use of DEA to assess the sustainability of smart cities hold the ability to 

include multiple inputs and outputs without defining any functional forms to these 

input and output variables. These inputs and outputs can be both desirable and 

undesirable. Several approaches exist when dealing with undesirable factors in DEA 

(see Koopmans, 1951; Golany and Roll, 1989; Ali and Seiford 1990; Seiford & Zhu, 

2002). Most tend to ignore these undesirable factors from the “production possibility 

set” (PPS), while others undergo treatment and case-dependent transformations. 

However, a true reflection of the production process is often lost when desirability is 

not accounted while calculating the relative performance. This is the case of many of 

the existing approaches in the literature. Furthermore, it is essential to understand the 

relative sustainability performance considering both the efficiency and anti-efficiency 

frontiers of decision-making units to arrive at better understanding while framing 

policies. Smart cities of today need to steer away from a capitalism-centric approach 

to a holistic approach, which encompasses environmental concerns, energy needs, 

standard of living and economic growth in order to ensure sustainable development. 

At present, the problem confronting the policy makers of all smart cities is on how to 

formulate a set of effective policies regarding the impacts of global warming potential 

on weather patterns, environmental protection, energy conservation, people-centric 

governance all in the pursuit of economic development. However, this involves a 

wide range of decision-support variables such as climate change adaption, geo-

political stability, environmental and energy resource utilization, societal well-being 

concerns which significantly increases the complexity of policy making. 

Understanding the performance of cities based on these decision-support variables 

often tend to be from the optimistic point of view that inevitably ignores some 

extremely useful information compared to their performance measured from different 
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points of view. This fails to cover the panoramic view of sustainable outcomes 

leading to hindering the policy making process in smart cities. Here lies the rationale 

in undertaking this research which intends to quantify the sustainability performance 

of smart cities from multiple points of view by using a double frontier non-parametric 

approach. To this end, this chapter, dedicated to module 2 of the proposed hybrid 

decision support model, the sustainability assessment module attempts to address the 

aforementioned concerns by accomplishing the following objectives namely; 

a) Assess the overall sustainable development capacity of leading European 

smart cities using the proposed DF-SBM DEA model over time. 

b) Understand the grouped sustainability performance of smart cities under the 

double-frontier approach to identify the best and worst performing smart city 

in terms of sustainable development in Europe. 

c) Evaluate the change in productivity and sustainable capacity over time using 

an aggregate-DF-Malmquist productivity index (MPI) based DEA model from 

pessimistic, optimistic, and double-frontier perspective. 

 5.3. Numerical solution 

5.3.1. Research Data and description 

Despite the pervasive use of technology, the steep growth in urban population 

and the subsequent increase in resource consumption has inevitably created numerous 

challenges for smart cities. This fact highlights the importance of shifting paradigms 

in the way cities work in terms of sustainability. For the purpose of the present study, 

it is important to establish a working definition of sustainability in the context of 

smart cities. Allen and Hoekstra (1993) highlight the importance of establishing the 

scale on which a system is being assessed in terms of its progress towards 

sustainability. Achieving sustainability on a global scale requires different type of 
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actions than on a city level. There is no single best-established definition in terms of 

sustainability in the regional scale nevertheless there is a commonly-used set of 

characteristics of urban sustainability (Kutty and Abdella, 2020; Abdella et al., 2021). 

These include intergenerational equity, intra-generational equity (social, geographical, 

and governance and institutional equity), conservation of the natural and built 

environment, significant reduction of the use of non-renewable energy and resources, 

climate change, economic vitality and diversity, autonomy in communities, citizen 

well-being, gratification of fundamental human needs and secure living (Maclaren, 

1996). For the context of this research an urban space can be sustainable when 

adaption to climatic changes, social equity, conservation of the natural environment 

and energy resources, economic dynamism, Social cohesion and solidarity, and 

quality of life are achieved. Urban sustainability appears to be one of the prevailing 

themes in smart city literature, but to what extent is the concept embedded in the 

understanding of smart cities and how comprehensively is it addressed, is what this 

study investigates. Thus, to better understand on whether smart cities address 

sustainability and principles of sustainable urban development? the proposed 

desirability inclusive DF-SBM DEA approach is used to study the performance of 35 

leading European smart cities over time from 2015 till 2020. The smart cities were 

selected based on the ranks assigned to these cities by the Smart City Index 2020, 

categorizing them as the top ranked smart cities in Europe. The rationale behind 

selecting top ranked smart cities is to capture better the idea of whether these tech-

driven cities that promise sustainability and smartness are truly sustainable or not. In 

addition, the European smart cities cover nearly 3/4th of the list of major smart cities 

in the world with 28 European cities included in the top 50 global smart cities. It is 

well evident that the sample size is large enough for the results to be extrapolated to a 
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global level in terms of the sustainability performance of smart cities. A 

comprehensive assessment is carried out using 50 sustainability input-output 

indicators under 6 dimensions of sustainable urban development, based on the 

proposed working definition of sustainability, namely; Energy and Environmental 

Resources (ER), Governance and Institution (GI), Economic dynamism (E), Social 

cohesion and solidarity (SC), Climate Change (CC) and, Safety and Security (SS). For 

this purpose, this paper uses the longitudinal time-series data extracted from the 

European data portal (https://data.europa.eu/en) and EU city data statistics from 2015-

2020. The indicators under each dimension are aligned to the 17 SDGs. The indicators 

were then categorized according to their desirability to be increased or decreased 

simultaneously based on managerial and computational reasoning. To understand 

better on preparing data for DEA assessment see Sarkis, (2007). Some selected set of 

input indicators were maximized (undesirable) along with simultaneously decreasing 

the desirable inputs and, some output indicators were minimized (undesirable) with 

maximum value outputs included. The input-output indicators used for the 

sustainability performance assessment under all the six dimensions of sustainable 

urban development can be seen in Table B3 (Appendix B). The selection of input and 

output indicators based on the number of smart cities chosen for the study satisfied by 

the Eq. (96). 

n ≥ max{(m+p)*(s+t), 3[(m+p) + (s+t)]}                                                                   (96) 

Where n is the number of smart cities, m is the number of desirable inputs,  p is the 

number of undesirable inputs, s is the number of desirable outputs and t is the number 

of undesirable outputs. 

 

 

https://data.europa.eu/en
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5.3.2. Sustainable development  capacity assessment 

This section evaluates and presents the sustainability performance of the 35 

smart cities from the optimistic, pessimistic, and aggregate double frontier 

perspectives. According to the results in Table 7, under the climate change dimension, 

it is evident that the smart cities, namely Brussels, Copenhagen, Tallinn, Dublin, 

Athens, Lyon, Dusseldorf, Hamburg, Merseille, Geneva, Manchester, Amsterdam, 

Vienna, Lisbon, Helsinki, Stockholm, Oslo, and Zurich are optimistic-efficient 

(ηoptimistic = 1.00) based on model (8). These smart cities all-together make the 

efficiency frontier. All the other smart cities considered in the study are optimistic 

non-efficient (ηoptimistic < 1.000) under the climate change dimension. It is found that 

Kyiv, with an efficiency score, ηoptimistic = 0.5022 is the most optimistic non-efficient 

smart city for all the inputs and outputs considered for the study under the climate 

change dimension. Considering the pessimistic viewpoint, it is identified that Bilbao, 

Bologna, Warsaw, Bratislava, Zaragoza, Kyiv, and Ankara are pessimistic inefficient 

with ηpessimistic = 1.000. The other smart cities (ηpessimistic <  1.000) are less worse 

performing under the climate change dimension than the DEA-inefficient smart cities. 

Similarly, Zurich with ηpessimistic = 0.1044 is the least worst performing (pessimistic 

non-inefficient) smart city in Europe in terms of climate change and mitigation 

strategies. Contrastingly, under the integrated DF DEA-model, when observing the 

interval efficiencies, it is seen that Geneva is the most sustainably performing smart 

city under the climate change dimension. Without no surprise, Lyon, Vienna, and 

Bologna backs the 1st, 2nd, and 3rd runner up positions in addressing climate change 

concerns under the bounded model. It is evident from the interval efficiency scores 

[0.2362, 0.5022] and an m(Ai) value of 0.3692 that, Kyiv is the least relatively 

sustainable smart city under the climate change dimension over time from 2015 till 
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2020. However, while measuring the best relative-efficiency for all the 35 European 

smart cities under the “Governance and institution” dimension (see Table 8), it is 

found that Brussels, Dusseldorf, Manchester, Helsinki, Stockholm, Oslo, and Zurich 

have retained their position of being on the top list as in the climate change dimension 

(ηpessimistic = 1.000). The smart cities namely, St. Petersburg, Bucharest, Krakow, and 

London were new add-ons to the list of the best relatively efficient smart cities under 

the “Governance and Institution” dimension. Nevertheless, Prague with an efficiency 

score of  ηoptimistic = 0.2090 was the most optimistic non-efficient smart city under this 

dimension. When analyzing from the pessimistic viewpoint under the Governance and 

Institution dimension, it can be noticed that 6 smart cities, i.e., Sofia, Prague, Munich, 

Tallinn, Lisbon, and Kyiv are pessimistic inefficient with worse performance 

(ηpessimistic = 1.000). It is seen that Manchester with ηpessimistic = 0.1583 is the least 

DEA-non-inefficient smart city when compared to all the other worst performing 

smart cities. Oslo with an interval efficiency of [0.1026, 1.0000] followed by London 

(η bounded = [0.1020, 1.0000]; Rank 2) and Stockholm (η bounded = [0.0920, 

1.0000]; Rank 3) are the best performing smart cities in Europe under the dimension 

“governance and institution” from the bounded DEA perspective. 

Similarly, when comparing the efficiency scores from the optimistic  and 

pessimistic perspective, it can be found that under the dimension “economic 

dynamism,” smart cities namely, Sofia, Athens, Geneva, Manchester, and Zurich are 

optimistic efficient (see Table 9). While Brussels, Tallinn, Bologna, Kyiv, and Ankara 

are pessimistic inefficient smart cities with ηpessimistic = 1.000. Kyiv with an efficiency 

score, ηoptimistic = 0.2380 is the most optimistic non-efficient smart city when 

compared with its peers. On the contrary, Sofia with ηpessimistic = 0.1522 has the least 

relative pessimistic performance under “economic dynamism.” Under the bounded 
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model for aggregate sustainability performance measurement, Oslo ranks 1st with an η 

bounded interval value [0.1491, 0.9910]. While Kyiv ranks as the least sustainable 

smart city under the economic dynamism dimension with a bounded interval score 

[0.1846, 0.2380].  

Table 7. Sustainability performance, efficiency scores and relative ranks for the 35 

European smart cities from 2015-2020 under the climate change dimension 

Smart cities SBM Optimistic SBM Pessimistic DF-SBM Bounded η 

ηoptimistic Rank ηpessimistic Rank [α1ηpessimistic
 *, θj

*] Rank 

Brussels 1.0000 1 0.6697 20 [0.1582, 1.0000] 7 

Sofia 0.7923 27 0.3808 10 [0.0899, 0.7923] 32 

Prague 0.7991 26 0.5331 15 [0.1259, 0.7991] 28 

Copenhagen 1.0000 1 0.2876 5 [0.0679, 1.0000] 18 

Munich 0.9570 20 0.4264 13 [0.1007, 0.9570] 20 

Tallinn 1.0000 1 0.7377 24 [0.1742, 1.0000] 5 

Dublin 1.0000 1 0.5036 14 [0.1189, 1.0000] 11 

Athens 1.0000 1 0.3219 7 [0.0760, 1.0000] 16 

Bilbao 0.7660 30 1.0000 35 [0.2362, 0.7660] 25 

Lyon 1.0000 1 0.9112 27 [0.2152, 1.0000] 2 

Dusseldorf 1.0000 1 0.6680 19 [0.1578, 1.0000] 8 

Bologna 0.9493 21 1.0000 35 [0.2362, 0.9493] 4 

Hamburg 1.0000 1 0.6778 21 [0.1601, 1.0000] 6 

St. Petersburg 0.8390 25 0.7132 22 [0.1685, 0.8390] 24 

Marseille 1.0000 1 0.4211 12 [0.0995, 1.0000] 12 

Geneva 1.0000 1 0.9359 28 [0.2211, 1.0000] 1 

Budapest 0.7782 29 0.5740 17 [0.1356, 0.7782] 29 

Manchester 1.0000 1 0.3811 11 [0.0900, 1.0000] 13 

Amsterdam 1.0000 1 0.5955 18 [0.1407, 1.0000] 9 

Vienna 1.0000 1 0.8443 26 [0.1994, 1.0000] 3 

Warsaw 0.8492 24 1.0000 35 [0.2362, 0.8492] 14 

Lisbon 1.0000 1 0.2627 3 [0.0620, 1.0000] 19 

Bucharest 0.9645 19 0.7298 23 [0.1724, 0.9645] 10 

Krakow 0.7900 28 0.8100 25 [0.1913, 0.7900] 26 

Bratislava 0.7156 31 1.0000 35 [0.2362, 0.7156] 27 

Helsinki 1.0000 1 0.3036 6 [0.0717, 1.0000] 17 

Stockholm 1.0000 1 0.3526 9 [0.0833, 1.0000] 15 

London 0.8500 23 0.2661 4 [0.0629, 0.8500] 30 

Zaragoza 0.6094 34 1.0000 35 [0.2362, 0.6094] 33 

Oslo 1.0000 1 0.1938 2 [0.0458, 1.0000] 21 

Zurich 1.0000 1 0.1044 1 [0.0247, 1.0000] 22 

Moscow 0.6836 32 0.3482 8 [0.0822, 0.6836] 34 

Kiev 0.5022 35 1.0000 35 [0.2362, 0.5022] 35 

Rome 0.8913 22 0.5565 16 [0.1314, 0.8913] 23 

Ankara 0.6617 33 1.0000 35 [0.2362, 0.6617] 31 

φvj
*: 2.1262,  θj

* : 0.5022,  α1 : 0.2362 
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Table 8. Sustainability performance, efficiency scores and relative ranks for 35 smart 

cities from 2015-2020 under the Governance and institution dimension 

Smart cities SBM Optimistic SBM Pessimistic DF-SBM Bounded η 

ηoptimistic Rank ηpessimistic Rank [α2ηpessimistic
 *, θj

*] Rank 

Brussels 1.0000 1 0.4079 11 [0.0591, 1.0000] 6 

Sofia 0.4420 33 1.0000 35 [0.1449, 0.4420] 31 

Prague 0.2090 35 1.0000 35 [0.1449, 0.2090] 35 

Copenhagen 0.7130 19 0.6749 26 [0.0978, 0.7130] 18 

Munich 0.4590 32 1.0000 35 [0.1449, 0.4590] 30 

Tallinn 0.5490 29 1.0000 35 [0.1449, 0.5490] 25 

Dublin 0.8840 15 0.4762 17 [0.0690, 0.8840] 15 

Athens 0.9010 14 0.3837 10 [0.0556, 0.9010] 14 

Bilbao 0.4980 31 0.2041 3 [0.0296, 0.4980] 34 

Lyon 0.5780 26 0.4323 13 [0.0627, 0.5780] 28 

Dusseldorf 1.0000 1 0.3043 8 [0.0441, 1.0000] 8 

Bologna 0.7270 18 0.6715 25 [0.0973, 0.7270] 17 

Hamburg 0.9550 13 0.3288 9 [0.0477, 0.9550] 13 

St. Petersburg 1.0000 1 0.4123 12 [0.0598, 1.0000] 5 

Marseille 0.5960 24 0.4956 18 [0.0718, 0.5960] 27 

Geneva 0.6230 22 0.5718 21 [0.0829, 0.6230] 22 

Budapest 0.6000 23 0.5784 22 [0.0838, 0.6000] 26 

Manchester 1.0000 1 0.1583 1 [0.0229, 1.0000] 12 

Amsterdam 0.8260 16 0.2669 6 [0.0387, 0.8260] 16 

Vienna 0.5110 30 0.5065 19 [0.0734, 0.5110] 32 

Warsaw 0.7420 17 0.2964 7 [0.0430, 0.7420] 19 

Lisbon 0.5530 28 1.0000 35 [0.1449, 0.5530] 23 

Bucharest 1.0000 1 0.2198 5 [0.0319, 1.0000] 9 

Krakow 1.0000 1 0.1794 2 [0.0260, 1.0000] 11 

Bratislava 0.9730 12 0.5466 20 [0.0792, 0.9730] 7 

Helsinki 1.0000 1 0.5938 23 [0.0861, 1.0000] 4 

Stockholm 1.0000 1 0.6345 24 [0.0920, 1.0000] 3 

London 1.0000 1 0.7034 28 [0.1020, 1.0000] 2 

Zaragoza 0.6620 21 0.4541 14 [0.0658, 0.6620] 21 

Oslo 1.0000 1 0.7080 29 [0.1026, 1.0000] 1 

Zurich 1.0000 1 0.2111 4 [0.0306, 1.0000] 10 

Moscow 0.5540 27 0.4688 15 [0.0680, 0.5540] 29 

Kiev 0.3910 34 1.0000 35 [0.1449, 0.3910] 33 

Rome 0.6760 20 0.4711 16 [0.0683, 0.6760] 20 

Ankara 0.5940 25 0.7008 27 [0.1016, 0.5940] 24 

φvj
*: 1.4419,  θj

* : 0.2090,  α2 : 0.14495 
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Table 9. Sustainability performance, efficiency scores and relative ranks for the 35 

European smart cities from 2015-2020 under the dimension economic dynamism 

Smart cities SBM Optimistic SBM Pessimistic DF-SBM Bounded η 

ηoptimistic Rank ηpessimistic Rank [α3ηpessimistic
 *, θj

*] Rank 

Brussels 0.570 32 1.0000 35 [0.1846, 0.5700] 27 

Sofia 1.000 1 0.1522 1 [0.0281, 1.0000] 12 

Prague 0.544 33 0.4378 5 [0.0808, 0.5440] 34 

Copenhagen 0.651 19 0.5817 11 [0.1074, 0.6510] 24 

Munich 0.651 19 0.3661 3 [0.0676, 0.6510] 31 

Tallinn 0.571 31 1.0000 35 [0.1846, 0.5710] 26 

Dublin 0.961 9 0.8694 28 [0.1605, 0.9610] 3 

Athens 1.000 1 0.6065 13 [0.1119, 1.0000] 4 

Bilbao 0.606 25 0.4898 6 [0.0904, 0.6060] 32 

Lyon 0.775 16 0.6996 20 [0.1291, 0.7750] 16 

Dusseldorf 0.903 13 0.3882 4 [0.0716, 0.9030] 13 

Bologna 0.591 29 1.0000 35 [0.1846, 0.5910] 22 

Hamburg 0.850 14 0.5139 8 [0.0948, 0.8500] 14 

St. Petersburg 0.932 10 0.6860 18 [0.1266, 0.9320] 9 

Marseille 0.838 15 0.4918 7 [0.0908, 0.8380] 15 

Geneva 1.000 1 0.2062 2 [0.0381, 1.0000] 10 

Budapest 0.909 12 0.6524 16 [0.1204, 0.9090] 11 

Manchester 1.000 1 0.5341 10 [0.0986, 1.0000] 6 

Amsterdam 0.596 28 0.9787 29 [0.1806, 0.5960] 21 

Vienna 0.530 34 0.6708 17 [0.1238, 0.5300] 33 

Warsaw 0.639 22 0.5909 12 [0.1091, 0.6390] 28 

Lisbon 0.703 17 0.6393 15 [0.1180, 0.7030] 17 

Bucharest 0.625 23 0.5229 9 [0.0965, 0.6250] 30 

Krakow 0.929 11 0.8467 27 [0.1563, 0.9290] 8 

Bratislava 0.672 18 0.7014 21 [0.1295, 0.6720] 20 

Helsinki 0.598 27 0.7561 23 [0.1396, 0.5980] 29 

Stockholm 0.579 30 0.9886 30 [0.1825, 0.5790] 23 

London 0.605 26 0.8284 25 [0.1529, 0.6050] 25 

Zaragoza 0.651 19 0.8433 26 [0.1556, 0.6510] 19 

Oslo 0.991 6 0.8081 24 [0.1491, 0.9910] 1 

Zurich 1.000 1 0.7455 22 [0.1376, 1.0000] 2 

Moscow 0.984 7 0.6118 14 [0.1129, 0.9840] 7 

Kiev 0.238 35 1.0000 35 [0.1846, 0.2380] 35 

Rome 0.980 8 0.6949 19 [0.1283, 0.9800] 5 

Ankara 0.625 23 1.0000 35 [0.1846, 0.6250] 18 

φvj
*: 1.2895,  θj

* : 0.2380,  α3 : 0.18457 
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Table 10. Sustainability performance, efficiency scores and relative ranks for 35 smart 

cities from 2015-2020 under the energy and environmental resource dimension 

Smart cities SBM Optimistic SBM Pessimistic DF-SBM Bounded η 

ηoptimistic Rank ηpessimistic Rank [α4ηpessimistic
 *, θj

*] Rank 

Brussels 0.5507 25 0.3731 8 [0.0724, 0.5507] 26 

Sofia 0.4154 33 0.3411 7 [0.0662, 0.4154] 34 

Prague 0.3995 34 1.0000 35 [0.1939, 0.3995] 29 

Copenhagen 1.0000 1 0.8603 26 [0.1668, 1.0000] 7 

Munich 1.0000 1 0.9104 29 [0.1766, 1.0000] 4 

Tallinn 0.3844 35 1.0000 35 [0.1939, 0.3844] 32 

Dublin 1.0000 1 0.9065 28 [0.1758, 1.0000] 5 

Athens 0.4178 32 0.2209 5 [0.0428, 0.4178] 35 

Bilbao 0.4829 30 0.3807 9 [0.0738, 0.4829] 33 

Lyon 0.7190 17 0.6413 20 [0.1244, 0.7190] 17 

Dusseldorf 0.7779 14 0.6568 21 [0.1274, 0.7779] 14 

Bologna 1.0000 1 0.1995 4 [0.0387, 1.0000] 10 

Hamburg 0.7587 15 0.6318 18 [0.1225, 0.7587] 16 

St. Petersburg 1.0000 1 0.1988 3 [0.0386, 1.0000] 11 

Marseille 0.6370 21 0.5493 17 [0.1065, 0.6370] 21 

Geneva 1.0000 1 0.9788 32 [0.1898, 1.0000] 1 

Budapest 0.6118 23 0.4477 13 [0.0868, 0.6118] 24 

Manchester 1.0000 1 0.1294 2 [0.0251, 1.0000] 12 

Amsterdam 0.6494 20 0.7427 24 [0.1440, 0.6494] 18 

Vienna 1.0000 1 0.9646 31 [0.1871, 1.0000] 2 

Warsaw 0.5088 29 0.3931 10 [0.0762, 0.5088] 31 

Lisbon 0.4686 31 1.0000 35 [0.1939, 0.4686] 25 

Bucharest 0.5220 28 0.4755 15 [0.0922, 0.5220] 28 

Krakow 0.5305 27 0.4516 14 [0.0876, 0.5305] 27 

Bratislava 0.6674 18 0.4130 11 [0.0801, 0.6674] 20 

Helsinki 1.0000 1 0.9206 30 [0.1785, 1.0000] 3 

Stockholm 0.6589 19 0.6373 19 [0.1236, 0.6589] 19 

London 1.0000 1 0.8005 25 [0.1552, 1.0000] 8 

Zaragoza 1.0000 1 0.6969 22 [0.1352, 1.0000] 9 

Oslo 1.0000 1 0.9033 27 [0.1752, 1.0000] 6 

Zurich 0.7507 16 0.7265 23 [0.1409, 0.7507] 15 

Moscow 1.0000 1 0.1099 1 [0.0213, 1.0000] 13 

Kiev 0.6326 22 0.4328 12 [0.0839, 0.6326] 22 

Rome 0.6033 24 0.5368 16 [0.1041, 0.6033] 23 

Ankara 0.5427 26 0.2605 6 [0.0505, 0.5427] 30 

φvj
*: 1.9821,  θj

* : 0.3844,  α4 : 0.19394 
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Table 11. Sustainability performance, efficiency scores and relative ranks for the 35 

European smart cities from 2015-2020 under the safety and security dimension 

Smart cities SBM Optimistic SBM Pessimistic DF-SBM Bounded η 

ηoptimistic Rank ηpessimistic Rank [α5ηpessimistic
 *, θj

*] Rank 

Brussels 0.7277 29 0.4864 23 [0.1524, 0.7277] 6 

Sofia 1.0000 14 0.1939 7 [0.0607, 1.0000] 17 

Prague 1.0000 1 0.2308 13 [0.0723, 1.0000] 22 

Copenhagen 0.7371 28 0.2266 10 [0.0710, 0.7371] 4 

Munich 0.6227 34 0.1208 4 [0.0378, 0.6227] 1 

Tallinn 1.0000 1 0.2219 9 [0.0695, 1.0000] 19 

Dublin 0.7979 25 0.4897 24 [0.1534, 0.7979] 8 

Athens 0.8854 22 0.7058 27 [0.2211, 0.8854] 28 

Bilbao 0.6808 31 1.0000 35 [0.3133, 0.6808] 11 

Lyon 0.9999 16 0.2996 17 [0.0939, 0.9999] 24 

Dusseldorf 1.0000 1 0.1849 6 [0.0579, 1.0000] 16 

Bologna 0.7837 26 1.0000 35 [0.3133, 0.7837] 26 

Hamburg 1.0000 1 0.1066 2 [0.0334, 1.0000] 13 

St. Petersburg 1.0000 1 0.2508 14 [0.0786, 1.0000] 23 

Marseille 1.0000 1 0.2303 12 [0.0722, 1.0000] 21 

Geneva 0.8937 21 0.7155 28 [0.2242, 0.8937] 29 

Budapest 0.9793 17 0.7278 29 [0.2280, 0.9793] 34 

Manchester 1.0000 15 0.2996 17 [0.0939, 1.0000] 25 

Amsterdam 0.6874 30 0.0983 1 [0.0308, 0.6874] 2 

Vienna 0.7480 27 0.2512 15 [0.0787, 0.7480] 5 

Warsaw 1.0000 1 0.1114 3 [0.0349, 1.0000] 14 

Lisbon 0.7979 24 0.5291 25 [0.1658, 0.7979] 10 

Bucharest 1.0000 1 0.3206 19 [0.1004, 1.0000] 27 

Krakow 0.8694 23 0.4493 22 [0.1408, 0.8694] 12 

Bratislava 1.0000 1 0.3939 20 [0.1234, 1.0000] 30 

Helsinki 1.0000 1 0.1366 5 [0.0428, 1.0000] 15 

Stockholm 0.6728 32 0.2783 16 [0.0872, 0.6728] 3 

London 0.5876 35 1.0000 35 [0.3133, 0.5876] 7 

Zaragoza 1.0000 1 0.2302 11 [0.0721, 1.0000] 20 

Oslo 0.9197 20 0.6623 26 [0.2075, 0.9197] 31 

Zurich 0.6469 33 1.0000 35 [0.3133, 0.6469] 9 

Moscow 1.0000 1 0.2016 8 [0.0632, 1.0000] 18 

Kiev 0.9785 18 0.7439 30 [0.2331, 0.9785] 35 

Rome 0.9591 19 0.7628 31 [0.2390, 0.9591] 33 

Ankara 1.0000 1 0.4403 21 [0.1379, 1.0000] 32 

φvj
*: 1.8755,  θj

* : 0.5876,  α5 : 0.3133 
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Table 12. Sustainability performance, efficiency scores and relative ranks for the 

smart cities from 2015-2020 under the social cohesion and solidarity dimension 

Smart cities SBM Optimistic SBM Pessimistic DF-SBM Bounded η 

ηoptimistic Rank ηpessimistic Rank [α6ηpessimistic
 *, θj

*] Rank 

Brussels 1.0000 1 0.2203 8 [0.0168, 1.0000] 13 

Sofia 0.5695 33 1.0000 35 [0.0761, 0.5695] 33 

Prague 1.0000 1 0.3087 12 [0.0235, 1.0000] 9 

Copenhagen 0.7958 26 0.6258 18 [0.0477, 0.7958] 26 

Munich 1.0000 1 0.8183 27 [0.0623, 1.0000] 3 

Tallinn 0.8119 23 0.6704 21 [0.0510, 0.8119] 23 

Dublin 1.0000 1 0.2022 7 [0.0154, 1.0000] 14 

Athens 0.8742 21 0.7332 26 [0.0558, 0.8742] 21 

Bilbao 1.0000 1 0.2394 9 [0.0182, 1.0000] 12 

Lyon 0.8054 25 0.6304 19 [0.0480, 0.8054] 25 

Dusseldorf 1.0000 1 0.1098 3 [0.0084, 1.0000] 18 

Bologna 1.0000 1 0.1997 6 [0.0152, 1.0000] 15 

Hamburg 1.0000 1 0.1897 4 [0.0144, 1.0000] 17 

St. Petersburg 1.0000 1 0.2988 11 [0.0228, 1.0000] 10 

Marseille 1.0000 1 0.2969 10 [0.0226, 1.0000] 11 

Geneva 1.0000 1 0.6211 17 [0.0473, 1.0000] 6 

Budapest 0.7031 28 0.6878 23 [0.0524, 0.7031] 29 

Manchester 1.0000 1 0.5199 15 [0.0396, 1.0000] 7 

Amsterdam 1.0000 1 0.9801 29 [0.0746, 1.0000] 1 

Vienna 0.8054 24 0.6651 20 [0.0506, 0.8054] 24 

Warsaw 0.7901 27 0.6833 22 [0.0520, 0.7901] 27 

Lisbon 1.0000 1 0.3443 13 [0.0262, 1.0000] 8 

Bucharest 0.5883 32 1.0000 35 [0.0761, 0.5883] 32 

Krakow 0.5602 34 1.0000 35 [0.0761, 0.5602] 34 

Bratislava 0.6946 29 0.4195 14 [0.0319, 0.6946] 31 

Helsinki 1.0000 1 0.7205 25 [0.0549, 1.0000] 4 

Stockholm 0.8327 22 0.6130 16 [0.0467, 0.8327] 22 

London 1.0000 1 0.0492 2 [0.0037, 1.0000] 19 

Zaragoza 1.0000 1 0.1903 5 [0.0145, 1.0000] 16 

Oslo 1.0000 1 0.9399 28 [0.0716, 1.0000] 2 

Zurich 1.0000 1 0.7121 24 [0.0542, 1.0000] 5 

Moscow 0.6602 31 1.0000 35 [0.0761, 0.6602] 30 

Kiev 0.2034 35 1.0000 35 [0.0761, 0.2034] 35 

Rome 1.0000 1 0.0113 1 [0.0009, 1.0000] 20 

Ankara 0.6811 30 1.0000 35 [0.0761, 0.6811] 28 

φvj
*: 2.6712,  θj

* : 0.2034,  α6 : 0.07615 
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When considering smart cities under the dimension “energy and 

environmental resource” for the optimistic scenario, we can see that Copenhagen, 

Munich, Dublin, Bologna, St. Petersburg, Geneva, Manchester, Vienna, Helsinki, 

London, Zaragoza, Oslo, and Moscow perform relatively efficient with a score 

ηoptimistic = 1.00. While Tallinn (ηoptimistic = 0.238) is the most optimistic non-efficient 

smart city under the respective dimension. On the other hand, Moscow with ηpessimistic 

= 0.1099 lies farthest away from the anti-efficiency frontier. Smart cities like Prague, 

Tallinn and Lisbon lies on the anti-efficient frontier, thus branded as the “anti-ideal” 

smart city with relatively worst efficiency performance (Table 10). While, considering 

the bounded sustainability performance under the double frontier approach; Geneva, 

Vienna and Helsinki rank 1st, 2nd, and 3rd respectively in terms of its performance 

under the energy and environmental resource dimension across the years from 2015 

till 2020. It is seen those smart cities namely, Bilbao, Sofia and Athens perform 

relatively worse under the aggregated performance with ranks 33, 34 and 35 among 

all the European smart cities. 

Based on the set of input and output indicators chosen under the “safety and 

security” dimension (Table 11), it is found that the cities that show relatively best 

performance under the optimistic scenario are namely, Sofia, Prague, Tallinn, 

Dusseldorf, Hamburg, St. Petersburg, Merseille, Manchester, Warsaw, Bucharest, 

Bratislava, Helsinki, Zaragoza, Moscow, and Ankara. It is noticed that Amsterdam is 

pessimistically non-inefficient (ηpessimistic = 0.0983); while Bilbao, Bologna, London, 

and Zurich are pessimistic inefficient smart cities with a score ηpessimistic = 1.000. 

However, the results from the aggregate performance ranks Munich, Amsterdam and 

Stockholm as 1st, 2nd and 3rd best smart city that is safe and secure for the citizens and 

tourists visiting them. While smart cities namely, Rome (rank: 33), Budapest (rank: 
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34) and Kyiv (rank: 35) are ranked as the least sustainably performing smart city from 

the “safety and security” perspective. Under the “society and well-being” dimension 

(Table 12), it is found that Sofia, Copenhagen, Tallinn, Athens, Lyon, Budapest, 

Vienna, Warsaw, Bucharest, Bratislava, Krakow, Stockholm, Moscow, Kyiv, and 

Ankara are optimistic non-efficient smart cities. These smart cities lie outside the 

efficiency frontier (ηpessimistic <  1.000). While, among all the optimistic non-efficient 

smart cities, Kyiv with an ηoptimistic = 0.2034 performs as the most inefficient smart 

city under the optimistic scenario. The double frontier bounded model for aggregate 

performance assessment reveals, Amsterdam (η bounded = [0.0746, 1.0000]; Rank 1), 

Oslo (η bounded = [0.0716, 1.0000]; Rank 2) and Munich (η bounded = [0.0623, 

1.0000]; Rank 3), as the best performing smart cities. On the other hand, Kyiv, 

Krakow, and Sofia ranks 35th, 34th and 33rd with bounded DEA scores [0.0761, 

0.2034], [0.0761, 0.5602] and [0.0761, 0.5695] respectively. 

5.3.3. Sustainability performance clustering 

This section uses the Quartile clustering method to group the efficiency 

scores for each smart city under all the 6 dimensions of sustainable development 

depending on their performance. The method partitions the data set into 4 equal 

clusters (groups), where each cluster has 25% of the data. The semantics for each 

group is represented on a scale from High to Low sustainability performance (SP). 

Performance grouping helps in understanding the impact of having certain undesirable 

parameters in the production set on the total sustainability performance. Once the data 

set is divided into 4 equal intervals, each smart city is placed in appropriate quartile 

based on their efficiency scores to better understand the standing of each smart city 

relative to one another under respective viewpoints namely; optimistic, pessimistic, 

and aggregate double frontier perspective.  
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Figure 9 shows the group-based sustainability performance along with their 

respective ranks for each smart city under the optimistic scenario. To better visualize 

the sustainability performance, conditional formatting is used to assign position-

dependent color gradience to each cluster relative to the smart city performance. 

Manchester ranks No.1 as the relatively best performing smart city in terms of 

sustainable development among all the 35 leading European smart cities under the 

optimistic scenario. Oslo, St. Petersburg, and Dusseldorf backed the 1st, 2nd and 3rd 

runner up positions falling under the high sustainability performance cluster. It is seen 

that Kyiv is the most under-performing smart city in terms of addressing sustainable 

development from the optimistic viewpoint, falling under the Low SP cluster. Smart 

cities namely; Brussels, Amsterdam, Stockholm, Bratislava, Bucharest, Munich, 

Krakow, Vienna, and Budapest show a medium-to-low SP. 

 

Figure 9. Grouped optimistic sustainability performance of smart cities 

 

Figure 10 reveals Kyiv, Tallinn, Ankara, Oslo, Bologna, Geneva, Vienna, 

Lisbon, and Krakow as pessimistic inefficient smart cities with a relatively low 

sustainability performance from the pessimistic viewpoint. Oslo, Dublin, Geneva, and 
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Zurich which were grouped under the High SP category from the optimistic viewpoint 

were replaced by Rome, Moscow, Merseille and Athens in the High SP category 

under the pessimistic viewpoint. These smart cities show less relatively worse 

performance or better termed less pessimistic non-inefficiency when compared to its 

peers in other clusters. It is seen that Manchester is ranked 35th under the High SP 

cluster and Kyiv ranked 1st, falling under the Low SP cluster under the pessimistic 

scenario. 

 

Figure 10. Grouped sustainability performance under the pessimistic scenario 

 

Figure 11 shows the performance grouping of smart cities from High SP to 

Low SP under the double frontier approach. Kyiv remains the least sustainably 

performing smart city under all the viewpoints including the double frontier point of 

view (Fig. 4). It is seen that Dublin (ranked 1st) is the most smart and sustainable 

European city under all the dimensions of sustainable development. Along with 

Dublin in the High SP cluster lies Oslo, Zurich, Amsterdam, Geneva, Helsinki, 

Manchester, Dusseldorf, and Hamburg. St. Petersburg that made itself into the High 

SP cluster under both the optimistic and pessimistic viewpoint is grouped under the 
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High-Medium SP cluster under the DF scenario. It is surprising to see the position of 

Amsterdam pushed to the High SP cluster under the DF approach from the Medium-

Low SP/Low-Medium SP cluster under the optimistic and pessimistic viewpoint, 

respectively. Kyiv, Ankara, Sofia, and Prague that were grouped under the Low SP 

cluster from the optimistic point of view remained within the Low SP cluster under 

the aggregate DF scenario along with Budapest, Bilbao, Bucharest, and Bratislava. 

 

Figure 11. Grouped sustainability performance of smart cities under the DF approach 

 

5.3.4. Productive performance through novel Malmquist Index 

In this section, the relative productivity change of each smart city over 

different period of time from 2015 till 2020 is presented under the Double-Frontier 

approach using an aggregate DEA-SBM Malmquist index (model 44). To discuss the 

change in the sustainability performance for all the smart cities under study, the MPI’s 

were measured from different viewpoints: optimistic (model 42) and pessimistic 

(model 43) point of view under the dimensions; climate change, economic dynamism, 

governance and institution, social cohesion and solidarity, energy, and environmental 

resource and, safety and security. A productivity progress is indicated when the DF-
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MPI >1. It is seen from Figure 12(a) under the climate change dimension that, Rome 

(DF-MPI =1.4827), Geneva (DF-MPI =1.0444), Stockholm (DF-MPI =1.0437), 

Tallinn (DF-MPI =1.0342) and Hamburg (DF-MPI =1.0326) showed the greatest 

positive productivity change from 2015 to 2020. The most decline in productivity is 

seen for Moscow (DF-MPI =0.9114), Prague (DF-MPI =0.9334), Bucharest (DF-MPI 

=0.9345), Athens (DF-MPI =0.9473), Lisbon (DF-MPI =0.9480) and Dublin (DF-

MPI =0.9507). However, under the optimistic MPI (Table B6(a), Table B6(b) in 

Appendix B), Stockholm made the most cumulative productivity progress of 89.77%. 

While Manchester experienced the most regress in productivity with -54.26%. It is to 

note that, Athens failed to achieve productive progress under the double frontier 

integrated approach, while under the optimistic MPI, Athens achieved a progress in 

productivity by 68.98%. However, it is surprising to note that for the smart cities 

namely, Geneva, Stockholm, Zaragoza, Moscow, Kyiv and Rome, there is no 

noticeable change in productivity during the years from 2015 till 2020 with 

MPI pessimistic = 1. While, Zaragoza with MPI optimistic = 1 and MPI pessimistic = 1 has not 

achieved any progress under both the optimistic and pessimistic MPI scenarios. 

Similarly, under the dimension “economic dynamism” (see Table B7(a), Table B7(b) 

in Appendix B), from the optimistic perspective, it is seen that Bratislava has made 

the greatest progress by 20.563% in terms of productivity followed by Kyiv (7.274%), 

Athens (3.088%), Geneva (1.739%) and Hamburg (1.323%). All the other smart cities 

showed a regress in productive performance with Manchester showing a steady 

decline in productivity by -32.926% followed by Munich (-32.91%), Helsinki (-

32.56%) and Bilbao (-20.63%). Contrastingly, from the pessimistic viewpoint, it is 

seen that Rome with a productivity regress of 54.21% ranks as the least productive 

smart city in terms of its progress towards achieving sustainable development across 
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the years. Contrarily, Rome ranks 35th under the aggregate double frontier approach 

with a DF-MPI index that equals 0.87099 (Figure 12b) for lowest productivity 

progress over the years, followed by Hamburg (DF-MPI =0.9309), Zaragoza (DF-

MPI =0.93373), Lisbon (DF-MPI =0.93478) and Lyon (DF-MPI =0.94166). Figure 

13(a-f) shows the productivity change for the 35 European smart cities over the years 

from 2015 till 2020 under respective dimensions of sustainable development from the 

optimistic viewpoint. Figure 14(a-f) shows the change in productivity from the 

pessimistic viewpoint over time for the smart cities under various dimensions. 

While, investigating the productivity changes of all the European smart cities 

over the years, it is seen that St. Petersburg has made noteworthy progress in terms of 

productivity under the governance and institution dimension from the optimistic 

viewpoint (MPI optimistic = 1.2949). An average productivity increase of 91.86% is 

seen under the optimistic viewpoint from 2015-2020 while, under the pessimistic 

viewpoint, a decline of 13.604% over the years is seen (MPI pessimistic = 0.9924). 

However, the integrated DF-MPI value for St. Petersburg show an overall 

productivity progress (DF-MPI =1.1336) and ranks 1st as the smart city that achieved 

best productivity growth in terms of addressing the essence of the governance and 

institution theme from 2015-2020 (Figure 12c). On the contrary, Zaragoza 

experienced a decline in productivity under both the optimistic and pessimistic 

scenarios with an average productivity regress rate of 18.41% and 15.45% 

respectively (Table B8(a), Table B8(b) in Appendix B). However, under the 

integrated DF-MPI, Ankara stands as the first runner up (DF-MPI =1.0645) followed 

by Merseille (DF-MPI =1.0467), Bucharest (DF-MPI =1.0413) and Helsinki (DF-MPI 

=1.0143) in terms of its progressive performance growth under the governance and 

institution dimension of sustainable development. A distinct evaluation to understand 
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the productivity progress under the “society and well-being” dimension was carried 

out using models from 6-8 for the smart cities under study. No noticeable change in 

the productivity over time was investigated under the pessimistic scenario for Munich, 

Merseille, Lisbon, Zaragoza, Oslo, and Moscow Table B9(a), Table B9(b) in 

Appendix B). This is evident from the MPIpessimistic value of 1.000. Paradoxically, a 

decline in productivity was noticed for all these smart cities under the optimistic 

scenario except for Munich with a progress of 0.522% over the years. Smart cities that 

showed rapid productivity growth under the aggregate pessimistic MPI values from 

2015-2020 where; Dublin (MPI pessimistic = 1.0255), Lyon (MPI pessimistic = 1.0035), 

Geneva (MPI pessimistic = 1.011), Amsterdam (MPI pessimistic = 1.0304), Warsaw 

(MPI pessimistic =1.0034), Helsinki (MPI pessimistic =1.0158), London 

(MPI pessimistic =1.0068) and Zurich (MPI pessimistic =1.0037). Under the MPI based on 

double frontier, Brussels achieved the least productivity growth with a DF-MPI value 

of 0.93243. 

When analyzing the MPI values for the European smart cities under the 

“energy and environmental resource” dimension, it is found that the smart cities that 

show the highest amount of increase in productivity under the integrated double 

frontier approach are namely; London (DF-MPI =1.2945; Rank: 1), Helsinki (DF-

MPI =1.0681; Rank: 2), Oslo (DF-MPI =1.0656; Rank: 3), Manchester (DF-MPI 

=1.0311, Rank: 4), and Dublin (DF-MPI =1.0304, Rank: 5). A decline in productive 

performance over time was found for Geneva (DF-MPI =0.9578; Rank: 35), Moscow 

(DF-MPI =0.96686; Rank: 34), Hamburg (DF-MPI = 0.9737; Rank: 33), Munich 

(DF-MPI = 0.9895; Rank: 32) and St. Petersburg (DF-MPI = 0.9902; Rank: 31). 

However, Geneva shows a noteworthy progress in terms of productivity by 30.517% 

under the optimistic viewpoint Table B10(a), Table B10(b). While a regress in 
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productivity of 26.7% is found that has resulted in the overall productivity decline 

under the DF-MPI approach. Furthermore, London (progress rate: 62.73%, Rank: 1), 

Helsinki (progress rate: 43.90%, Rank: 2), St. Petersburg (progress rate: 28.45%, 

Rank: 4) and Zurich (progress rate: 10.91%, Rank: 5) exhibits a cumulative 

productive progress under the optimistic viewpoint. Howbeit, smart cities namely; 

Zaragoza (progress rate: 13.45%, Rank: 1), Brussels (progress rate: 7.584%, Rank: 2), 

Zurich (progress rate: 5.69%, Rank: 3), Helsinki (progress rate: 4.76%, Rank: 4) and 

Kyiv (progress rate: 4.484%, Rank: 5) show improved productivity under the 

pessimistic scenario. Whilst, under the “safety and security” dimension (Table B11 

(a)-Table B11 (b), Merseille (progress rate: 29.7%), Dusseldorf (progress rate: 

29.49%) and Lisbon (progress rate: 19.803%) ranks 1st , 2nd, and 3rd in terms of 

aggregate productive progress over time under the optimistic MPI scenario. However, 

a dip in productivity is shown most in the case of Moscow by 24.052%, Hamburg by 

19.6% and Zaragoza by 17.764% under the optimistic MPI, while a productivity 

regress by 47.57%, 29.74% and 24.53% is shown under the pessimistic viewpoint by 

Geneva, Zurich, and St. Petersburg respectively. For a change index of DF-MPI 

=0.8846, Bologna indicates the highest decrease in productivity level from 2015 till 

2020 while, the greatest progress in productivity is marked for Kyiv with a DF-MPI 

index of 1.0477 for the study duration. Furthermore, it is to note that, St. Petersburg 

under the optimistic scenario and Moscow under the pessimistic scenario show no 

change in productivity with MPI index values equal to 1.000. Productivity change for 

all the 35 European smart cities over the years from 2015 till 2020 under the 6 

dimensions of sustainable urban development are shown in Table B6(a)-Table B9(a). 

Figure 12(a-f) shows the cumulative MPI values for all the 35 smart cities under the 

optimistic, pessimistic, and pessimistic and double frontier approach over time. 
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c)        d) 
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e)                                                                             f) 

Figure 12. Sustainable productivity comparison for 35 European smart cities from 

pessimistic, optimistic, and double frontier perspective under a) Climate change b) 
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Economic dynamism c) Governance and Institution d) Social cohesion and solidarity 

e) Energy and environmental resources f) Safety and security 

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

(f) 

Figure 13. Productive performance from optimistic viewpoint from 2015-2020 under 

the dimensions a) climate change b) economic dynamism c) governance & institution 

d) social cohesion & solidarity e) energy & environmental resource f) safety & 

security 
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(d) 

 

(e) 

(f) 

Figure 14. Productive performance from pessimistic viewpoint of 35 European smart 

cities over time from 2015 till 2020 under the dimensions a) climate change b) 

economic dynamism c) governance and institution d) social cohesion and solidarity e) 

energy and environmental resource f) safety and security. 
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5.4. Chapter synopsis 

Sustainability is the crux of urban renaissance. Imbibed with utopian 

technological planning, understanding the convergence between smart development 

and sustainable practices for city development is necessary. Smart cities have 

succeeded in bringing high standards of living to its residents. This chapter evaluated 

the long-term sustainability performance of 35 leading European smart cities over 

time from 2015 till 2020 by implementing module 2 of the proposed hybrid decision 

support model, to understand on how these cities address sustainability to make the 

concept of smart sustainable cities more actionable. The proposed novel Double-

Frontier Slack Based Measure Data Envelopment Analysis (DFSBM-DEA) model 

considering undesirable factors in the technology set is used in assessment. An 

integrated relative sustainability performance assessment model considering both the 

optimistic and pessimistic viewpoint simultaneously, in terms of interval efficiency is 

used to determine the most efficient smart city under 6 various dimensions of 

sustainable development. These key dimensions include; Energy and Environmental 

Resource, Governance and Institution, Economic dynamism, Social cohesion and 

solidarity, Climate Change and, Safety and Security. A productivity progress 

assessment from a double frontier perspective using a modified Malmquist-DEA 

model is then used to capture the response of each smart city in terms of their 

productivity growth towards achieving sustainable development. Results show Dublin 

(ranked 1st) as the most smart and sustainable European city under all the proposed 

dimensions of sustainable development from the double-frontier perspective. Along 

with Dublin lies Oslo, Zurich, and Amsterdam as the cities with high aggregate 

sustainability performance. The results also revealed significant difference in the 

productivity progress values from the optimistic and pessimistic viewpoint, thus 
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exemplifying the significance for the proposed aggregate productivity progress 

measurement model. The findings of the present study contribute to knowledge and 

practice for smart city modellers, decision makers and urban planners, by aiding 

methodological clarity in assessing sustainable capacity of cities from  a double 

frontier perspective and, in particular, by drawing attention to underlying assumptions 

about the role of sustainability in smart city development. The research finds of this 

chapter stands as a breakthrough in the field of relative sustainability assessment 

using non-parametric approaches and a benchmark for global smart cities to shape 

their development in light of sustainability. 
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CHAPTER 6: A NOVEL EXPLAINABLE MACHINE LEARNING BASED 

URBAN RESILIENCE AND LIVABILITY ASSESSMENT 

6.1 General outline 

Livability and resilience paradigm have been used interchangeably in several 

context targeting the soul agenda; quality of life with a smart growth strategy to 

rebound post stress. This chapter presents an empirical solution taking the case of 35 

tech-driven European cities, to the proposed novel two-stage model combining 

metric-distance based multivariate analysis with machine learning techniques for the 

assessment of urban livability and resilience of smart cities based on various 

influential indicators. This chapter is a practical implementation and validation of 

module 3 in the proposed hybrid decision support model. A step forward is taken to 

aggregate the performance and develop an aggregate model to understand the co-

creation of resilience and livability under the smart city paradigm. Clustering and 

classification algorithms form the base of the assessment, with scores and ranks of 

smart cities based on their resilience and livability performance. All the predictive 

classification models were tested and validated for performance based on the 

parameters; accuracy, Cohen’s Kappa (κ) and average area under the precision-recall 

curve (AUC-PR). 

6.2 Significance and objective 

Given the intrinsic element of kinship between urban resilience and 

livability, it is crucial for planners and policy makers to analyze these paradigms 

under a generalized frame of reference tailored across multiple dimensions. Thus, 

investigating smart city development from a broader strategic vision in light of 

resilience capacity and livability is crucial. For the same, several assessment 

approaches exist such as the non-parametric optimization based techniques like the 
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data envelopment analysis, composite index based scoring, GIS and remote sensing 

based assessments and many more. Machine learning, a subset of artificial 

intelligence (AI) is one such, that has recently gained immense attention owing to its 

ability to effectively determine the relationship between the input features and the 

response variable (s) in a complex system. Despite their great capability, machine 

learning models are rarely applied in the field of resilience and livability assessments 

in an urban scale. In this research, a large dataset of smart cities has been collected 

and used to propose a novel machine learning based framework, as presented in 

Chapter 3. Several machine learning models have been investigated to propose the 

best model for predicting the livability and resilience level of smart cities. To this end, 

this chapter, dedicated to module 3 of the proposed hybrid decision support model, 

the resilience and liveability assessment module, targets to achieve the following 

objectives through the development of the 2-stage novel approach, as to; 

a) Conduct a comprehensive assessment of city resilience and livability of 35 

leading European smart cities as the case using the proposed novel two-stage 

model (see Chapter 3 for the developed model) based on machine learning, to 

identify their coping capacities based on their clustered performance as high, 

medium, and low. 

b) Predict the degree of livability and resilience, as categorical variables, based 

on the values of the indicators under each dimension of resilience and 

livability using machine learning classifiers. 

c) Compare and select the best classifiers based on coefficients such as model 

accuracy and precision to predict the degree of aggregate performance as the 

classification output. 
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6.3. Numerical solution 

6.3.1. Research data 

In this study, 35 High-tech and top ranked European smart cities as per the 

ranks published in the 2020 IMD Smart City Index were chosen to understand the 

resilience and liveability of smart cities. Due to these cities covering nearly three-

quarter of the list of top 50 leading global smart cities, the sample size is fairly large 

for the results to be economically extrapolated to a global level when understanding 

resilience and liveability in the current smart city development models. Indicators 

were selected across multiple dimensions from the existing literature on resilience and 

liveability criteria. A total of 68 indicators (30 liveability indicators and 38 resilience 

indicators) were used in computing the aggregate performance and building predictive 

models. All the data for each indicator across years from 2015 till 2020 were collected 

from European Commission’s Urban Audit survey (https://ec.europa.eu/ 

eurostat/data/database) and OECD regional and cities statistics 

(https://stats.oecd.org/). City resilience considers four broad dimensions namely; 

social resilience (Säumel et al., 2019; Copeland et al., 2020), economic resilience 

(Williams and Vorley, 2014; Bastaminia et al., 2017), infrastructure and built 

environment (Masoomi, and van de Lindt, 2019), and institutional resilience 

(Guiraudon, 2014). While urban liveability is addressed under three prime dimensions 

namely; accessibility (Lotfi and Koohsari, 2009; Ziemke et al., 2018), community 

well-being (Phillips et al., 2014; Chao et al., 2017), and economic vibrancy. The 

indicators and dimensions selected for urban liveability and city resilience along with 

their desirability values are presented in Table B1 and Table B2, respectively in the 

Appendix B. The correlation matrix for all the indicators under various dimensions of 

https://ec.europa.eu/%20eurostat/data/database
https://ec.europa.eu/%20eurostat/data/database
https://stats.oecd.org/
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urban liveability and city resilience used in the study is shown in Figure 15 and Figure 

16 respectively.  

 

                         a) Accessibility                                      b) Community well-being 

 

 

c) Economic vibrancy    

Figure 15. Correlation matrix for all the indicators under each aspect of urban 

liveability 

 



  

140 

 

 

a) Social resilience                                                                     b) Economic resilience 

 

c) Infrastructure and built environment resilience                 d) Institutional resilience 

Figure 16. Correlation matrix for all the indicators under each aspect of urban 

resilience 

 

6.3.2. Scoring and performance assessment 

In this section, we assess the resilience capacity, liveability, and then 

estimate the aggregate performance of all the 35 European smart cities to address the 

research question on to what level the smart cities of today co-create resilience and 

liveability in their development model. For the same, scores across each dimension 
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under resilience and liveability were calculated and presented in Table 13 and Table 

14, respectively. It is seen that, when understanding social resilience, Amsterdam is 

the most socially resilient smart city with a performance score (Ss) of  0.8965, 

followed by Zurich (Ss = 0. 8873) and London (Ss = 0. 8757) in the 2nd and 3rd place, 

respectively. However, Kiev, Ankara, and Athens are most vulnerable to social 

upheavals in city, which is evident from the significantly low social resilience 

performance of 0.0978 (rank = 35), 0.1529 (rank = 34) and, 0.2534 (rank = 33), 

respectively.  Under economic resilience, Stockholm, Oslo, and Copenhagen with a 

score of 1.0009, 0.9826, and 0.9754 perform significantly well and are ranked 1st , 2nd, 

and 3rd, respectively in the order of their economic resilience. While the least resilient 

smart city to economic shocks is the Ukrainian city of Kiev (SEC = 0.2879). The 

second to the least resilient city is Ankara (SEC = 0.3669, rank = 34) followed by 

Moscow (SEC = 0.4339, rank = 33). Kiev still remains the least resilient city under the 

infrastructure and build environment dimension with a score (SIB) of 0.2841. This 

translates the fact that, Kiev despite being a well-established east European smart city, 

the ability to absorb, and recover from the escalating climate change, disaster and 

environment related risks is relatively low. The same is true in the case of Ankara (SIB 

= 0.3172, rank = 34) and Warsaw (SIB = 0.4679, rank 33) as well. On the contrary, the 

capital of Denmark, Copenhagen has well designed infrastructural resilience in their 

planning model, which is well reflected in their performance (SIB = 0.9554, rank = 1). 

Along with Copenhagen stands Geneva and Amsterdam are in the 2nd and 3rd place, 

respectively under the same dimension. It is seen that Oslo is the most efficient smart 

city in terms of enforcing normative practices in adverse operating environments with 

an institutional resilience score (SIN) of 0.8924. While Copenhagen with a score of 

0.8224 and the English city of London (SIN = 0.8184) also adopt well to changing 
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conditions and thus, institutionally resilient with ranks 2nd and 3rd, respectively. On 

the other hand, Ankara (SIN = 0.1120, rank = 35), Bucharest (SIN = 0.2253, rank = 34), 

and Kiev (SIN = 0.2518, rank = 33) pose insufficient institutional resilience relative to 

the existing smart cities. 

Table 13. Resilience performance for all the 35 smart cities across each dimension of 

urban resilience for the average data over time 2015-2020. 

Smart Cities S1 Rank EC2 Rank IB3 Rank IN4 Rank 

Brussels 0.7190 13 0.7469 19 0.6268 19 0.6490 13 

Sofia 0.4215 31 0.6144 28 0.5665 25 0.2782 32 

Prague 0.6951 15 0.8338 14 0.6928 13 0.4078 27 

Copenhagen 0.8258 8 0.9754 3 0.9554 1 0.8224 2 

Munich 0.7469 10 0.8937 8 0.7168 8 0.5941 17 

Tallinn 0.7414 11 0.8700 9 0.6575 16 0.6215 15 

Dublin 0.6158 19 0.5958 32 0.6840 15 0.6956 9 

Athens 0.2534 33 0.6114 29 0.5872 21 0.5633 18 

Bilbao 0.6491 18 0.6421 25 0.6962 9 0.5497 19 

Lyon 0.5846 20 0.7783 18 0.6961 10 0.6610 11 

Dusseldorf 0.4961 26 0.7122 23 0.5092 28 0.3881 30 

Bologna 0.5437 23 0.6053 31 0.4949 32 0.3292 31 

Hamburg 0.6979 14 0.7003 24 0.5019 29 0.6506 12 

St. Petersburg 0.4545 27 0.7883 17 0.6293 18 0.5463 20 

Marseille 0.5460 22 0.8040 16 0.6437 17 0.5974 16 

Geneva 0.8376 7 0.8274 15 0.8698 2 0.8136 5 

Budapest 0.5662 21 0.7422 20 0.6010 20 0.4833 24 

Manchester 0.8748 4 0.7242 22 0.6892 14 0.5049 22 

Amsterdam 0.8965 1 0.9459 4 0.8388 3 0.7907 6 

Vienna 0.8586 6 0.8431 12 0.7860 4 0.6467 14 

Warsaw 0.5163 25 0.8384 13 0.4679 33 0.4495 25 

Lisbon 0.4402 30 0.7280 21 0.5678 24 0.4449 26 

Bucharest 0.4534 28 0.6320 26 0.4979 30 0.2253 34 

Krakow 0.6574 17 0.9099 5 0.4954 31 0.4955 23 

Bratislava 0.5275 24 0.6106 30 0.5862 22 0.3914 29 

Helsinki 0.6749 16 0.9033 6 0.7820 5 0.6883 10 

Stockholm 0.8634 5 1.0009 1 0.7511 6 0.8171 4 

London 0.8757 3 0.8562 11 0.6960 11 0.8184 3 

Zaragoza 0.7200 12 0.8563 10 0.7341 7 0.7257 8 

Oslo 0.7992 9 0.9826 2 0.5791 23 0.8924 1 

Zurich 0.8873 2 0.9019 7 0.6956 12 0.7901 7 

Moscow 0.3697 32 0.4339 33 0.5313 27 0.4015 28 

Kiev 0.0978 35 0.2879 35 0.2841 35 0.2518 33 

Rome 0.4418 29 0.6197 27 0.5404 26 0.5443 21 

Ankara 0.1529 34 0.3669 34 0.3172 34 0.1120 35 

S1: Social; EC2: Economic; IB3: Infrastructure and Built Environment; IN4: 

Institutional 
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When studying urban liveability of smart cities, it is seen that Geneva 

follows an inclusive urban development pattern with better access to facilities for its 

people. This is well evident when observing the accessibility score (SAC = 1.0721) of 

the ‘peace capital’ of world under the said dimension. London (SAC = 1.0271, rank = 

2) and Stockholm (SAC = 0.9807, rank = 3) are no exception for people to get around 

and live in the city. On the contrary, Athens with a score of 0.2344 is ranked the least 

accessible smart city followed by Bucharest (SAC = 0.3394, rank = 34) and the 

Turkish city of Ankara (SAC = 0.3659, rank = 33). Under the community well-being 

dimension, the north central Swiss state of Zurich is the best performing smart city 

with a score SCWB = 0.6867. London continues its reign as the 2nd best liveable smart 

city (SCWB = 0.6389) committed to build a community with lifelong wellness along 

with Kiev ranked the 3rd (SCWB = 0.6047). However, Ankara (SCWB = 0.1241) remains 

the least liveable city followed by Bucharest (SCWB = 0.1393) and St. Petersburg 

(SCWB = 0.1469) under the community well-being dimension. A well-orchestrated 

response towards economic vibrancy is seen in the case of Munich with a score (SEV) 

of 0.8656. London (SEV = 0.7699; rank = 2) and Zurich (SEV = 0.7220; rank = 3) are 

no far behind in realizing urban vibrancy in their planning model. While Kiev with a 

performance score of 0.0823 is ranked the least economically vibrant smart city, 

followed by Athens (SEV = 0.1204; rank = 34) and Rome (SEV = 0.1976; rank = 33).  
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Table 14. Liveability performance for all the 35 smart cities across each dimension of 

urban liveability for the average data over time 2015-2020. 

Smart Cities AC1 Rank CWB2 Rank EV3 Rank 

Brussels 0.8187 15 0.3404 17 0.4963 18 

Sofia 0.4115 32 0.3585 15 0.3558 29 

Prague 0.6835 21 0.3836 12 0.5506 13 

Copenhagen 0.9416 8 0.3588 14 0.6308 9 

Munich 0.9508 6 0.3382 18 0.8656 1 

Tallinn 0.5179 30 0.2349 28 0.4911 19 

Dublin 0.8671 11 0.4511 8 0.4660 21 

Athens 0.2344 35 0.1672 31 0.1204 34 

Bilbao 0.8172 16 0.3186 22 0.4575 23 

Lyon 0.8339 14 0.3899 11 0.5363 14 

Dusseldorf 0.6874 20 0.3976 10 0.2740 31 

Bologna 0.6150 26 0.2452 27 0.3249 30 

Hamburg 0.8149 17 0.2178 29 0.4342 25 

St. Petersburg 0.6044 27 0.1469 33 0.4634 22 

Marseille 0.6286 25 0.1683 30 0.4793 20 

Geneva 1.0721 1 0.3012 25 0.6195 10 

Budapest 0.6814 22 0.3285 20 0.4966 17 

Manchester 0.9429 7 0.3098 23 0.6660 7 

Amsterdam 0.9776 4 0.5017 5 0.6942 4 

Vienna 0.8617 12 0.3022 24 0.6631 8 

Warsaw 0.6510 23 0.5417 4 0.4297 26 

Lisbon 0.7045 19 0.3460 16 0.5071 16 

Bucharest 0.3394 34 0.1393 34 0.3812 27 

Krakow 0.7255 18 0.3201 21 0.5110 15 

Bratislava 0.5851 28 0.1552 32 0.4379 24 

Helsinki 0.8544 13 0.3330 19 0.5690 11 

Stockholm 0.9807 3 0.4963 6 0.6774 5 

London 1.0271 2 0.6389 2 0.7699 2 

Zaragoza 0.8830 9 0.3731 13 0.5558 12 

Oslo 0.9756 5 0.4457 9 0.6729 6 

Zurich 0.8812 10 0.6867 1 0.7220 3 

Moscow 0.5780 29 0.4782 7 0.3562 28 

Kiev 0.4468 31 0.6047 3 0.0823 35 

Rome 0.6416 24 0.2754 26 0.1976 33 

Ankara 0.3659 33 0.1241 35 0.2466 32 

AC1: Accessibility; CWB2 : Community well-being; EV3 : Economic vibrancy 

 

6.3.3. Clustered performance assessment 

Fuzzy c-means algorithm is used to cluster the smart cities based on the 

scores obtained under each dimension of liveability and resilience. The number of 



  

145 

 

clusters considered were within the range of [3, 10], and the optimum number of 

clusters were determined using two performance measures: namely, partition 

coefficient (PE) and partition entropy coefficient (PEC). The maximum value of PEC 

and the minimum value of PE corresponds to a good partition. The results of fuzzy c-

means suggested that the optimum number of clusters corresponds to three, as can be 

observed in Figure 17(a)-3(c) showing the distribution of PEC and PE with the 

number of clusters for liveability, resilience, and aggregate performance, respectively.  

 

a) Urban livability 

 

b) Resilience  
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c) Aggregate performance 

Figure 17. Variation of performance measures with the number of clusters 

 

Figure 18(a)-(c) show the results of fuzzy c-means cluster analysis using the 

optimum number of clusters for urban liveability, city resilience, and aggregate 

performance, respectively as high, medium, or low. As can be observed in these 

figures, most of the smart cities fall under the medium level of liveability (43%), 

while 31% and 26% of the smart cities fall under high and low levels of liveability, 

respectively. With regard to the resilience level, the majority of the smart cities (51%) 

fall under the medium level of resilience, while 40% and 9% of the smart cities fall 

under the high and low levels of resilience, respectively. In Figure 18(a), Copenhagen, 

Geneva, Amsterdam, Stockholm, London, Vienna, Manchester, Munich, Zaragoza, 

Oslo, and Zurich were grouped under the high liveability performance class. 

However, all these smart cities remained unchanged with smart cities such as Lyon, 

Tallinn and Helsinki newly added to the high performing category while clustering 

cities based on resilience (Figure 18(b)). When attempting to understand the smart 

cities that co-create resilience and liveability together in their development model, it 

is seen that, all the smart cities that are under the high liveability performing class 

remains the same except for Manchester being replaced by the Finnish city of 
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Helsinki. It is seen that Bologna, Sofia, Athens, St. Petersburg, Bratislava, Bucharest, 

Kiev, Rome, and Ankara fall under the low performance cluster for liveability. When 

taking a look into the smart cities classed under the aggregate category, we can see 

that St. Petersburg is pushed to the medium performance class while Moscow is added 

to the low performance cluster. All the other smart cities under the low liveability 

performance cluster remains same in the low aggregate performance cluster, Figure 

18(c). While Kiev and Ankara remain in the low performance class in all the three 

assessments conducted with Moscow added to the list under resilience. The trend in 

performance of each of the European smart cities under liveability, resilience, and 

aggregate categorization over time from 2015 till 2020 are shown in  Figure 19(a)-(c), 

respectively. 

 

(a) 
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(b)  

 

(c)  

Figure 18. Distribution of the smart cities based on the level of  (a) Livability (b) 

Resilience (c) Aggregate performance 

 



  

149 

 

 

(a) Liveability 

 

(b) Resilience 

(c) Aggregate performance 

Figure 19. Progressive segmented performance of smart cities over time (2015-2020) 
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6.3.3. Classification models 

Different ML algorithms were trained on the annual data for the smart cities 

(a total of 210 data points) to predict the level (high, medium, or low) of liveability 

and resilience of the smart cities based on the values for the indicators under each 

dimension Besides, ML-based models were proposed to predict the level of aggregate 

performance of smart cities based on the values for the indicators under the 

dimensions of the liveability and resilience criteria. To assess the degree of liveability 

of smart cities, the indicators under each dimension of the criteria liveability, namely; 

accessibility, community well-being, and economic vibrancy (a total of 10 indicators 

under each dimension) were considered as input features. Thus, the input vector for 

the assessment of liveability level comprised 30 predictors. Similarly, for resilience 

level, the indicators related to social resilience, economic resilience, infrastructure and 

built environment, and institutional resilience (a total of 38 indicators) were used as 

predictors that determined the response variable, namely, the level of resilience. The 

dataset was split into train and test sets that comprised of 80% and 20% of the 

complete dataset, respectively. The optimized hyperparameters for each model is 

presented in Table 15. 

To compare the classification models, the coefficients namely; overall 

accuracy (ACC), Cohen’s Kappa (κ), and the average area under the precision-recall 

curve (AUC-PR) were used. Table 16, Table 17 and Table 18 presents the accuracy, 

Cohen’s Kappa, and average AUC-PR of each model on the training and test datasets. 

Among the single models, CART showed the highest performance in predicting the 

level of liveability in smart cities on the training dataset (95% accuracy), however, it 

showed low performance on the test dataset (78% accuracy). Similarly, despite a 

perfect agreement and an excellent level precision in the training group of the model 
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created by CART (κ = 0.926; AUC-PR = 0.979), the resulting value showed only a 

moderate agreement (κ = 0.471) and marginal precision (AUC-PR = 0.642) in the 

testing group. These results show the low generalization ability of a single CART 

model. As listed in Table 16 and Table 17, the ensemble models showed higher 

accuracy compared to the single models. Among all models, the GBM model showed 

the most accurate prediction on the test dataset (95% accuracy), while the Naïve 

Bayes model showed the least predicted performance on the test dataset. Similarly, 

the GBM showed the best performance in predicting the level of resilience on the 

training dataset (ACC = 1.00, κ = 1.00, AUC-PR = 1.00). The accuracy of the GBM 

model in predicting the degree of resilience was 93% on the test dataset compared to 

90%, 85%, 80%, 76%, and 73% for RF, CART, SVM, kNN, and Naïve Bayes, 

respectively, as listed in Table 17. Random forest is the second-best model in 

predicting the level of liveability and resilience of the smart cities, as listed in Table 

16 and Table 17. The predictive accuracies of the ML algorithms for aggregate 

performance level are listed in Table 18. The Naïve Bayes classifier showed the least 

performance on the test set, as listed in Table 18. The GBM exhibited the highest 

performance with accuracies of 99% and 90% on the training and test sets, 

respectively. Similarly, in the training group, the GBM model exhibited a strong 

agreement (κ = 0.991) and a superior level of precision (AUC-PR = 1.00). Similarly, 

it showed the highest AUC-PR value of 0.913 and Cohen’s Kappa κ value of 0.816 in 

the testing group. Precision-recall curve based on the test dataset for livability and 

resilience performance is shown in Figure C1(a)-(f) and Figure C2(a)-(f) respectively 

in Appendix C. For brevity, the precision-recall curve based on the train dataset is 

shown in Figure C3(a)-(f) for livability and Figure C4(a)-(f) for resilience. 

 



  

152 

 

Table 15. Optimal values for the hyper-parameters of the ML models 

Model Hyper-parameters Optimal values 

  Liveability  Resilience  Aggregate  

kNN k 12 11 15 

CART Maximum depth 4 7 7 

SVM Kernel poly poly poly 

C 0.01 0.01 0.1 

RF Number of estimators  13 50 14 

 Maximum depth  4 9 4 

 Minimum sample split  2 2 2 

 Minimum sample leaf 1 1 1 

 Maximum features auto auto auto 

GB Number of estimators 10 5 3 

  Maximum depth 3 10 3 

 Learning rate 0.05 0.2 0.5 

 Maximum features sqrt sqrt sqrt 

 

Table 16. Performance of different models in predicting liveability level 

Model Accuracy Cohen’s Kappa Average AUCPR 

Train set Test set Train set Test set Train set Test set 

Naïve Bayes 0.85 0.76 0.761 0.595 0.931 0.792 

kNN 0.85 0.88 0.759 0.793 0.910 0.910 

SVM 0.90 0.83 0.843 0.714 0.990 0.936 

CART 0.95 0.78 0.926 0.471 0.979 0.642 

RF 0.99 0.88 0.982 0.795 0.999 0.907 

GBM 0.97 0.95 0.954 0.916 0.996 0.960 

 

Table 17. Performance of different models in predicting resilience level 

Model Accuracy Cohen’s Kappa Average AUCPR 

Train set Test set Train set Test set Train set Test set 

Naïve Bayes 0.82 0.73 0.722 0.565 0.901 0.800 

kNN 0.79 0.76 0.683 0.607 0.880 0.850 

SVM 0.85 0.80 0.775 0.681 0.961 0.916 

CART 0.98 0.85 0.973 0.792 0.991 0.812 

RF 1.00 0.90 1.000 0.837 1.000 0.909 

GBM 1.00 0.93 1.000 0.877 1.000 0.954 
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Table 18. Performance of different models in predicting aggregate performance level 

Model Accuracy Cohen’s Kappa Average AUCPR 

Train set Test set Train set Test set Train set Test set 

Naïve Bayes 0.89 0.73 0.835 0.543 0.961 0.751 

kNN 0.80 0.78 0.681 0.623 0.882 0.877 

SVM 0.99 0.76 0.991 0.578 0.999 0.932 

CART 0.99 0.76 1.000 0.292 1.000 0.502 

RF 0.98 0.85 0.972 0.733 0.999 0.896 

GBM 0.99 0.90 0.991 0.816 1.000 0.913 

 

The performance of the ensemble models, particularly, RF and GBM models, 

is further investigated with the aid of a confusion matrix, which is a table presenting 

the actual level versus the predicted level of liveability, resilience, and aggregate 

performance of smart cities. Other performance metrics include recall and precision. 

Precision refers to the percentage of the correctly predicted level of liveability or 

resilience of the smart cities by the ML model. In addition, the actual 

liveability/resilience/aggregate performance level that are correctly predicted by the 

algorithm is recall. Figure 20(a)-(d) show the confusion matrix for the level of 

liveability on both the train and test sets using the RF and GBM models, while Figure 

21(a)-(d) show the confusion matrix using the RF and GBM for the resilience level of 

the smart cities. In these figures, the diagonal elements show the number of correctly 

predicted liveability/resilience levels along with recall in percentage. The proposed 

GBM showed high precision, recall, and accuracy in identifying the level of 

liveability and resilience of the smart cities, as shown in Figure 20(a)-(d) and Figure 

21(a)-(d), respectively. Figure 22(a)-(d) show the confusion matrix for aggregate 

performance level based on the proposed RF and GBM models, where AP stands for 

aggregate performance. As can be observed in these figures, the proposed GBM 

model showed high accuracy, recall, and precision in predicting the aggregate 

performance level for the smart cities on both the training and test sets. Thus, it can be 
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concluded that the proposed GBM can effectively be used to predict the level of 

liveability, resilience, and aggregate performance of future smart cities. Figure 23(a)-

(c) show the Spider diagram denoting the balanced accuracy (ACC), precision (AUC-

PR), and agreement (κ) on the classification outputs for all the different classifiers to 

establish resilience, liveability, and aggregate performance assessment. 

  

(a) RF on train set                                         (b) RF on test set 

 
 

(c) GBM on train set (d) GBM on test set 

Figure 20. Confusion matrix of RF and GBM classifier for livability level 
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(a) RF on train set (b) RF on test set 

  

 

 

(c) GBM on train set (d) GBM on test set 

Figure 21. Confusion matrix of RF classifier on (a) train set and (b) test set, and GBM 

classifier on (c) train set and (d) test set for resilience level 
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(a) RF on train set (b) RF on test set 

 
 

(c) GBM on train set (d) GBM on test set 

Figure 22. Confusion matrix of RF classifier on (a) train set and (b) test set, and GBM 

classifier on (c) train set and (d) test set for aggregate performance (AP) level 
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(a) Livability  

 

(b) Resilience  

 (c) Aggregate  

Figure 23. Spider diagram denoting the balanced accuracy (ACC), AUC-PR, and the 

agreement (κ) on the classification outputs for different classifiers 
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6.4. Chapter synopsis 

Smart cities are the centers of economic opulence and a hope for 

standardized living. Understanding the shades of urban resilience and liveability in 

smart city models is of paramount importance. This chapter presented the 

implementation and validation of the proposed novel two-stage data driven model 

combining a multivariate metric-distance analysis with machine learning (ML) 

techniques for resilience and liveability assessment of smart cities, module 3 of the 

hybrid decision support model. A longitudinal dataset for 35 top-ranked European 

smart cities from 2015 till 2020 applied as the case study under the proposed 

framework. Initially, a metric distance-based weighting approach is used to weight the 

indicators and quantify the scores across each dimension under city resilience and 

urban liveability. The key dimensions under city resilience include social, economic, 

infrastructure and built environment and, institutional resilience, while under urban 

liveability, the dimensions include accessibility, community well-being, and 

economic vibrancy. Fuzzy c-means clustering as an unsupervised machine learning 

technique is used to sort smart cities based on the degree of performance. In addition, 

an intelligent approach is presented for prediction of the degree of liveability, 

resilience, and aggregate performance of smart cities based on various supervised ML 

techniques. Classification models such as Naïve Bayes, k-nearest neighbor (kNN), 

support vector machine (SVM), Classification and Regression Tree (CART) and, 

ensemble models including Random Forest (RF) and Gradient Boosting machine 

(GBM) were used. Three coefficients (accuracy, Cohen’s Kappa (κ) and average area 

under the precision-recall curve (AUC-PR)) along with confusion matrix were used to 

appraise the performance of the classifier ML models. The results revealed GBM as 

the best classification and predictive model for the resilience, liveability, and 
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aggregate performance assessment. The study in this chapter also revealed 

Copenhagen, Geneva, Stockholm, Munich, Helsinki, Vienna, London, Oslo, Zurich, 

and Amsterdam as the smart cities that co-create resilience and liveability in their 

development model with superior performance. The following chapter 7 would 

discuss in detail the aggregation of all the criteria’s, dimensions and indicators under 

the FSC index for the composite performance assessment. 
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CHAPTER 7: A NOVEL FUZZY MULTI-CRITERIA EXPERT MODEL BASED 

COMPOSITE PERFORMANCE ASSESSMENT 

7.1. General outline 

Future cities are insufficient and non-self-preservative without integrating the 

triple criteria of sustainability, resilience and livability with smartness. This chapter 

takes a step forward in implementing the necessitated triple criteria under a unified 

frame of assessment with inclusion of multiple sub-criteria (dimensions) to construct 

a composite index, the “FSC index” that aids in performance assessment. This chapter 

is thus the practical implementation and validation of the proposed novel fuzzy 

expert-based multi-criteria model (module 4) under the devised novel hybrid decision 

support model. An empirical analysis taking the same set of 35 high-tech smart cities 

in Europe as a case is used to implement the proposed model and, test the robustness 

and validity of the model. The 3-stage integrated model includes SF-AHP for 

weighting the dimensions and main-criteria followed by the distance function based-

approach; the EDAS method to rank and score the smart cities. Fuzzy c-means 

algorithm is then used to segment the smart cities to allocate them into high, medium 

and low performance groups so as to ease the decision making process. Two different 

type of comparative analysis is used as a validation step to understand the robustness 

of the proposed model.  

7.2. Significance and objective 

While attempting to construct a composite index, Becker et al. (2016) 

stresses on the importance of making choices/decisions when weighting and 

combining different criteria at several decision-making (DM) steps. In this context of 

constructing a composite index within multidimensional frameworks, scholars insist 

on the profound efficacy of using the “Multicriteria Decision Making (MCDM)” 



  

161 

 

techniques (Nardo et al., 2008). Several studies have developed and applied the 

MCDM tools to solve different problems in diverse fields such as manufacturing, 

energy production, urban and resilience planning, environment, and sustainability 

(Mardani et al., 2015). The MCDM has been widely used in the research field since 

the 1960s; numerous articles and books have been published to study it (Roy, 2005). 

MCDM methods have been developed to identify the idealistic alternative, categorize 

the provided alternatives into a smaller number of classes, and assist in ranking the 

alternatives in a preferable order. In other words, using MCDM is considered a way to 

solve complex problems by breaking the problem into smaller parts, weighing some 

extrarenal considerations, followed by finalizing judgments about smaller related 

components, reassembling the pieces at the end to present the overall situation 

comprehensively (Mardani et al., 2015). In the DM approach, the selection is made 

between the decision alternatives defined by their aspects. Over time, various MCDM 

tools and techniques have been developed with different theoretical backgrounds and 

types of questions asked. The expansion of MCDM research was enhanced between 

the 1980s and early 1990s to develop several techniques and approaches. For instance, 

Saaty, (1980) published a comprehensive study on the “Analytic Hierarchy Process 

(AHP)”, then in 1996, Saaty published a development study about the “Analytic 

Network Process (ANP)” method (Saaty, 1996). Later, Roy, (1996) summarized the 

material on “Elimination and Choice Expressing Reality” (ELECTRE) methods. 

Moreover, Brauers, (2003) presented a “multi-criteria model based on the multi-

objective optimization by ratio analysis (MOORA)”. The development of hybrid 

methods is becoming recently important built on previously well-known methods. As 

an illustration, the “Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS)” (Hwang and Yoon, 1981), “Decision Making Trial and Evaluation 
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Laboratory (DEMATEL)” (Fontela and Gabus, 1976), and “Vise Kriterijumska 

Optimizacija I Kompromisno Resenje (VIKOR)” (Opricovic, 1998; Aboushaqrah et 

al., 2021) are some to start with. However, vagueness and uncertainties are bound to 

exist when weighting and aggregating criteria and sub-criteria to construct a 

composite index, despite the use of the recent hybrid methods. Weights assigned to 

criteria often increases uncertainty in the scores analyzed (Becker et al., 2017; Gan et 

al., 2017). Similarly, the use of equal weights for criteria ignores the relative 

importance and trade-offs between the criteria used in the assessment process. Fuzzy 

sets based on expert elicitation, proposed by Zadeh (1965) quantitatively characterizes 

these ambiguities and vagueness in decision making with multiple goals and criteria. 

These caveats have spurred research communities to develop robust fuzzy expert-

based multi-criteria models when attempting to quantify multiple main and sub-

criteria for the selection of alternatives by constructing composite indices, thus the 

spotlight of this research. To this end, to illuminate the uncharted hiatus in smart city 

decision making problems and expand the existing knowledge domain, we proposed 

the novel 3-stage model in module 4, which is practically implemented with the below 

mentioned custom tailored objectives for; 

a) Constructing the first of its kind composite index used to evaluate the 

performance of smart cities under the sustainability, urban resilience, and 

liveability criteria using the proposed novel fuzzy expert-based multi-criteria 

decision support model. 

b) Analyzing the performance of 35 European smart cities based on 

sustainability, resilience and livability as the case and rank them based on the 

scores obtained. 

c) Segmenting the performance of smart cities based on the composite scores 
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using clustering techniques as high, medium, and low performing smart cities. 

d) Conducting comparative analysis to assess the validity and robustness of the 

proposed model to rule out uncertainties in the decision-making process.  

7.3. Numerical solution 

7.3.1. Model implementation and composite indexing 

In this study, a novel methodology integrating SF-AHP with the modified 

EDAS methodology and fuzzy c-means clustering is suggested to assess the 

composite performance of smart cities. We determine the weights of the main and 

sub-criteria via SF-AHP, followed by employing the extended EDAS method to 

obtain composite scores and ranks to gauge the smart city performance. Fuzzy c-

means algorithm is used to then group smart cities into clusters of high, medium, and 

low performance, for improved decision making. To empirically test the proposed 

integrated approach, we choose 35 tech-driven smart cities of Europe, as per the ranks 

published in the 2021 IMD Smart City Index. Due to these cities covering nearly 

three-quarter of the list of top 50 leading global smart cities, the sample size is fairly 

large for the results to be economically extrapolated to a global level when 

understanding the combined performance of smart cities across the sustainability, 

resilience, and liveability dimensions in the current smart city development models. 

The sub-criteria were selected through literature review while the main-criteria form 

the prime dimensions of the “Futuristic smart city” paradigm, the cities we aspire. All 

the data across each sub-criteria for the years from 2015-2020 were obtained as scores 

from the results of module 2 and module 3 in the interval [0, 1], which is the input for 

the proposed assessment. Sustainability main-criteria considers namely; climate 

change (Koch and Ahmad, 2018), governance and institution (Estevez et al., 2021), 

economic dynamism (Bonnet et al., 2021), energy and environmental resources 
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(Battarra et al., 2018), safety and security (About-de Chastenet et al., 2016) and social 

cohesion and solidarity (Uzzell et al., 2002) as the sub-criteria. The resilience main-

criteria considers four sub-criteria namely; social resilience (Säumel et al., 2019; 

Copeland et al., 2020), economic resilience (Williams and Vorley, 2014; Bastaminia 

et al., 2017), infrastructure and built environment (Masoomi, and van de Lindt, 2019), 

and institutional resilience (Guiraudon, 2014). While urban liveability is addressed 

under 3 sub-criteria namely; accessibility (Ziemke et al., 2018), community well-

being (Phillips et al., 2014; Chao et al., 2017), and economic vibrancy. The main-

criteria and sub-criteria (dimensions) selected for sustainability, urban liveability, and 

resilience along with their relevance for the composite index construction is presented 

in Table 19.  

Table 19. Main-criteria and sub-criteria for the composite smart city index 

construction 

Main-criteria Sub-criteria Symbol Justification 

Sustainability 

 

Climate change CC Wendling et al., (2018) 

Governance and Institution GI Broccardo et al., (2019) 

Economic dynamism E Kulkki, (2017) 

Energy and environmental 

resource 

EE Pira, (2021) 

Safety and security SS Lacinák and Ristvej, (2017) 

Social cohesion and 

solidarity 

SW Cook and Swyngedouw, 

(2012) 

Resilience 
 

 

Social Resilience S Copeland et al., (2020) 

Economic Resilience EC Bastaminia et al., (2017) 

Infrastructure and Build 

Environment Resilience 

IB Tzioutziou and Xenidis, 

(2021) 

Institutional Resilience IN Wei, (2020) 

Urban 

liveability 

 

Accessibility AC Ziemke et al., (2018) 

Economic vibrancy EV Gonella, (2019) 

Community well-being CWB Chao et al., (2017) 
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Prior to stage 1, a questionnaire was designed to obtain the weights of each 

main-criteria and sub-criteria by smart city experts from both industry and academia 

under a spherical fuzzy environment. The designed questionnaire was sent as an email 

correspondence and the smart city expert opinions were collected based on the AHP 

questionnaires outlined by spherical fuzzy numbers as the linguistic labels to denote 

expert’s unanimity during the weighting process (see Appendix D for the 

questionnaire). A nine-point summative scale was used as the linguistic weights for 

selecting ‘k’ number of criteria and ‘k̂’ number of sub-criteria as per expert (ẽj) 

opinions. The linguistic weighting variables include; “Absolutely more importance 

(AMI), Very high importance (VHI), High importance (HI), Slightly more importance 

(SMI), Equally importance (EI), Slightly low importance (SLI), Low importance (LI), 

Very low importance (VLI), Absolutely low importance (ALI)”. 

Stage 1: SF- AHP to determine the weights of each main criteria and sub-criteria 

Step 1. The hierarchical structure including the main and sub-criteria for the smart 

city selection problem is established as presented in Figure 24. 
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Figure 24. The hierarchical structure of the main and sub-criteria for the smart city 

composite index construction 

 

Step 2. The pairwise comparison matrices for the main and sub-criteria are 

determined by a panel of experts, based on the survey outcomes using the importance 

scale presented in Table 19. The pairwise comparison matrices for main criteria is 

given in Table 20.  The sub-criteria under the 3 main-criteria obtained as a result of 

expert judgments are given in Appendix B in Table B18(a)-Table B20(a).  
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Table 20. The pairwise comparison matrices for main criteria 

 

 Sustainability Resilience Urban liveability 

DM 1 

Sustainability EI SMI HI 

Resilience SLI EI EI 

Urban liveability LI EI EI 

DM 2 

Sustainability EI SMI VHI 

Resilience SLI EI SMI 

Urban liveability VLI SLI EI 

DM 3 

Sustainability EI SMI VHI 

Resilience SLI EI SMI 

Urban liveability VLI SLI EI 

 

To continue, the aggregated fuzzy pairwise comparison matrix for main criteria is 

obtained as given in Table 21. 

Table 21. Aggregated evaluations of experts based on with SF numbers for main 

criteria 

 Sustainability Resilience Urban liveability 

Sustainability (0.50,0.40,0.40) (0.60,0.40,0.30) (0.77,0.23,0.13) 

Resilience (0.40,0.60,0.30) (0.50,0.40,0.40) (0.56,0.43,0.33) 

Liveability (0.23,0.77,0.13) (0.43,0.56,0.33) (0.50,0.40,0.40) 

 

Also, the aggregated fuzzy pairwise comparison matrix for the main and sub-criteria 

is provided in Table B21-Table B23 in Appendix B. 

Step 3. The spherical fuzzy global and local weights of main and sub-criteria are 

calculated, respectively, using the SWAM operator given in Definition 5, with respect 

to each criterion. The weighted arithmetic mean is used to compute the spherical 

fuzzy weights which is presented in Table 22.  
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Table 22. The spherical fuzzy global and local weights of main and sub criteria 

Main-Criteria Weight Sub-criteria Symbol Local 

weights 

Global 

weights 

(kn) (w̃) (k̂
n
) (S) (w̅) (ŵ) 

Sustainability 

 

0.435 Climate change CC 0.226 0.098 

 Governance and Institution GI 0.117 0.051 

 Economic dynamism  E 0.107 0.046 

 Energy and Environmental 

Resource 

EE 0.150 0.065 

 Safety and security  SS 0.196 0.085 

 Social cohesion and 

solidarity 

SW 0.203 0.088 

Resilience 

 

0.313 Social Resilience S 0.345 0.108 

 Economic Resilience EC 0.281 0.088 

 Infrastructure and Build 

Environment Resilience 

IB 0.210 0.066 

 Institutional Resilience IN 0.165 0.052 

Urban 

liveability 

 

0.252 Accessibility  AC 0.196 0.049 

 Economic vibrancy  EV 0.360 0.091 

 Community well-being CWB 0.444 0.112 

 

It is seen from Table 22, that the most important main-criteria for smart city 

performance assessment is Sustainability with a weight (w̃) of 0.435. The most 

important sub-criteria under the dimension’s sustainability, resilience and urban 

livability are climate change (w̅1 = 0.226), social resilience (w̅7 = 0.345), and 

community well-being (w̅13 = 0.444), respectively. The global weights reveal 

community well-being (ŵ13 = 0.112) as the most important sub-criteria followed by 

social resilience (ŵ7 = 0.108), climate change (ŵ1 = 0.098), economic vibrancy (ŵ12 = 

0.091) and social cohesion and solidarity (ŵ6 = 0.088) as the 5 most important sub-

criteria. 

Stage 2: Ranking of the alternatives using  extended EDAS 

Step 4-5: The decision-making matrix is constructed as shown in Table 23. 
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Table 23. Decision making matrix and average solution for all the dimension 

Smart cities Sustainability Resilience Livability 

CC ∙∙∙ SW S ∙∙∙ IN AC ∙∙∙ EV 

Brussels 0.9508 ∙∙∙ 0.9188 0.6225 ∙∙∙ 0.4955 0.7472 ∙∙∙ 0.6866 

Sofia 0.9137 ∙∙∙ 0.7695 0.4684 ∙∙∙ 0.4889 0.6670 ∙∙∙ 0.4480 

Prague 0.8417 ∙∙∙ 0.8016 0.5576 ∙∙∙ 0.5234 0.6936 ∙∙∙ 0.6826 

Copenhagen 0.9583 ∙∙∙ 0.8125 0.5650 ∙∙∙ 0.4691 0.6684 ∙∙∙ 0.6548 

Munich 0.9526 ∙∙∙ 0.9628 0.6615 ∙∙∙ 0.6507 0.8888 ∙∙∙ 0.7460 

Tallinn 1.0000 ∙∙∙ 0.8191 0.4393 ∙∙∙ 0.4050 0.5835 ∙∙∙ 0.5124 

Dublin 1.0000 ∙∙∙ 0.9763 0.6178 ∙∙∙ 0.5097 0.7817 ∙∙∙ 0.7003 

Athens 1.0000 ∙∙∙ 0.8668 0.5207 ∙∙∙ 0.4938 0.6667 ∙∙∙ 0.4891 

Bilbao 0.7657 ∙∙∙ 0.9602 0.6243 ∙∙∙ 0.5780 0.7886 ∙∙∙ 0.7354 

Lyon 1.0000 ∙∙∙ 0.9806 0.5309 ∙∙∙ 0.4277 0.6730 ∙∙∙ 0.6588 

Dusseldorf 1.0000 ∙∙∙ 0.7796 0.7638 ∙∙∙ 0.7143 0.9340 ∙∙∙ 0.8127 

Bologna 0.9843 ∙∙∙ 0.9256 0.3969 ∙∙∙ 0.3580 0.6034 ∙∙∙ 0.4810 

Hamburg 1.0000 ∙∙∙ 0.9977 0.6221 ∙∙∙ 0.5890 0.7587 ∙∙∙ 0.7136 

Petersburg 0.8390 ∙∙∙ 0.7662 0.5732 ∙∙∙ 0.5061 0.7321 ∙∙∙ 0.5856 

Marseille 1.0000 ∙∙∙ 0.8561 0.7220 ∙∙∙ 0.6088 0.8759 ∙∙∙ 0.7934 

Geneva 1.0000 ∙∙∙ 0.9995 0.5437 ∙∙∙ 0.4502 0.7154 ∙∙∙ 0.6845 

Budapest 0.7516 ∙∙∙ 0.7031 0.7402 ∙∙∙ 0.6898 0.8680 ∙∙∙ 0.7998 

Manchester 1.0000 ∙∙∙ 0.9807 0.4704 ∙∙∙ 0.3899 0.7077 ∙∙∙ 0.5343 

Amsterdam 1.0000 ∙∙∙ 0.9803 0.6537 ∙∙∙ 0.6265 0.7928 ∙∙∙ 0.6878 

Vienna 0.9367 ∙∙∙ 0.7889 0.6000 ∙∙∙ 0.5236 0.7696 ∙∙∙ 0.6731 

Warsaw 0.7492 ∙∙∙ 0.8168 0.7623 ∙∙∙ 0.6219 0.8990 ∙∙∙ 0.8024 

Lisbon 0.7660 ∙∙∙ 0.6678 0.6388 ∙∙∙ 0.5280 0.7825 ∙∙∙ 0.7623 

Bucharest 0.8339 ∙∙∙ 0.7716 0.6605 ∙∙∙ 0.6250 0.8374 ∙∙∙ 0.7346 

Krakow 0.7903 ∙∙∙ 0.6201 0.6143 ∙∙∙ 0.5175 0.7983 ∙∙∙ 0.6288 

Bratislava 0.7824 ∙∙∙ 0.6113 0.6580 ∙∙∙ 0.6267 0.8140 ∙∙∙ 0.7025 

Helsinki 0.9643 ∙∙∙ 0.7164 0.6738 ∙∙∙ 0.5721 0.8164 ∙∙∙ 0.7420 

Stockholm 1.0000 ∙∙∙ 0.9461 0.7539 ∙∙∙ 0.5752 0.8701 ∙∙∙ 0.7927 

London 0.9827 ∙∙∙ 1.0000 0.7288 ∙∙∙ 0.5954 0.8550 ∙∙∙ 0.8082 

Zaragoza 0.7231 ∙∙∙ 0.9049 0.6510 ∙∙∙ 0.6212 0.8055 ∙∙∙ 0.6941 

Oslo 1.0000 ∙∙∙ 1.0000 0.6779 ∙∙∙ 0.5505 0.8360 ∙∙∙ 0.7122 

Zurich 1.0000 ∙∙∙ 1.0000 0.6570 ∙∙∙ 0.6561 0.8092 ∙∙∙ 0.6879 

Moscow 0.6845 ∙∙∙ 0.9814 0.7143 ∙∙∙ 0.6370 0.8362 ∙∙∙ 0.7417 

Kiev 0.4822 ∙∙∙ 0.5613 0.7510 ∙∙∙ 0.5889 0.8691 ∙∙∙ 0.7773 

Rome 0.7111 ∙∙∙ 0.9601 0.7726 ∙∙∙ 0.7090 0.8954 ∙∙∙ 0.8330 

Ankara 0.7599 ∙∙∙ 0.6079 0.5995 ∙∙∙ 0.5689 0.7756 ∙∙∙ 0.6472 

x̄j 0.8893 ∙∙∙ 0.8518 0.6288 ∙∙∙ 0.5569 0.7833 ∙∙∙ 0.6899 
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Step 6: The Pij
+ and Nij

-  are estimated as given as Table 24 and Table 25. 

Table 24. Positive distance (Pij
+) from average solution of all alternatives 

Smart cities Sustainability Resilience Livability 

CC ∙∙∙ SW S ∙∙∙ IN AC ∙∙∙ EV 

Brussels 0.0813 ∙∙∙ 0.0780 0.0577 ∙∙∙ 0.0646 0.0457 ∙∙∙ 0.0594 

Sofia 0.0548 ∙∙∙ 0.0000 0.0000 ∙∙∙ 0.0281 0.0108 ∙∙∙ 0.0000 

Prague 0.0165 ∙∙∙ 0.0096 0.0585 ∙∙∙ 0.0623 0.0659 ∙∙∙ 0.0447 

Copenhagen 0.0936 ∙∙∙ 0.0117 0.1000 ∙∙∙ 0.0481 0.0548 ∙∙∙ 0.0721 

Munich 0.0780 ∙∙∙ 0.1303 0.1319 ∙∙∙ 0.2255 0.1431 ∙∙∙ 0.1116 

Tallinn 0.1251 ∙∙∙ 0.0179 0.0805 ∙∙∙ 0.0428 0.0327 ∙∙∙ 0.0453 

Dublin 0.1251 ∙∙∙ 0.1461 0.0651 ∙∙∙ 0.0770 0.0764 ∙∙∙ 0.0672 

Athens 0.1251 ∙∙∙ 0.0274 0.0179 ∙∙∙ 0.0215 0.0127 ∙∙∙ 0.0000 

Bilbao 0.0000 ∙∙∙ 0.1269 0.1331 ∙∙∙ 0.1139 0.1101 ∙∙∙ 0.0911 

Lyon 0.1251 ∙∙∙ 0.1514 0.0610 ∙∙∙ 0.0070 0.0275 ∙∙∙ 0.0626 

Dusseldorf 0.1251 ∙∙∙ 0.0309 0.2160 ∙∙∙ 0.2828 0.1926 ∙∙∙ 0.1867 

Bologna 0.1066 ∙∙∙ 0.0860 0.0147 ∙∙∙ 0.0093 0.0092 ∙∙∙ 0.0052 

Hamburg 0.1251 ∙∙∙ 0.1718 0.0918 ∙∙∙ 0.1201 0.0940 ∙∙∙ 0.1081 

Petersburg 0.0647 ∙∙∙ 0.0208 0.0327 ∙∙∙ 0.0302 0.0213 ∙∙∙ 0.0095 

Marseille 0.1251 ∙∙∙ 0.0319 0.1958 ∙∙∙ 0.1297 0.1535 ∙∙∙ 0.1612 

Geneva 0.1251 ∙∙∙ 0.1740 0.0305 ∙∙∙ 0.0192 0.0277 ∙∙∙ 0.0676 

Budapest 0.0000 ∙∙∙ 0.0000 0.2428 ∙∙∙ 0.2906 0.1710 ∙∙∙ 0.1800 

Manchester 0.1251 ∙∙∙ 0.1525 0.0371 ∙∙∙ 0.0109 0.0280 ∙∙∙ 0.0378 

Amsterdam 0.1251 ∙∙∙ 0.1511 0.1214 ∙∙∙ 0.1270 0.0968 ∙∙∙ 0.1013 

Vienna 0.0827 ∙∙∙ 0.0240 0.0413 ∙∙∙ 0.0490 0.0349 ∙∙∙ 0.0590 

Warsaw 0.0000 ∙∙∙ 0.0015 0.2352 ∙∙∙ 0.1543 0.1568 ∙∙∙ 0.1630 

Lisbon 0.0408 ∙∙∙ 0.0000 0.1156 ∙∙∙ 0.0973 0.0735 ∙∙∙ 0.1376 

Bucharest 0.0384 ∙∙∙ 0.0000 0.2026 ∙∙∙ 0.2316 0.1466 ∙∙∙ 0.1359 

Krakow 0.0058 ∙∙∙ 0.0000 0.0990 ∙∙∙ 0.1256 0.0772 ∙∙∙ 0.0670 

Bratislava 0.0000 ∙∙∙ 0.0000 0.1086 ∙∙∙ 0.1282 0.1225 ∙∙∙ 0.0976 

Helsinki 0.1058 ∙∙∙ 0.0000 0.1163 ∙∙∙ 0.1195 0.0637 ∙∙∙ 0.1393 

Stockholm 0.1251 ∙∙∙ 0.1114 0.2322 ∙∙∙ 0.0897 0.1239 ∙∙∙ 0.1499 

London 0.1055 ∙∙∙ 0.1746 0.2083 ∙∙∙ 0.1677 0.1216 ∙∙∙ 0.2020 

Zaragoza 0.0000 ∙∙∙ 0.0664 0.1547 ∙∙∙ 0.2198 0.0980 ∙∙∙ 0.1145 

Oslo 0.1251 ∙∙∙ 0.1746 0.1777 ∙∙∙ 0.1285 0.1103 ∙∙∙ 0.1277 

Zurich 0.1251 ∙∙∙ 0.1746 0.0920 ∙∙∙ 0.2010 0.1059 ∙∙∙ 0.0768 

Moscow 0.0000 ∙∙∙ 0.1525 0.1577 ∙∙∙ 0.1908 0.0688 ∙∙∙ 0.1335 

Kiev 0.0000 ∙∙∙ 0.0000 0.2167 ∙∙∙ 0.1473 0.1422 ∙∙∙ 0.1462 

Rome 0.0000 ∙∙∙ 0.1271 0.2376 ∙∙∙ 0.2734 0.1428 ∙∙∙ 0.2154 

Ankara 0.0000 ∙∙∙ 0.0000 0.1515 ∙∙∙ 0.1629 0.0907 ∙∙∙ 0.1236 
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Table 25. Negative distance (Nij
- ) from average solution of all alternatives 

Smart cities Sustainability Resilience Livability 

CC ∙∙∙ SW S ∙∙∙ IN AC ∙∙∙ EV 

Brussels 0.0112 ∙∙∙ 0.0000 0.0676 ∙∙∙ 0.1749 0.0019 ∙∙∙ 0.0642 

Sofia 0.0270 ∙∙∙ 0.0964 0.2550 ∙∙∙ 0.1504 0.0000 ∙∙∙ 0.3506 

Prague 0.0706 ∙∙∙ 0.0678 0.1719 ∙∙∙ 0.1233 0.2528 ∙∙∙ 0.0554 

Copenhagen 0.0155 ∙∙∙ 0.0568 0.2009 ∙∙∙ 0.2054 0.0000 ∙∙∙ 0.1230 

Munich 0.0062 ∙∙∙ 0.0000 0.0810 ∙∙∙ 0.0584 0.0526 ∙∙∙ 0.0304 

Tallinn 0.0000 ∙∙∙ 0.0569 0.3811 ∙∙∙ 0.3157 0.0000 ∙∙∙ 0.3028 

Dublin 0.0000 ∙∙∙ 0.0000 0.0833 ∙∙∙ 0.1627 0.2674 ∙∙∙ 0.0521 

Athens 0.0000 ∙∙∙ 0.0094 0.1906 ∙∙∙ 0.1348 0.5288 ∙∙∙ 0.2911 

Bilbao 0.1387 ∙∙∙ 0.0000 0.1407 ∙∙∙ 0.0762 0.2952 ∙∙∙ 0.0253 

Lyon 0.0000 ∙∙∙ 0.0000 0.2155 ∙∙∙ 0.2378 0.0000 ∙∙∙ 0.1077 

Dusseldorf 0.0000 ∙∙∙ 0.1159 0.0017 ∙∙∙ 0.0000 0.0000 ∙∙∙ 0.0086 

Bologna 0.0000 ∙∙∙ 0.0000 0.3828 ∙∙∙ 0.3649 0.3671 ∙∙∙ 0.3080 

Hamburg 0.0000 ∙∙∙ 0.0000 0.1022 ∙∙∙ 0.0633 0.0000 ∙∙∙ 0.0737 

Petersburg 0.1202 ∙∙∙ 0.1225 0.1205 ∙∙∙ 0.1204 0.0000 ∙∙∙ 0.1606 

Marseille 0.0000 ∙∙∙ 0.0257 0.0480 ∙∙∙ 0.0361 0.1320 ∙∙∙ 0.0111 

Geneva 0.0000 ∙∙∙ 0.0000 0.1662 ∙∙∙ 0.2109 0.0891 ∙∙∙ 0.0754 

Budapest 0.1551 ∙∙∙ 0.1755 0.0647 ∙∙∙ 0.0521 0.0000 ∙∙∙ 0.0206 

Manchester 0.0000 ∙∙∙ 0.0000 0.2901 ∙∙∙ 0.3120 0.2427 ∙∙∙ 0.2633 

Amsterdam 0.0000 ∙∙∙ 0.0000 0.0820 ∙∙∙ 0.0014 0.0000 ∙∙∙ 0.1044 

Vienna 0.0290 ∙∙∙ 0.0990 0.0872 ∙∙∙ 0.1084 0.0000 ∙∙∙ 0.0833 

Warsaw 0.1590 ∙∙∙ 0.0427 0.0228 ∙∙∙ 0.0373 0.0000 ∙∙∙ 0.0000 

Lisbon 0.1839 ∙∙∙ 0.2164 0.0999 ∙∙∙ 0.1485 0.1792 ∙∙∙ 0.0328 

Bucharest 0.1007 ∙∙∙ 0.0945 0.1518 ∙∙∙ 0.1099 0.0000 ∙∙∙ 0.0711 

Krakow 0.1158 ∙∙∙ 0.2714 0.1219 ∙∙∙ 0.1951 0.0000 ∙∙∙ 0.1556 

Bratislava 0.1198 ∙∙∙ 0.2818 0.0614 ∙∙∙ 0.0027 0.0000 ∙∙∙ 0.0795 

Helsinki 0.0205 ∙∙∙ 0.1601 0.0451 ∙∙∙ 0.0924 0.0000 ∙∙∙ 0.0639 

Stockholm 0.0000 ∙∙∙ 0.0000 0.0336 ∙∙∙ 0.0575 0.0067 ∙∙∙ 0.0009 

London 0.0000 ∙∙∙ 0.0000 0.0497 ∙∙∙ 0.0991 0.1828 ∙∙∙ 0.0303 

Zaragoza 0.1890 ∙∙∙ 0.0052 0.1199 ∙∙∙ 0.1046 0.0000 ∙∙∙ 0.1085 

Oslo 0.0000 ∙∙∙ 0.0000 0.1005 ∙∙∙ 0.1404 0.2096 ∙∙∙ 0.0953 

Zurich 0.0000 ∙∙∙ 0.0000 0.0468 ∙∙∙ 0.0226 0.1612 ∙∙∙ 0.0796 

Moscow 0.2311 ∙∙∙ 0.0000 0.0214 ∙∙∙ 0.0474 0.0000 ∙∙∙ 0.0584 

Kiev 0.4592 ∙∙∙ 0.3406 0.0221 ∙∙∙ 0.0901 0.0000 ∙∙∙ 0.0194 

Rome 0.2001 ∙∙∙ 0.0000 0.0087 ∙∙∙ 0.0008 0.0000 ∙∙∙ 0.0081 

Ankara 0.1477 ∙∙∙ 0.2865 0.1970 ∙∙∙ 0.1398 0.0000 ∙∙∙ 0.1855 

 

Step 7: Weighted sum of Pij
+ (P

i

w
) and Nij

-  (Ni
w) is calculated for all the alternatives  
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whose results are shown in Table 26 and Table 27 respectively. 

Table 26. The weighted sum of Pij
+ (P

i

w
) for all alternatives 

Smart Cities 2015 2016 2017 2018 2019 2020 

Brussels 0.057 0.013 0.041 0.170 0.115 0.088 

Sofia 0.050 0.030 0.028 0.054 0.035 0.045 

Prague 0.021 0.033 0.034 0.107 0.018 0.062 

Copenhagen 0.163 0.153 0.042 0.030 0.036 0.048 

Munich 0.093 0.119 0.219 0.153 0.119 0.213 

Tallinn 0.149 0.027 0.028 0.035 0.031 0.041 

Dublin 0.097 0.125 0.212 0.161 0.119 0.110 

Athens 0.043 0.059 0.066 0.037 0.037 0.039 

Bilbao 0.020 0.054 0.112 0.008 0.044 0.143 

Lyon 0.152 0.040 0.032 0.029 0.059 0.024 

Dusseldorf 0.107 0.206 0.148 0.103 0.201 0.189 

Bologna 0.018 0.026 0.031 0.029 0.046 0.024 

Hamburg 0.125 0.217 0.177 0.127 0.099 0.046 

St. Petersburg 0.054 0.064 0.060 0.040 0.062 0.062 

Merseille 0.105 0.158 0.021 0.081 0.172 0.158 

Geneva 0.118 0.093 0.091 0.146 0.093 0.179 

Budapest 0.183 0.123 0.078 0.160 0.149 0.006 

Manchester 0.099 0.102 0.091 0.120 0.088 0.171 

Amsterdam 0.249 0.206 0.175 0.100 0.052 0.087 

Vienna 0.104 0.062 0.055 0.072 0.076 0.136 

Warsaw 0.143 0.019 0.075 0.179 0.149 0.030 

Lisbon 0.001 0.000 0.075 0.017 0.112 0.212 

Bucharest 0.153 0.107 0.193 0.163 0.013 0.013 

Krakow 0.030 0.005 0.044 0.007 0.106 0.193 

Bratislava 0.154 0.119 0.081 0.029 0.080 0.075 

Helsinki 0.042 0.044 0.104 0.075 0.132 0.176 

Stockholm 0.084 0.126 0.237 0.197 0.062 0.044 

London 0.089 0.169 0.108 0.210 0.267 0.198 

Zaragoza 0.109 0.197 0.183 0.020 0.031 0.057 

Oslo 0.099 0.155 0.102 0.178 0.312 0.249 

Zurich 0.234 0.162 0.100 0.147 0.164 0.113 

Moscow 0.061 0.132 0.111 0.168 0.224 0.091 

Kiev 0.090 0.203 0.177 0.031 0.023 0.000 

Rome 0.110 0.030 0.164 0.233 0.172 0.125 

Ankara 0.186 0.189 0.006 0.000 0.066 0.000 
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Table 27. The weighted sum of Nij
-  (Ni

w) for all alternatives 

Smart Cities 2015 2016 2017 2018 2019 2020 

Brussels 0.0735 0.2096 0.0441 0.0125 0.0182 0.0377 

Sofia 0.0673 0.2928 0.1292 0.0446 0.1692 0.2375 

Prague 0.1232 0.1430 0.0863 0.0233 0.1499 0.1407 

Copenhagen 0.0171 0.0094 0.1667 0.1850 0.2728 0.1067 

Munich 0.1289 0.0012 0.0000 0.0166 0.0170 0.0297 

Tallinn 0.0731 0.2692 0.4120 0.2125 0.4056 0.0776 

Dublin 0.1550 0.0220 0.0000 0.0004 0.0242 0.0249 

Athens 0.2566 0.1091 0.0555 0.1437 0.2244 0.0694 

Bilbao 0.1421 0.1025 0.0706 0.1468 0.1301 0.0921 

Lyon 0.0196 0.1559 0.1406 0.2533 0.1152 0.1468 

Dusseldorf 0.0182 0.0188 0.0264 0.0168 0.0492 0.0049 

Bologna 0.1913 0.3255 0.1481 0.3636 0.0586 0.1569 

Hamburg 0.0317 0.0058 0.0128 0.0354 0.0383 0.2275 

St. Petersburg 0.0880 0.0410 0.1363 0.1928 0.0607 0.0641 

Merseille 0.0445 0.0319 0.0822 0.0528 0.0130 0.0206 

Geneva 0.0847 0.0759 0.1874 0.0679 0.0650 0.0000 

Budapest 0.0812 0.0697 0.0939 0.0861 0.0731 0.2350 

Manchester 0.2674 0.0790 0.3141 0.0062 0.0854 0.0075 

Amsterdam 0.0000 0.0040 0.0120 0.0158 0.1744 0.0645 

Vienna 0.0500 0.0926 0.1597 0.0503 0.0525 0.0489 

Warsaw 0.0809 0.0885 0.0723 0.0516 0.0926 0.1224 

Lisbon 0.1919 0.2366 0.0934 0.1157 0.0604 0.0619 

Bucharest 0.0573 0.0484 0.0627 0.0779 0.1884 0.3304 

Krakow 0.1334 0.3453 0.0886 0.1537 0.1054 0.0910 

Bratislava 0.0486 0.0701 0.0942 0.1674 0.0757 0.0840 

Helsinki 0.0836 0.1502 0.0587 0.0834 0.0551 0.0567 

Stockholm 0.0444 0.0522 0.0405 0.0335 0.0988 0.0674 

London 0.1194 0.0144 0.0261 0.0209 0.0209 0.0209 

Zaragoza 0.0667 0.0696 0.0309 0.1204 0.2467 0.0903 

Oslo 0.2369 0.0000 0.0485 0.0026 0.0000 0.0000 

Zurich 0.0080 0.0154 0.0923 0.0393 0.0096 0.0201 

Moscow 0.1356 0.0230 0.0350 0.0354 0.0140 0.0229 

Kiev 0.2075 0.1917 0.1609 0.1745 0.1690 0.2255 

Rome 0.0745 0.0705 0.0782 0.0705 0.0267 0.0609 

Ankara 0.1887 0.1317 0.2382 0.3400 0.2035 0.3985 

 

Step 8: The values of Pi
w and Ni

w for all the alternatives are normalized as illustrated in 

Table 28 and Table 29. 
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Table 28. Normalized values of Pi
w (Pi

r) for all alternatives across years 

Smart Cities 2015 2016 2017 2018 2019 2020 

Brussels 0.230 0.062 0.175 0.727 0.370 0.352 

Sofia 0.199 0.139 0.116 0.231 0.112 0.183 

Prague 0.086 0.153 0.144 0.460 0.058 0.250 

Copenhagen 0.658 0.706 0.176 0.130 0.114 0.191 

Munich 0.375 0.548 0.924 0.655 0.381 0.855 

Tallinn 0.599 0.124 0.118 0.149 0.100 0.164 

Dublin 0.392 0.579 0.895 0.689 0.382 0.443 

Athens 0.174 0.274 0.280 0.157 0.117 0.156 

Bilbao 0.079 0.251 0.472 0.035 0.141 0.575 

Lyon 0.613 0.183 0.134 0.123 0.190 0.094 

Dusseldorf 0.431 0.951 0.623 0.440 0.645 0.758 

Bologna 0.071 0.121 0.132 0.122 0.147 0.094 

Hamburg 0.502 1.000 0.745 0.546 0.318 0.183 

St. Petersburg 0.216 0.297 0.252 0.170 0.198 0.250 

Merseille 0.421 0.727 0.089 0.347 0.550 0.637 

Geneva 0.473 0.427 0.384 0.627 0.299 0.718 

Budapest 0.738 0.568 0.327 0.688 0.479 0.025 

Manchester 0.400 0.470 0.384 0.513 0.283 0.686 

Amsterdam 1.000 0.951 0.739 0.427 0.165 0.349 

Vienna 0.417 0.285 0.231 0.309 0.243 0.544 

Warsaw 0.576 0.088 0.316 0.767 0.477 0.119 

Lisbon 0.002 0.000 0.319 0.072 0.358 0.853 

Bucharest 0.616 0.492 0.815 0.700 0.042 0.053 

Krakow 0.119 0.022 0.186 0.028 0.339 0.775 

Bratislava 0.618 0.551 0.344 0.126 0.257 0.299 

Helsinki 0.169 0.204 0.438 0.319 0.423 0.708 

Stockholm 0.336 0.583 1.000 0.846 0.198 0.178 

London 0.358 0.781 0.455 0.900 0.856 0.795 

Zaragoza 0.438 0.908 0.771 0.085 0.100 0.230 

Oslo 0.400 0.715 0.430 0.764 1.000 1.000 

Zurich 0.941 0.747 0.420 0.628 0.524 0.454 

Moscow 0.245 0.611 0.468 0.719 0.718 0.365 

Kiev 0.362 0.936 0.746 0.132 0.075 0.000 

Rome 0.445 0.139 0.692 1.000 0.550 0.503 

Ankara 0.749 0.873 0.027 0.000 0.211 0.000 

 

  



  

175 

 

Table 29. Normalized values of Ni
w (Ni

r) for all alternatives 

Smart Cities 2015 2016 2017 2018 2019 2020 

Brussels 0.725 0.393 0.893 0.965 0.955 0.905 

Sofia 0.748 0.152 0.686 0.877 0.583 0.404 

Prague 0.539 0.586 0.791 0.936 0.630 0.647 

Copenhagen 0.936 0.973 0.595 0.491 0.328 0.732 

Munich 0.518 0.996 1.000 0.954 0.958 0.925 

Tallinn 0.727 0.220 0.000 0.416 0.000 0.805 

Dublin 0.420 0.936 1.000 0.999 0.940 0.937 

Athens 0.040 0.684 0.865 0.605 0.447 0.826 

Bilbao 0.469 0.703 0.829 0.596 0.679 0.769 

Lyon 0.927 0.548 0.659 0.303 0.716 0.632 

Dusseldorf 0.932 0.945 0.936 0.954 0.879 0.988 

Bologna 0.285 0.057 0.641 0.000 0.856 0.606 

Hamburg 0.881 0.983 0.969 0.903 0.906 0.429 

St. Petersburg 0.671 0.881 0.669 0.470 0.850 0.839 

Merseille 0.834 0.908 0.800 0.855 0.968 0.948 

Geneva 0.683 0.780 0.545 0.813 0.840 1.000 

Budapest 0.696 0.798 0.772 0.763 0.820 0.410 

Manchester 0.000 0.771 0.238 0.983 0.789 0.981 

Amsterdam 1.000 0.988 0.971 0.956 0.570 0.838 

Vienna 0.813 0.732 0.612 0.862 0.870 0.877 

Warsaw 0.697 0.744 0.825 0.858 0.772 0.693 

Lisbon 0.282 0.315 0.773 0.682 0.851 0.845 

Bucharest 0.786 0.860 0.848 0.786 0.535 0.171 

Krakow 0.501 0.000 0.785 0.577 0.740 0.772 

Bratislava 0.818 0.797 0.771 0.540 0.813 0.789 

Helsinki 0.688 0.565 0.857 0.771 0.864 0.858 

Stockholm 0.834 0.849 0.902 0.908 0.756 0.831 

London 0.554 0.958 0.937 0.942 0.948 0.947 

Zaragoza 0.750 0.798 0.925 0.669 0.392 0.773 

Oslo 0.114 1.000 0.882 0.993 1.000 1.000 

Zurich 0.970 0.955 0.776 0.892 0.976 0.950 

Moscow 0.493 0.933 0.915 0.903 0.965 0.943 

Kiev 0.224 0.445 0.610 0.520 0.583 0.434 

Rome 0.721 0.796 0.810 0.806 0.934 0.847 

Ankara 0.294 0.619 0.422 0.065 0.498 0.000 

 

Step 9-10: The Composite Score (CS) for all the smart cities (alternatives) are 

calculated and ranked as shown in Table 30 for all the smart cities across the years 

from 2015 till 2017. The alternative with the highest CS is the best choice among the 
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candidate alternatives (see Figure 25). The results show Amsterdam with a score of 

1.000 is ranked 1st in 2015, followed by Zurich and Copenhagen as the 2nd and 3rd 

position.  

Table 30. The composite scores (CS) for all alternatives for the years 2015-2017 

Smart cities 2015 2016 2017 

Score Rank Score Rank Score Rank 

Brussels 0.478 19 0.228 30 0.534 22 

Sofia 0.474 20 0.146 33 0.401 29 

Prague 0.313 27 0.369 28 0.467 24 

Copenhagen 0.797 3 0.839 8 0.386 32 

Munich 0.446 22 0.772 11 0.962 1 

Tallinn 0.663 10 0.172 31 0.059 35 

Dublin 0.406 25 0.757 12 0.947 3 

Athens 0.107 35 0.479 23 0.573 17 

Bilbao 0.274 30 0.477 24 0.650 14 

Lyon 0.770 4 0.366 29 0.397 30 

Dusseldorf 0.682 9 0.948 3 0.779 8 

Bologna 0.178 33 0.089 34 0.386 31 

Hamburg 0.692 8 0.992 1 0.857 4 

St. Petersburg 0.443 23 0.589 21 0.460 26 

Marseille 0.627 12 0.817 9 0.445 27 

Geneva 0.578 17 0.604 20 0.464 25 

Budapest 0.717 6 0.683 16 0.550 20 

Manchester 0.200 32 0.621 19 0.311 33 

Amsterdam 1.000 1 0.970 2 0.855 5 

Vienna 0.615 13 0.508 22 0.422 28 

Warsaw 0.637 11 0.416 26 0.570 18 

Lisbon 0.142 34 0.157 32 0.546 21 

Bucharest 0.701 7 0.676 17 0.832 7 

Krakow 0.310 28 0.011 35 0.485 23 

Bratislava 0.718 5 0.674 18 0.558 19 

Helsinki 0.428 24 0.385 27 0.648 15 

Stockholm 0.585 15 0.716 14 0.951 2 

London 0.456 21 0.870 4 0.696 10 

Zaragoza 0.594 14 0.853 6 0.848 6 

Oslo 0.257 31 0.857 5 0.656 13 

Zurich 0.956 2 0.851 7 0.598 16 

Moscow 0.369 26 0.772 10 0.691 11 

Kiev 0.293 29 0.690 15 0.678 12 

Rome 0.583 16 0.467 25 0.751 9 

Ankara 0.522 18 0.746 13 0.224 34 

 

The German cities of Hamburg and Munich are ranked 1st in 2016 and 2017 
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respectively, highlighting their essence in co-creating the triple criteria of futuristic 

cities. Further, for the years 2018-2020, the composite performance scores for all the 

smart cities  are calculated and ranked as shown in Table 31. 

Table 31. The composite scores for all alternatives for the years 2018-2020 

Smart cities 2018 2019 2020 

Score Rank Score Rank Score Rank 

Brussels 0.846 5 0.663 9 0.629 17 

Sofia 0.554 21 0.347 28 0.293 31 

Prague 0.698 16 0.344 29 0.448 26 

Copenhagen 0.310 30 0.221 34 0.462 25 

Munich 0.805 9 0.670 8 0.890 2 

Tallinn 0.282 32 0.050 35 0.484 24 

Dublin 0.844 6 0.661 10 0.690 13 

Athens 0.381 23 0.282 32 0.491 23 

Bilbao 0.316 29 0.410 25 0.672 15 

Lyon 0.213 33 0.453 24 0.363 28 

Dusseldorf 0.697 17 0.762 4 0.873 3 

Bologna 0.061 34 0.501 22 0.350 29 

Hamburg 0.724 14 0.612 14 0.306 30 

St. Petersburg 0.320 28 0.524 21 0.545 19 

Marseille 0.601 19 0.759 5 0.792 8 

Geneva 0.720 15 0.570 16 0.859 5 

Budapest 0.725 13 0.649 11 0.217 32 

Manchester 0.748 11 0.536 19 0.833 7 

Amsterdam 0.692 18 0.368 26 0.594 18 

Vienna 0.585 20 0.557 17 0.711 11 

Warsaw 0.813 7 0.625 13 0.406 27 

Lisbon 0.377 25 0.604 15 0.849 6 

Bucharest 0.743 12 0.289 31 0.112 34 

Krakow 0.303 31 0.540 18 0.774 10 

Bratislava 0.333 26 0.535 20 0.544 20 

Helsinki 0.545 22 0.644 12 0.783 9 

Stockholm 0.877 4 0.477 23 0.504 21 

London 0.921 1 0.902 2 0.871 4 

Zaragoza 0.377 24 0.246 33 0.502 22 

Oslo 0.879 3 1.000 1 1.000 1 

Zurich 0.760 10 0.750 6 0.702 12 

Moscow 0.811 8 0.842 3 0.654 16 

Kiev 0.326 27 0.329 30 0.217 33 

Rome 0.903 2 0.742 7 0.675 14 

Ankara 0.032 35 0.354 27 0.000 35 

 

It is seen from Table 31 that London is ranked 1st followed by Rome and 
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Oslo in the 2nd and 3rd position for the year 2018. While the least performing smart 

cities in 2018 are Ankara, Bologna and Lyon ranked 35, 34 and 33 among all the 35 

smart cities. For the years 2019 and 2020, Oslo has retained its position as the top 

ranked smart city followed by London (Rank = 2) and the Russian capital city of 

Moscow (Rank = 3) for the year 2019 and, the German cities of Munich and 

Dusseldorf as the 2nd and 3rd best performing smart cities for the 2020 respectively. 

 

Figure 25. The rankings of  all the alternatives estimated by proposed novel SF-AHP 

& extended EDAS model for 2015-2020 

 

7.3.2. Performance segmentation 

In Stage 3, Fuzzy c-means algorithm is used to cluster the smart cities based 

on the grouped score obtained for each smart city using the SF-AHP and EDAS 

method. The number of clusters considered were within the range of [3, 10], and the 
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optimum number of clusters were determined using two performance measures: 

namely, partition coefficient (PE) and partition entropy coefficient (PEC). The 

maximum value of PEC and the minimum value of PE corresponds to a good 

partition. The results of fuzzy c-means suggested that the optimum number of clusters 

corresponds to 3, as can be observed in Figure 26, which shows the distribution of 

PEC and PE with the number of clusters for the composite score obtained. 

 

Figure 26. Variation of performance measures with the number of clusters 

  

Figure 27(a) shows the results of the fuzzy c-means cluster analysis using the 

optimum number of clusters for the composite performance Score obtained from the 

results of the EDAS method, respectively as high, medium, or low. These show the 

grouped performance of the smart cities across the years. The results reveal most of 

the smart cities fall under the medium performance category (43%), while 31% and 

26% of the smart cities fall under the high and low performance clusters, respectively. 

London is the top ranked smart city followed by Dusseldorf, Zurich and Munich as 

the 1st, 2nd, and 3rd runner up, respectively. The Norwegian capital city of Oslo, 

followed by Dublin, Amsterdam, Hamburg, Rome, Moscow, and Stockholm are also 

grouped under the high performance cluster. The results also reveal Bologna (Rank: 

35) as the least performing smart city, accompanied by Ankara, Tallinn, Sofia, 
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Athens, Prague, Lyon, Kiev, and Krakow in the low performance cluster. Figure 27(b) 

shows the clustered performance of all the 35 European smart cities under the high, 

medium, and low categories for each year from 2015-2020. When taking a closer look 

into the results, smart cities like Ankara, Kyiv, St. Petersburg, Bologna, Bilbao, 

Athens, Prague, and Sofia were placed either under the medium or low performance 

cluster over the years from 2015-2020. These smart cities were never categorized as 

high performing in terms of their combined performance under sustainability, 

resilience, and livability during the selected years. Similarly, Munich, Dublin, 

Dusseldorf, Marseille, Geneva, Amsterdam, Bratislava, Stockholm, London, Zurich, 

Moscow, and Rome were classed only under the high or medium performance cluster 

and were never categorized as low performing. 

 

 

(a) 
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(b) 

Figure 27. a) Distribution of smart cities based on segmented performance with 

respective ranks b) Progressive performance of smart cities over time (2015-2020) 

categorized as high, medium, and low 

 

7.3.3. Comparative analysis 

In this section,  we conduct a comparative analysis to validate the 

effectiveness and robustness of the presented novel SF-AHP & EDAS  model. First, 

we deployed different fuzzy sets in the presented model in order to reveal the effect of 

the different fuzzy sets on the total score and ranking of smart cities. Hence, we 

compared SF-AHP results for determining main and sub-criteria weights with 

Pythagorean Fuzzy-AHP (PF-AHP) (Yager, 2013), Intuitionistic Fuzzy-AHP (IF–

AHP) (Atanassov,1986),  and Interval-valued Neutrosophic Fuzzy-AHP (IVNF-AHP) 

(Radwan et al., 2016). Table 32 shows the criteria weights using NF -AHP, PF-AHP, 

and IF-AHP methods. 

Figure 28 reveals that the most essential main-criteria for SF-AHP, NF-AHP, 

PF-AHP, and IF-AHP are Sustainability (0.435), Sustainability (0.444), Sustainability 

(0.691),  and Sustainability (0.432), respectively. It is seen that the main criterion 

across the SF-AHP, NF-AHP, PF-AHP, and IF-AHP methods are same. It can be said 

that the presented methodology is robust and constant with respect to determining 
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main criteria weights.  

Table 32. Comparative analysis for the criteria weights using SF-AHP, NF-AHP, PF-

AHP, and IF-AHP 

 Main-criteria  weights  Sub-criteria global weights 

Main-criteria SF-

AHP 

NF-

AHP 

PF-

AHP 

IF-

AHP 

Sub-

criteria 

SF-

AHP 

NF-

AHP 

PF-

AHP 

IF-

AHP 

Sustainability 

  

  

  

  

  

0.435 0.444 0.691 0.432 CC 0.098 0.124 0.330 0.097 

GI 0.051 0.024 0.014 0.053 

E 0.046 0.029 0.013 0.048 

EE 0.065 0.056 0.037 0.065 

SS 0.085 0.100 0.120 0.085 

SW 0.088 0.100 0.176 0.085 

Resilience 

  

  

  

0.313 0.338 0.194 0.328 S 0.108 0.128 0.126 0.110 

EC 0.088 0.098 0.048 0.093 

IB 0.066 0.073 0.013 0.071 

IN 0.052 0.032 0.007 0.053 

Liveability 0.252 0.232 0.115 0.240 AC 0.049 0.037 0.005 0.050 

EV 0.091 0.089 0.035 0.088 

CWB 0.112 0.109 0.075 0.102 

 

It is seen from the comparative analysis in the use of different fuzzy-based 

approaches with the AHP technique in assigning weights to main-criteria and sub-

criteria that, the most important sub-criteria while using the SF-AHP, NF-AHP, PF-

AHP, and IF-AHP were found to be community well-being (0.112), social resilience 

(0.128), climate change (0.330), and social resilience (0.110), respectively. The 

results of the comparative analysis using several fuzzy-based approach with AHP 

technique is depicted in Figure 29. It is seen that the most crucial sub-criterion for the 

NF-AHP and IF-AHP methods are the same. Climate change (0.330) is the most 

significant sub-criteria estimated by PF-AHP.  
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Figure 28. Weights of main criteria estimated via different fuzzy sets & AHP 

 

PF sets generalize IF sets and consider uncertainties better than IF sets in 

uncertain environment. Therefore, in a high degree uncertain environment, the sub-

criteria ‘climate change’ has more importance than the sub-criteria ‘social resilience’ 

according to PF set results. In addition, the most important criterion in the spherical 

fuzzy method is the ‘community well-being’ sub-criteria, due to the fact that SF 
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methods considers high degree of uncertainty related to information better than other 

proposed methods.  

 

Figure 29. Weights of sub-criteria estimated via different fuzzy sets & AHP 

 

We then solved the problem via  NF-AHP & EDAS, PF-AHP & EDAS, and 

IF-AHP & EDAS, as well. The results of the comparative analysis for different 

weighting approach integrated with the EDAS method for the year 2020 is shown in 

Table 33. The results indicated that the solution obtained from different fuzzy sets 

integrated AHP-EDAS method is stable and robust. 
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Table 33. Comparable analysis for different weighting method  integrated EDAS for 

2020 year 

Smart cities SF-

AHP&EDAS 

NF-

AHP&EDAS 

PF-

AHP&EDAS 

IF-

AHP&EDAS 

Brussels 0.626 0.633 0.725 0.626 

Sofia 0.297 0.269 0.371 0.297 

Prague 0.449 0.451 0.469 0.449 

Copenhagen 0.457 0.464 0.572 0.457 

Munich 0.885 0.850 0.887 0.885 

Tallinn 0.482 0.509 0.645 0.482 

Dublin 0.691 0.670 0.741 0.691 

Athens 0.490 0.488 0.602 0.490 

Bilbao 0.669 0.689 0.600 0.669 

Lyon 0.357 0.374 0.498 0.357 

Dusseldorf 0.873 0.872 0.922 0.873 

Bologna 0.346 0.374 0.504 0.346 

Hamburg 0.302 0.301 0.463 0.302 

St. Petersburg 0.542 0.535 0.588 0.542 

Merseille 0.791 0.809 0.821 0.791 

Geneva 0.861 0.846 0.862 0.861 

Budapest 0.213 0.194 0.170 0.213 

Manchester 0.832 0.828 0.874 0.832 

Amsterdam 0.599 0.607 0.713 0.599 

Vienna 0.706 0.719 0.705 0.706 

Warsaw 0.402 0.410 0.385 0.402 

Lisbon 0.849 0.873 0.733 0.849 

Bucharest 0.105 0.084 0.080 0.105 

Krakow 0.785 0.763 0.503 0.785 

Bratislava 0.549 0.517 0.340 0.549 

Helsinki 0.787 0.773 0.581 0.787 

Stockholm 0.502 0.537 0.638 0.502 

London 0.876 0.869 0.911 0.876 

Zaragoza 0.504 0.492 0.382 0.504 

Oslo 1.000 1.000 1.000 1.000 

Zurich 0.700 0.685 0.789 0.700 

Moscow 0.655 0.648 0.578 0.655 

Kiev 0.215 0.210 0.154 0.215 

Rome 0.682 0.672 0.525 0.682 

Ankara 0.000 0.000 0.000 0.000 

 

Comparative analysis for different weighting methods integrated with the 

EDAS approach is shown in Figure 30 for the year 2020 and in Figure C5 for all the 

years in Appendix C.   
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Figure 30. Comparative analysis for different weighting methods integrated with 

EDAS method for the year 2020 

 

To continue, in this study, we employed the EDAS methodology to rank the 

alternatives (smart cities) with respect to the values of the composite scores (CS). We 

further compared the results of EDAS method with OCRA (Table 34 and Table 35), 

MAIRCA (Table 36 and Table 37), MARCOS (Table 38 and Table 39) and MABAC 

(Table 40 and Table 41) to reveal the validity and robustness of the results. Taking the 

example case of the Norwegian capital city, Oslo for the year 2020, it is seen that 

Oslo is ranked as the best smart city under the SF-AHP & EDAS method. The same is 

observed under the SF-AHP & OCRA and, SF-AHP & MAIRCA for Oslo (Rank =1). 

This shows that the proposed approach of SF-AHP & EDAS is robust in terms of 

ranking the alternatives, thus a valid approach for composite performance assessment 
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with reduced uncertainties. The results for better visualization have also been 

represented graphically in Figure 31 for the year 2020 using the mentioned approach 

with the novel SF-AHP & EDAS method. 

Table 34. The CS for all alternatives using SF-AHP & OCRA for the year 2015-17 

Smart cities 2015 2016 2017 

Score Rank Score Rank Score Rank 

Brussels 0.783 16 0.389 30 1.345 24 

Sofia 0.728 21 0.233 32 1.362 23 

Prague 0.432 30 0.545 29 1.321 25 

Copenhagen 1.180 3 1.437 5 0.976 32 

Munich 0.764 19 1.345 9 2.428 2 

Tallinn 0.889 10 0.222 34 0.000 35 

Dublin 0.694 22 1.273 12 2.530 1 

Athens 0.265 33 0.931 22 1.638 20 

Bilbao 0.302 32 0.708 27 1.932 11 

Lyon 1.061 4 0.565 28 1.062 31 

Dusseldorf 1.034 5 1.532 2 2.154 6 

Bologna 0.367 31 0.239 31 1.253 28 

Hamburg 0.968 8 1.624 1 2.195 5 

St. Petersburg 0.771 17 1.125 17 1.288 27 

Marseille 0.856 13 1.359 8 1.243 29 

Geneva 0.883 11 1.042 20 1.065 30 

Budapest 0.881 12 1.141 15 1.723 17 

Manchester 0.522 27 1.133 16 0.525 34 

Amsterdam 1.424 1 1.527 3 2.132 7 

Vienna 1.003 7 0.930 23 1.293 26 

Warsaw 0.841 14 0.769 26 1.732 16 

Lisbon 0.000 35 0.229 33 1.375 22 

Bucharest 1.008 6 1.191 13 2.085 8 

Krakow 0.501 28 0.000 35 1.589 21 

Bratislava 0.944 9 1.056 18 1.712 19 

Helsinki 0.689 23 0.818 25 1.971 10 

Stockholm 0.839 15 1.182 14 2.311 4 

London 0.755 20 1.389 7 1.896 13 

Zaragoza 0.765 18 1.282 11 2.382 3 

Oslo 0.546 26 1.496 4 1.764 15 

Zurich 1.350 2 1.393 6 1.717 18 

Moscow 0.579 25 1.300 10 1.912 12 

Kiev 0.238 34 0.960 21 1.867 14 

Rome 0.640 24 0.822 24 2.004 9 

Ankara 0.498 29 1.049 19 0.730 33 
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Table 35. The CS for all alternatives using SF-AHP & OCRA for the year 2018-20 

Smart cities 2018 2019 2020 

Score Rank Score Rank Score Rank 

Brussels 2.029 2 2.447 16 1.322 17 

Sofia 1.468 21 1.438 31 0.775 30 

Prague 1.871 10 1.647 28 1.095 22 

Copenhagen 0.866 28 0.960 34 0.988 26 

Munich 2.073 1 2.859 8 1.751 4 

Tallinn 0.735 31 0.000 35 1.012 25 

Dublin 1.887 9 2.470 15 1.529 10 

Athens 0.822 30 1.188 33 1.069 23 

Bilbao 0.873 27 1.688 26 1.219 20 

Lyon 0.436 33 1.683 27 0.801 28 

Dusseldorf 1.789 14 3.222 4 1.758 3 

Bologna 0.000 35 2.216 19 0.793 29 

Hamburg 1.637 16 2.622 10 0.765 31 

St. Petersburg 0.863 29 2.305 18 1.213 21 

Marseille 1.365 22 2.904 7 1.545 9 

Geneva 1.556 19 2.147 20 1.792 2 

Budapest 1.738 15 2.703 9 0.604 32 

Manchester 1.863 11 1.910 22 1.710 5 

Amsterdam 1.622 17 1.748 25 1.263 18 

Vienna 1.588 18 2.308 17 1.471 12 

Warsaw 1.936 8 2.542 12 0.915 27 

Lisbon 0.922 25 2.482 14 1.506 11 

Bucharest 1.814 13 1.472 30 0.484 34 

Krakow 0.710 32 2.084 21 1.466 14 

Bratislava 1.097 23 2.488 13 1.360 15 

Helsinki 1.497 20 2.593 11 1.647 6 

Stockholm 1.852 12 1.820 23 1.032 24 

London 2.011 3 3.315 3 1.628 7 

Zaragoza 1.092 24 1.307 32 1.239 19 

Oslo 1.979 6 3.760 1 1.964 1 

Zurich 1.979 5 3.139 5 1.551 8 

Moscow 1.965 7 3.522 2 1.467 13 

Kiev 0.880 26 1.582 29 0.551 33 

Rome 1.993 4 2.996 6 1.331 16 

Ankara 0.092 34 1.772 24 0.000 35 
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Table 36. The CS for all alternatives using SF-AHP & MAIRCA for 2015-2017 

Smart cities 2015 2016 2017 

Score Rank Score Rank Score Rank 

Brussels 0.011 21 0.016 30 0.010 15 

Sofia 0.011 20 0.017 32 0.013 29 

Prague 0.014 28 0.013 26 0.012 23 

Copenhagen 0.007 4 0.006 7 0.013 30 

Munich 0.011 19 0.007 9 0.003 1 

Tallinn 0.009 12 0.017 31 0.020 35 

Dublin 0.012 22 0.007 8 0.004 2 

Athens 0.017 34 0.012 22 0.009 14 

Bilbao 0.014 29 0.012 23 0.010 16 

Lyon 0.006 3 0.013 28 0.013 26 

Dusseldorf 0.009 8 0.006 6 0.007 7 

Bologna 0.016 33 0.019 34 0.014 32 

Hamburg 0.008 5 0.004 2 0.005 5 

St. Petersburg 0.012 24 0.010 18 0.012 25 

Marseille 0.009 9 0.007 11 0.011 21 

Geneva 0.009 11 0.009 15 0.011 19 

Budapest 0.009 7 0.010 17 0.012 22 

Manchester 0.015 31 0.009 14 0.014 33 

Amsterdam 0.003 1 0.004 1 0.005 3 

Vienna 0.010 17 0.011 21 0.013 31 

Warsaw 0.010 16 0.013 27 0.011 18 

Lisbon 0.017 35 0.018 33 0.011 20 

Bucharest 0.009 10 0.010 16 0.007 8 

Krakow 0.015 30 0.021 35 0.013 28 

Bratislava 0.008 6 0.010 19 0.012 24 

Helsinki 0.013 25 0.014 29 0.010 17 

Stockholm 0.010 14 0.008 13 0.005 4 

London 0.011 18 0.005 3 0.007 6 

Zaragoza 0.010 15 0.007 12 0.007 9 

Oslo 0.014 27 0.005 4 0.007 10 

Zurich 0.004 2 0.005 5 0.009 13 

Moscow 0.013 26 0.007 10 0.008 11 

Kiev 0.016 32 0.013 25 0.013 27 

Rome 0.009 13 0.012 24 0.009 12 

Ankara 0.012 23 0.011 20 0.018 34 
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Table 37. The CS for all alternatives using SF-AHP & MAIRCA for 2018-2020 

Smart cities 2018 2019 2020 

Score Rank Score Rank Score Rank 

Brussels 0.005 4 0.007 9 0.008 12 

Sofia 0.009 19 0.013 27 0.016 31 

Prague 0.008 16 0.014 28 0.014 27 

Copenhagen 0.015 30 0.016 34 0.012 23 

Munich 0.006 6 0.007 10 0.004 2 

Tallinn 0.015 26 0.019 35 0.011 22 

Dublin 0.004 3 0.007 8 0.007 9 

Athens 0.012 23 0.015 29 0.011 21 

Bilbao 0.015 29 0.013 26 0.010 18 

Lyon 0.016 32 0.011 22 0.014 26 

Dusseldorf 0.007 14 0.006 7 0.004 5 

Bologna 0.020 34 0.010 20 0.014 29 

Hamburg 0.007 13 0.008 12 0.015 30 

St. Petersburg 0.015 27 0.010 18 0.010 19 

Marseille 0.009 18 0.005 5 0.006 7 

Geneva 0.007 11 0.008 11 0.004 3 

Budapest 0.009 17 0.009 14 0.019 32 

Manchester 0.006 7 0.009 15 0.005 6 

Amsterdam 0.007 12 0.013 25 0.009 14 

Vienna 0.010 21 0.009 16 0.008 11 

Warsaw 0.008 15 0.010 19 0.014 28 

Lisbon 0.013 24 0.010 17 0.007 10 

Bucharest 0.009 20 0.016 31 0.021 34 

Krakow 0.016 31 0.011 24 0.009 16 

Bratislava 0.015 28 0.011 23 0.013 24 

Helsinki 0.011 22 0.009 13 0.009 13 

Stockholm 0.005 5 0.011 21 0.011 20 

London 0.004 1 0.003 2 0.004 4 

Zaragoza 0.014 25 0.016 33 0.013 25 

Oslo 0.004 2 0.001 1 0.002 1 

Zurich 0.006 9 0.005 4 0.007 8 

Moscow 0.007 10 0.005 3 0.009 15 

Kiev 0.017 33 0.016 32 0.019 33 

Rome 0.006 8 0.006 6 0.009 17 

Ankara 0.021 35 0.016 30 0.024 35 
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Table 38. The CS for all alternatives using SF-AHP & MARCOS for 2015-2017 

Smart cities 2015 2016 2017 

Score Rank Score Rank Score Rank 

Brussels 0.681 25 0.596 31 0.571 30 

Sofia 0.705 20 0.580 32 0.526 33 

Prague 0.642 27 0.644 29 0.626 28 

Copenhagen 0.812 3 0.813 5 0.791 7 

Munich 0.707 19 0.777 9 0.777 9 

Tallinn 0.760 11 0.604 30 0.540 31 

Dublin 0.694 22 0.772 11 0.774 10 

Athens 0.576 34 0.661 27 0.669 22 

Bilbao 0.629 30 0.666 26 0.659 25 

Lyon 0.807 4 0.679 24 0.622 29 

Dusseldorf 0.777 6 0.822 4 0.813 3 

Bologna 0.601 33 0.541 34 0.508 34 

Hamburg 0.785 5 0.841 2 0.835 1 

St. Petersburg 0.695 21 0.725 18 0.714 19 

Marseille 0.760 10 0.789 7 0.777 8 

Geneva 0.749 13 0.740 17 0.717 17 

Budapest 0.767 9 0.745 16 0.718 16 

Manchester 0.620 31 0.712 20 0.720 15 

Amsterdam 0.890 1 0.865 1 0.833 2 

Vienna 0.754 12 0.711 21 0.679 21 

Warsaw 0.746 15 0.682 23 0.644 26 

Lisbon 0.569 35 0.552 33 0.532 32 

Bucharest 0.771 8 0.756 14 0.730 14 

Krakow 0.637 29 0.520 35 0.469 35 

Bratislava 0.777 7 0.745 15 0.715 18 

Helsinki 0.685 23 0.654 28 0.627 27 

Stockholm 0.747 14 0.762 12 0.745 13 

London 0.708 18 0.798 6 0.803 4 

Zaragoza 0.736 16 0.772 10 0.762 12 

Oslo 0.641 28 0.781 8 0.802 5 

Zurich 0.873 2 0.833 3 0.797 6 

Moscow 0.668 26 0.758 13 0.765 11 

Kiev 0.609 32 0.669 25 0.669 23 

Rome 0.732 17 0.695 22 0.664 24 

Ankara 0.684 24 0.721 19 0.712 20 
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Table 39. The CS for all alternatives using SF-AHP & MARCOS for 2018-2020 

Smart cities 2018 2019 2020 

Score Rank Score Rank Score Rank 

Brussels 0.672 22 0.705 17 0.782 7 

Sofia 0.611 31 0.637 29 0.695 21 

Prague 0.655 26 0.664 23 0.731 16 

Copenhagen 0.664 25 0.623 32 0.606 31 

Munich 0.829 1 0.846 2 0.808 4 

Tallinn 0.478 35 0.458 35 0.558 33 

Dublin 0.829 2 0.846 1 0.824 1 

Athens 0.704 14 0.715 16 0.657 24 

Bilbao 0.704 15 0.718 14 0.635 26 

Lyon 0.631 29 0.634 30 0.579 32 

Dusseldorf 0.789 6 0.780 7 0.767 11 

Bologna 0.596 33 0.624 31 0.525 34 

Hamburg 0.819 3 0.813 5 0.775 10 

St. Petersburg 0.666 24 0.650 27 0.616 28 

Marseille 0.691 17 0.663 24 0.710 19 

Geneva 0.667 23 0.651 26 0.733 15 

Budapest 0.689 18 0.679 21 0.722 18 

Manchester 0.609 32 0.573 33 0.730 17 

Amsterdam 0.818 4 0.813 4 0.776 9 

Vienna 0.649 27 0.639 28 0.693 22 

Warsaw 0.684 20 0.697 18 0.755 13 

Lisbon 0.646 28 0.682 20 0.648 25 

Bucharest 0.765 9 0.776 8 0.752 14 

Krakow 0.613 30 0.659 25 0.612 30 

Bratislava 0.688 19 0.679 22 0.627 27 

Helsinki 0.700 16 0.723 13 0.699 20 

Stockholm 0.806 5 0.825 3 0.813 3 

London 0.775 8 0.766 9 0.815 2 

Zaragoza 0.784 7 0.791 6 0.675 23 

Oslo 0.762 10 0.749 11 0.806 5 

Zurich 0.737 12 0.717 15 0.766 12 

Moscow 0.753 11 0.749 10 0.779 8 

Kiev 0.681 21 0.685 19 0.615 29 

Rome 0.726 13 0.746 12 0.785 6 

Ankara 0.581 34 0.538 34 0.487 35 
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Table 40. The CS for all alternatives using SF-AHP & MABAC for 2015-2017 

Smart cities 2015 2016 2017 

Score Rank Score Rank Score Rank 

Brussels 0.005 20 -0.251 33 -0.067 28 

Sofia -0.016 24 -0.027 25 0.023 18 

Prague 0.116 7 0.121 11 -0.107 30 

Copenhagen -0.014 23 0.139 9 0.218 5 

Munich 0.209 6 -0.107 27 -0.214 33 

Tallinn -0.105 31 0.058 17 0.171 7 

Dublin -0.105 30 0.046 20 0.131 12 

Athens 0.027 19 0.108 13 0.191 6 

Bilbao 0.093 13 -0.110 28 -0.133 31 

Lyon 0.090 14 0.114 12 0.095 14 

Dusseldorf -0.078 29 -0.188 31 0.000 22 

Bologna 0.096 12 0.197 5 0.156 8 

Hamburg 0.000 21 0.048 19 -0.017 23 

St. Petersburg 0.114 9 0.193 6 0.040 17 

Marseille 0.033 18 0.000 23 -0.106 29 

Geneva 0.284 3 0.198 4 0.152 9 

Budapest -0.265 34 -0.052 26 -0.282 34 

Manchester 0.332 1 0.285 2 0.253 2 

Amsterdam 0.116 8 0.035 21 -0.030 26 

Vienna 0.211 5 0.048 18 0.126 13 

Warsaw -0.134 32 -0.211 32 -0.030 25 

Lisbon -0.006 22 -0.013 24 0.132 11 

Bucharest -0.056 28 -0.257 34 0.005 20 

Krakow 0.096 11 0.012 22 -0.024 24 

Bratislava -0.027 25 -0.135 29 -0.055 27 

Helsinki 0.059 16 0.123 10 0.243 3 

Stockholm -0.052 27 0.108 14 0.070 16 

London 0.227 4 0.290 1 0.264 1 

Zaragoza -0.232 33 0.065 16 0.010 19 

Oslo 0.297 2 0.243 3 0.089 15 

Zurich 0.057 17 0.189 8 0.218 4 

Moscow 0.077 15 0.192 7 0.141 10 

Kiev -0.042 26 -0.148 30 0.001 21 

Rome 0.110 10 0.089 15 -0.182 32 

Ankara -0.512 35 -0.472 35 -0.514 35 
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Table 41. The CS for all alternatives using SF-AHP & MABAC for 2018-2020 

Smart cities 2018 2019 2020 

Score Rank Score Rank Score Rank 

Brussels 0.075 19 -0.063 28 -0.150 30 

Sofia 0.199 6 -0.034 25 -0.005 24 

Prague -0.140 29 -0.219 33 -0.053 28 

Copenhagen 0.129 13 0.111 10 0.214 3 

Munich -0.069 26 -0.224 34 0.111 14 

Tallinn 0.169 8 0.084 13 0.088 17 

Dublin 0.026 22 -0.062 27 0.107 16 

Athens 0.017 23 0.065 15 0.238 1 

Bilbao -0.275 33 -0.053 26 -0.164 31 

Lyon 0.110 14 0.103 12 0.161 8 

Dusseldorf -0.244 32 0.113 9 0.017 22 

Bologna 0.136 11 0.071 14 -0.168 32 

Hamburg -0.129 28 0.043 16 0.002 23 

St. Petersburg 0.089 18 0.177 6 0.219 2 

Marseille 0.091 17 0.041 18 0.209 6 

Geneva 0.263 1 0.241 3 -0.027 26 

Budapest 0.029 20 -0.086 30 0.043 20 

Manchester 0.213 3 0.011 20 0.157 9 

Amsterdam 0.098 15 0.104 11 0.144 10 

Vienna 0.209 5 0.170 7 0.043 19 

Warsaw -0.113 27 -0.028 24 0.144 11 

Lisbon 0.147 10 -0.132 32 -0.266 33 

Bucharest -0.160 30 0.002 23 0.049 18 

Krakow -0.217 31 -0.086 31 -0.045 27 

Bratislava 0.028 21 0.123 8 0.110 15 

Helsinki 0.192 7 0.017 19 -0.026 25 

Stockholm 0.213 4 0.249 2 0.213 5 

London 0.012 24 -0.080 29 0.119 13 

Zaragoza 0.135 12 0.199 5 0.129 12 

Oslo 0.167 9 0.204 4 0.189 7 

Zurich 0.257 2 0.304 1 0.213 4 

Moscow 0.008 25 0.006 21 -0.133 29 

Kiev 0.096 16 0.042 17 0.025 21 

Rome -0.282 34 0.003 22 -0.321 34 

Ankara -0.508 35 -0.527 35 -0.530 35 
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Figure 31. Comparative analysis results for all the smart cities in the year 2020 using 

several distance-based methods combined with SF-AHP 

 

7.4. Chapter synopsis 

Cities of the 21st century are buffeted with challenges, leaving potentially 

serious consequences on the future of urban living. Smartening development in cities 

have reinvented hopes in melting down predicaments in early 2000s’. However, 

perplexed by the intensifying complexities in smart cities, urban living in smart cities 

need to be evaluated with multiple conflicting criteria. Multi-criteria based 

evaluations have been an answer to this case when attempting to gauge the composite 

performance of multiple decision making entities. Several multi-criteria assessment 

techniques exist when dealing with selection problems. Nonetheless, the vagueness 
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associated with the methodologies accompanied by uncertainties and complexities are 

inevitable in multi-attribute assessments. Fuzzy based multi-criteria models are often 

an answer to such uncertainties when modelling real-world problems. This chapter 

used the proposed novel fuzzy expert-based multi-criteria decision support model 

(module 4 of the hybrid decision support model), where the Analytical Hierarchy 

Process (AHP) is combined with the extended Evaluation based on Distance from 

Average Solution (EDAS) approach under a spherical fuzzy environment to create the 

“Futuristic Smart City” FSC index for comprehensive performance monitoring. The 

case of 35 high-tech European cities were used to empirically validate the proposed 

novel approach and thus constructing a composite index. The composite index 

considers the intricate facet of integrating the concept of smart cities with 

sustainability, urban resilience, and livability under a unified framework. Fuzzy c-

means algorithm was then used to segment smart cities into high, medium, and low 

performing class. We performed a comparative analysis to validate the effectiveness 

and robustness of the proposed novel SF-AHP & EDAS model. For this, firstly, we 

presented the “pythagorean fuzzy”, “intuitionistic fuzzy”, and “interval valued 

neutrosophic fuzzy integrated AHP & EDAS” in order to reveal the effect of the 

different fuzzy sets on the total score and ranking of smart cities. Secondly, we 

compared the results of SF-AHP& EDAS method with SF-AHP& OCRA, SF-AHP& 

MAIRCA, SF-AHP& MARCOS and SF-AHP& MABAC to reveal the validity and 

robustness of the results. The results revealed London as the top ranked smart city that 

co-create sustainability, resilience, and livability into their development model. 

Dusseldorf, Zurich, Munich, Oslo, Dublin, Amsterdam, Hamburg, Rome, Moscow, 

and Stockholm were no exemption to addressing the tritactic criteria well into their 

urban development plan and were placed in the high performance cluster. The 



  

197 

 

proposed model is efficient to express decision makers preferences in a larger space 

and model functional parameters including hesitancy independently in 3D domain. 

The model supports decision makers and relocation analysts to assess the performance 

of smart cities and set targets to improve performance to remodel urban development 

for the cities to be smart, sustainable, resilient and livable dwelling units. 
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CHAPTER 8: CONCLUSION, RECOMMENDATIONS, AND FUTURE 

PERSPECTIVES 

This dissertation proposed a hybrid decision support model for composite smart city 

performance assessment with novel analytical techniques at various “levels of 

performance measurement”. The proposed model was implemented, tested, and 

validated with longitudinal data from 35 European smart cities. The concluding 

remarks, future perspectives and limitations of each model that form the integral 

building blocks of the hybrid decision support model in terms of the chapters outlined 

in this dissertation are detailed in the succeeding paragraphs. The proposed hybrid 

model revealed robustness and is a sought assessment technique to reduce several 

degrees of uncertainties due to the combination of advanced and novel methods. As a 

future perspective, a computer-based decision support system can be created based on 

the developed decision support model, that is user friendly for decision makers with 

significantly less rigour. In addition, the 118 indicators spread across the 3 dimensions 

of sustainability, resilience, and livability can be integrated with the 91 indicators 

proposed under the U4SSC initiative to measure the progress of cities towards urban 

smartness and meeting the UN SDGs. This can help any city across the world in not 

only monitoring their level of livability, resilience and sustainability, but also urban 

smartness. 

In Chapter 4, “Systems thinking” as a qualitative tool is used in 

understanding the complex interactions. This is the primary module of the proposed 

integrated decision support model (module 1: systems-thinking module). Systems 

thinking through causal loop diagrams help in unwinding complexities in systems 

(Onat et al., 2017). The author highlight that the cities we want are not just cities with 
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digital innovation and smart solutions, but an ecosystem with high grade of 

complexity that is capable to effectively rebound post stress, bring harmony and 

cohesion in living with elevated standards and, sustainable in the production, 

consumption and utilization patterns all made up of multiple partners including city 

residents, government bodies, corporate firms and industries, and social groups 

working towards achieving a desired outcome. These desired outcomes can vary from 

technology, productivity, governance, intelligence, sustainable urban development, 

climate mitigation, accessibility, policy, and many more to a much broader concept 

based on the targets set by the city to be accomplished in light of city development. 

The author further comment that smart cities of future must hold several key features 

addressed under the SRL concept across numerous segments of economy, policies and 

administration, society and urban environment namely: (a) Integration of Information 

and communication technologies (ICTs) with the public services and enhancing the 

accessibility of these services swiftly through several digital platforms and strong 

internet connectivity; (b) Adequate social infrastructures (which includes proper 

health care facilities like hospitals, clinics, dispensaries etc.; educational institutions 

like schools, universities, nurseries and research centers ; recreational areas like parks, 

playgrounds and ball fields) which are well equipped and efficient; (c) Proper safety 

and security of the inhabitants; (d) Sufficient finance and funding for social inclusive 

technology based sustainable development; (e) Effective public services (which 

includes timely waste collection, utilization and management of non-renewable 

resources etc.) that are more accountable, accessible, reasonable and transparent for 

the public; (f) Efficient transportation network made accessible to citizens by 

promoting increased usage of public transport and discouraging private owned modes 

of transportation, encouraging alternative mode to commute within the city and its 
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outskirts (which includes embracing practices of urban sharing like ride sharing, 

carpooling and other peer to peer car sharing services) and effective traffic planning 

to avoid traffic congestion using digital intelligent solutions; (g) Aligning the 

socioeconomic and environmental sustainability aspects with the city development 

goals to promote sustainable development. 

When analyzing the strand of sustainable development under the UNDP 

2030 agenda vis-à-vis smart cities, one must take into consideration all the 

sustainability, resilience and liveability aspects leading to urban development and 

growth. All these aspects required for urban development and advancement including 

resource utilization, establishment retrofitting, technological advancement, etc. needs 

to be consistent to meet the needs of the present and future generation. The 

development should be structured with an equilibrium between the dimensions of 

environment, social, institutional, and economic under the resilience aspect; 

accessibility, economic vibrancy, and community well-being under the liveability 

aspect; and, safety and security, societal well-being, natural and energy resources, 

climate change, and, governance and institution under the sustainability aspect. All 

the aspects should be in line with the smart city agenda aimed at enhancing the quality 

of life and livelihood of the inhabitants, implementing unique architectural language 

to enhance and diversify the economy and attaining city specific goals to meet the 

alarming demand of sustainability adopted through digital intelligent solutions. 

In Chapter 5, the sustainability performance of 35 leading European smart 

cities were studied from the optimistic, pessimistic, and double-frontier perspective 

through a novel DF-SBM DEA model under the extended strong disposability 

assumptions. This formed the module 2, the sustainability assessment module of the 
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proposed hybrid decision support model. The change in productive performance over 

time for the smart cities from 2015 till 2020 was analysed using a modified DF-MPI 

model that accounted for the inclusion of undesirable factors while carrying out the 

assessment. After running the models to understand the optimistic and pessimistic 

DEA-MPI values for all the smart cities in the study, the findings clearly show that 

the productivity values vary significantly under both the perspectives. Thus, the 

traditional approach to only computing the optimistic MPI values when trying to 

understand the productivity change can lead to partial results and not a comprehensive 

overview of the productivity change. Thus, the DF-MPI approach used in the study to 

compute the sustainable productivity change of smart cities result in a panoramic view 

of how smart cities respond to the call of sustainable development over the years 

through technological change. They are geometrically averaged to produce a full 

ranking or an overall assessment of the DMUs. The results after running the models 

for the sustainable development capacity assessment also reveal the true essence of 

measuring the aggregate sustainability performance using the double-frontier 

approach. It is noticed that, under the social cohesion and solidarity dimension, about 

57% of the efficiencies are overestimated by the SBM optimistic model to a score of 

ηoptimistic = 1.000. Similarly, under the economic dynamism dimension, Stockholm 

ranks 30th under both the optimistic and pessimistic scenario, with ηoptimistic and 

ηpessimistic values equal to 0.5793 and 0.9886, respectively. These variations in results 

can lead to different policies when decision making. Thus, a simultaneous evaluation 

of sustainability performance under both the viewpoints using the aggregated model 

as carried out in this study is best recommended. The preliminary application of the 

proposed DF-SBM DEA model in the case of European smart cities, confirmed its 

potential applicability for assessing and comparing cities that aspire a sustainable 
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transformation. The author plans to implement proposed methods in several case 

studies across various scopes of urban sustainability in the future, namely the 

sustainable city, the eco-city, the low-carbon city, the green city etc., to fine-tune the 

proposed steps and validate its applicability. The proposed approach focuses on a 

solid and unified evaluation process for a city-oriented progress assessment towards 

sustainability, capable of generating clear, sufficient, understandable, and ready-for-

benchmarking results and conclusions for all cities globally with similar or different 

sets of sustainability indicators. 

The math to perform better is sceptical and an intricate puzzle even for 

several best performing smart cities. It is best recommended that the sustainable 

growth patterns in cities need to be decoupled from carbon-intensive activities in 

attempts to encourage foreign investments for smarter transition of cities. 

Nevertheless, the increasing use of energy and environmental resources to exemplify 

the economy (examples of Athens, Tallinn and Sofia); declining employment rate in 

attempts to shut down carbon-intensive industries (Munich, Moscow and Vienna); 

lack of capacity to contrive with the judicial system to eliminate crime and theft 

(Kiev, Rome and Bratislava); political instability due to lack of will and opposition 

from public; and an imbalance in the share of renewables among the cities due to new 

energy dependant pathways in action (Kiev, Bucharest and Sofia); can all subpar the 

performance of smart cities, which can also be read from the empirical findings of this 

paper. The least performing European smart cities should set a specific timetable and 

objective for climate change mitigation and distribute carbon reduction duties through 

top-down effects, which will help to monitor and facilitate achieving the objective. In 

recent years, it has been demonstrated that the technological advancements of energy, 

architecture, transportation, agriculture, fisheries, and manufacturing, which are 
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driven by climate policies, are closely related to and promote the transformation of the 

current fossil fuels and black economy (high-pollution) into a green economy. If fiscal 

tax is taken as an incentive or punishment, it will involve an overall economic 

transformation (Al-Buenain et al., 2021). Thus, a combination of high-level decision-

making and coordination among the different parts will facilitate change. Taking a 

top-down approach regarding the allocation of carbon reduction responsibilities, 

timeframes and targets in European smart cities is essential to the supervision and 

achievement of goals. The high awareness of environmental protection and the 

robustness of the regulatory framework can facilitate the effective implementation of 

policies in the least performing smart cities, as industries must comply with relevant 

laws and meet market demands by constantly improving production technology and 

efficiency. A delicate balance between the pillars of sustainable development, 

protectionist measure against unfair competition, building capacity to invite funds and 

investments without tampering the sustainable urban development initiatives and 

positioning as an ambitious de facto leader considering the success of the benchmarks 

can all pave ways for smart cities to target the ever-ambitious goal of transition into a 

smart sustainable city. 

From a methodological point of view, the proposed OSBM and PSBM 

models are non-translation invariant and non-negative undesirable models, i.e., the 

proposed models are capable to only handle positive input and output data. The 

general case where there are negative data for inputs or outputs is non-trivial and 

deserves further discussions. Although technically it should be always possible to 

transfer such cases and then apply the proposed non-negative undesirable models, 

there are many reasons that people still prefer to use negative data in some 

applications. The author suggests Range Directional (RD) models to derive merit 
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functions that can be used to treat the presence of negative data for performance 

assessment. The author further suggests using Evidential Reasoning algorithms with 

mass functions to aggregate the sustainability performance under the double frontier 

approach as a future work. Furthermore, if we wish to use a single ratio to measure 

the radial extension or contraction for both desirable and undesirable part of inputs or 

outputs, then we may have to deal with DEA models with objective functions like θ + 

1/θ. Thus, it is difficult to directly combine the proposed Extended Strong 

Disposability model with standard radial measure while keeping the original input-

output orientation. Alternatively, Super-SBM models can be used for the optimistic 

performance evaluation along with inverted-SBM models for pessimistic evaluations 

in future. Enhanced Russell Measurement (ERM) models can then be combined to 

understand the change in the input and output orientations, which can help support 

decision making by controlling outcomes for studies that are highly dependent on the 

input-output relationships. In addition, the proposed DF-DEA based MPI can be 

easily extended to the global MPI that measures the optimistic efficiencies with a 

unified efficiency frontier and the pessimistic efficiencies with a unified inefficiency 

frontier for time periods t and t + 1. Interested readers may refer to Pastor and Lovell, 

(2005) for the discussions on the global MPI. 

In Chapter 6, the proposed novel two-stage assessment model combining 

multivariate analysis and numerous machine learning models for the first time to 

thoroughly investigate the resilience and liveability of smart cities for a selected set of 

indicators over time was conducted.  This chapter formed the implementation of 

module 3 of the proposed hybrid decision support model, the machine learning model. 

35 top-ranked European smart cities were taken as the case to study the co-creation of 

resilience and liveability in the current existing development models of smart cities 
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using the proposed model in module 3. The results of the multivariate analysis 

revealed only 31% of the smart cities as high performing in terms of both resilience 

and liveability. While 43% of smart cities marginally co-create resilience and 

liveability in their smart development models, nearly 26% of smart cities need to 

make considerable improvements in moving from the low performing to the high 

performing class while structuring smart city policies. Different machine learning 

classifiers were used in the study to predict the level of resilience, liveability, and 

aggregate performance. Parameters such as ACC, Kappa (κ), and AUC-PR were used 

to identify the quality and predictive capacity of each model. The models which 

showed the highest value across each parameter was selected as the best quality 

model. The comparison of different classifiers revealed the proposed Gradient 

boosting machine classifier as the most accurate classifier model that can be used to 

predict the level of liveability, resilience, and aggregate performance of future smart 

cities. It is seen that ensemble modelling delivers accurate and superior predictive 

models over any single learning model. This is attributed to the reduced error variance 

and limited dispersion of model forecasts using ensemble models. 

The author exemplifies the importance in creating liveable smart cities with a 

citizen centric approach. Least liveable and resilient cities can learn from the success 

stories and custom-made initiatives of the best performing smart cities. The author 

recommends taking a closer look into every aspect of the growth puzzle to transform 

smart cities to smarter, resilient, liveable, and sustainable dwelling units. The success 

of Copenhagen, Geneva, Stockholm, Munich, Helsinki, Vienna, London, Oslo, 

Zurich, and Amsterdam, as revealed in the current assessment in co-creating 

liveability and resilience into their development model, can be attributed to their 

people centric initiatives to apprehend the standard of living. The well-integrated 
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bicycle lanes in the unified metropolitan regions of Amsterdam and Copenhagen have 

brought cycling as a social activity than a means to commute around the streets 

(aspects: community well-being, infrastructure and built environment).  The Tour de 

Force initiative by the Danes and the Dutch Cycling Embassy (DCE) initiative have 

created a liveable culture among people to adopt a healthy style of living through 

cycling practice, resulting in improved quality of public spaces, social benefits in 

terms of the total urban kilometres travelled within the cities, increased activity rate of 

youth population, improved accessibility, and reduced impact on the overall carbon 

emissions. Similarly, the Cultural and Creative Cities (CCC) initiative ensures socio-

economic vitality and cultural engagement through job creation and innovation in 

cities, an important parameter for resilient and liveable cities (aspects: social 

resilience, economic resilience and, economic vibrancy). High performing cities like 

Geneva, Stockholm, London, and Zurich are a part of this initiative since 2015 thus, 

pointing out the success mantra in their performance. The ‘Cultural Heritage in 

Action’ (CHA) programs adopted by cities of Eindhoven, Helsinki, Amsterdam, and 

Munich have resulted in establishing a balance in smart targeted growth and resilience 

by bringing cultural investments into the lives of citizens (aspects: community well-

being, social resilience). With highest density of electric car users on road, Oslo’s 

success in strategizing the ambitious ‘Climate and Energy Initiative’ across the years 

from 2015 till 2020 as reported by the GREENGOV research project has resulted in 

socio-economic and environmental resilience. Such are many among the few 

examples that least performing smart cities can take a look into to slide in 

improvements to their existing smart growth agenda. 

Improving inclusive growth with a structured institutional framework is what 

is recommended by the author. The European smart cities loose the shared growth 
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agenda while competing for stronger growth. This is well evident in the case of 

German smart cities like Munich, Dusseldorf, and Hamburg. Munich has pushed its 

boundaries over the years to reach top rank in addressing resilience and liveability 

paradigms while, Dusseldorf and Hamburg remain under marginal performance with 

less growth seen over the years. The reason attributed for the same can be the 

fragmented jurisdictional structure prevalent in the German state, which is evident 

from the ranking of these cities under the institutional resilience and economic 

vibrancy aspects in this study. The author highlights that shared growth must also 

focus across the regions within countries, while most often it is seen only among the 

population. The growth has to be strong, shared, and resilient, as to which the future 

research direction should focus. From a methodological point, the author recommends 

using model-agnostics such as LIME, Surrogate models, and Shapley values to 

explain what different classifiers are doing so as to improve the model interpretability. 

Similarly, an iterative procedure can be adopted to the proposed metric-distance based 

weighting scheme which revises the indicators under each aspect based on the highest 

average spelled coefficient, so as to achieve a model with best quality. 

In Chapter 7, the proposed novel fuzzy expert-based multi-criteria decision 

support model integrating AHP under a spherical fuzzy environment with extended 

EDAS method was implemented. This formed the module 4, the multi-criteria 

assessment module of the proposed hybrid decision support model. The integrated 

approach is combined with fuzzy c-means algorithm to categorize the alternatives into 

respective clusters for improved decision making. The unique characteristic of our 

model is the use of AHP and extended EDAS methodology in an extended form under 

a spherical fuzzy environment. The proposed methodology is used to construct a 

composite index, the FSC index for smart cities with sustainability, resilience, and 
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livability as the main-criteria (dimensions) and other 13 sub-criteria (indicators) 

distributed under each main criteria. A comparative analysis was conducted, which 

revealed the robustness of the proposed SF-AHP and EDAS method in comparison to 

several recent MCATs under the fuzzy environment. The weights assigned to each 

main-criteria and sub-criteria using the SF-AHP approach reveal climate change as 

the most important sub-criteria. The author exemplifies the fact that climate change 

adaption can significantly reduce the exposure of cities to hazards and decrease 

vulnerability. However, The lower rank of smart cities may correspond to an 

unmitigated climate change due to the maladaptation of sustainable and resilient 

practices aimed at strengthening the infrastructure and built environment to resist 

unexpected predicaments. The sync between the impact of climate change on social 

resilience and community well-being, an interaction well discussed among the urban 

planning community is also well acknowledged by the expert panel and thus reflected 

in assigning importance to social resilience and community well-being, which were 

considered a prioritized sub-criteria based on the weight outcome. These paradigms 

have been applied in practice well when taking the success stories of London, 

Dusseldorf, Zurich, Munich, Oslo, Dublin, Amsterdam, Hamburg, Rome, Moscow, 

and Stockholm. These smart cities have clearly showcased high ability in co-creating 

sustainability, livability, and resilience into their development model, which can be 

attributed to both their techno-centric and people-centric initiatives to apprehend the 

standard of living. The constant high performance of London over the years as seen in 

our analysis translates to its policies and well-tailored priorities set to strengthen 

resilience, livability, and sustainability through initiatives such as, ‘Smart London 

Plan’. The smart telecare solutions have helped Zurich deliver effective behavioral 

health to the citizens. The “fix-your-street” initiative of Dublin has helped to increase 
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the safety and security of urban inhabitants by reporting potholes and vandalism 

through a real time application. Such are some real-time success initiatives for many 

developing cities that aspire for better performance to learn from. 

Identifying synergies between the sub-criteria across each main-criteria is 

vital. The global weights obtained using the SF-AHP also reveal the significant 

priority of the sub-criteria “community-wellbeing”. Research has it that, building 

parks, sidewalks, and bicycle tracks can help improve community well-being and 

increase the access of people to connect within every point in city, thus accessibility. 

The ‘Bicycle for Everyone’ initiative by the Dutch city of Amsterdam and the 

innovative strategy ‘Dublin Bikes’ by Dublin are some examples from the many 

targeted initiatives by the local government at improving community well-being and 

accessibility in these cities. One of the fundamental requirements of the modern cities 

is the provision of shaded places aligned with pedestrian walkways for improving 

comfort, which is crucial to improve liveability. The provision of shaded corridors in 

cities can be achieved with artificial structures, while mature trees can provide shaded 

spaces without the use of aluminium, metals, plastic, or any kind of chemically treated 

fabrics. As a part of the existing design guidance, shading with artificial structures is 

recommended in addition to shading provided by building structures. Shading 

structures in Balkan regions of Europe are typically provided with aluminium, wood, 

steel, and hard plastic structures. Hard plastic has the most embodied energy 

emissions as it cannot be recycled. Recycled steel is available in the region, but the 

material with the most recycled content (>80%) is aluminium. However, both 

materials, even including large amounts of recycled content, still have embodied 

energy and, hence, emit carbon during the production of the final product. Combating 

these emissions can bring sustainable outcomes on the society and on the energy 
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resource criterions. Concepts of circular and lean construction principles suggest that 

salvaged material could be used for non-structural-components. Similarly, ensuring 

the fit of European building stocks to compact the changing climatic conditions and 

geographic disruptions is a question of sustainable materials for resilient construction, 

a focus on the infrastructure and built environment pillars of urban resilience. Using 

wood certified by the Forest Stewardship Council (FSC) is a sustainable structure 

material, where sustainable forests to produce such materials do exist in the East 

European provinces and Balkan regions (e.g., Athens, Ankara, Kiev, Moscow, and 

Bucharest), as such, the emissions associated with transportation from foreign sites is 

reduced. Finally, there is no available information related to energy consumed to 

produce solar irradiation reflecting fabrics, but these fabrics are expected to have high 

associated emissions during production. In contrast, shaded paths using locally grown 

trees provide a responsible solution for eliminating unnecessary consumption and 

production of any materials. Therefore, the provision of shaded spaces using trees 

align with responsible consumption and production practices of the United Nations 

Sustainable Development Goals (SDG 12) and enhance community living, thus 

liveability. In addition, introducing trees appropriately within the urban environment 

can significantly reduce the heat stress for park users and reduce air particulate matter 

in the surrounding space in cities, thus attempting to score better in community well-

being and built environment resilience.  

Although the consistency analysis revealed stable results, certain deal of 

inconsistency may occur in the ranking of decision making entities (DMU) due to the 

variations in the threshold parameter (λ). As a future work, revising the EDAS 

methodology under a fuzzy environment with a provision to flexibly adjust the λ 

value can resolve the trade-offs associated with the gain or loss of important DMU 
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and help decision makers arrive at a better choice DMU. Further, a dynamic-fuzzy 

based approach can be integrated with the EDAS methodology, that can handle 

further alterations in the number of alternatives, criteria, and preference of experts 

across time. The proposed approach in this research fails when the expert preferences 

on the weighting of each criteria and sub-criteria changes with respect to time. 

Despite the influence of time in this research, we have ignored the “change in weight” 

phenomenon for computational simplicity. Further investigation is required to address 

these caveats. Author recommends also in adding a translational vector ‘δ’ to the 

elements that hold a negative value in the average solution to transform into a positive 

value in future. In addition, the rank reversal phenomenon when adding additional 

DMUs is a possible case of discussion in future, which remained out of scope for the 

proposed analysis. Alternative techniques to AHP can be used in future to deal with 

the consistency problems as the matrix size increases, when broadening the set of 

criteria and sub-criteria. Further, the composite scores obtained from the EDAS 

method can be regressed against covariates. The composite scores obtained can be 

taken as the response variable of a fractional regression model and modelled using 

Quasi-maximum likelihood estimations to check if the predicted scores lie within the 

defined interval of the original scores obtained from the EDAS approach.  

The outcomes of this dissertation is disseminated through high quality peer-

reviewed journal publications and a conference paper whose list is presented in 

Appendix E. Furthermore, based on the outcomes of the study conducted in this 

dissertation, the author has provided a blueprint of recommendations for cities 

embarking on tailoring their landscape to attempt transformation to the meta goal of 

futuristic smart cities. In order to attain the meta goal of aligning United Nations 

Sustainable Development agenda in smart cities and to reach the penultimate goal of 
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futuristic cities, urban planners and smart city decision makers around the globe can 

adopt the following guidelines, namely: 

1 Despite the fact that smart cities are multi-perspective concepts, human-centric 

approaches are often assumed to be the keystone of city development and 

comprehensive smart strategies as they support economic development in 

cities. Human-centric approaches often act as an antidote for liveable growth in 

intelligent cities. For this, smart cities should act as active learning centres that 

support quality education and lifelong learning opportunities that would, in 

turn, support the growth of smart people. Smart people would contribute to 

more economic growth and flexibility and would act as an inviting factor for 

innovative industries to establish a place in the market. This in turn would open 

a new job market. Such approaches can undoubtfully connect city development 

with SDGs such as SDG 8, SDG 9, and SDG 4. 

2 A multi-level policy and governance framework that includes; civil society, 

multiple stakeholders, public and private sectors, investors, and digitally and 

sustainably enabled landscape is felt necessary. Governance strategies should 

be transparent and should include all the actors and common people so as to 

facilitate an unambiguous bureaucracy, thus structuring better responsible 

governance for citizens. Such governance strategies should offer incentives for 

actors who engage in compacting several sustainability challenges (social, 

economic, and environmental) and promoting sustainable growth in smart 

cities. Such initiatives can link smart city development with sustainable 

development goals such as SDG 1, SDG 2, SDG 6, SDG 7, SDG 9, SDG 11, 

SDG 13, SDG 14, and SDG 15. 
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3 Cities must tap into creating a smart plan that includes engagement with 

universities, research centres, non-profit organizations, non-government 

foreign actors, and international advisory boards. These partnerships facilitate 

several benefits to smart cities. One such benefit is the maximization of limited 

government budget allotted for smart city development. This is acquired 

through PPP. Another benefit is the continuity of ongoing smart city projects 

that may face certain challenges and oppressions due to changes in the ruling 

party during the project execution phase. This is acquired by partnering with 

non-profit organizations, non-government foreign actors, and international 

advisory agents. Partnerships can also offer better expertise in the field of smart 

cities, which cannot be acquired otherwise. This is made possible through 

educational institutions and research centres. Such initiatives can link smart 

city development with sustainable development goals such as SDG 9, SDG 11, 

SDG 16, and SDG 17. 

4 Smart cities are often perceived as a web 2.0 and industry 4.0 marketplace that 

act as competing rings for self-made goals of corporates and multinational 

firms. This may raise several development challenges in specific areas of 

community-based development, as selfish competitions by corporates to reap 

high profits from multibillion projects often fail to address the social challenges 

of the weaker sections of the community, like the availability of clean and safe 

drinking water (SDG 6), sustainable consumption patterns (SDG 12) and food 

security issues (SDG 2). These corporates often tend to focus on the needs of 

the elite class like home automation, smart banking, smart cars, sophisticated 

apps, and platforms for commercial purposes, etc. As a result, a socially 

inclusive and adaptive framework is necessary to curb social inequalities and 
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other social challenges prevailing in cities, thus aligning these futuristic change 

strategies of smart cities with SDG 1, SDG 3, SDG 5, SDG 6, SDG 10, and 

SDG 12. 

5 Futuristic smart city transformation is not complete if the smart projects are not 

backed by committed leaders that support the smart city development prospect. 

These strong leaderships need not necessarily be within the local governing 

bodies like Mayors, District Attorneys, or Governors but can also be the project 

managers, planning directors, members of the execution community, NGO 

activists, etc. These initiatives can connect SDGs 11, 16, and 17 with smart city 

development strategies. 
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APPENDIX A: SUPPLEMENTARY EQUATIONS 

S1. Optimistic and Pessimistic SBM in time 

Let us consider an evaluation problem to measure the relative sustainable 

development capacity of n European smart cities over time t, t+1,…t+n. The 

optimistic SBM model (see Eq. 8) can be readily modified into the following linear 

programming model to obtain the OSBM in time t, α0
t (w t

io, x t
ko, y t

ro, z t 
vo) as (see 

Eq. 97-104): 

α0
t (w t

io, x tko, y tro, z t vo) = 

Minimize η 
optimistic

= f – [( 1

|m| + |t|
) (∑ SI

 XD-m
i=1 /w t

io + ∑ Sv
 YU-t

v=1 /z t vo)]           (97)     

Subject to 

1 = f + [( 1

|s| + |p|
) (∑ Sr

YD+s
r=1 /yro + ∑ Sk

XU+p

k=1 /xko)]                                 (98) 

∑  xkj
tn

j=1 Λj – Sk
XU+

 = f xt
ko                                                                                            (99) 

∑  wij
tn

j=1 Λj + SI
 XD-

 = f wt
io                                                                                         (100) 

∑ y
rj
tn

j=1  Λj – Sr
YD+ = fyt

ro                                                                                            (101) 

∑ zvj
tn

j=1 Λj+Sv
 YU-

=fzt
vo                                                                                                (102) 

∑ Λj n
j=1 = 1 for Variable Returns to Scale (VRS)                                                     (103) 

Λj, Sk
XU+

, SI
 XD-

, Sr
YD+

, Sv
 YU- ≥ 0; ∀j, k, i, r, v and f  > 0                                          (104)    

where Λj = fλj, SI
 XD-

 = fsI
 XD-, Sv

 YU-
 = 𝑓s

v

 YU-
, Sr

YD+
 = fsr

YD+, Sk
XU+

 = f sk
XU+; and wio = 

Xio
DI, xko = Xko

UI, yro = Yro
DO, zvo = Yvo

UO.  

Likewise, OSBM in time t +1, α0
t+1 (w t+1

io, x t+1
ko, y t+1

ro, z t+1 
vo) can be computed by 

replacing (xt
ko , x

t
kj , w

 t
io , w

 t
ij , y tro , y trj , z t vo , z t vj) with (xt+1

ko , x
t+1

kj , w
 t+1

io , w
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ij , y 

t+1
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vj). The modified OSBM model in time t +1 can be 
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mathematically represented through the Eqs. 105-112:  

Minimize η 
optimistic

 = f – [( 1

|m| + |t|
) (∑ SI

 XD -m
i=1 /w t+1

io + ∑ Sv
 YU -t

v=1 /z t+1 
vo)]    (105)                                     

Subject to 

1 = f + [( 1
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j=1 = 1 for Variable Returns to Scale (VRS)                                                     (111) 
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XU+

, SI
 XD-

, Sr
YD+

, Sv
 YU-

 ≥ 0; ∀ j, k, i, r, v and θ > 0                                          (112)                                    

Similarly, the PSBM model (see Eq. 24) can be transformed into the following linear 

programming model to obtain the PSBM in time t, α0
t (w t

io, x t
ko, y t

ro, z t 
vo) as 

represented through Eqs. 113-120;  

α0
t (w t

io, x tko, y tro, z t vo) = 

Maximize η 
pessimistic
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tn
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 YU+ = fzt

vo                                                                                           (118) 
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j=1 = 1 for Variable Returns to Scale (VRS)                                                    (119) 
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Alternatively, by applying the substitution for (xt
ko , x

t
kj , w

 t
io , w

 t
ij , y t

ro , y t
rj , z t 

vo , z t 
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vo , z t +1
vj), the PSBM in time t 

+1, α0
t+1 (w t+1

io, x t+1
ko, y t+1

ro, z t+1 
vo) can be calculated and mathematically 

represented as in Eqs. 121-127:  
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All the other variables and parameters for OSBM in time t+1, is  same  as  the  PSBM 

model (Eqs. 113-127).
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APPENDIX B: SUPPLEMENTARY TABLES 

 

    Table B1. Indicators for urban livability assessment under respective dimensions with desirability values 

Dimensions Indicators Symbol Units Desirability Justification 

Accessibility 1. Share of population with access to portable 

drinking water system. 

AC1 % + Nagpal, (2018) 

 2. Share of households connected to the sewerage 

treatment systems. 

AC2 % + Mizuki et al., 

(2012) 

 3. Percentage of population with access to high-

speed internet connectivity living in the city. 

AC3 % of household + Burange & 

Misalkar, (2015) 

 4. Estimated share of households with access to at 

least one vehicle to commute for work and other 

needs. 

AC4 % of household + Maglaras et al., 

(2016) 

 5. Net housing cost overburden rate. AC5 % + Balsas, (2004) 

 6. Percentage of population with no access to 

health insurance coverage (private /public) and/or 

“free” healthcare services 

AC6 % − Mayaud et al., 

(2019) 

 7. Information access to requests submitted within 

90 days 

AC7 % + Lind, (2012) 

 8. Share of population with access to proper 

sanitation coverage 

AC8 % + Vedachalam & 

Riha, (2015) 
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Table B1. Indicators for urban livability assessment under respective dimensions with desirability values (cont.) 

Dimensions Indicators Symbol Units Desirability Justification 

 9.  Number of convenience stores, supermarkets, 

grocery stores and hypermarkets within 2.0 Km 

buffer zone 

AC9 In numbers + Järv et al., (2018) 

 10. Percentage of population with access to 

equitable education, participation, and progression 

AC10 % + Ziguras & Pham, 

(2014) 

Economic 

vibrancy 

 

 

11.  Annual number of patent applications filed 

with the European Patent Office per million 

inhabitants. 

EV1 In numbers + Mamlook et al., 

(2019) 

 12.  Employment rates of recent graduates in 

technological enterprises relocated to and/or 

established within the city. 

EV2 % + Betz et al., (2016) 

 13.  Eco-innovation within city EV3 Index, EU=100 + Beretta, (2018) 

 14. Expected work-life duration EV4 Years + Mizobuchi, (2014) 

 15.  Share of knowledge-driven employment EV5 % employed + Betz et al., (2016) 

 16. Single-sector economic-dependence EV6 % − Nikolaev, (2014) 

 17. Residents living in household with low work 

intensity 

EV7 % age < 601 − Balestra et al., 

(2018) 

 18. Share of woman members in leadership 

positions 

EV8 % + Kerényi, (2011) 
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Table B1. Indicators for urban livability assessment under respective dimensions with desirability values (cont.) 

Dimensions Indicators Symbol Units Desirability Justification 

 19. Share of households receiving local housing 

allowance in city 

EV9 % + Kasparian & 

Rolland, (2012) 

 20. City municipal-waste recycling and 

composting rates 

EV10 % + Aceleanu et al., 

(2019) 

Community 

Well-being 

21. Share of green urban areas, sports, and 

recreational facilities per capita. 

CW1 % + Liu et al., (2020) 

 22. Total capacity of cinema theatres and leisure 

venues per inhabitant in the city within 50 sq.km. 

CW2 In numbers + Punt et al., (2020) 

 23. Share of population with no engagement in 

physical activities as a percentage of total 

population living in city. 

CW3 % − Batty et al., (2012) 

 24. Disability-free “Healthy Life Years” in 

absolute value at the age of 65. 

CW4 Years + Balestra et al., 

(2018) 

 25. Share of population claiming to suffer from 

noise pollution living in houses within the city. 

CW5 % − Ghosh et al., 

(2019) 

 26. Number of visits to pubs, bars, night clubs and 

outdoor dines as free time activity by adult 

population (per year). 

CW6 Visits in number + Abusaada & 

Elshater, (2021) 
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Table B1. Indicators for urban livability assessment under respective dimensions with desirability values (cont.) 

Dimensions Indicators Symbol Units Desirability Justification 

 27. Share of people who are overweight living in 

the city based on the BMI value. 

CW7 % − Esliger et al., 

(2012) 

 28. Water productivity CW8 €/cubic m2 + Molden et al., 

(2003) 

 29. Urban population exposed to PM10 

concentrations exceeding the daily limit value (50 

µg/m3 on more than 35 days in a year) 

CW9 % − Chen et al., (2017) 

 30. Shelf space in supermarkets allotted to vegan 

and/or organic products and food items 

CW10 % + Latacz‐Lohmann, 

& Foster, (1997) 
1 Percentage of total population aged less than 60; 2 Euro per cubic meter equivalent   
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        Table B2. Indicators for resilience assessment under respective dimensions with desirability values in the proposed framework 

Dimensions Indicators Symbol Units Desirability Justification 

Social 

 

1. Number of practicing physicians (medical 

doctors) per 100,000 inhabitants. 

S1 In numbers + Kreffter et al., 

(2021) 

 2. Number of hospital beds available per 100, 

000 inhabitants. 

S2 In numbers + Green, (2002) 

 3. Number of people living in households (0-

59yrs.) with relatively low work intensity. 

S3 Thousand 

persons 

− Boost et al., (2020) 

 4. Percentage of hospitals in the city that have 

performed disaster drills to test response 

capabilities to emergencies over the past year. 

S4 % + Figueiredo et al., 

(2018) 

 5. Share of population at risk of relative poverty 

after social benefits. 

S5 % − Boost et al., (2020) 

 6. Percentage of materially deprived population 

in the city 

S6 % − Boost et al., (2020) 

 7. Number of civic-social advocacy 

organizations and/or NGOs per 10, 000 

population 

S7 In numbers + Frankenberger et 

al., (2014) 

 8. Proportion of population > 16 years of age 

who perceive their health status to be “very 

good” 

S8 % + Smith & Plunkett, 

(2019) 

 9. Average police response time to highest 

priority emergency calls 

S9 Minutes − Figueiredo et al., 

(2018) 
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Table B2. Indicators for resilience assessment under respective dimensions with desirability values (Cont.) 

Dimensions Indicators Symbol Units Desirability Justification 

 10. Proportion of population with perceived 

interpersonal community level network 

support 

S10  + Renschler et al., 

(2010) 

Economic 

 

 

11. Percentage of active population unemployed 

for a period more than 6 months with access 

to employment schemes. 

EC1 %  − Figueiredo et al., 

(2018) 

 12.  Number of new business entities registered 

in the city over the past year per 100, 000 

inhabitants. 

EC2 In numbers + Arup and 

Rockefeller 

Foundation, (2014) 

 13.  City unemployment rate EC3 Rate − Moorhouse & 

Caltabiano, (2007) 

 14. Tertiary educational attainment (level 5-8) 

across labour force 

EC4 % + Beck, (2016) 

 15. Individual firm dependence EC5 % − Parker, & Ameen, 

(2018) 

 16. Activity rate - % of total population aged 15-

64 years 

EC6 % + Moore et al., 

(2020) 

 17. Liabilities related to private-public 

partnerships (PPPs) recorded off-government 

balance sheet 

EC7  % GDP1 − Cuttaree & 

Mandri-Perrott, 

(2011) 
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Table B2. Indicators for resilience assessment under respective dimensions with desirability values (Cont.) 

Dimensions Indicators Symbol Units Desirability Justification 

 18. Percentage share of high-technology exports  

to the total manufactured exports 

EC8 % + Psycharis et al., 

(2020) 

 19. Share of population unemployed due to 

caring responsibilities 

EC9 % of inactive 

population 

− Moorhouse & 

Caltabiano, (2007) 

 20. Underachievement in the field of science, 

mathematics, and technology 

EC10 % − Bland et al., (1994) 

Infrastructure & 

Built 

Environment 

21. Length of dedicated bicycle paths and lanes 

(span of bicycle network per km2) 

IB1 km + Clemente, (2020) 

 22. Share of population living in a dwelling with 

a leaking roof, damp walls, floors or 

foundation, or rot-in window frames or 

floors. 

IB2 % −   Arup and 

Rockefeller 

Foundation, (2014) 

 23. Share of housing units resilient to hazards, 

shocks, and stresses subject to hazard 

resistant building design and retrofits. 

IB3 % + Figueiredo et al., 

(2018) 

 24. Share of households connected to urban 

wastewater collection and treatment systems. 

IB4 Treatment 

level in % 

+ Sun et al., (2020) 

 25. Percentage of total arable land utilized for 

organic crop cultivation. 

IB5 % + Mekonnen et al., 

(2013) 
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Table B2. Indicators for resilience assessment under respective dimensions with desirability values (Cont.) 

Dimensions Indicators Symbol Units Desirability Justification 

 26. People killed as a result of road traffic 

injuries per 10, 000 population. 

IB6 % share − Wang et al., (2019) 

 27. GHG emissions released per unit of energy 

consumed 

IB7 Index (2000 = 

100) 

− Sharifi & 

Yamagata, (2015) 

 28. Water Exploitation Index + IB8 % − Brown & Lall, 

(2006) 

 29. Percentage of wetland loss IB9 % − Mekonnen et al., 

(2013) 

 30. Number of days the city fuel supplies could 

maintain essential household functions during 

disruptions 

IB10 Days +  Figueiredo et al., 

(2018) 

Institutional 

 

 

31. Percentage of children over the age of 6yrs 

who have received basic education and 

training on disaster mitigation and risk 

reduction. 

IN1 % + Faber et al., (2014) 

 32. Percentage of communities in the city with 

local emergency groups. 

IN2 % + Cox & Hamlen, 

(2015) 

 33. Housing units with insurance coverage 

against damage from high-risk hazards and 

natural calamities. 

IN3 % + Arup and 

Rockefeller 

Foundation, (2014) 
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Table B2. Indicators for resilience assessment under respective dimensions with desirability values (Cont.) 

Dimensions Indicators Symbol Units Desirability Justification 

 34. Share of government budget spend on 

emergency services and social protection. 

IN4 €/inhabitant2 + Yoon et al., (2016) 

 35. Average rate of trust in the local area 

governance system 

IN5 % + Hills, (2000) 

 36. Percentage of civilian population that have 

received basic training on first-aid, 

cardiopulmonary resuscitation (CPR) and 

professional ambulance care in past 2 years. 

IN6 % + Arup and 

Rockefeller 

Foundation, (2014) 

 37. Number of city development programs 

(CDP) and workshops conducted over the 

past 2 years with focus on resilience planning 

IN7 % + Labaka et al., 

(2019) 

 38. Percentage of members of cooperatives IN8 % + Aligica & Tarko, 

(2014) 
1 Percentage of Gross Domestic Product; 2 Euro per inhabitant 
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Table B3.  Dimensions and indicators for sustainable development capacity assessment 

Dimensions Indicators Symbol Units Technology set Desirability SDG 

    Input Output Desirable Undesirable Alignment 

Energy & 

Environment

al Resources  

1. Total energy available for end users ER1 Mtoe 1 
√    √  

 
 

 

2. Fresh water use  as a percentage of 

total available renewable water 

resources 

ER2 % √  √  

3. Total energy consumed by end-users ER3 Mtoe  √  √ 

4. Per capita total household energy 

consumption 

ER4 kgoe 2  √  √ 

5. City wide energy productivity ER5 €/kg 

energy.eqv3 

 √ √  

6. Total renewable energy sources in the 

gross final energy consumption 

ER6 %  √ √  

Governance 

& Institution 

7.  R&D Expenditure as a percentage of 

GDP 

GI1 % of GDP √   √ 

 

 

 

 
 

8.  Percentage of active population 

assigned for R&D related activities 

GI2 % √   √ 

9.  Active population hired in science and 

technology sector 

GI3 % √   √ 

10. City employment rate GI4 % √   √ 

11. Working poverty rate GI5 %  √  √  

12. Gender pay gap GI6 % √  √  

13. Income distribution GI7 Rate  √  √ 
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Table B3. Dimensions and indicators for sustainable development capacity assessment (cont.) 

Dimensions Indicators Symbol Units Technology set Desirability SDG 

    Input Output Desirable Undesirable Alignment 

 

 

Economic 

Dynamism 

14. Total revenue generated from service 

provided 

GI8 %  √ √  

 
 
 

15. Contribution of environmental goods 

and services to the city GDP 

E1 €M 4 √    √  

16. Gross disposable household income 

per capital 

E2 PPS per 

inhabitant 5 

√    √  

 17. Gross investment as a share of 

percentage GDP 

E3 % √   √   

18. Territorial consumer price index E4 Index  √   √  

19. Real GDP per capita E5 Euro per 

capita 

 √  √   

Social 

cohesion & 

Solidarity 

20. Share of population with access to 

city waste water treatment facilities 

SC1 % √   √ 

 
 

 

 

 

21. Share of public transit modes in the 

city among the total inland transport

  

SC2 % √   √ 

 22. Accessibility to secondary waste 

water treatment facilities   

SC3 % of 

population 

√   √ 

23. Share of population in the city with 

excellent perceived health 

SC4 % √   √ 

 24. Share of population unable to keep 

their house warm 

SC5 % √  √  

1 Mtoe: Million tons of oil equivalent; 2 kgoe: kg of oil equivalent; 3 Euro per kg of energy usage equivalent;  
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Table B3. Dimensions and indicators for sustainable development capacity assessment (Cont.) 

Dimensions Indicators Symbol Units Technology set Desirability SDG 

    Input Output Desirable Undesirable Alignment 

 25. Percentage of population leaving in 

overcrowded households within the 

city 

SC6 %  √  √  

 
 

 

26. Share of population with no 

household sanitation facilities  

SC7 %  √  √  

27. Household outflow (tax returns to city 

residents) 

SC8 Population 

aged < 60 

(in %) 

 √  √ 

28. Total resource consumption in 

relation to territorial service provided 

SC9 PPS per Kg6  √ √  

29. Life expectancy at birth SC10 Age in 

numbers 

 √   

Climate 

Change 

30. Recycling rate of municipal waste in 

city 

CC1 % √    √  

 31. City residents covered by EU climate 

action program: convent of mayors 

CC2 % of 

population 

√    √  

 
 
 

 
 
 

 

32. Amount of non-mineral hazardous 

waste generated 

CC3 Kg per 

capita 

√   √   

33. Share of population claiming to suffer 

from noise pollution living in the 

houses 

CC4 % √   √   

 34. Particulate pollutants causing 

atmospheric pollution 

CC5 Particulates 

< 2.5µm 

√  √   

€M 4 : Million Euros; PPS per inhabitant 5: Purchasing power standard per inhabitant; PPS per Kg6 : Purchasing power standard per Kilogram 
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Table B3. Dimensions and indicators for sustainable development capacity assessment (cont.) 

Dimensions Indicators Symbol Units Technology set Desirability SDG 

    Input Output Desirable Undesirable Alignment 

 35. Soil Sealing Index CC6 % √  √  

 

 
 
 

36. CO2 emission from new passenger 

vehicles registered in the city 

CC7 Kg's of CO2 

emission 

per km 

 √  √ 

37. GHG emissions released per unit of 

energy consumed 

CC8 Index 2000 

= 100 

 √  √ 

38. Total greenhouse gas emission (GHG) CC9 tonnes per 

capita 

 √  √ 

39. Air quality by mean concentration of 

particulate matter (PM.10) 

CC10 Particulates 

< 10µm 

 √ √  

40. Circular material consumption rate CC11 %  √ √  

Safety and 

security 

41. Share of population reporting criminal 

activities within the city  

SS1 %  √ √  

 
 

 

 

 

42. Share of government expenditure 

spend on judicial system and setting up 

of law courts  

SS2 €/resident 7 √   √ 

 43. Corruption perception index SS3 Number √  √  

44. Risk of poverty rate SS4 Relative 

poverty gap 

√  √  

 45. Share of population at risk of poverty 

and social exclusion 

SS5 %  √  √  

€/resident 7 : Euro per city residents; 



  

285 

 

Table B3. Dimensions and indicators for sustainable development capacity assessment (cont.) 

Dimensions Indicators Symbol Units Technology set Desirability SDG 

    Input Output Desirable Undesirable Alignment 

 46. Subjective claims on unattended 

medical care in the city  

SS6 %  √  √  

 

 

47. Road fatalities per 100,000 city 

inhabitants 

SS7 Rate  √  √ 

48. Number of fatalities per 100,000 

employees at work 

SS8 Incident 

rate 

 √  √ 

49. Deaths by homicide per 100,000 

resident population in the city 

SS10 Rate  √  √ 

50. Mortality rates from HIV, TB, and 

Hepatitis related causes 

SS11 Percentage  √  √  
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Table B4. Interval midpoint and width for ranking interval numbers across the climate 

change, economic dynamism and, governance and institution dimensions for the 

bounded DEA-model 

 Climate change  Economy  Governance and 

Institution 

 m(Ai) w(Ai) R* m(Ai) w(Ai) R* m(Ai) w(Ai) R 

Brussels 0.5791 0.4209 7 0.3773 0.1927 27 0.5296 0.4704 6 

Sofia 0.4411 0.3512 32 0.5140 0.4860 12 0.2935 0.1485 31 

Prague 0.4625 0.3366 28 0.3124 0.2316 34 0.1770 0.0320 35 

Copenhagen 0.5340 0.4660 18 0.3792 0.2718 24 0.4054 0.3076 18 

Munich 0.5289 0.4281 20 0.3593 0.2917 31 0.3020 0.1570 30 

Tallinn 0.5871 0.4129 5 0.3778 0.1932 26 0.3470 0.2020 25 

Dublin 0.5595 0.4405 11 0.5607 0.4003 3 0.4765 0.4075 15 

Athens 0.5380 0.4620 16 0.5560 0.4440 4 0.4783 0.4227 14 

Bilbao 0.5011 0.2649 25 0.3482 0.2578 32 0.2638 0.2342 34 

Lyon 0.6076 0.3924 2 0.4521 0.3229 16 0.3203 0.2577 28 

Dusseldorf 0.5789 0.4211 8 0.4873 0.4157 13 0.5221 0.4779 8 

Bologna 0.5927 0.3566 4 0.3878 0.2032 22 0.4122 0.3148 17 

Hamburg 0.5800 0.4200 6 0.4724 0.3776 14 0.5013 0.4537 13 

Petersburg 0.5037 0.3353 24 0.5293 0.4027 9 0.5299 0.4701 5 

Merseille 0.5497 0.4503 12 0.4644 0.3736 15 0.3339 0.2621 27 

Geneva 0.6105 0.3895 1 0.5190 0.4810 10 0.3529 0.2701 22 

Budapest 0.4569 0.3213 29 0.5147 0.3943 11 0.3419 0.2581 26 

Manchester 0.5450 0.4550 13 0.5493 0.4507 6 0.5115 0.4885 12 

Amsterdam 0.5703 0.4297 9 0.3883 0.2077 21 0.4323 0.3937 16 

Vienna 0.5997 0.4003 3 0.3269 0.2031 33 0.2922 0.2188 32 

Warsaw 0.5427 0.3065 14 0.3740 0.2650 28 0.3925 0.3495 19 

Lisbon 0.5310 0.4690 19 0.4105 0.2925 17 0.3490 0.2040 23 

Bucharest 0.5684 0.3961 10 0.3608 0.2642 30 0.5159 0.4841 9 

Krakow 0.4907 0.2993 26 0.5426 0.3864 8 0.5130 0.4870 11 

Bratislava 0.4759 0.2397 27 0.4007 0.2713 20 0.5261 0.4469 7 

Helsinki 0.5359 0.4641 17 0.3688 0.2292 29 0.5430 0.4570 4 

Stockholm 0.5416 0.4584 15 0.3807 0.1983 23 0.5460 0.4540 3 

London 0.4564 0.3936 30 0.3789 0.2261 25 0.5510 0.4490 2 

Zaragoza 0.4228 0.1866 33 0.4033 0.2477 19 0.3639 0.2981 21 

Oslo 0.5229 0.4771 21 0.5701 0.4209 1 0.5513 0.4487 1 

Zurich 0.5123 0.4877 22 0.5688 0.4312 2 0.5153 0.4847 10 

Moscow 0.3829 0.3007 34 0.5485 0.4355 7 0.3110 0.2430 29 

Kiev 0.3692 0.1330 35 0.2113 0.0267 35 0.2680 0.1230 33 

Rome 0.5114 0.3799 23 0.5541 0.4259 5 0.3721 0.3039 20 

Ankara 0.4489 0.2128 31 0.4048 0.2202 18 0.3478 0.2462 24 

R* = Rank 
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Table B5. Interval midpoint and width for ranking interval numbers across the energy 

and environmental resource, safety, and security, and, social cohesion and solidarity 

dimensions for the bounded DEA-model 

 Energy resource  Safety and 

security 

 Social cohesion and 

solidarity 

 m(Ai) w(Ai) R* m(Ai) w(Ai) R* m(Ai) w(Ai) R 

Brussels 0.3115 0.2392 26 0.4400 0.2877 30 0.5084 0.4916 13 

Sofia 0.2408 0.1746 34 0.5304 0.4696 19 0.3228 0.2467 33 

Prague 0.2967 0.1028 29 0.5362 0.4638 14 0.5118 0.4882 9 

Copenhagen 0.5834 0.4166 7 0.4040 0.3331 32 0.4217 0.3741 26 

Munich 0.5883 0.4117 4 0.3303 0.2924 35 0.5312 0.4688 3 

Tallinn 0.2892 0.0952 32 0.5348 0.4652 17 0.4315 0.3804 23 

Dublin 0.5879 0.4121 5 0.4757 0.3222 28 0.5077 0.4923 14 

Athens 0.2303 0.1875 35 0.5533 0.3321 8 0.4650 0.4092 21 

Bilbao 0.2784 0.2045 33 0.4971 0.1837 25 0.5091 0.4909 12 

Lyon 0.4217 0.2973 17 0.5469 0.4530 12 0.4267 0.3787 25 

Dusseldorf 0.4526 0.3253 14 0.5290 0.4710 20 0.5042 0.4958 18 

Bologna 0.5193 0.4807 10 0.5485 0.2352 10 0.5076 0.4924 15 

Hamburg 0.4406 0.3181 16 0.5167 0.4833 23 0.5072 0.4928 17 

Petersburg 0.5193 0.4807 11 0.5393 0.4607 13 0.5114 0.4886 10 

Merseille 0.3718 0.2652 21 0.5361 0.4639 15 0.5113 0.4887 11 

Geneva 0.5949 0.4051 1 0.5589 0.3348 7 0.5236 0.4764 6 

Budapest 0.3493 0.2625 24 0.6037 0.3756 2 0.3777 0.3254 29 

Manchester 0.5125 0.4875 12 0.5469 0.4531 11 0.5198 0.4802 7 

Amsterdam 0.3967 0.2527 18 0.3591 0.3283 34 0.5373 0.4627 1 

Vienna 0.5935 0.4065 2 0.4134 0.3346 31 0.4280 0.3774 24 

Warsaw 0.2925 0.2163 31 0.5175 0.4825 22 0.4211 0.3690 27 

Lisbon 0.3313 0.1373 25 0.4818 0.3161 26 0.5131 0.4869 8 

Bucharest 0.3071 0.2149 28 0.5502 0.4498 9 0.3322 0.2561 32 

Krakow 0.3090 0.2215 27 0.5051 0.3643 24 0.3182 0.2420 34 

Bratislava 0.3737 0.2937 20 0.5617 0.4383 6 0.3633 0.3313 31 

Helsinki 0.5893 0.4107 3 0.5214 0.4786 21 0.5274 0.4726 4 

Stockholm 0.3912 0.2677 19 0.3800 0.2928 33 0.4397 0.3930 22 

London 0.5776 0.4224 8 0.4505 0.1371 29 0.5019 0.4981 19 

Zaragoza 0.5676 0.4324 9 0.5361 0.4639 16 0.5072 0.4928 16 

Oslo 0.5876 0.4124 6 0.5636 0.3561 5 0.5358 0.4642 2 

Zurich 0.4458 0.3049 15 0.4801 0.1668 27 0.5271 0.4729 5 

Moscow 0.5107 0.4893 13 0.5316 0.4684 18 0.3682 0.2920 30 

Kiev 0.3583 0.2743 22 0.6058 0.3727 1 0.1398 0.0636 35 

Rome 0.3537 0.2496 23 0.5990 0.3601 3 0.5004 0.4996 20 

Ankara 0.2966 0.2461 30 0.5690 0.4310 4 0.3786 0.3025 28 

R* = Rank 

 

  



  

288 

 

Table B6(a). Productivity change for the 35 European smart cities over the years from 

2015 till 2020 under the Climate change dimension 

Smart cities Optimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 0.9681 1.0398 1.0225 1.0085 1.0085 

Sofia 1.0000 1.0000 1.0000 0.9213 1.0234 

Prague 0.3849 0.6849 0.6286 1.1948 1.4227 

Copenhagen 0.9453 1.0273 0.9435 1.0624 0.9064 

Munich 0.9082 0.9207 0.9861 0.9675 1.0062 

Tallinn 1.0946 1.1063 1.1903 0.9667 1.0183 

Dublin 0.6895 1.0838 1.0215 0.9254 0.9674 

Athens 0.4909 0.9033 1.2776 0.6164 1.0416 

Bilbao 1.0477 0.9799 0.9458 1.0498 0.8830 

Lyon 0.9209 0.9182 0.9094 0.9111 0.9203 

Dusseldorf 0.8062 1.2265 1.1999 1.1054 1.0379 

Bologna 0.8757 1.0001 1.0214 0.9467 1.0481 

Hamburg 1.0666 1.2649 1.0815 0.9220 1.0919 

St. Petersbrg 0.9405 0.5837 0.9142 1.1489 1.1290 

Merseille 1.2312 0.7389 1.1884 0.7408 1.1280 

Geneva 1.1748 1.0726 1.2069 1.0000 1.0000 

Budapest 0.9411 0.6205 0.6763 1.1805 1.3880 

Manchester 1.0689 0.9353 0.7292 1.2933 0.5916 

Amsterdam 1.0000 1.0000 1.0000 1.0000 1.0000 

Vienna 1.0363 0.9694 0.9803 0.9862 1.0609 

Warsaw 1.0000 1.0373 0.9853 0.9088 1.0000 

Lisbon 0.7759 0.9475 0.9431 0.9778 0.9336 

Bucharest 0.6973 1.2770 0.4995 1.0646 0.7918 

Krakow 0.8695 0.9785 1.0017 0.9596 0.9692 

Bratislava 0.9391 0.7944 0.9265 0.9624 1.0290 

Helsinki 0.8497 1.0766 1.0824 1.0177 0.8359 

Stockholm 0.8878 0.7619 0.6949 0.9413 2.1602 

London 1.0124 1.0754 0.9854 1.0000 0.9983 

Zaragoza 1.0000 1.0000 1.0000 1.0000 1.0000 

Oslo 1.0829 1.0491 0.7959 0.9246 1.1764 

Zurich 1.0077 1.0000 1.2424 1.0000 1.0000 

Moscow 1.0603 1.1347 1.5525 0.2059 0.2001 

Kiev 0.8558 1.0218 1.2087 1.0000 1.0670 

Rome 4.6243 1.2183 3.1108 1.0000 1.0392 

Ankara 0.9234 1.2435 1.0132 1.0857 1.0343 
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Table B6(b). Productivity change for the 35 European smart cities over the years from 

2015 till 2020 under the Climate change dimension 

Smart cities Pessimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 0.9768 1.0150 1.0224 1.0017 1.0254 

Sofia 0.9558 0.9965 1.0399 0.9906 0.9576 

Prague 1.0164 1.0000 1.0000 1.0000 1.0306 

Copenhagen 0.9598 0.9878 0.9465 1.0112 1.0014 

Munich 0.9631 0.9770 0.9935 0.9914 1.0019 

Tallinn 1.0241 0.9261 1.0000 1.0000 1.0239 

Dublin 1.0000 0.8969 1.0000 0.9151 1.0085 

Athens 1.0000 1.0083 1.0000 1.1732 1.0000 

Bilbao 1.0502 0.9924 0.9481 1.0278 0.9678 

Lyon 0.9345 1.0460 1.0000 1.0000 1.0012 

Dusseldorf 0.9703 1.0000 1.0000 0.8753 0.8135 

Bologna 0.9727 1.0969 0.9409 1.1443 1.0115 

Hamburg 0.9417 1.1900 1.0107 0.9884 0.7810 

St. Petersbrg 1.1296 0.9250 0.9500 1.0211 1.0578 

Merseille 0.9966 0.9883 1.1434 0.9861 0.9027 

Geneva 1.0000 1.0000 1.0000 1.0000 1.0000 

Budapest 0.9678 0.9510 0.9702 1.0025 1.0063 

Manchester 0.9642 1.0000 1.0000 1.0000 1.0000 

Amsterdam 0.9588 1.0585 0.9895 1.0991 1.0682 

Vienna 0.9751 0.9634 0.9714 1.0125 1.0291 

Warsaw 0.9373 1.0009 0.9060 0.9866 0.9159 

Lisbon 1.0000 0.9780 0.9742 0.9928 0.9631 

Bucharest 1.0000 1.0000 1.0000 1.0416 1.0000 

Krakow 0.9047 0.9889 0.9997 0.9936 0.9985 

Bratislava 1.0000 0.9725 1.0121 1.0075 0.9855 

Helsinki 0.9629 1.0000 1.0080 1.0000 0.9212 

Stockholm 1.0000 1.0000 1.0000 1.0000 1.0000 

London 1.0038 1.0575 0.9845 0.9986 1.0138 

Zaragoza 1.0000 1.0000 1.0000 1.0000 1.0000 

Oslo 0.9762 1.0000 1.0000 1.0000 0.9973 

Zurich 0.9458 0.9445 1.0551 1.0159 0.9483 

Moscow 1.0000 1.0000 1.0000 1.0000 1.0000 

Kiev 1.0000 1.0000 1.0000 1.0000 1.0000 

Rome 1.0000 1.0000 1.0000 1.0000 1.0000 

Ankara 0.9924 1.0039 1.0088 0.9616 1.0000 
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Table B7(a). Productivity change for the 35 European smart cities over the years from 

2015 till 2020 under the economic dynamism dimension 

Smart cities Optimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 1.1478 0.8785 1.0631 0.9504 0.9522 

Sofia 1.0503 0.9602 1.0157 0.9743 0.9727 

Prague 1.1041 0.9158 1.0276 0.9656 0.9569 

Copenhagen 1.1261 0.8542 1.0446 0.9602 0.9121 

Munich 1.2940 0.9208 0.9584 0.9425 0.8682 

Tallinn 1.0685 0.9598 1.0091 0.9489 0.9839 

Dublin 1.2124 0.7714 1.0102 1.0165 0.9794 

Athens 1.0166 0.9249 0.9903 0.9546 1.0480 

Bilbao 1.1701 0.8111 0.9633 0.9628 0.9287 

Lyon 0.8989 0.9396 1.0790 0.9177 0.8523 

Dusseldorf 1.0388 0.9496 0.9759 0.9940 0.9912 

Bologna 1.0973 0.8687 1.0298 0.9396 0.8938 

Hamburg 1.0125 0.9054 0.8273 0.8927 1.0259 

St. Petersbrg 0.9660 0.9639 1.0038 0.9560 0.9181 

Merseille 0.9723 0.9560 0.9639 0.9809 0.9601 

Geneva 0.9829 1.0000 1.0000 1.0000 1.0000 

Budapest 0.9729 0.9505 1.0653 0.9308 0.9448 

Manchester 1.2412 0.8579 1.0214 0.9631 0.8325 

Amsterdam 1.1441 0.7582 1.1315 0.9594 0.9159 

Vienna 1.1120 0.8808 0.9950 0.9863 0.9071 

Warsaw 1.0492 0.9167 1.0820 0.9848 0.9099 

Lisbon 1.0302 0.8768 0.9708 0.9452 0.9629 

Bucharest 1.0261 0.9432 0.9678 0.9478 0.9835 

Krakow 1.1175 0.9477 1.0272 0.9354 0.9806 

Bratislava 0.9094 0.8935 1.0455 0.9606 1.0964 

Helsinki 1.2995 0.8453 0.9885 0.9216 0.8763 

Stockholm 1.1700 0.7791 1.0354 0.9734 0.9493 

London 0.9850 0.9151 1.0641 0.9996 0.9077 

Zaragoza 0.9800 0.8713 1.1100 0.9038 0.8735 

Oslo 1.0030 0.9212 1.0485 0.9984 0.9491 

Zurich 1.1102 0.8921 1.0451 0.9997 0.9541 

Moscow 1.0794 0.9386 0.9862 0.9524 0.9160 

Kiev 0.9293 0.8740 0.9442 0.9949 0.9969 

Rome 0.9610 0.9763 0.9803 0.9581 0.8940 

Ankara 1.0444 0.9287 0.9892 0.9994 0.9344 
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Table B7(b). Productivity change for the 35 European smart cities over the years from 

2015 till 2020 under the economic dynamism dimension 

Smart cities Pessimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 1.3093 0.8212 1.0922 0.9222 0.9654 

Sofia 1.1314 0.9063 1.0000 0.9963 1.0000 

Prague 1.2423 0.8203 1.0052 0.9367 0.8942 

Copenhagen 1.1314 0.8180 1.0637 0.9575 0.8814 

Munich 1.5152 0.7895 0.9459 0.9246 0.8458 

Tallinn 1.4276 0.8482 1.0890 1.0092 0.9300 

Dublin 1.1927 0.8623 0.9891 1.0306 1.0252 

Athens 1.0000 0.9964 1.0000 0.9830 1.0000 

Bilbao 1.3975 0.7116 0.9421 0.9386 0.8516 

Lyon 0.8795 0.9308 1.2164 0.8370 0.8655 

Dusseldorf 1.2814 0.8529 0.9025 0.9848 0.8609 

Bologna 1.3357 0.7824 1.0492 0.9009 0.8240 

Hamburg 1.0989 1.0000 0.6555 0.8911 0.9999 

St. Petersbrg 1.0753 0.9054 1.1938 0.6469 0.9483 

Merseille 1.2931 0.8054 1.0028 1.0342 1.0267 

Geneva 1.1242 0.9778 1.0777 0.5544 0.9340 

Budapest 1.2229 0.7194 1.7145 0.5990 0.8937 

Manchester 1.0000 0.9847 1.1223 1.2224 1.0000 

Amsterdam 1.2321 0.6688 1.1685 0.9385 0.8606 

Vienna 1.1593 0.8259 0.9982 0.9880 0.8468 

Warsaw 1.1710 0.8334 1.1443 0.9711 0.8006 

Lisbon 1.2086 0.7556 0.9526 0.7995 0.8482 

Bucharest 1.4003 0.7957 1.0150 0.9206 0.8884 

Krakow 1.2471 0.8773 0.9740 0.9333 0.7613 

Bratislava 1.1213 0.8215 1.2381 0.9437 1.3417 

Helsinki 1.3472 0.8425 1.0068 0.9138 0.8737 

Stockholm 1.1741 0.7904 1.0588 0.9691 0.9152 

London 1.0723 0.8271 1.1059 0.9995 0.8450 

Zaragoza 0.9775 0.8007 1.1795 0.8481 0.7940 

Oslo 1.0032 0.9371 1.0586 0.9971 0.9550 

Zurich 1.2985 0.7451 1.0638 0.9858 0.9096 

Moscow 1.1511 0.9268 1.0078 0.9768 0.8889 

Kiev 0.8954 0.7712 1.2443 1.0258 1.0208 

Rome 0.9459 0.8390 0.9679 0.7902 0.4331 

Ankara 1.2020 0.7399 0.9094 0.8747 0.8846 
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Table B8(a). Productivity change for the 35 European smart cities over the years from 

2015 till 2020 under the governance and institution dimension 

Smart cities Optimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 1.0049 1.0215 1.0092 0.9828 0.9878 

Sofia 0.9076 1.0159 0.9116 0.9875 1.0139 

Prague 1.0583 0.9410 1.0682 1.0000 0.9789 

Copenhagen 1.0126 0.9515 1.0218 0.9187 0.9793 

Munich 0.9550 0.9996 1.0149 0.9871 1.0015 

Tallinn 0.8627 1.0569 0.9912 0.9708 0.9517 

Dublin 0.9171 1.0312 0.9728 0.9941 1.0570 

Athens 1.0224 1.0120 0.9084 1.0292 0.9034 

Bilbao 0.9382 0.9738 0.9793 0.9914 0.9713 

Lyon 1.0012 1.0263 0.9734 1.0025 0.9986 

Dusseldorf 1.0242 1.0197 0.9903 0.9549 1.0389 

Bologna 1.0324 0.9958 0.9990 0.9746 0.9881 

Hamburg 1.1302 0.9317 0.9716 0.9390 0.9867 

St. Petersbrg 0.9759 0.9773 1.1818 1.0309 2.3088 

Merseille 1.0209 1.0166 1.0897 1.0878 0.9947 

Geneva 1.0685 0.9687 0.9813 0.9716 1.0226 

Budapest 1.0134 0.9188 0.9739 1.0355 0.9811 

Manchester 1.0363 1.0258 1.0137 0.9245 0.9911 

Amsterdam 0.8892 1.0528 0.8394 0.9702 0.9874 

Vienna 1.0381 0.9650 0.9962 0.9699 1.0099 

Warsaw 0.9616 0.9918 1.0670 0.9769 0.9380 

Lisbon 0.9558 0.9658 1.0128 1.0045 0.9559 

Bucharest 1.2804 1.0760 1.0347 0.8839 1.0957 

Krakow 0.8919 0.9249 1.0135 0.9142 0.9480 

Bratislava 0.9840 0.9632 0.9810 0.9735 0.9956 

Helsinki 1.0000 1.0448 1.1742 0.8997 1.0489 

Stockholm 1.0065 0.9737 1.0438 1.0034 0.9391 

London 0.9775 1.0614 0.9568 0.9946 0.9370 

Zaragoza 1.2044 0.7843 1.0111 1.0068 0.9827 

Oslo 1.0800 0.9168 0.9858 0.9924 0.9825 

Zurich 1.0906 0.8778 1.0383 0.9469 1.0304 

Moscow 0.6660 0.9885 0.9979 0.9347 0.9968 

Kiev 0.4909 0.8977 0.8821 1.0354 0.9274 

Rome 0.9047 1.0080 0.9705 1.0219 1.0922 

Ankara 0.8641 1.2680 1.3121 0.8583 1.3633 
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Table B8(b). Productivity change for the 35 European smart cities over the years from 

2015 till 2020 under the governance and institution dimension 

Smart cities Pessimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 1.0000 1.0000 1.0000 1.0000 1.0000 

Sofia 0.9100 1.0966 0.9265 0.9930 0.9960 

Prague 1.0450 0.9589 1.0000 1.0000 1.0000 

Copenhagen 0.9900 0.9557 1.0181 0.8999 0.9902 

Munich 1.0290 0.9496 0.9998 0.9710 1.1473 

Tallinn 1.0137 0.9931 1.0149 0.9864 0.9448 

Dublin 0.9186 1.0103 0.9362 1.0177 1.0366 

Athens 1.0030 0.9997 0.9295 1.0262 0.9233 

Bilbao 1.0376 0.9886 0.9667 0.9927 0.9153 

Lyon 0.9571 1.0610 0.9823 1.0411 1.0020 

Dusseldorf 1.0000 1.0000 1.0000 1.0000 1.0000 

Bologna 1.0634 0.9667 1.0470 0.9615 0.9847 

Hamburg 1.0445 0.9203 0.9857 0.9777 0.9785 

St. Petersbrg 1.0138 1.0313 1.1409 0.8989 0.8769 

Merseille 1.0291 1.1070 1.0641 1.0625 0.9951 

Geneva 0.9582 0.9351 0.9898 0.9853 1.1493 

Budapest 1.0219 0.8553 0.9959 1.0243 0.9485 

Manchester 1.0320 1.0000 1.0000 0.9505 1.0000 

Amsterdam 0.8828 1.0511 0.8930 0.9687 1.0201 

Vienna 1.0355 0.9211 1.0270 1.0147 0.9735 

Warsaw 1.0337 1.0082 1.0353 0.9591 0.9282 

Lisbon 1.0095 0.9893 1.0486 0.9839 0.9678 

Bucharest 1.0000 1.0474 1.0000 1.0000 1.0000 

Krakow 0.9359 0.8488 1.0399 1.0401 0.9626 

Bratislava 0.9873 0.9603 1.0000 0.9226 0.9334 

Helsinki 0.9922 1.0153 1.0000 0.9700 1.0000 

Stockholm 1.0000 0.9569 1.1409 0.9856 0.8926 

London 1.0466 1.0403 0.9519 1.0010 0.9961 

Zaragoza 1.2399 0.7791 0.9708 1.0919 1.0483 

Oslo 1.0980 0.9495 1.0118 1.0107 0.9275 

Zurich 1.1274 0.8296 1.0701 0.9610 1.0559 

Moscow 0.9500 1.0000 1.0000 1.0000 1.0000 

Kiev 1.0000 1.0000 1.0000 1.0000 1.0000 

Rome 0.9965 1.1651 1.0611 0.8587 0.9515 

Ankara 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table B9(a). Productivity change for the 35 European smart cities over the years from 

2015 till 2020 under the social cohesion and solidarity dimension 

Smart cities Optimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 1.3605 0.7262 1.1512 0.5627 0.5974 

Sofia 1.0053 0.9953 0.9675 0.9917 1.0105 

Prague 0.9967 1.0140 1.0247 0.9861 1.0051 

Copenhagen 0.9670 1.0287 0.9645 0.9887 0.9933 

Munich 0.9948 1.0000 1.0000 1.0000 1.0000 

Tallinn 0.9788 0.9583 0.9746 1.0410 0.9982 

Dublin 1.0000 1.1339 1.3989 1.0000 1.0000 

Athens 0.9794 1.0130 0.9672 0.9670 0.8934 

Bilbao 0.9915 1.0170 1.0000 1.0987 0.8988 

Lyon 1.0608 0.9586 1.0417 0.9916 0.9934 

Dusseldorf 0.9091 0.9978 1.0362 0.9830 1.0302 

Bologna 0.9948 1.0000 0.8588 1.0097 1.0000 

Hamburg 1.2436 0.6118 1.1931 0.9580 1.2999 

St. Petersbrg 0.9893 1.0281 0.9885 1.0746 0.9655 

Merseille 0.9679 1.0261 0.9993 1.0293 0.9667 

Geneva 1.0000 1.0174 1.0735 0.9677 1.0000 

Budapest 1.0013 0.9968 0.9693 1.0138 0.9818 

Manchester 0.9955 1.0000 1.0000 0.9900 1.1043 

Amsterdam 1.0000 1.0000 0.9932 1.0000 1.0000 

Vienna 1.0105 0.9840 1.0201 1.0284 0.9784 

Warsaw 1.0337 1.0166 0.9982 1.0131 1.0211 

Lisbon 1.0680 0.9357 0.9212 1.0038 0.9822 

Bucharest 0.9869 0.9826 1.0023 0.9781 0.9925 

Krakow 1.0358 1.0238 1.0054 1.0251 1.0094 

Bratislava 1.0130 0.9937 1.0183 0.9697 0.9628 

Helsinki 1.0484 1.1326 0.9141 1.1054 0.9440 

Stockholm 1.1759 0.9714 1.0000 1.0000 1.0000 

London 0.9908 1.0000 0.9751 0.5525 0.9836 

Zaragoza 1.4495 0.7032 0.9838 1.0067 0.9933 

Oslo 1.1243 1.1449 0.9969 0.9452 1.0000 

Zurich 1.0200 1.0000 1.0000 1.0000 1.0000 

Moscow 1.0629 1.1475 0.8559 0.9576 1.0000 

Kiev 0.3446 0.6827 0.6942 3.4868 1.0893 

Rome 0.8887 1.0052 1.0025 1.0388 0.9615 

Ankara 0.9919 1.0348 0.9413 1.0305 1.0286 
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Table B9(b). Productivity change for the 35 European smart cities over the years from 

2015 till 2020 under the Social cohesion and solidarity dimension 

Smart cities Pessimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 1.0000 1.0000 1.0231 0.9075 1.0115 

Sofia 0.9913 1.0023 0.9947 0.9905 1.0048 

Prague 1.0000 1.0000 0.9731 1.0000 1.0000 

Copenhagen 0.9964 1.0084 0.9911 1.0006 0.9977 

Munich 1.0000 1.0000 1.0000 1.0000 1.0000 

Tallinn 1.0000 1.0000 1.0000 0.9986 1.0000 

Dublin 1.1412 1.0000 0.9727 1.0000 1.0134 

Athens 0.9953 0.9949 0.9612 0.9607 0.9726 

Bilbao 1.0162 0.9128 0.9994 0.9472 0.9693 

Lyon 0.9826 1.0684 0.9956 0.9750 0.9961 

Dusseldorf 1.0000 1.0000 1.0000 1.0000 0.9204 

Bologna 1.0000 1.0000 1.0336 0.8859 0.9808 

Hamburg 1.0000 0.9973 1.0000 0.9977 1.0000 

St. Petersbrg 0.9917 0.9336 1.0000 1.0123 0.9936 

Merseille 1.0000 1.0000 1.0000 1.0000 1.0000 

Geneva 1.0000 1.0511 1.0017 1.0000 1.0028 

Budapest 1.0031 0.9809 0.9908 0.9991 0.9997 

Manchester 0.9983 1.0000 1.0000 0.9989 1.0000 

Amsterdam 1.0000 1.1336 1.0000 1.0000 1.0188 

Vienna 1.0058 0.9949 1.0068 1.0018 0.7819 

Warsaw 1.0130 0.9983 1.0067 0.9984 1.0004 

Lisbon 1.0000 1.0000 1.0000 1.0000 1.0000 

Bucharest 0.9964 0.9927 1.0044 1.0015 0.9959 

Krakow 1.0000 0.9453 1.0000 1.0000 1.0000 

Bratislava 1.0077 0.9943 1.0087 0.9940 0.9956 

Helsinki 1.0465 1.0322 1.0000 1.0000 1.0000 

Stockholm 0.9835 0.9996 0.9954 1.0165 1.0005 

London 1.0568 1.0414 0.9542 1.0176 0.9640 

Zaragoza 1.0000 1.0000 1.0000 1.0000 1.0000 

Oslo 1.0000 1.0000 1.0000 1.0000 1.0000 

Zurich 1.0024 1.0000 1.0000 1.0000 1.0164 

Moscow 1.0000 1.0000 1.0000 1.0000 1.0000 

Kiev 1.0000 1.0000 0.9020 1.0000 1.0000 

Rome 0.9964 1.0000 1.0000 1.0000 1.0000 

Ankara 0.9965 1.0033 0.9750 1.0054 1.0066 
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Table B10(a). Productivity change for the 35 European smart cities over the years 

from 2015 till 2020 under the energy and environmental resource dimension 

Smart cities Optimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 0.9800 1.0483 0.9516 0.9927 1.0553 

Sofia 0.9791 1.0167 1.0367 0.9860 0.9919 

Prague 1.0171 1.0130 1.0175 1.0185 0.9920 

Copenhagen 1.0000 1.0100 0.9915 1.0000 1.0011 

Munich 1.0000 0.8691 1.0072 1.0000 1.0000 

Tallinn 1.0019 1.0769 0.9283 1.0750 0.9511 

Dublin 1.0075 1.0178 0.9900 1.0189 1.0222 

Athens 1.0290 1.0614 1.0256 0.9913 0.9806 

Bilbao 0.9969 0.9781 1.0175 0.9775 1.0371 

Lyon 0.9832 1.0005 1.0280 1.0004 0.9851 

Dusseldorf 1.0046 1.0011 0.9851 1.0976 0.9935 

Bologna 1.0179 0.9904 1.0006 0.9878 1.0213 

Hamburg 0.9627 0.9789 0.9397 0.9826 0.9827 

St. Petersbrg 0.9708 1.0750 0.8023 0.8052 1.2470 

Merseille 1.0244 1.0045 1.0072 1.0271 1.0575 

Geneva 0.5659 0.9128 0.9877 1.2296 0.7386 

Budapest 0.9946 1.0142 0.9921 1.0402 0.9820 

Manchester 1.0518 1.1392 1.1277 0.8098 1.0583 

Amsterdam 0.9646 1.0083 0.9974 1.0131 1.0012 

Vienna 0.9640 1.0071 1.0037 1.0022 0.9957 

Warsaw 1.0208 1.0053 1.0203 1.0229 0.9995 

Lisbon 1.0101 0.9712 1.0035 0.9798 1.0271 

Bucharest 1.0052 0.9897 1.0170 0.9878 1.0101 

Krakow 1.0096 1.1478 0.9785 1.0083 0.9962 

Bratislava 1.0495 0.9652 1.0093 1.0587 1.0165 

Helsinki 0.6779 1.0406 1.2906 1.6301 0.9755 

Stockholm 0.9715 1.0674 0.9974 0.9793 0.9927 

London 0.7999 1.8477 1.5314 2.2704 1.3017 

Zaragoza 0.9913 1.0000 1.0000 1.0000 0.9742 

Oslo 1.0000 1.0000 1.0000 1.0000 1.0337 

Zurich 0.9021 0.9853 1.1869 1.0536 1.0005 

Moscow 1.1065 0.9086 0.9255 0.8804 0.8832 

Kiev 1.1250 1.0702 0.9476 0.9545 1.0772 

Rome 1.1065 0.9293 1.0153 1.0587 1.0092 

Ankara 0.9616 1.0093 0.9881 1.0085 0.9885 
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Table B10(b). Productivity change for the 35 European smart cities from 2015 till 

2020 under the energy and environmental resource dimension 

Smart cities Pessimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 0.9665 1.0505 0.9656 0.9907 1.0398 

Sofia 0.9756 1.0157 1.0365 0.9871 0.9968 

Prague 0.9817 1.0179 1.0247 1.0178 0.9888 

Copenhagen 1.0300 1.0316 1.0436 1.0009 1.0092 

Munich 0.9737 0.9548 1.0189 1.0933 0.9793 

Tallinn 0.9981 1.0502 0.9447 1.0527 0.9652 

Dublin 1.0452 1.1250 0.9549 1.0697 1.0549 

Athens 1.0278 1.0596 1.0250 0.9915 0.9814 

Bilbao 0.9971 0.9788 1.0166 0.9783 1.0354 

Lyon 1.0291 0.9775 0.9676 1.0345 0.9702 

Dusseldorf 1.0135 0.9907 0.9852 1.0966 0.9947 

Bologna 1.0144 0.9925 0.9987 0.9894 1.0186 

Hamburg 0.9746 0.9850 0.9575 0.9867 0.9866 

St. Petersbrg 1.0169 0.9637 1.0111 1.0105 1.0000 

Merseille 1.0215 1.0041 1.0065 1.0219 1.0572 

Geneva 1.1861 0.9684 1.0051 1.1433 0.8694 

Budapest 0.9916 1.0134 0.9924 1.0416 0.9803 

Manchester 1.1227 1.0396 1.0212 0.9461 0.9949 

Amsterdam 0.9649 1.0075 0.9975 1.0119 1.0011 

Vienna 0.9889 0.9957 0.9933 1.0023 0.9975 

Warsaw 1.0182 1.0049 1.0187 1.0212 0.9999 

Lisbon 1.0159 0.9752 1.0046 0.9807 1.0241 

Bucharest 1.0052 0.9898 1.0170 0.9889 1.0100 

Krakow 1.0149 1.1414 0.9525 1.0163 0.9894 

Bratislava 1.0549 0.9655 1.0087 1.0580 1.0169 

Helsinki 0.9510 1.0210 1.0413 1.0698 0.9963 

Stockholm 0.9729 1.0516 0.9962 0.9878 0.9888 

London 1.0304 1.1742 0.9713 1.2932 0.9356 

Zaragoza 0.9357 1.0449 1.0654 1.0225 1.0616 

Oslo 1.0778 0.9952 1.5492 1.0105 1.0067 

Zurich 0.9580 1.0113 1.0695 1.0139 1.0126 

Moscow 0.9754 0.9883 1.0268 0.9775 0.9999 

Kiev 1.0258 1.0952 0.9641 0.9727 1.0718 

Rome 1.1052 0.9300 1.0145 1.0442 1.0210 

Ankara 0.9629 1.0087 0.9884 1.0079 0.9890 
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Table B11 (a). Productivity change for the 35 European smart cities over the years 

from 2015 till 2020 under the safety and security dimension 

Smart cities Optimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 1.0156 1.0630 0.8376 1.0366 0.9094 

Sofia 1.0160 1.0956 1.0000 0.9587 0.9528 

Prague 0.9708 0.9951 0.9667 1.0404 1.0783 

Copenhagen 1.1579 0.9425 0.9980 1.0116 1.0893 

Munich 0.9196 1.0197 1.0391 0.9971 0.9568 

Tallinn 1.0000 0.9873 1.0592 1.0000 1.0000 

Dublin 0.9292 1.0490 1.0244 0.9904 1.0635 

Athens 1.0461 1.0180 0.9090 1.0460 0.9445 

Bilbao 1.0223 0.9968 1.0164 0.9944 0.9815 

Lyon 0.9755 1.0666 0.9445 1.0247 0.9367 

Dusseldorf 0.7945 1.0964 0.6743 1.3310 1.0288 

Bologna 0.9736 0.9225 0.8812 0.9734 0.9643 

Hamburg 1.0199 0.9753 1.0000 1.0386 0.8200 

St. Petersbrg 1.0000 1.0000 1.0000 1.0000 1.0000 

Merseille 1.0000 0.7186 1.2941 0.6918 1.2970 

Geneva 0.9558 0.9957 0.7646 1.0491 0.8326 

Budapest 1.0078 1.0438 1.0671 1.0584 0.9721 

Manchester 0.8780 1.0348 1.0704 1.1166 0.8154 

Amsterdam 0.9796 1.0011 0.9908 0.9825 0.9794 

Vienna 1.0281 0.9529 1.0447 0.8217 0.9661 

Warsaw 0.9093 0.8697 0.8098 1.0414 1.0635 

Lisbon 0.8973 1.0270 1.0488 0.9486 1.0750 

Bucharest 1.0811 1.0000 1.0000 1.0000 1.0394 

Krakow 0.9349 1.0641 1.0149 0.9791 1.0451 

Bratislava 1.0253 0.9737 1.1546 1.0539 1.0355 

Helsinki 1.0512 1.0676 0.9574 1.0192 0.9014 

Stockholm 0.9216 1.0419 1.0193 1.0099 1.0079 

London 1.0098 0.9560 0.9534 1.0730 0.9217 

Zaragoza 1.0116 0.8758 1.0778 0.8348 0.8319 

Oslo 1.0544 0.8506 0.9710 1.0622 0.9650 

Zurich 0.9523 0.9322 0.9333 1.0036 1.0703 

Moscow 1.0095 0.9228 1.0581 0.8770 0.7667 

Kiev 1.0509 1.0647 1.0827 0.9520 1.2120 

Rome 1.0226 0.9345 0.9884 1.1268 0.9404 

Ankara 0.9835 1.0727 0.9028 1.0696 0.9258 
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Table B11 (b). Productivity change for the 35 European smart cities over the years 

from 2015 till 2020 under the safety and security dimension 

Smart cities Pessimistic MPI 

2015/16 2016/17 2017/18 2018/19 2019/20 

Brussels 1.0204 1.1079 0.7932 0.9990 0.8728 

Sofia 1.0000 1.0000 1.0018 1.0863 1.0000 

Prague 1.0000 1.0000 1.0690 0.9487 1.0000 

Copenhagen 1.2902 0.7658 1.1453 0.8538 1.1039 

Munich 0.9351 1.0477 0.9848 0.9583 1.0106 

Tallinn 0.7442 1.2205 0.9944 1.2946 0.6759 

Dublin 0.7537 1.2085 1.0398 0.8968 1.1328 

Athens 0.8792 1.6788 0.4734 0.9633 0.9489 

Bilbao 0.9088 1.0213 1.1087 0.9398 1.0413 

Lyon 0.8734 1.0596 0.8363 1.0687 0.8800 

Dusseldorf 1.0000 1.0000 1.0782 1.0000 1.0000 

Bologna 0.8623 0.7186 0.6839 0.9409 0.9457 

Hamburg 1.0000 1.0000 1.0000 1.0000 0.9018 

St. Petersbrg 1.0612 0.8541 0.8976 0.9580 0.8009 

Merseille 1.0000 1.0547 0.8022 1.0676 1.0000 

Geneva 1.0801 0.9254 0.6142 1.5278 0.5663 

Budapest 0.9795 1.0561 1.0133 1.0000 1.0000 

Manchester 0.6389 1.0624 1.1202 1.0281 0.8141 

Amsterdam 0.9462 1.1107 0.9702 0.9701 1.1335 

Vienna 1.0680 0.8698 1.0707 0.8151 0.9369 

Warsaw 0.8983 1.1788 0.7989 1.0981 1.1973 

Lisbon 0.7974 0.9860 1.0397 0.8876 1.1260 

Bucharest 1.0000 1.0000 1.0307 1.2563 0.9667 

Krakow 0.7790 1.4367 1.0788 0.8529 1.1387 

Bratislava 1.0001 1.0000 1.0810 1.0000 1.0000 

Helsinki 0.7756 0.9716 1.0000 1.0000 0.9834 

Stockholm 0.9057 1.0003 1.0116 0.9913 1.1187 

London 1.1302 0.8472 0.9285 1.0804 0.8733 

Zaragoza 1.0000 1.0000 1.0000 1.0000 1.3480 

Oslo 0.9590 0.6823 0.7317 1.3291 0.9195 

Zurich 1.0137 0.7569 0.6970 1.2426 0.7122 

Moscow 1.0000 1.0000 1.0000 1.0000 1.0000 

Kiev 1.0604 0.9929 1.0077 1.0565 1.0000 

Rome 0.9563 0.7117 0.9638 1.4214 0.8689 

Ankara 0.8668 1.0000 1.0000 1.0000 0.8813 
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Table B12(a). Results for the comparative analysis on the overall change in 

productivity over time under the climate change dimension 

Smart Cities 2015/2020 

Optimistic MPI 

2015/2020 

Pessimistic MPI 

DF-Malmquist 

index 

Rank 

Brussels 1.00948 1.00826 1.00887 11 

Sofia 0.98892 0.98808 0.98850 19 

Prague 0.86320 1.00940 0.93344 34 

Copenhagen 0.97696 0.98135 0.97916 21 

Munich 0.95775 0.98538 0.97147 23 

Tallinn 1.07524 0.99480 1.03424 4 

Dublin 0.93754 0.96411 0.95073 30 

Athens 0.86595 1.03631 0.94731 32 

Bilbao 0.98123 0.99725 0.98921 18 

Lyon 0.91599 0.99633 0.95532 29 

Dusseldorf 1.07517 0.93182 1.00093 14 

Bologna 0.97839 1.03326 1.00545 12 

Hamburg 1.08537 0.98237 1.03259 5 

Petersburg 0.94327 1.01671 0.97930 20 

Merseille 1.00544 1.00342 1.00443 13 

Geneva 1.09085 1.00000 1.04444 2 

Budapest 0.96127 0.97956 0.97037 24 

Manchester 0.92367 0.99284 0.95763 28 

Amsterdam 1.00000 1.03480 1.01725 7 

Vienna 1.00661 0.99033 0.99844 17 

Warsaw 0.98627 0.94933 0.96762 25 

Lisbon 0.91559 0.98162 0.94803 31 

Bucharest 0.86603 1.00832 0.93447 33 

Krakow 0.95568 0.97710 0.96633 26 

Bratislava 0.93029 0.99552 0.96235 27 

Helsinki 0.97244 0.97843 0.97543 22 

Stockholm 1.08923 1.00000 1.04366 3 

London 1.01431 1.01165 1.01298 10 

Zaragoza 1.00000 1.00000 1.00000 16 

Oslo 1.00577 0.99471 1.00023 15 

Zurich 1.05002 0.98191 1.01540 8 

Moscow 0.83070 1.00000 0.91143 35 

Kiev 1.03064 1.00000 1.01521 9 

Rome 2.19852 1.00000 1.48274 1 

Ankara 1.06002 0.99334 1.02614 6 
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Table B13 (a). Results for the comparative study on the overall change in productivity 

over time under the Economic dynamism dimension 

Smart Cities 2015/2020 

Optimistic MPI 

2015/2020 

Pessimistic MPI 

DF-Malmquist 

Index  

 

Rank 

Brussels 0.99839 1.02206 1.01016 4 

Sofia 0.99463 1.00681 1.00070 7 

Prague 0.99401 0.97976 0.98686 15 

Copenhagen 0.97944 0.97041 0.97491 22 

Munich 0.99679 1.00418 1.00048 8 

Tallinn 0.99403 1.06078 1.02686 2 

Dublin 0.99799 1.01997 1.00892 5 

Athens 0.98689 0.99588 0.99138 12 

Bilbao 0.96722 0.96828 0.96775 27 

Lyon 0.93750 0.94584 0.94166 31 

Dusseldorf 0.98991 0.97651 0.98318 17 

Bologna 0.96583 0.97845 0.97212 24 

Hamburg 0.93276 0.92908 0.93092 34 

Petersburg 0.96153 0.95393 0.95772 29 

Merseille 0.96665 1.03243 0.99900 10 

Geneva 0.99658 0.93360 0.96458 28 

Budapest 0.97285 1.02988 1.00096 6 

Manchester 0.98322 1.06588 1.02372 3 

Amsterdam 0.98184 0.97369 0.97776 21 

Vienna 0.97626 0.96363 0.96993 25 

Warsaw 0.98853 0.98410 0.98631 16 

Lisbon 0.95719 0.91291 0.93478 32 

Bucharest 0.97367 1.00401 0.98872 13 

Krakow 1.00167 0.95861 0.97990 20 

Bratislava 0.98108 1.09325 1.03565 1 

Helsinki 0.98623 0.99679 0.99150 11 

Stockholm 0.98145 0.98153 0.98149 19 

London 0.97431 0.96998 0.97214 23 

Zaragoza 0.94771 0.91995 0.93373 33 

Oslo 0.98407 0.99019 0.98713 14 

Zurich 1.00024 1.00057 1.00040 9 

Moscow 0.97451 0.99027 0.98236 18 

Kiev 0.94787 0.99149 0.96943 26 

Rome 0.95395 0.79524 0.87099 35 

Ankara 0.97922 0.92211 0.95023 30 
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Table B14 (a). Results for the comparative study on the overall change in productivity 

over time under the Governance and Institution dimension 

Smart Cities 2015/2020 

Optimistic MPI 

2015/2020 

Pessimistic MPI 

DF-Malmquist 

Index (DF-MPI) 

Rank 

Brussels 1.00124 1.00000 1.00062 15 

Sofia 0.96731 0.98443 0.97584 27 

Prague 1.00930 1.00079 1.00504 8 

Copenhagen 0.97679 0.97079 0.97379 30 

Munich 0.99161 1.01935 1.00538 7 

Tallinn 0.96667 0.99057 0.97855 25 

Dublin 0.99443 0.98390 0.98915 23 

Athens 0.97509 0.97634 0.97571 28 

Bilbao 0.97079 0.98021 0.97549 29 

Lyon 1.00040 1.00870 1.00454 9 

Dusseldorf 1.00561 1.00000 1.00280 12 

Bologna 0.99797 1.00465 1.00131 14 

Hamburg 0.99184 0.98133 0.98657 24 

Petersburg 1.29493 0.99236 1.13360 1 

Merseille 1.04193 1.05156 1.04673 3 

Geneva 1.00252 1.00357 1.00304 10 

Budapest 0.98455 0.96918 0.97683 26 

Manchester 0.99829 0.99649 0.99739 16 

Amsterdam 0.94780 0.96312 0.95543 32 

Vienna 0.99583 0.99438 0.99510 19 

Warsaw 0.98707 0.99289 0.98997 21 

Lisbon 0.97896 0.99984 0.98934 22 

Bucharest 1.07416 1.00949 1.04132 4 

Krakow 0.93849 0.96545 0.95187 34 

Bratislava 0.97945 0.96071 0.97003 31 

Helsinki 1.03354 0.99550 1.01434 5 

Stockholm 0.99333 0.99519 0.99426 20 

London 0.98548 1.00717 0.99627 17 

Zaragoza 0.99787 1.02600 1.01183 6 

Oslo 0.99150 0.99951 0.99550 18 

Zurich 0.99681 1.00879 1.00278 13 

Moscow 0.91676 0.98999 0.95267 33 

Kiev 0.84671 1.00000 0.92017 35 

Rome 0.99946 1.00659 1.00302 11 

Ankara 1.13315 1.00000 1.06450 2 
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Table B15(a). Results for the comparative study on the overall change in productivity 

over time under the social cohesion and solidarity dimension 

Smart Cities 2015/2020 

Optimistic MPI 

2015/2020 

Pessimistic MPI 

DF-Malmquist 

Index  

Rank 

Brussels 0.87959 0.98841 0.93242 35 

Sofia 0.99405 0.99674 0.99539 22 

Prague 1.00532 0.99461 0.99995 17 

Copenhagen 0.98844 0.99885 0.99363 25 

Munich 0.99896 1.00000 0.99948 18 

Tallinn 0.99020 0.99971 0.99495 23 

Dublin 1.10656 1.02547 1.06524 2 

Athens 0.96401 0.97695 0.97046 33 

Bilbao 1.00120 0.96900 0.98497 30 

Lyon 1.00923 1.00354 1.00638 12 

Dusseldorf 0.99124 0.98407 0.98765 29 

Bologna 0.97266 0.98005 0.97635 32 

Hamburg 1.06127 0.99900 1.02967 3 

St. Petersburg 1.00920 0.98624 0.99766 20 

Merseille 0.99784 1.00000 0.99892 19 

Geneva 1.01172 1.01111 1.01142 9 

Budapest 0.99262 0.99473 0.99367 24 

Manchester 1.01795 0.99945 1.00866 11 

Amsterdam 0.99864 1.03047 1.01443 6 

Vienna 1.00428 0.95822 0.98098 31 

Warsaw 1.01657 1.00338 1.00995 10 

Lisbon 0.98218 1.00000 0.99105 27 

Bucharest 0.98850 0.99818 0.99333 26 

Krakow 1.01987 0.98906 1.00435 13 

Bratislava 0.99151 1.00006 0.99578 21 

Helsinki 1.02889 1.01575 1.02230 4 

Stockholm 1.02946 0.99910 1.01417 7 

London 0.90040 1.00682 0.95213 34 

Zaragoza 1.02730 1.00000 1.01356 8 

Oslo 1.04225 1.00000 1.02091 5 

Zurich 1.00400 1.00374 1.00387 14 

Moscow 1.00476 1.00000 1.00238 15 

Kiev 1.25952 0.98040 1.11123 1 

Rome 0.97934 0.99929 0.98926 28 

Ankara 1.00543 0.99735 1.00138 16 
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Table B16(a). Results for the comparative study on the overall change in productivity 

over time under the Energy and Environmental resource dimension 

Smart Cities 2015/2020 

Optimistic MPI 

2015/2020 

Pessimistic MPI 

DF-Malmquist 

Index  

Rank 

Brussels 1.00559 1.00263 1.00411 20 

Sofia 1.00207 1.00234 1.00220 22 

Prague 1.01163 1.00620 1.00891 17 

Copenhagen 1.00051 1.02306 1.01172 15 

Munich 0.97525 1.00401 0.98953 32 

Tallinn 1.00663 1.00217 1.00439 18 

Dublin 1.01127 1.04995 1.03043 5 

Athens 1.01758 1.01707 1.01733 12 

Bilbao 1.00143 1.00126 1.00134 24 

Lyon 0.99942 0.99579 0.99761 27 

Dusseldorf 1.01638 1.01616 1.01627 13 

Bologna 1.00362 1.00274 1.00318 21 

Hamburg 0.96931 0.97806 0.97368 33 

St. Petersburg 0.98008 1.00044 0.99020 31 

Merseille 1.02414 1.02224 1.02319 9 

Geneva 0.88691 1.03443 0.95783 35 

Budapest 1.00463 1.00385 1.00424 19 

Manchester 1.03735 1.02488 1.03110 4 

Amsterdam 0.99690 0.99658 0.99674 28 

Vienna 0.99455 0.99556 0.99506 29 

Warsaw 1.01375 1.01260 1.01317 14 

Lisbon 0.99834 1.00009 0.99921 26 

Bucharest 1.00197 1.00217 1.00207 23 

Krakow 1.02808 1.02290 1.02549 7 

Bratislava 1.01983 1.02080 1.02032 10 

Helsinki 1.12295 1.01589 1.06808 2 

Stockholm 1.00167 0.99945 1.00056 25 

London 1.55020 1.08096 1.29449 1 

Zaragoza 0.99310 1.02604 1.00943 16 

Oslo 1.00674 1.12788 1.06559 3 

Zurich 1.02568 1.01308 1.01936 11 

Moscow 0.94084 0.99359 0.96686 34 

Kiev 1.03490 1.02592 1.03040 6 

Rome 1.02380 1.02298 1.02339 8 

Ankara 0.99118 0.99141 0.99129 30 
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Table B17(a). Results for the comparative study on the overall change in productivity 

over time under the Safety and security dimension 

Smart Cities 2015/2020 

Optimistic MPI 

2015/2020 

Pessimistic MPI 

DF-Malmquist 

Index  

Rank 

Brussels 0.97246 0.95867 0.96554 27 

Sofia 1.00464 1.01763 1.01112 7 

Prague 1.01027 1.00355 1.00690 9 

Copenhagen 1.03986 1.03179 1.03582 3 

Munich 0.98646 0.98731 0.98689 19 

Tallinn 1.00930 0.98591 0.99754 14 

Dublin 1.01130 1.00632 1.00881 8 

Athens 0.99271 0.98872 0.99071 18 

Bilbao 1.00227 1.00396 1.00311 11 

Lyon 0.98960 0.94363 0.96634 26 

Dusseldorf 0.98498 1.01563 1.00019 13 

Bologna 0.94302 0.83028 0.88486 35 

Hamburg 0.97075 0.98035 0.97554 23 

Petersburg 1.00000 0.91436 0.95622 31 

Merseille 1.00031 0.98489 0.99257 17 

Geneva 0.91957 0.94277 0.93110 33 

Budapest 1.02984 1.00978 1.01976 6 

Manchester 0.98304 0.93274 0.95756 29 

Amsterdam 0.98669 1.02617 1.00623 10 

Vienna 0.96271 0.95211 0.95740 30 

Warsaw 0.93874 1.03431 0.98537 20 

Lisbon 0.99932 0.96734 0.98320 21 

Bucharest 1.02410 1.05075 1.03734 2 

Krakow 1.00761 1.05722 1.03212 5 

Bratislava 1.04861 1.01620 1.03228 4 

Helsinki 0.99933 0.94612 0.97236 24 

Stockholm 1.00013 1.00552 1.00282 12 

London 0.98278 0.97190 0.97732 22 

Zaragoza 0.92636 1.06961 0.99541 15 

Oslo 0.98067 0.92432 0.95208 32 

Zurich 0.97834 0.88449 0.93023 34 

Moscow 0.92681 1.00000 0.96271 28 

Kiev 1.07247 1.02351 1.04770 1 

Rome 1.00254 0.98443 0.99344 16 

Ankara 0.99086 0.94963 0.97003 25 

 

  



  

306 

 

Table B18(a). Pairwise comparison matrix for sub-criteria of Sustainability main-

criteria with SF numbers 

  CC GI E EE SS SW 

DM1 CC EI AMI AMI VHI HI SMI 

 GI ALI EI EI SLI LI VLI 

 E ALI EI EI SLI SLI VLI 

 EE VLI SMI SMI EI LI SLI 

 SS LI HI SMI HI EI SMI 

 SW SLI VHI VHI SMI SLI EI 

DM2 CC EI AMI VHI AMI SMI HI 

 GI ALI EI EI EI VLI ALI 

 E VLI EI EI LI VLI VLI 

 EE ALI EI HI EI VLI SLI 

 SS SLI VHI VHI VHI EI SLI 

 SW LI AMI VHI SMI SMI EI 

DM3 CC EI AMI AMI VHI HI SMI 

 GI ALI EI EI LI LI ALI 

 E ALI EI EI LI VLI VLI 

 EE VLI HI HI EI VLI SLI 

 SS LI HI VHI VHI EI SMI 

 SW SLI AMI VHI SMI SLI EI 

 

Table B19 (a). Pairwise comparison matrix for sub-criteria of Resilience main-criteria 

with SF numbers 

 S EC IB IN 

DM 1 S EI SMI HI AMI 

 EC SLI EI SMI HI 

 IB LI SLI EI EI 

 IN ALI LI EI EI 

DM 2 S EI HI HI AMI 

 EC LI EI SMI VHI 

 IB LI SLI EI SMI 

 IN ALI VLI SLI EI 

DM 3 S EI HI HI AMI 

 EC LI EI HI VHI 

 IB LI LI EI SMI 

 IN ALI VLI SLI EI 
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Table B20(a). Pairwise comparison matrix for sub-criteria of urban liveability main-

criteria with SF numbers 

  AC EV CWB 

DM 1 AC EI SLI VLI 

 EV SMI EI LI 

 CWB VHI HI EI 

DM 2 AC EI LI ALI 

 EV HI EI LI 

 CWB AMI HI EI 

DM 3 AC EI ALI VLI 

 EV AMI EI SMI 

 CWB VHI SLI EI 

 

Table B21 (a).Aggregated pairwise matrix for Sustainability sub-criteria 

 CC GI E 

CC (0.50,0.40,0.40) (0.90,0.10,0.00) (0.87,0.13,0.00) 

GI (0.10,0.90,0.00) (0.50,0. 40,0.40) (0.50,0.40,0.40) 

E (0.13,0.87,0.00) (0.50,0. 40,0.40) (0.50,0.40,0.40) 

EE (0.16,0.83,0.00) (0.59,0.39,0.29) (0.66,0.33,0.23) 

SS (0.33,0.66,0.23) (0.73,0.26,0.16) (0.73,0.25,0.14) 

SW (0.36,0.63,0.26) (0.87,0.13,0.00) (0.80,0.20,0.10) 

 EE SS SW 

CC (0.83,0.16,0.00) (0.66,0.33,0.23) (0.63,0.36,0.26) 

GI (0.39,0.55,0.29) (0.26,0.73,0.16) (0.13,0.87,0.00) 

E (0.33,0.66,0.23) (0.25,0.73,0.14) (0.20,0.80,0.10) 

EE (0.50,0.40,0.40) (0.23,0.77, 0.13) (0.40,0.60,0.30) 

SS (0.77,0.23,0.13) (0.50,0.40,0.40) (0.52,0.46,0.30) 

SW (0.60,0.40,0.30) (0.46,0.52,0.30) (0.50,0.40,0.40) 

 

Table B22 (a).Aggregated pairwise matrix for Resilience sub-criteria 

 S EC IB IN 

S (0.50,0.40,0.40) (0.66,0.33,0.23) (0.70,0.30,0.20) (0.90,0.10,0.00) 

EC (0.33,0.66,0.23) (0.50,0.40,0.40) (0.63,0.36,0.26) (0.77,0.23,0.13) 

IB (0.30,0.70,0.20) (0.36,0.63,0.26) (0.50,0.40,0.40) (0.56,0.40,0.33) 

IN (0.10,0.90,0.00) (0.23,0.77,0.13) (0.40,0.56,0.33) (0.50,0.40,0.40) 
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Table B23 (a).Aggregated pairwise matrix for Urban liveability sub-criteria 

 AC EV CWB 

AC (0.50,0.40,0.40) (0.23,0.72,0.00) (0.16,0.83,0.00) 

EV (0.72,0.23,0.00) (0.50,0.40,0.40) (0.38,0.58,0.23) 

CWB (0.83,0.16,0.00) (0.58,0.38,0.23) (0.50,0.40,0.40) 
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APPENDIX C: SUPPLEMENTARY FIGURES 
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                                                                                                            (f) 

 
Figure C1.Precision-recall for curve based on the test dataset for livability 
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(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Figure C2.Precision-recall for curve based on the test dataset for resilience 
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Figure C3.Precision-recall for curve based on the train dataset for livability 
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(e) 

 

(f) 

Figure C4.Precision-recall for curve based on the train dataset for resilience 
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Figure C5.Comparative analysis for different weighting methods integrated with the 

EDAS method for the years 2015-2019 
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APPENDIX D: QUESTIONNAIRE DESIGN FOR EXPERT SURVEY 

To: Academic and industrial practitioners  

Subject: Invite to participate in a questionnaire-based survey on smart city 

performance monitoring 

 

It is an immense pleasure to invite you to participate in a survey for an ongoing 

research titled “A Novel Fuzzy Expert-Based Multi-Criteria Decision Support Model 

For Composite Smart City Performance Assessment”. Your response and valuable 

feedbacks on the attached questionnaire is appreciated to further proceed with the 

entitled research. All answers will be highly confidential and will solely be used for 

the purpose of research. The responses of the survey will be used by the researcher to 

quantify the weights of each main-criteria and sub-criteria to construct a composite 

smart city performance index using the spherical fuzzy-based AHP technique. 

The survey requires to rate and score each criteria and sub-criteria based on their 

importance. Table 1a. shows the dimensions (main-criteria) and indicators (sub-

criteria) used to create the aggregate index and Table 1.b shows the linguistic scales 

and their corresponding Score respectively. The task to accomplish is briefed through 

a simple example below: 

 

Example: “Safety and security” of urban inhabitants holds a significant impact on 

transforming a smart city to a sustainable dwelling unit. Therefore, “Safety and 

security” is absolutely more importance ( score: 9) on the sustainability criteria to 

support smart city transition to a sustainable, resilient, and livable city under the 

tritactic pillar of futuristic city development. 

Table 1a. Criteria and Sub-criteria for the smart city composite performance 

assessment 

Criteria Sub-criteria Symbol 

 Sustainability 

 

Climate change CC 

Governance and Institution GI 

Economic dynamism E 

Energy and environmental resource EE 

Safety and security SS 

Social cohesion and solidarity SW 

Urban Resilience 
 

 

Social Resilience S 

Economic Resilience EC 

Infrastructure and Build 

Environment Resilience 

IB 

Institutional Resilience IN 

Urban liveability 

 

Accessibility AC 

Economic vibrancy EV 

Community well-being CWB 
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Table 1b. Linguistic scale and corresponding Score 

Linguistic scale Abbreviation Score 

Absolutely more importance  AMI 9 

Very high importance  VHI 7 

High importance  HI 5 

Slightly more importance SMI 3 

Equally importance  EI 1 

Slightly low importance  SLI 1/3 

Low importance  LI 1/5 

Very low importance  VLI 1/7 

Absolutely low importance  ALI 1/9 

As an expert with immense experience in the field of smart city, urban regeneration, 

and transformative spatial planning, we wish to translate your expertise, ideas, and 

opinions in evaluating critical main-criteria and sub-criteria that affect smart city 

transformation to a more resilient, sustainable, and livable dwelling units, while 

quantifying the overall performance. 3 main dimensions categorized as the main-

criteria and 13 indicators considered as the sub-criteria as listed in Table 1a for the 

basis of the assessment. For the same, kindly please support the survey by: 

 

1. Rating each main-criteria (see Table 2a.) and sub-criteria (see Table 2b-d.) 

based on the linguistic scales and the corresponding Score that portray the 

importance of each linguistic terms. 

2. Commenting on the relevance of the choice of each main-criteria (dimensions) 

and sub-criteria (indicators) if any, as appropriate. 

3. Returning the completed survey within at least 2 weeks on receiving the 

questionnaire. 

Sincere cooperation in completing the survey is highly solicited. 
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Table 2a. SF-AHP Questionnaire for the main-criteria 

Evaluation of main-criteria 

Criteria A Linguistic Scale Criteria B 

9 7 5 3 1 1/3 1/5 1/7 1/9 1/7 1/5 1/3 1 3 5 7 9  

Sustainability                  Resilience 

Sustainability                  Livability 

Resilience                  Livability 

 

Table 2b. SF-AHP Questionnaire for the sub-criteria under urban resilience 

Evaluation of sub-criteria 

Criteria A Linguistic Scale Criteria B 

9 7 5 3 1 1/3 1/5 1/7 1/9 1/7 1/5 1/3 1 3 5 7 9  

S                  EC 

S                  IB 

S                  IN 

EC                  IB 

EC                  IN 

IB                  IN 

S: Social; EC: Economic; IB: Infrastructure and Built-Environment; IN: Institutional  

 

Table 2c. SF-AHP Questionnaire for the sub-criteria under urban livability 

Evaluation of main-criteria 

Criteria A Linguistic Scale Criteria B 

9 7 5 3 1 1/3 1/5 1/7 1/9 1/7 1/5 1/3 1 3 5 7 9  

AC                  EV 

AC                  CWB 

CWB                  EV 

AC: Accessibility; EV: Economic vibrancy; CWB: Community well-being 
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Table 2d. SF-AHP Questionnaire for the sub-criteria under sustainability 

Evaluation of sub-criteria 

Criteria A Linguistic Scale Criteria B 

9 7 5 3 1 1/3 1/5 1/7 1/9 1/7 1/5 1/3 1 3 5 7 9  

CC                  GI 

CC                  E 

CC                  EE 

CC                  SS 

CC                  SW 

GI                  E 

GI                  EE 

GI                  SS 

GI                  SW 

E                  EE 

E                  SS 

E                  SW 

EE                  SS 

EE                  SW 

SS                  SW 
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