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ABSTRACT 

ALKHAZENDAR, IYAD W.,Masters: June : 2022, Masters of Science in Computing 

Title: Smart Hardware Trojan Detection System 

Supervisor of: Prof. Uvais A. Qidwai. 

The IoT has become an indispensable part of our lives at work and in our home 

applications.  Due to the need for many IoT devices, IoT manufacturers are least 

concerned about security vulnerabilities during designing and developing these devices.  

Because of this, it becomes easier for adversaries to manipulate the hardware and insert 

Trojans or Remote File Inclusion to control remotely.  This thesis aims to build a model 

to identify hardware Trojans in IoT devices using multiple machine learning models.  

We used different machine learning models to evaluate the performance and accuracy. 

In addition, we chose a distinctive feature that can detect the presence of Trojan in these 

devices.  The proposed model is estimated using a smart city testbed and existing and 

real-time datasets generated. The testbed used was designed to simulate and assess the 

Hardware trojan attacks such as the DOS attack and covert channel attack. We could 

measure the power profile and network traffic on the IoT gateway device to analyze the 

performance and accuracy using the real-time dataset to detect the attacks.   
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CHAPTER 1: INTRODUCTION 

Internet of Things (IoT) devices are widely used in the intelligent city network 

due to their defined resources. Millions of devices are interconnected through the 

internet around the world. Smart cities integrate the infrastructure of the different 

domains and cyber-physical technologies to improve economic efficiency and the 

quality of life by reducing power waste and intelligent management of the 

transportation traffic [1]. Smart cities are also known as intelligent or digital cities, 

where extensive internet and communication (ICT) applications are used to collect the 

information from various Internet of Things (IoT) devices, sensors, and actuators to 

augment an innovation which leads to a reduction in cost and applied resources of the 

system. Furthermore, it strengthens the link between government and citizens. Smart 

cities are genuinely dependent on IoT devices, and a sizeable attacking surface 

characterizes that. Smart cities are supposed to help improve services for people but 

being irresponsible with data storage could result in privacy violations, and poorly 

implemented security could allow cyber attackers to interfere with services and 

systems people need. Security of IoT systems has been identified as one of the most 

challenging tasks for intelligent cities [2]. Sensors and internet-connected devices 

may improve urban services but could also be used by hackers and foreign states to 

disrupt or spy. In addition, attacks on an IoT device's embedded Integrated circuit (IC) 

have exponentially increased after integrating IoT devices in different domains (such 

as healthcare, transportation, Radar and CCTV surveillance, etc.). As a result, multiple 

attacks target the IoT devices' security, including confidentiality, integrity, 

availability, authentication, and privacy [3].  According to the BBC report, the Attacker 

performs a grid-lock attack to compromise the traffic control system of the 21sˆt century 

city affecting people's lives and work [4].  In 2018, Atlanta was under a ransomware 
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attack, and the Attacker targeted applications used by customers to pay their bills. As 

a precaution against this attack, Hartsfield-Jackson Airport shut down the Wi-Fi 

network, and 8,000 people unplugged their systems from the intelligent infrastructure 

[5]. To defend against such an attack, a traditional security mechanism cannot be 

deployed. As the traditional security mechanism would cause a computational cost 

and requires high processing power to enable such a mechanism [6]. Improved 

technology should counter the new threats and ensure the IoT system's security [7].  

Around the world, security specialists and researchers pay attention to the smart 

cities sector to strengthen the security of the  IoT system, proposing various 

frameworks and Hardware Trojans Detection System (HTDS) mechanisms to avoid 

such types of cyber- attacks. Hence, there is a requirement to study and analyze 

using predictive Machine Learning (ML) to detect and block the malicious patterns 

of the IoT network. Intelligent cities generate enormous amounts of data from IoT 

devices, challenging the HTDS. This massive computational storage of uncorrelated 

and redundant data adversely affects the detection mechanism, resulting in high false 

positives and high false negatives. The assessment of the IoT system vulnerabilities is 

perspective using pyramid-of-pain (PoP) [8].  

Figure.  1 describes the PoP, and it has six different levels [9]. The topmost layer 

consists of sensors and actuators; this layer provides a potential attacking surface due 

to its heterogeneous environment. The communication layer is an intermediate 

between the sensor and Data collection layer. This layer is prone to attacks when data 

is in motion and transmitting, where the IoT device integrity and data confidentiality 

breaches if the communication layer gets compromised. The hardware abstraction 

layer facilities the interaction between the application programming. The Firmware  
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Figure 1.  IoT vulnerabilities Pyramid-of-Pain [8] 

 

layer is the interface (API) with the sensor data. The final layer comprises different 

ARM-based IC such as field-programmable gate arrays (FPGAs) and System on Chip 

(SoC). An Intellectual property (IP) core behaves like a third party to deliver the 

computational processing in the case of FPGAs/SoCs. The pyramid encapsulates the 

vulnerabilities of the IoT environment; t h e  consequence of an attack damaging 

the IoT system that increases from top to bottom. The attack's impact on the last layer 

is maximum (i.,e Hardware or computational and analytics layer), which this thesis 

investigates comprehensively. 

 

Thesis Objectives and Contributions 

We proposed a novel Hardware Trojan Detection System (HTDS) mechanism in 

this research.  So, the system can continuously monitor an IoT device's network data 

and power consumption by merging the IoT devices' network traffic and power profile 

data and analyzing and detecting the Trojan in the IoT environment based on the 
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Machine Learning (ML) trained models. Furthermore, using Artificial Intelligence 

(AI) makes the defense system adaptable to newer attacks or attacks with 

minor/significant previous versions. We analyze the models with publicly available 

datasets and our generated datasets used for testing the HTDS. The contribution of 

this thesis is as follows: 

 Build a testbed to simulate two of the most critical HT attacks on the IoT Edge 

devices (DOS attacks and Covert channel attacks). 

 Generate and collect a dataset of power profiles for the IoT devices in Normal 

and attack cases to train the model. 

 Builds a real-time supervised lightweight multiclass machine learning model 

using different machine learning models and shows which is the best among 

them for detecting DOS and Covert channel attack using features from the 

network traffic packets and power profile of the IoT Device.  

 Proof that the proposed machine learning model can detect DOS attacks and 

CC attacks in all possible attack scenarios including concurrent attacks. 

 

Thesis Overview 

The flow of the thesis is organized as follows: 

 Chapter 2: Background and the related work of existing HTDS. 

 Chapter 3: Explain the Hardware Trojan detection System model and describe 

the proposed model's methodology. 

 Chapter 4: Results and the Evaluation discussion. 

 Chapter 5: Conclusion and future direction. 
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CHAPTER 2: BACKGROUND AND RELATED WORK 

2.1 Background 

2.1.1 IoT Devices categories 

IoT devices can be categorized into two categories. First, IoT – Edge devices (IoT-ED) 

usually have low computational power, low bandwidth, and minimal power 

consumption. It is mainly for connection to sensors for reading various information, 

and usually, it is low constrained, the second category is the IoT – Gateway devices 

(IoT-GW), which have more resources than the IOT-ED, which receives all the network 

traffic packets and power consumption of the IoT-ED and analyzes the package to 

indicate if the IoT-ED is under attack.  

2.1.2 Network Traffic (NT) 

All the IoT devices that are connected to the IoT-GW send the network traffic, which 

consists of data transmission to reception ratio, duration of the activity, transmission 

mode, source IP address, destination IP address and data value information, etc., the 

network traffic packets are different depending on the status of the communication, for 

that when there is an attack established or being triggered because of the HT, the 

number of packets and other packets fields is different according to the type of attack. 

2.1.2 Power Profile (PP) 

The power consumption data, voltage, and current of the IoT-ED are logged on the IoT 

GW to be analyzed. A sensor INA260 is an example of a sensor that can read the 

current, voltage, and power consumption that will be used as part of the testbed to get 

a reading of the power consumption of IoT-ED. 
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2.2 Related Work  

2.2.1 Hardware Trojan Detection Mechanism 

  The attacks on the IoT hardware are considered one of the most scathing attacks on 

the system, Hardware Trojans that could be implanted on the Integrated circuits (ICs) 

during the designing and manufacturing stages. These Trojans on the system 

compromise the IoT device or system by performing many attacks such as Denial of 

Service (DoS), data leakage, and covert channel attacks. Moreover, Trojans could 

change the functionality of the IC and provide backdoor services to access the 

hardware or firmware of the IoT devices to manipulate the data [10]. Many 

researchers have found high- security risks in the hardware of IoT devices. On a 

single chip, various integrated gates accommodate such chips labeled as extensive 

integration in the Very-large-scale-integration (VLSI) circuits, The Ultra scale 

integration (ULSI), the System on Chip (SoC), and the Network on Chip (NoC). For 

an adversary to implant Trojans or malware on the hardware level of the device during 

production [11]. These risks indicate the urgency of how IC security is essential, besides 

it has a few challenges, namely: (1) It is challenging to distinguish because of the 

small scale between the noise and the Hardware Trojans (HT) [12]. (2) Activation time 

is always connected to a rare event, making it difficult to predict when HT is activated 

[13]. (3) The continuous expansion of chip platforms became highly complicated, 

increasing and diversifying the number of attacks [14]. Due to these challenges, 

researchers showcase their interest in preventing HT by designing an HT detection 

mechanism from the Attacker's perspective. The authors [15] proposed a feature 

matching methodology to capture the trojan features. In last they abstract these features 

to mitigate the Trojan circuitry considering the following categories AES-T100, AES-

T600, AES-T700, AES-T1600, Basic RSA-T100, Basic RSA-T300, UART, and 
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OR1200 CTRL; these Trojans used the unspecified pins for leaking information without 

giving any indication to the monitoring side-channel signals.  In [16], a Trojan detection 

mechanism has been proposed. They use an infested architecture based on the Zynq-

7000 programmable SoC bus platform. The study showed that the communication 

between them is the Trojan Channels, and the bus topology operated on the idle bus 

cycle. Authors in [17] propose a stable mapping method," dynamic-resource-

management dependent on security value (DRMaSV)." In this research, a standard 

mapping method called dynamic resource management based on security value 

(DRMaSV) to enhance Coarse-grained re-configurable-architectures (CGRA) operation 

toward secure hardware mapping. The methodology is to attach the Dynamic Resource 

Management approach to standard mapping CGRA, and this approach shows the 

effectiveness of the proposed secure mapping method for SoC and simulation. 

Mohammed et al. [18] implement a technique of detection based on utilizing the power 

profile (PP) and the network traffic (NT) data without- intervening with IC design for 

the detection of any malicious activity; this approach can detect multiple attacks such 

as DoS,  ARQ, power depletion, covert channel attack, and impersonation attack; also 

the authors implemented data fusion to combine both the PP and NT with accuracy for 

each one separately around 99%, and if it's all in concurrent the accuracy increased after 

the researcher did the data fusion approach, which considering as one of the states of 

the art on the detection of HT that achieving high accuracy and can detect concurrent 

attacks without any time intervention. Many authors use fusion techniques. The fusion 

concept mainly comprises three levels based on the processing fusion stages. On every 

level, the representation of the information is different from one another.  
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Table. 1. Existing HDTS approaches  

Article Selected Features 

No. of samples 
(Training & 

Testing) 

Classifier 
Fusion 

Technique 

Evaluation 

metrics 

      

[23] Power Utilization 360k& 120K BPNN 
Wavelet 

translation 
sensitivity 
=99.2% 

[24] Propagation delay 271 & 1329 
K-NN, 
DT, BC 

PCA/FLD 
Accuracy = up to 

95% 

[25] 
Transient Supply 

current 
N/A & >560 

Cluster 
ensemble 

UCFS 
Accuracy = up to 

93.57% 

[26] EM Traces 150 & 50 
one-class 

SVM 
PCA 

Accuracy = up to 
99.4% 

[27] 
Transmission 

Power 
30 & 90 

one-class 
SVM 

PCA FPR=FNR = 0% 

[28] 
Ordered Mixed 
Features GEP 
(OMF-GEP) 

- - 
GEP 

algorithm 
Fitness rate = 
above 90% 

[18] 
Power profile and 

Network data 
8,432,640 

Random 
Forest 

- Accuracy = 99% 

[29] 
Functional & 

Structural Features 
800 & 11 

Voting 
Ensemble 

- 
TPR = 100 % 
TBR = 98% 

[30] 
Single Channel 

Images 
Trust-HUB CNN HERO 

Accuracy = 
97.51% 

[31] 

Testability 
analysis & 

Reinforcemen
t learning 

NA & 7838 
Trigger 

coverage signal 

Reinforce
ment 

learning 
- 

Accuracy = 
average of 96% 

 

The data and feature fusion are states, characteristics, and features, whereas the output 

information of the decision level is the decision [19].  Various data fusion techniques 

are applied at different levels to perform better data processing. The following are the 

fusion levels of data fusion: Low-Level Fusion (Data Level Fusion) in this level, the 

raw data from the Different sources are aggregated to generate informative data [20]. 

Feature Fusion Level (Mid-Level Fusion) Different data features are combined to 

extract optimal features by applying feature selection and dimensionality reduction 
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techniques [21]. Decision fusion (High-Level Fusion) The decision of different models 

is fused to make a final decision. At this level, the approach of each model carried out 

the operation of detection, data exploration, and dimensionality reduction on the 

observed patterns of the network [22]. Table 1. describes the existing approaches for 

Hardware Trojan detection. Finally, all these models are fused into a comprehensive 

model to make an accurate decision based on this level. The two main categories of 

feature fusion for the HTDS system are filter and wrapper methods. In filter method 

approach, it follows a statistical approach based on information theory, namely 

Canonical Correlation Analysis (CCA) [32], Principal Component Analysis (PCA) 

[33], Latent Dirichlet Allocation (LDA) [34], Correlation-based Feature Selection 

(CFS) [35] etc. Various fusion techniques are used, highlighting the classical 

approaches of feature fusion techniques. Other Techniques used by the authors depend 

on the power profile of the trusted devices and, according to the trained model of the 

dataset from the trusted device, can detect the attack on IoT Device.  

 

2.2 Threat Model and Attack scenarios 

 

2.2.1 Threat Model 

IC chips are one of the main components of all IoT Edge devices. In This threat 

model, the Attacker during the IoT Edge devices manufacturing could implant HT and 

change the IC chip's internal structure. Furthermore, the Attacker could program the 

HT to make an attack whenever the trigger is initiated; such critical attack that can be 

triggered is the DOS attack and covert channel attack. 
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2.2.2 Attacks Scenarios 

 Under the Normal Case, the IoT-ED will send both the Network packets and 

the power consumption usually to the IoT-GW as per the actual packets sent. 

The power consumption for the regular activity used by IoT-ED will usually 

be a timer to send the data to the IoT-Gateway device.  

  In case of a DOS attack, which tries to get the IoT-ED to be unavailable due 

to the floods on the targeted device with repeated messages, or even to attack 

the IoT-GW. Network packets and power consumption of the IoT-ED will be 

sent to the IoT-GW during the attack.  

 Another Attack scenario is that Network covert channels are an evasion 

technique that employs available protocols to transmit unauthorized 

information; covert channels are divided into two main types of storage and 

timing. Our scenario will test the Storage covert channel attack, specifically 

TCP covert channel. 

 

After simulating these types of attacks scenarios, we found that our approach and 

techniques used to detect the attacks can detect all possible scenarios, even in case the 

attack was targeting another IoT-ED and the network traffic packets were not sniffed 

by the IoT-GW, the model in IoT-GW was able to detect the attack using the power 

profile alone, also another scenario when both attacked initiated at the same time, the 

machine learning model was able to detect concurrent attack with a high accuracy, 

which proves that our approach and technique using network traffic and power profile 

would detect all possible scenarios with high accuracy.  
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CHAPTER 3: SYSTEM MODEL AND METHODOLOGY 

3.1 System Model 

The proposed scheme enhances the security of an intelligent environment where 

various protocols are used to transfer the data from devices to the cloud. The 

data is very confidential; in some situations, The Hardware trojan tries to disrupt 

the communication of a device itself or steal some critical data, leading to the 

breach of personal data. An appropriate solution detection mechanism is adopted 

to avoid such attacks in an intelligent network. Hence, various ML/DL models 

detect the negative pattern in the network. In the usual scenarios, all live traffic 

packets of the IoT edge devices are monitored by the cloud when enabling a 

detection mechanism against attacks on the cloud to analyze the packets but due 

to resource constraints of IoT devices, computational cost, and high processing 

power it is not optimum to do the detection, for that HTDS smartly classifies the 

attack patterns of typical anomalies from IoT edge devices directly and alerts the 

admin once the IoT device/system is under attack. A novel HTDS for the IoT 

devices for smart cities is depicted in figure 2.  
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Figure 2.  System Model 

3.2 Methodology 

The following three steps are needed to propose the desired system.  The steps 

can be called levels or phases to develop and integrate to build the final HT-

detection system (HTDS), as shown in Figure 3. 

 

Figure 3. HT-detection model  

 

3.2.1 Data generation phase:  

 This level consists of many IoT devices of various domains in a real-time scenario. 

Meta-information is generated from this phase in the form of raw data from multiple 

domains in the smart city environment such as transportation, smart home, and e-health 

system. These domains work on both wireless/wired protocols to transfer confidential 

information from IoT devices to the edge node of the particular field. We utilized the 

IoT device's network data and power utilization.  The network traffic is being captured 

or sniffed using a sniffing module, i.e., (the Wireshark tool), and another IoT device 
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monitors the Power utilization data of the IoT under attack. We assumed that if the 

Attacker tries to compromise the IoT-1 device by sending Remote File Inclusion (RFI) 

or Trojan payloads, we observe the negative patterns in the network traffic. These 

payloads will deviate from the IoT device's voltage and current under attack 

parameters. In such a case, we will fail to detect the Trojans on the IoT devices because 

the detection model will not receive voltage and current parameters from that device 

under attack. Hence, our model uses both (Network + Power utilization) data to detect 

the malicious activities that result in the loss/death of IoT devices from the network. 

For example, if the IoT is in the healthcare domain, it threatens the patient's life. To 

avoid abrupt circumstances, we tune the power utilization parameters of the IoT 

devices such that every IoT device should share the voltage and current parameters 

with the other IoT devices. The information flow of the network can be obtained from 

the traffic bit with the header section.  The data collected here is raw data, which 

consists of basic information about the packets. More details (features) are extracted 

in the next level.  

3.2.2. Feature Extracting  

The feature extracting will be from PCAP using Wireshark (tshark tool) and data 

cleaning The network packets after its generated by using the covert_tcp.c tool for the 

covert channel and the packets that been captured during the DOS attack in PCAP 

format, data needs to be changed to CSV file, the tshark can extract the ID, checksum 

values of all datagrams as in the following an example command : 

tshark -r input.pcapng -T fields -E separator=, -E header=y, -e ip.id -e ip.checksum >  

output.csv 

then processing of the data is required to delete any unnecessary blank rows, and then 

a label needs to be added to the data if it's normal. DOS, or covert attack.  
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3.2.3 Feature Selection  

Feature selection is crucial for the result to be accurate, Feature engineering is used for 

both DOS and Covert channel (TCP sequence ) the following feature will be used: 

TCP Sequence, TCP next sequence, TCP acknowledgment, TCP Checksum, TCP 

SYN flag, and for the power the selection will be for the current, voltage and the power 

consumption. 

3.2.4 Feature Engineering  

Before processing the training data, a Feature with hexadecimal content like the TCP 

checksum and IP ID needs to be converted to decimal to be processed. Also, all the 

rows that have blank values need to be deleted before it's passed to the machine 

learning model. 

3.2.5 Feature Scaling  

All features should be scaled before we implement the training on the ML model, as it 

ensures the values are in the same range and reduces any error. We will use for the 

scale of features the StandardScaler from sci-kit. 

3.2.6 Feature merging phase:   

In this phase, the network Power utilization of the data is preprocessed. And The 

network data consist of data transmission to reception ratio, duration of the activity, 

transmission mode, source IP address, destination IP address and data value 

information, etc., and power consumption data voltage and current. Other features may 

be added later if required during the implementation of the detection mechanism. At 

the same time, the Power utilization of data consists of power utilized by the IoT when 

the IoT device is under attack and without attack, we write a python script to combine 

both sniffed traffic packets and power utilization readings into one CSV file to be 
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passed to the machine learning model after doing the feature processing and feature 

selection to check if the IoT device is under attack.  

The objective of the feature merging technique is to make the dimensionality reduction 

of multiple datasets, such that we get higher accuracy of the HTDS model. The best 

model as per our criteria is the one with higher accuracy, precision, and Recall, To 

evaluate the quality of the feature. We are concerned about the training and testing 

time of the classifier to be minimum; usually, the time required to train the classifier 

is more than the testing time, which affects the performance of the model.  

3.2.7 Model training: 

The dataset is split into training and test data sets to be used by the ML model. 70% of 

the dataset is for training, and 30%  is for testing, We will use the method under the 

sci-kit learn library to split the data set to training and testing 'train_test_split.' 

3.2.8 Model Evaluation  

The evaluation of the trained model will be done on different techniques such as the 

accuracy score, cross-validation, precision score, recall score, and F1 score and more 

clarification will be discussed in section 4.3. 

3.3 Decision Phase:   

In this detection phase, the merged features input the ML model to predict the 

network/power consumption activity as normal or malicious. Initially, a model is 

formed from which the features are fed to build a training framework categorizing 

malicious and benign behavior: ML is employed to predict the network and power 

consumption activity. Then, the network / Power consumption activity features are 

compared with those of the training phase. The HTDS is designed to manage a wide 

range of attacks. In the detection phase, the features of the actual data packets are 

extracted from the collected raw data. Later the elements are classified by comparing 
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with the training sequence, finally, the decision is made as regular network activity, 

DOS attack, or CC attack. 

 

3.4 Testbed Setup  

The innovative environment testbed consists of the following devices with the following 

specification:  

IoT–Gateway : Raspberry Pi specification: SoC: Broadcom BCM2711B0 quad-core 

A72 (ARMv8-A) 64-bit @ 1.5GHz, GPU: Broadcom VideoCore VI, Networking: 

2.4 GHz and 5 GHz 802.11b/g/n/ac wireless LAN, RAM: 4GB SDRAM, Bluetooth: 

Bluetooth 5.0, Bluetooth Low Energy (BLE), GPIO: 40-pin GPIO header, populated , 

Storage: microSD, Ports: 2 × micro-HDMI 2.0, 3.5 mm analogue audio-video jack, 2 × 

USB 2.0, 2 × USB 3.0, Gigabit Ethernet, Camera Serial Interface (CSI), Display Serial 

Interface (DSI), Dimensions: 88 mm × 58 mm × 19.5 mm, 46 g.  

IOT Edge devices: Raspberry Pi 3 with following specification : Clock frequency: 1.2 

GHz ,Chipset (SoC): Broadcom BCM2837, Processor: 64-bit quad-core ARM Cortex-

A53 , Graphics processor: Broadcom Dual Core VideoCore IV (OpenGL ES 2.0, H.264 

Full HD @ 30 fps), Memory (SDRAM): 1 GB LPDDR2, Number of USB 2.0 ports: 4, 

Port extension: 40-pin GPIO, Video outputs: HDMI and RCA, plus 1 CSI camera 

connector, Audio outputs: 3.5 mm stereo jack or HDMI, Data storage: MicroSD card, 

Network connection: 10/100 Ethernet, 802.11n Wi-Fi and Bluetooth 4.1 (BLE - Low 

Energy), Peripherals: 17 x GPIO ,Supply: 5V 2.5A via micro USB, Dimensions: 85.60 

mm × 53.98 mm × 17 mm, Weight: 45 g.  

Another IoT-Edge Device used is ESP32cam with the following specification:  Ultra-

small 802.11b/g/n Wi-Fi + BT/BLE SoC module, Low-power dual-core 32-bit CPU for 

application processors, Up to 240MHz, up to 600 DMIPS, Built-in 520 KB SRAM, 
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external 4M PSRAM, Supports interfaces such as UART/SPI/I2C/PWM/ADC/DAC, 

Support OV2640 and OV7670 cameras with built-in flash, Support for images Wi-Fi 

upload, Support TF card, Support multiple sleep modes, Embedded Lwip and 

FreeRTOS, Support STA/AP/STA+AP working mode,  Support Smart Config/ AirKiss 

One-click distribution network, Support for local serial upgrade and remote firmware 

upgrade (FOTA), Support secondary development. ESP32-cam as IoT-Edge node is 

connected with sensors such as surveillance cameras, temperature sensors, etc. ESP32 

devices sense the data of the various sensors and transfer them to the Gateway device 

of the IoT system. Figure4 describes the testbed scenario, The Raspberry-PI4 acts as a 

Gateway node, and it receives data from the ESP32 through Wi-Fi. The Gateway device 

preprocesses the data and transfers it to the cloud for future records, analytics, and 

visualization.  

INA260 Sensor: Power Profile will be sent to the IoT-GW through which will be 

connected from IoT-ED to the IoT-GW the sensor has the following specification: 

Precision Integrated Shunt Resistor: Current Sense Resistance: 2mΩ, Tolerance 

Equivalent to 0.1%,15-A Continuous From –40°C to +85°C, ten ppm/°C Temperature 

Coefficient,(0°C to +125°C ), Senses Bus Voltages From 0 V to 36 V, High-Side or 

Low-Side Sensing, Reports Current, Voltage, and Power, High Accuracy: 0.15% 

System Gain Error (Maximum), 5-mA Offset (Maximum), Configurable Averaging 

Options,16 Programmable Addresses, Operates From a 2.7-V to 5.5-V Power Supply, 

16-Pin, TSSOP Package. 

 LCD screen: to show continuous current, voltage, and power consumption changes, 

Testbed devices are shown in figure 4 for more clarification.  
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Figure 4. Experimental Setup 

 

3.4.1 Tools used in our testbed experiment: 

Wireshark and Scapy to sniff the packet data from the IoT-Edge Devices. 

INA260 sensor for reading and sending the power profile to the IoT-GW device. 

Covert_tcp tool for generating the covert channel attack packets. 

3.4.2 Attack Scenarios Explanation: 

Scenario 1: IoT device1-Edge device sends a regular traffic and power consumption to 

the IoT-Gateway device. While the IoT device2-Edge device (ESP32-CAM) streams 

and sends traffic data to the IoT-Gateway device, capturing traffic packets through the 

Wireshark tool and reading the power profile data through the INA260 sensor. And Both 

reading is saved combined on a CSV file on the IoT -Gateway.   
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Figure 5. Attack scenarios 

 

Scenario 2:In our setup, we have performed a Denial of Service (DoS) attack by 

sending a malicious (Trojan) payload from  IoT device1-Edge device to IoT device2-

Edge device, which is triggered by HT (for demonstration purposes Triggering is done 

by push button). The DOS attack will disrupt the communication between the ESP32-

cam (IoT device2-Edge device) and the Gateway device (IoT-Gateway device) with a 

flood of malicious traffic, the IOT1-Edge Device will keep sending the Network data, 

and power consumption during the attack as shown in figure 5, both sniffed network 

traffic packets and the power consumption will be merged to one dataset using a python 

script to save it to one CSV file to be used as an input dataset for the ML model, and  

ML model will detect the attack.  

Scenario 3: In our setup the for demonstration purpose of the Covert channel attack, the 

attack will be triggered by push-button from the IoT device1-Edge device and attack 
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IoT-Gateway the message will be sent through the IP header to the IoT -Gateway device,  

Scenario 4: in this scenario, we initiate the two attacks at once to see the performance 

of the detection mechanism in detecting concurrent attacks of the DOS and CC attacks. 

In our exterminate there are two programs in python, the first program is Server located 

on the IoT-GW device, and the second one is a Client located on the IoT-ED device, 

Scapy needs to be used on both Edge and Gateway devices, and the Wireshark tool must 

be installed on the  IoT-GW to sniff the traffic packet as shown on Figure 6., both 

datasets of power and traffic will be combined using python script in the IoT-GW, to be 

passed to the machine learning model after its being processed to detect the attack once 

it is being initiated.     

 

Figure 6a. attack covert channel scenario 
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Figure 6b. attack covert channel scenario 
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CHAPTER 4: RESULT AND EVALUATION 

 

In this section, we used an ML model to experiment and validate the model to be 

deployed on the edge device of the intelligent network. ML has been chosen for fraud 

detection, text classification, and image recognition problems. Due to the significant 

outcome of ML algorithms for different situations, many researchers engage these ML 

algorithms to identify the abnormal behavior of the node in the network to enhance 

security. Machine learning models are deployed and utilized in various applications to 

determine the Trojans or malicious behavior in the network's traffic. We have tested 

ML algorithms such as Naive Bayes, K- Nearest Neighbor, Logistic Regression, 

Decision Trees, Support Vector Machine (SVM), Random Forest (RF), and Deep 

Neural Network (DNN) to choose which is the best accuracy among of them for our 

model. We have selected the RF algorithm among all the algorithms due to its best 

performance and suitability to our resource constraint architecture. 

4.1 Machine learning models:  

Naive Bayes: In the sub-domain (i.e., machine learning) of the AI, the Naive Bayes 

classifier is a simple approach that is truly dependent on the Bayes' theorem with the 

independent assumption among the different feature samples. It computes the 

probability of various classes for given input instances. Suppose X acts as a vector of 

wrong in-stances, where n features of an illustration are represented as x1, x2, x3, ...., 

xn. Considering that, there are k labels for the class (i.e., C1, C2, C3, ...., Cn). The 

probability condition of the Naive Bayes is P (Ck |X ) Ck indicates the instance of the 

given X. By applying the Bayes theorem to the situation of the naive, it is represented 

as P (Ck|x1, x2, x3, ..., xn ) = ( , 2, 3 
,..., n|

 
 ). ( )

( , 2, 3,..., n )
            (1) 

 



 

23 

P(Ck|X) = 
( |

 k). ( k)

(  )
          (2) 

 , According to the naive condition independent assumption, each feature is independent 

of the other elements. Hence, it can be rewritten as 

P(Ck|X)) = 
( |

 k). ( k)

(  )
        (3) 

 

K- Nearest Neighbor: The basic rule of this classification model is to classify an 

instance based on the distance from the k-nearest neighbor points. The final decision 

will be based on most of the neighbors' votes. The Euclidean distance Eq. 4 is used to 

measure each instance with its neighbor• Euclidean distance: 

 
                   (4) 

Logistic Regression:  The algorithm is well known for statistical supervised ML 

models. This algorithm is used for binary classification problems; this model compares 

the result with other ML models. 

Decision Trees:  The classification problem is solved by creating the tree. The tree starts 

at the root and stratifies the data at attributes, resulting in higher information gain (IG). 

It comprises sub-trees and nodes. In our scenario, the decision will appear on the leaves. 

Support Vector Machine (SVM): SVM is used for the classification and regression 

problem; a hyperplane segregates the regular events from the plane. 

Random Forest (RF) is an efficient algorithm used for both classification and regression 

tasks and used for feature selection. This ensemble model can attain the best accuracy 

among other classifiers. However, the RF algorithm model will be computationally 

expensive compared to other lightweight ML models in our approach. 

A Deep Neural Network (DNN) is a supervised learning approach used for the 

classification problem. DNN comprises different layers of input, output, and hidden 

layers in the neural network. To enhance the performance of the DNN model, we have 
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chosen Rectified Linear unit (ReLU) activation function in all the layers of the neural 

network except the output layer used for the model output. Table 2 describes the chosen 

hyperparameters for the DNN model.  For the fast convergence, we preferred to use it 

as an Adam optimizer with a batch size of 60. and an epoch size of 1000 for training 

the model.  

 

Table 2. DNN Hyperparameter Settings 

Activation Function ReLU 

Epoch 1000 
Optimizer Adam 
Learning rate 0.001 
Batch size 60 
  

 

The rate is set to be at 0.001. The training set is scaled using RobustScaler as it improves 

the performance of the DNN. 

4.2 Dataset 

• We capture live traffic and power data from the testbed and generate the dataset 

to train the machine learning model.  

• During the collection of the data, different samples were collected for the DOS, 

CC,  and the Normal traffic and power.  

• 109500 samples were collected from capturing live traffic and power of the IoT-

ED.  

• From the samples collected a percentage of 70% was used for training and 30 

% for testing. 

dataset demonstrates that this method achieves higher accuracy than the other 

incremental models mentioned in the literature for DOS attack identification. The 

covert channel attack dataset was collected from the network packet from the 
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covert_tcp.c tool to generate the traffic of the clandestine attack, Wireshark tool used 

to sniff the data and then converted to CVS format by a python program. For the Power 

profile, the dataset is generated from the reading power current, voltage, and power 

consumption from the IoT-Edge device by using the INA260 sensor, and last using a 

python script to merge both sniffed traffic packets and the reading of the power 

utilization to CSV file format all the scenarios (Normal case, DOS attack case, and 

during the Covert channel attack) to be processed and then passed to the machine 

learning model for the detection. 

4.3 Samples:  

Three samples were created for training the machine learning model:  

1st sample containing regular traffic packets and reading of the normal activity of the 

power profile without any attack.  

2nd sample contains the Traffic packets and the power profile during the DOS attack.  

3rd sample contains the traffic packets and the power profile during the Covert channel 

attack.  

4.4 Experimental Results 

In the following section, we enlist the parameters and methods to evaluate the DF 

techniques to choose the best one as per the problem and the attack scenarios that are 

explained in Fig.5. The performance of the DF technique is directly proportional to the 

version of the HTDS model. To calculate the performance of IDS, various statistical 

measures are used. In binary classification, a set of samples are labeled benign or 

malicious classes. Generally, the performance of the ML/DL algorithms is evaluated 

by the metrics extracted from the confusion matrix. This section provides a detailed 

experimental analysis of the proposed model. We describe the metrics that are used for 
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the evaluation of the model below. The parameters of the confusion matrix are 

explained below to evaluate the performance of the classification models. 

•    True Positive (TP):  

Depict the number of malicious samples classified correctly as malicious 

•    True negative (TN):   

Depict the number of benign samples classified correctly as harmless. 

•    False Positive (FP):   

Depict the number of benign samples incorrectly classified as malicious. 

•    False Negative:   

Depict the number of malicious samples incorrectly classified as benign. 

Based on the confusion matrix, the metrics that are used to evaluate the performance of 

the ML models are explained as follows: 

1)  Accuracy: The ratio of correctly identified records to the complete test dataset. 

Accuracy is considered a suitable parameter for the test dataset, which contains 

balanced classes as shown in equation 5. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∗ 100       (5) 

2) F1-Score: The harmonic mean of Recall and precision is the harmonic mean. It is 

defined as: 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (
∗

 ) ∗ 2       (6) 

The accuracy and f1-score as shown in equation 6 of the proposed model are shown in 

Figure 7 and Table 2. The results demonstrate that most ML models performed 

similarly in both metrics, among which KNN, DT, and RF gave more than 98% 

accuracy. For IoMTs, accuracy and computational capability, and memory 

consumption of the ML algorithm are also significant. From the selected ones, KNN, 

DT, and RF are lightweight algorithms that are suitable for our scenario, but DT and 
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RF performance are relatively better than the KNN, while KNN has the biggest file size 

with approximate 130Mb, which is not suitable for the resource-constrained 

environment, for that we have selected RF for our model. 

Figure 7. Accuracy and F1-Score 

3)  Recall measure is to understand the genuinely correct predictions.

4)  Precision is the ratio of correctly recognized malicious samples to the total number

of entire malicious samples. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (7) 

The precision-recall measure gives the actual performance of our model. Therefore, it 

is a significant metric to evaluate the classifier output quality. Like accuracy metrics, 

the precision, and Recall are shown in Figure. 8 and Table 3, for the selected algorithm, 

RF is best and very near to the highest value in the chosen list. 
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Figure 8. Recall and Precision 

5)  False Positive Rate (FPR):  The ratio of benign samples is tagged as malicious to

the complete benign samples. It is defined as 

𝐹𝑃𝑅 = (8) 

6)  True Positive Rate (TPR): It is also referred to as Recall.  The ratio of correctly

classified malicious samples to the entire negative samples 

𝑇𝑃𝑅 = (9) 

In an attempt to prove the performance of the proposed model, we have included two 

other metrics, TPR and FPR, which correctly give the error rates of the classifier 

models. Figure. 9 and table 3show that the lowest TPR and FPR values are recorded for 

RF.  
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Figure 9. FPR and TPR

The Following Table 3. shows all the percentages for each Machine learning model: 

Table 3. Result for each ML model 

ML models Accuracy (%) F1-Score (%) Recall (%) Precision (%) TPR FPR 

Logistic 

Regression 
92.3 92.80 91.0 93.80 0.08 0.918 

Gaussian NB 91.83 92.73 94.33 89.15 0.091 0.92 

KNN 99.01 99.32 98.33 99.54 0.02 0.989 

DT 99.09 99.47 99.12 99.51 0.009 0.995 

RF 99.12 99.55 99.45 99.67 0.007 0.995 

SVC 96.7 97.33 97.5 99.02 0.09 0.982 

SVM linear 93.7 95.7 93.74 94.44 0.06 0.984 

DNN 99.27 99.76 99.12 99.51 0.9912 0.9951 
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CHAPTER 5: CONCLUSION AND FUTURE WORKS 

The Thesis reviewed the attack detection of the Hardware Trojan Detection System. 

And the HTDS models that followed a combination of these methods, security, and 

privacy of the data from various sources are significant to deal with HTDS. But our 

model has considered the security and privacy issues of the intelligent environment by 

preprocessing the steps on the IoT device itself and merging the network traffic with 

the data of power utilized by the IoT device. Then, this process data is transmitted to 

the edge node of the smart environment to the HTDS to detect the HTDS on the 

network. The proposed model gives us more than 99% accuracy in detecting all 

different scenarios including concurrent attacks or detecting any attacks based on power 

profile alone, which suggests the real-time detection of the proposed methodology.  

Further, we would like to investigate other types of attack detection using various AI 

approaches. 
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