
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

SMART HARDWARE TROJAN DETECTION SYSTEM

BY

IYAD W. J. ALKHAZENDAR

A Thesis Submitted to

the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computing

 June 2022

© 2022 Iyad W. J. Alkhazendar. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of

Iyad W. J. Alkhazendar defended on 17/05/2022.

Dr. Uvais Ahmed Qidwai
 Thesis/Dissertation Supervisor

Dr. Elias Yaacoub
 Committee Member

Dr. Syed Rafay Hasan
Committee Member

Approved:

Khalid Kamal Naji, Dean, College of Engineering

iii

ABSTRACT

ALKHAZENDAR, IYAD W.,Masters: June : 2022, Masters of Science in Computing

Title: Smart Hardware Trojan Detection System

Supervisor of: Prof. Uvais A. Qidwai.

The IoT has become an indispensable part of our lives at work and in our home

applications. Due to the need for many IoT devices, IoT manufacturers are least

concerned about security vulnerabilities during designing and developing these devices.

Because of this, it becomes easier for adversaries to manipulate the hardware and insert

Trojans or Remote File Inclusion to control remotely. This thesis aims to build a model

to identify hardware Trojans in IoT devices using multiple machine learning models.

We used different machine learning models to evaluate the performance and accuracy.

In addition, we chose a distinctive feature that can detect the presence of Trojan in these

devices. The proposed model is estimated using a smart city testbed and existing and

real-time datasets generated. The testbed used was designed to simulate and assess the

Hardware trojan attacks such as the DOS attack and covert channel attack. We could

measure the power profile and network traffic on the IoT gateway device to analyze the

performance and accuracy using the real-time dataset to detect the attacks.

iv

DEDICATION

I dedicate my dissertation work to my loving wife and my beloved kids. A special

feeling of gratitude to my mother, brothers, and sister for the encouragement to finish

my master's and thesis.

v

ACKNOWLEDGMENTS

I would like to acknowledge the Support of Qatar University for providing all

the needs to achieve the requirements of this study, and I would like to thank my thesis

supervisor Prof. Uvais for his support, also thank Prof. Mohsen Guizani and Prof. Amr

Mohamed for their guidance through my study.

Not least of all, I would like also to express my gratitude to all of the faculty

members who taught during my master’s study.

vi

TABLE OF CONTENTS

DEDICATION ... iv

ACKNOWLEDGMENTS .. v

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

Chapter 1: INTRODUCTION... 1

Chapter 2: Background and RELATED WORK .. 5

2.1 Background ... 5

2.1.1 IoT Devices categories .. 5

2.1.2 Network Traffic (NT) ... 5

2.1.3 Power Profile (PP) .. 5

2.2 Related Work ... 6

Chapter 3: System Model and methodology ... 11

3.1 System Model .. 11

3.2 Methodology ... 12

3.2.1 Data generation phase ... 12

3.2.2 Feature extracting.. 13

3.2.3 Feature Selection ... 14

3.2.4 feature engineering.. 14

3.2.5 Feature Scaling.. 14

3.2.6 Feature merging Phase .. 14

vii

3.2.7 Model training .. 15

3.2.8 Model Evaluation .. 15

3.3 Decision Phase .. 15

3.4 Testbed Setup ... 16

3.4.1 Tools used in our testbed experiment ... 18

3.4.2 Attack Scenarios Explanation ... 18

Chapter 4: Elementry result and evaluation .. 22

4.1 Machine learning models .. 22

4.2 Dataset ... 24

4.3 Samples ... 25

4.4 Experimental Results .. 25

Chapter 5: Elementry result and evaluation .. 30

viii

LIST OF TABLES

Table 1. Existing approaches of HDTS ... 8

Table 2. DNN Hyperparameter Settings .. 24

Table 3. Result for each ML model ... 29

ix

LIST OF FIGURES

Figure 1. IoT vulnerabilities Pyramid-of-Pain ... 3

Figure 2. System Model. .. 11

Figure 3. HT-detection model .. 12

Figure 4. Experimental Setup .. 18

Figure 5. Attack scenarios.. 19

Figure 6a. Attack covert channel scenario ... 20

Figure 6b. Attack covert channel scenario ... 21

Figure 7. Accuracy and F1-Score .. 27

Figure 8. Recall and Precision ... 27

Figure 9. FPR and TPR .. 28

1

CHAPTER 1: INTRODUCTION

Internet of Things (IoT) devices are widely used in the intelligent city network

due to their defined resources. Millions of devices are interconnected through the

internet around the world. Smart cities integrate the infrastructure of the different

domains and cyber-physical technologies to improve economic efficiency and the

quality of life by reducing power waste and intelligent management of the

transportation traffic [1]. Smart cities are also known as intelligent or digital cities,

where extensive internet and communication (ICT) applications are used to collect the

information from various Internet of Things (IoT) devices, sensors, and actuators to

augment an innovation which leads to a reduction in cost and applied resources of the

system. Furthermore, it strengthens the link between government and citizens. Smart

cities are genuinely dependent on IoT devices, and a sizeable attacking surface

characterizes that. Smart cities are supposed to help improve services for people but

being irresponsible with data storage could result in privacy violations, and poorly

implemented security could allow cyber attackers to interfere with services and

systems people need. Security of IoT systems has been identified as one of the most

challenging tasks for intelligent cities [2]. Sensors and internet-connected devices

may improve urban services but could also be used by hackers and foreign states to

disrupt or spy. In addition, attacks on an IoT device's embedded Integrated circuit (IC)

have exponentially increased after integrating IoT devices in different domains (such

as healthcare, transportation, Radar and CCTV surveillance, etc.). As a result, multiple

attacks target the IoT devices' security, including confidentiality, integrity,

availability, authentication, and privacy [3]. According to the BBC report, the Attacker

performs a grid-lock attack to compromise the traffic control system of the 21sˆt century

city affecting people's lives and work [4]. In 2018, Atlanta was under a ransomware

2

attack, and the Attacker targeted applications used by customers to pay their bills. As

a precaution against this attack, Hartsfield-Jackson Airport shut down the Wi-Fi

network, and 8,000 people unplugged their systems from the intelligent infrastructure

[5]. To defend against such an attack, a traditional security mechanism cannot be

deployed. As the traditional security mechanism would cause a computational cost

and requires high processing power to enable such a mechanism [6]. Improved

technology should counter the new threats and ensure the IoT system's security [7].

Around the world, security specialists and researchers pay attention to the smart

cities sector to strengthen the security of the IoT system, proposing various

frameworks and Hardware Trojans Detection System (HTDS) mechanisms to avoid

such types of cyber- attacks. Hence, there is a requirement to study and analyze

using predictive Machine Learning (ML) to detect and block the malicious patterns

of the IoT network. Intelligent cities generate enormous amounts of data from IoT

devices, challenging the HTDS. This massive computational storage of uncorrelated

and redundant data adversely affects the detection mechanism, resulting in high false

positives and high false negatives. The assessment of the IoT system vulnerabilities is

perspective using pyramid-of-pain (PoP) [8].

Figure. 1 describes the PoP, and it has six different levels [9]. The topmost layer

consists of sensors and actuators; this layer provides a potential attacking surface due

to its heterogeneous environment. The communication layer is an intermediate

between the sensor and Data collection layer. This layer is prone to attacks when data

is in motion and transmitting, where the IoT device integrity and data confidentiality

breaches if the communication layer gets compromised. The hardware abstraction

layer facilities the interaction between the application programming. The Firmware

3

Figure 1. IoT vulnerabilities Pyramid-of-Pain [8]

layer is the interface (API) with the sensor data. The final layer comprises different

ARM-based IC such as field-programmable gate arrays (FPGAs) and System on Chip

(SoC). An Intellectual property (IP) core behaves like a third party to deliver the

computational processing in the case of FPGAs/SoCs. The pyramid encapsulates the

vulnerabilities of the IoT environment; t h e consequence of an attack damaging

the IoT system that increases from top to bottom. The attack's impact on the last layer

is maximum (i.,e Hardware or computational and analytics layer), which this thesis

investigates comprehensively.

Thesis Objectives and Contributions

We proposed a novel Hardware Trojan Detection System (HTDS) mechanism in

this research. So, the system can continuously monitor an IoT device's network data

and power consumption by merging the IoT devices' network traffic and power profile

data and analyzing and detecting the Trojan in the IoT environment based on the

4

Machine Learning (ML) trained models. Furthermore, using Artificial Intelligence

(AI) makes the defense system adaptable to newer attacks or attacks with

minor/significant previous versions. We analyze the models with publicly available

datasets and our generated datasets used for testing the HTDS. The contribution of

this thesis is as follows:

 Build a testbed to simulate two of the most critical HT attacks on the IoT Edge

devices (DOS attacks and Covert channel attacks).

 Generate and collect a dataset of power profiles for the IoT devices in Normal

and attack cases to train the model.

 Builds a real-time supervised lightweight multiclass machine learning model

using different machine learning models and shows which is the best among

them for detecting DOS and Covert channel attack using features from the

network traffic packets and power profile of the IoT Device.

 Proof that the proposed machine learning model can detect DOS attacks and

CC attacks in all possible attack scenarios including concurrent attacks.

Thesis Overview

The flow of the thesis is organized as follows:

 Chapter 2: Background and the related work of existing HTDS.

 Chapter 3: Explain the Hardware Trojan detection System model and describe

the proposed model's methodology.

 Chapter 4: Results and the Evaluation discussion.

 Chapter 5: Conclusion and future direction.

5

CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 IoT Devices categories

IoT devices can be categorized into two categories. First, IoT – Edge devices (IoT-ED)

usually have low computational power, low bandwidth, and minimal power

consumption. It is mainly for connection to sensors for reading various information,

and usually, it is low constrained, the second category is the IoT – Gateway devices

(IoT-GW), which have more resources than the IOT-ED, which receives all the network

traffic packets and power consumption of the IoT-ED and analyzes the package to

indicate if the IoT-ED is under attack.

2.1.2 Network Traffic (NT)

All the IoT devices that are connected to the IoT-GW send the network traffic, which

consists of data transmission to reception ratio, duration of the activity, transmission

mode, source IP address, destination IP address and data value information, etc., the

network traffic packets are different depending on the status of the communication, for

that when there is an attack established or being triggered because of the HT, the

number of packets and other packets fields is different according to the type of attack.

2.1.2 Power Profile (PP)

The power consumption data, voltage, and current of the IoT-ED are logged on the IoT

GW to be analyzed. A sensor INA260 is an example of a sensor that can read the

current, voltage, and power consumption that will be used as part of the testbed to get

a reading of the power consumption of IoT-ED.

6

2.2 Related Work

2.2.1 Hardware Trojan Detection Mechanism

 The attacks on the IoT hardware are considered one of the most scathing attacks on

the system, Hardware Trojans that could be implanted on the Integrated circuits (ICs)

during the designing and manufacturing stages. These Trojans on the system

compromise the IoT device or system by performing many attacks such as Denial of

Service (DoS), data leakage, and covert channel attacks. Moreover, Trojans could

change the functionality of the IC and provide backdoor services to access the

hardware or firmware of the IoT devices to manipulate the data [10]. Many

researchers have found high- security risks in the hardware of IoT devices. On a

single chip, various integrated gates accommodate such chips labeled as extensive

integration in the Very-large-scale-integration (VLSI) circuits, The Ultra scale

integration (ULSI), the System on Chip (SoC), and the Network on Chip (NoC). For

an adversary to implant Trojans or malware on the hardware level of the device during

production [11]. These risks indicate the urgency of how IC security is essential, besides

it has a few challenges, namely: (1) It is challenging to distinguish because of the

small scale between the noise and the Hardware Trojans (HT) [12]. (2) Activation time

is always connected to a rare event, making it difficult to predict when HT is activated

[13]. (3) The continuous expansion of chip platforms became highly complicated,

increasing and diversifying the number of attacks [14]. Due to these challenges,

researchers showcase their interest in preventing HT by designing an HT detection

mechanism from the Attacker's perspective. The authors [15] proposed a feature

matching methodology to capture the trojan features. In last they abstract these features

to mitigate the Trojan circuitry considering the following categories AES-T100, AES-

T600, AES-T700, AES-T1600, Basic RSA-T100, Basic RSA-T300, UART, and

7

OR1200 CTRL; these Trojans used the unspecified pins for leaking information without

giving any indication to the monitoring side-channel signals. In [16], a Trojan detection

mechanism has been proposed. They use an infested architecture based on the Zynq-

7000 programmable SoC bus platform. The study showed that the communication

between them is the Trojan Channels, and the bus topology operated on the idle bus

cycle. Authors in [17] propose a stable mapping method," dynamic-resource-

management dependent on security value (DRMaSV)." In this research, a standard

mapping method called dynamic resource management based on security value

(DRMaSV) to enhance Coarse-grained re-configurable-architectures (CGRA) operation

toward secure hardware mapping. The methodology is to attach the Dynamic Resource

Management approach to standard mapping CGRA, and this approach shows the

effectiveness of the proposed secure mapping method for SoC and simulation.

Mohammed et al. [18] implement a technique of detection based on utilizing the power

profile (PP) and the network traffic (NT) data without- intervening with IC design for

the detection of any malicious activity; this approach can detect multiple attacks such

as DoS, ARQ, power depletion, covert channel attack, and impersonation attack; also

the authors implemented data fusion to combine both the PP and NT with accuracy for

each one separately around 99%, and if it's all in concurrent the accuracy increased after

the researcher did the data fusion approach, which considering as one of the states of

the art on the detection of HT that achieving high accuracy and can detect concurrent

attacks without any time intervention. Many authors use fusion techniques. The fusion

concept mainly comprises three levels based on the processing fusion stages. On every

level, the representation of the information is different from one another.

8

Table. 1. Existing HDTS approaches

Article Selected Features

No. of samples
(Training &

Testing)

Classifier
Fusion

Technique

Evaluation

metrics

[23] Power Utilization 360k& 120K BPNN
Wavelet

translation
sensitivity
=99.2%

[24] Propagation delay 271 & 1329
K-NN,
DT, BC

PCA/FLD
Accuracy = up to

95%

[25]
Transient Supply

current
N/A & >560

Cluster
ensemble

UCFS
Accuracy = up to

93.57%

[26] EM Traces 150 & 50
one-class

SVM
PCA

Accuracy = up to
99.4%

[27]
Transmission

Power
30 & 90

one-class
SVM

PCA FPR=FNR = 0%

[28]
Ordered Mixed
Features GEP
(OMF-GEP)

- -
GEP

algorithm
Fitness rate =
above 90%

[18]
Power profile and

Network data
8,432,640

Random
Forest

- Accuracy = 99%

[29]
Functional &

Structural Features
800 & 11

Voting
Ensemble

-
TPR = 100 %
TBR = 98%

[30]
Single Channel

Images
Trust-HUB CNN HERO

Accuracy =
97.51%

[31]

Testability
analysis &

Reinforcemen
t learning

NA & 7838
Trigger

coverage signal

Reinforce
ment

learning
-

Accuracy =
average of 96%

The data and feature fusion are states, characteristics, and features, whereas the output

information of the decision level is the decision [19]. Various data fusion techniques

are applied at different levels to perform better data processing. The following are the

fusion levels of data fusion: Low-Level Fusion (Data Level Fusion) in this level, the

raw data from the Different sources are aggregated to generate informative data [20].

Feature Fusion Level (Mid-Level Fusion) Different data features are combined to

extract optimal features by applying feature selection and dimensionality reduction

9

techniques [21]. Decision fusion (High-Level Fusion) The decision of different models

is fused to make a final decision. At this level, the approach of each model carried out

the operation of detection, data exploration, and dimensionality reduction on the

observed patterns of the network [22]. Table 1. describes the existing approaches for

Hardware Trojan detection. Finally, all these models are fused into a comprehensive

model to make an accurate decision based on this level. The two main categories of

feature fusion for the HTDS system are filter and wrapper methods. In filter method

approach, it follows a statistical approach based on information theory, namely

Canonical Correlation Analysis (CCA) [32], Principal Component Analysis (PCA)

[33], Latent Dirichlet Allocation (LDA) [34], Correlation-based Feature Selection

(CFS) [35] etc. Various fusion techniques are used, highlighting the classical

approaches of feature fusion techniques. Other Techniques used by the authors depend

on the power profile of the trusted devices and, according to the trained model of the

dataset from the trusted device, can detect the attack on IoT Device.

2.2 Threat Model and Attack scenarios

2.2.1 Threat Model

IC chips are one of the main components of all IoT Edge devices. In This threat

model, the Attacker during the IoT Edge devices manufacturing could implant HT and

change the IC chip's internal structure. Furthermore, the Attacker could program the

HT to make an attack whenever the trigger is initiated; such critical attack that can be

triggered is the DOS attack and covert channel attack.

10

2.2.2 Attacks Scenarios

 Under the Normal Case, the IoT-ED will send both the Network packets and

the power consumption usually to the IoT-GW as per the actual packets sent.

The power consumption for the regular activity used by IoT-ED will usually

be a timer to send the data to the IoT-Gateway device.

 In case of a DOS attack, which tries to get the IoT-ED to be unavailable due

to the floods on the targeted device with repeated messages, or even to attack

the IoT-GW. Network packets and power consumption of the IoT-ED will be

sent to the IoT-GW during the attack.

 Another Attack scenario is that Network covert channels are an evasion

technique that employs available protocols to transmit unauthorized

information; covert channels are divided into two main types of storage and

timing. Our scenario will test the Storage covert channel attack, specifically

TCP covert channel.

After simulating these types of attacks scenarios, we found that our approach and

techniques used to detect the attacks can detect all possible scenarios, even in case the

attack was targeting another IoT-ED and the network traffic packets were not sniffed

by the IoT-GW, the model in IoT-GW was able to detect the attack using the power

profile alone, also another scenario when both attacked initiated at the same time, the

machine learning model was able to detect concurrent attack with a high accuracy,

which proves that our approach and technique using network traffic and power profile

would detect all possible scenarios with high accuracy.

11

CHAPTER 3: SYSTEM MODEL AND METHODOLOGY

3.1 System Model

The proposed scheme enhances the security of an intelligent environment where

various protocols are used to transfer the data from devices to the cloud. The

data is very confidential; in some situations, The Hardware trojan tries to disrupt

the communication of a device itself or steal some critical data, leading to the

breach of personal data. An appropriate solution detection mechanism is adopted

to avoid such attacks in an intelligent network. Hence, various ML/DL models

detect the negative pattern in the network. In the usual scenarios, all live traffic

packets of the IoT edge devices are monitored by the cloud when enabling a

detection mechanism against attacks on the cloud to analyze the packets but due

to resource constraints of IoT devices, computational cost, and high processing

power it is not optimum to do the detection, for that HTDS smartly classifies the

attack patterns of typical anomalies from IoT edge devices directly and alerts the

admin once the IoT device/system is under attack. A novel HTDS for the IoT

devices for smart cities is depicted in figure 2.

12

Figure 2. System Model

3.2 Methodology

The following three steps are needed to propose the desired system. The steps

can be called levels or phases to develop and integrate to build the final HT-

detection system (HTDS), as shown in Figure 3.

Figure 3. HT-detection model

3.2.1 Data generation phase:

 This level consists of many IoT devices of various domains in a real-time scenario.

Meta-information is generated from this phase in the form of raw data from multiple

domains in the smart city environment such as transportation, smart home, and e-health

system. These domains work on both wireless/wired protocols to transfer confidential

information from IoT devices to the edge node of the particular field. We utilized the

IoT device's network data and power utilization. The network traffic is being captured

or sniffed using a sniffing module, i.e., (the Wireshark tool), and another IoT device

13

monitors the Power utilization data of the IoT under attack. We assumed that if the

Attacker tries to compromise the IoT-1 device by sending Remote File Inclusion (RFI)

or Trojan payloads, we observe the negative patterns in the network traffic. These

payloads will deviate from the IoT device's voltage and current under attack

parameters. In such a case, we will fail to detect the Trojans on the IoT devices because

the detection model will not receive voltage and current parameters from that device

under attack. Hence, our model uses both (Network + Power utilization) data to detect

the malicious activities that result in the loss/death of IoT devices from the network.

For example, if the IoT is in the healthcare domain, it threatens the patient's life. To

avoid abrupt circumstances, we tune the power utilization parameters of the IoT

devices such that every IoT device should share the voltage and current parameters

with the other IoT devices. The information flow of the network can be obtained from

the traffic bit with the header section. The data collected here is raw data, which

consists of basic information about the packets. More details (features) are extracted

in the next level.

3.2.2. Feature Extracting

The feature extracting will be from PCAP using Wireshark (tshark tool) and data

cleaning The network packets after its generated by using the covert_tcp.c tool for the

covert channel and the packets that been captured during the DOS attack in PCAP

format, data needs to be changed to CSV file, the tshark can extract the ID, checksum

values of all datagrams as in the following an example command :

tshark -r input.pcapng -T fields -E separator=, -E header=y, -e ip.id -e ip.checksum >

output.csv

then processing of the data is required to delete any unnecessary blank rows, and then

a label needs to be added to the data if it's normal. DOS, or covert attack.

14

3.2.3 Feature Selection

Feature selection is crucial for the result to be accurate, Feature engineering is used for

both DOS and Covert channel (TCP sequence) the following feature will be used:

TCP Sequence, TCP next sequence, TCP acknowledgment, TCP Checksum, TCP

SYN flag, and for the power the selection will be for the current, voltage and the power

consumption.

3.2.4 Feature Engineering

Before processing the training data, a Feature with hexadecimal content like the TCP

checksum and IP ID needs to be converted to decimal to be processed. Also, all the

rows that have blank values need to be deleted before it's passed to the machine

learning model.

3.2.5 Feature Scaling

All features should be scaled before we implement the training on the ML model, as it

ensures the values are in the same range and reduces any error. We will use for the

scale of features the StandardScaler from sci-kit.

3.2.6 Feature merging phase:

In this phase, the network Power utilization of the data is preprocessed. And The

network data consist of data transmission to reception ratio, duration of the activity,

transmission mode, source IP address, destination IP address and data value

information, etc., and power consumption data voltage and current. Other features may

be added later if required during the implementation of the detection mechanism. At

the same time, the Power utilization of data consists of power utilized by the IoT when

the IoT device is under attack and without attack, we write a python script to combine

both sniffed traffic packets and power utilization readings into one CSV file to be

15

passed to the machine learning model after doing the feature processing and feature

selection to check if the IoT device is under attack.

The objective of the feature merging technique is to make the dimensionality reduction

of multiple datasets, such that we get higher accuracy of the HTDS model. The best

model as per our criteria is the one with higher accuracy, precision, and Recall, To

evaluate the quality of the feature. We are concerned about the training and testing

time of the classifier to be minimum; usually, the time required to train the classifier

is more than the testing time, which affects the performance of the model.

3.2.7 Model training:

The dataset is split into training and test data sets to be used by the ML model. 70% of

the dataset is for training, and 30% is for testing, We will use the method under the

sci-kit learn library to split the data set to training and testing 'train_test_split.'

3.2.8 Model Evaluation

The evaluation of the trained model will be done on different techniques such as the

accuracy score, cross-validation, precision score, recall score, and F1 score and more

clarification will be discussed in section 4.3.

3.3 Decision Phase:

In this detection phase, the merged features input the ML model to predict the

network/power consumption activity as normal or malicious. Initially, a model is

formed from which the features are fed to build a training framework categorizing

malicious and benign behavior: ML is employed to predict the network and power

consumption activity. Then, the network / Power consumption activity features are

compared with those of the training phase. The HTDS is designed to manage a wide

range of attacks. In the detection phase, the features of the actual data packets are

extracted from the collected raw data. Later the elements are classified by comparing

16

with the training sequence, finally, the decision is made as regular network activity,

DOS attack, or CC attack.

3.4 Testbed Setup

The innovative environment testbed consists of the following devices with the following

specification:

IoT–Gateway : Raspberry Pi specification: SoC: Broadcom BCM2711B0 quad-core

A72 (ARMv8-A) 64-bit @ 1.5GHz, GPU: Broadcom VideoCore VI, Networking:

2.4 GHz and 5 GHz 802.11b/g/n/ac wireless LAN, RAM: 4GB SDRAM, Bluetooth:

Bluetooth 5.0, Bluetooth Low Energy (BLE), GPIO: 40-pin GPIO header, populated ,

Storage: microSD, Ports: 2 × micro-HDMI 2.0, 3.5 mm analogue audio-video jack, 2 ×

USB 2.0, 2 × USB 3.0, Gigabit Ethernet, Camera Serial Interface (CSI), Display Serial

Interface (DSI), Dimensions: 88 mm × 58 mm × 19.5 mm, 46 g.

IOT Edge devices: Raspberry Pi 3 with following specification : Clock frequency: 1.2

GHz ,Chipset (SoC): Broadcom BCM2837, Processor: 64-bit quad-core ARM Cortex-

A53 , Graphics processor: Broadcom Dual Core VideoCore IV (OpenGL ES 2.0, H.264

Full HD @ 30 fps), Memory (SDRAM): 1 GB LPDDR2, Number of USB 2.0 ports: 4,

Port extension: 40-pin GPIO, Video outputs: HDMI and RCA, plus 1 CSI camera

connector, Audio outputs: 3.5 mm stereo jack or HDMI, Data storage: MicroSD card,

Network connection: 10/100 Ethernet, 802.11n Wi-Fi and Bluetooth 4.1 (BLE - Low

Energy), Peripherals: 17 x GPIO ,Supply: 5V 2.5A via micro USB, Dimensions: 85.60

mm × 53.98 mm × 17 mm, Weight: 45 g.

Another IoT-Edge Device used is ESP32cam with the following specification: Ultra-

small 802.11b/g/n Wi-Fi + BT/BLE SoC module, Low-power dual-core 32-bit CPU for

application processors, Up to 240MHz, up to 600 DMIPS, Built-in 520 KB SRAM,

17

external 4M PSRAM, Supports interfaces such as UART/SPI/I2C/PWM/ADC/DAC,

Support OV2640 and OV7670 cameras with built-in flash, Support for images Wi-Fi

upload, Support TF card, Support multiple sleep modes, Embedded Lwip and

FreeRTOS, Support STA/AP/STA+AP working mode, Support Smart Config/ AirKiss

One-click distribution network, Support for local serial upgrade and remote firmware

upgrade (FOTA), Support secondary development. ESP32-cam as IoT-Edge node is

connected with sensors such as surveillance cameras, temperature sensors, etc. ESP32

devices sense the data of the various sensors and transfer them to the Gateway device

of the IoT system. Figure4 describes the testbed scenario, The Raspberry-PI4 acts as a

Gateway node, and it receives data from the ESP32 through Wi-Fi. The Gateway device

preprocesses the data and transfers it to the cloud for future records, analytics, and

visualization.

INA260 Sensor: Power Profile will be sent to the IoT-GW through which will be

connected from IoT-ED to the IoT-GW the sensor has the following specification:

Precision Integrated Shunt Resistor: Current Sense Resistance: 2mΩ, Tolerance

Equivalent to 0.1%,15-A Continuous From –40°C to +85°C, ten ppm/°C Temperature

Coefficient,(0°C to +125°C), Senses Bus Voltages From 0 V to 36 V, High-Side or

Low-Side Sensing, Reports Current, Voltage, and Power, High Accuracy: 0.15%

System Gain Error (Maximum), 5-mA Offset (Maximum), Configurable Averaging

Options,16 Programmable Addresses, Operates From a 2.7-V to 5.5-V Power Supply,

16-Pin, TSSOP Package.

 LCD screen: to show continuous current, voltage, and power consumption changes,

Testbed devices are shown in figure 4 for more clarification.

18

Figure 4. Experimental Setup

3.4.1 Tools used in our testbed experiment:

Wireshark and Scapy to sniff the packet data from the IoT-Edge Devices.

INA260 sensor for reading and sending the power profile to the IoT-GW device.

Covert_tcp tool for generating the covert channel attack packets.

3.4.2 Attack Scenarios Explanation:

Scenario 1: IoT device1-Edge device sends a regular traffic and power consumption to

the IoT-Gateway device. While the IoT device2-Edge device (ESP32-CAM) streams

and sends traffic data to the IoT-Gateway device, capturing traffic packets through the

Wireshark tool and reading the power profile data through the INA260 sensor. And Both

reading is saved combined on a CSV file on the IoT -Gateway.

19

Figure 5. Attack scenarios

Scenario 2:In our setup, we have performed a Denial of Service (DoS) attack by

sending a malicious (Trojan) payload from IoT device1-Edge device to IoT device2-

Edge device, which is triggered by HT (for demonstration purposes Triggering is done

by push button). The DOS attack will disrupt the communication between the ESP32-

cam (IoT device2-Edge device) and the Gateway device (IoT-Gateway device) with a

flood of malicious traffic, the IOT1-Edge Device will keep sending the Network data,

and power consumption during the attack as shown in figure 5, both sniffed network

traffic packets and the power consumption will be merged to one dataset using a python

script to save it to one CSV file to be used as an input dataset for the ML model, and

ML model will detect the attack.

Scenario 3: In our setup the for demonstration purpose of the Covert channel attack, the

attack will be triggered by push-button from the IoT device1-Edge device and attack

20

IoT-Gateway the message will be sent through the IP header to the IoT -Gateway device,

Scenario 4: in this scenario, we initiate the two attacks at once to see the performance

of the detection mechanism in detecting concurrent attacks of the DOS and CC attacks.

In our exterminate there are two programs in python, the first program is Server located

on the IoT-GW device, and the second one is a Client located on the IoT-ED device,

Scapy needs to be used on both Edge and Gateway devices, and the Wireshark tool must

be installed on the IoT-GW to sniff the traffic packet as shown on Figure 6., both

datasets of power and traffic will be combined using python script in the IoT-GW, to be

passed to the machine learning model after its being processed to detect the attack once

it is being initiated.

Figure 6a. attack covert channel scenario

21

Figure 6b. attack covert channel scenario

22

CHAPTER 4: RESULT AND EVALUATION

In this section, we used an ML model to experiment and validate the model to be

deployed on the edge device of the intelligent network. ML has been chosen for fraud

detection, text classification, and image recognition problems. Due to the significant

outcome of ML algorithms for different situations, many researchers engage these ML

algorithms to identify the abnormal behavior of the node in the network to enhance

security. Machine learning models are deployed and utilized in various applications to

determine the Trojans or malicious behavior in the network's traffic. We have tested

ML algorithms such as Naive Bayes, K- Nearest Neighbor, Logistic Regression,

Decision Trees, Support Vector Machine (SVM), Random Forest (RF), and Deep

Neural Network (DNN) to choose which is the best accuracy among of them for our

model. We have selected the RF algorithm among all the algorithms due to its best

performance and suitability to our resource constraint architecture.

4.1 Machine learning models:

Naive Bayes: In the sub-domain (i.e., machine learning) of the AI, the Naive Bayes

classifier is a simple approach that is truly dependent on the Bayes' theorem with the

independent assumption among the different feature samples. It computes the

probability of various classes for given input instances. Suppose X acts as a vector of

wrong in-stances, where n features of an illustration are represented as x1, x2, x3,,

xn. Considering that, there are k labels for the class (i.e., C1, C2, C3,, Cn). The

probability condition of the Naive Bayes is P (Ck |X) Ck indicates the instance of the

given X. By applying the Bayes theorem to the situation of the naive, it is represented

as P (Ck|x1, x2, x3, ..., xn) = (, 2, 3
,..., n|

). ()

(, 2, 3,..., n)
 (1)

23

P(Ck|X) =
(|

 k). (k)

()
 (2)

 , According to the naive condition independent assumption, each feature is independent

of the other elements. Hence, it can be rewritten as

P(Ck|X)) =
(|

 k). (k)

()
 (3)

K- Nearest Neighbor: The basic rule of this classification model is to classify an

instance based on the distance from the k-nearest neighbor points. The final decision

will be based on most of the neighbors' votes. The Euclidean distance Eq. 4 is used to

measure each instance with its neighbor• Euclidean distance:

 (4)

Logistic Regression: The algorithm is well known for statistical supervised ML

models. This algorithm is used for binary classification problems; this model compares

the result with other ML models.

Decision Trees: The classification problem is solved by creating the tree. The tree starts

at the root and stratifies the data at attributes, resulting in higher information gain (IG).

It comprises sub-trees and nodes. In our scenario, the decision will appear on the leaves.

Support Vector Machine (SVM): SVM is used for the classification and regression

problem; a hyperplane segregates the regular events from the plane.

Random Forest (RF) is an efficient algorithm used for both classification and regression

tasks and used for feature selection. This ensemble model can attain the best accuracy

among other classifiers. However, the RF algorithm model will be computationally

expensive compared to other lightweight ML models in our approach.

A Deep Neural Network (DNN) is a supervised learning approach used for the

classification problem. DNN comprises different layers of input, output, and hidden

layers in the neural network. To enhance the performance of the DNN model, we have

24

chosen Rectified Linear unit (ReLU) activation function in all the layers of the neural

network except the output layer used for the model output. Table 2 describes the chosen

hyperparameters for the DNN model. For the fast convergence, we preferred to use it

as an Adam optimizer with a batch size of 60. and an epoch size of 1000 for training

the model.

Table 2. DNN Hyperparameter Settings

Activation Function ReLU

Epoch 1000
Optimizer Adam
Learning rate 0.001
Batch size 60

The rate is set to be at 0.001. The training set is scaled using RobustScaler as it improves

the performance of the DNN.

4.2 Dataset

• We capture live traffic and power data from the testbed and generate the dataset

to train the machine learning model.

• During the collection of the data, different samples were collected for the DOS,

CC, and the Normal traffic and power.

• 109500 samples were collected from capturing live traffic and power of the IoT-

ED.

• From the samples collected a percentage of 70% was used for training and 30

% for testing.

dataset demonstrates that this method achieves higher accuracy than the other

incremental models mentioned in the literature for DOS attack identification. The

covert channel attack dataset was collected from the network packet from the

25

covert_tcp.c tool to generate the traffic of the clandestine attack, Wireshark tool used

to sniff the data and then converted to CVS format by a python program. For the Power

profile, the dataset is generated from the reading power current, voltage, and power

consumption from the IoT-Edge device by using the INA260 sensor, and last using a

python script to merge both sniffed traffic packets and the reading of the power

utilization to CSV file format all the scenarios (Normal case, DOS attack case, and

during the Covert channel attack) to be processed and then passed to the machine

learning model for the detection.

4.3 Samples:

Three samples were created for training the machine learning model:

1st sample containing regular traffic packets and reading of the normal activity of the

power profile without any attack.

2nd sample contains the Traffic packets and the power profile during the DOS attack.

3rd sample contains the traffic packets and the power profile during the Covert channel

attack.

4.4 Experimental Results

In the following section, we enlist the parameters and methods to evaluate the DF

techniques to choose the best one as per the problem and the attack scenarios that are

explained in Fig.5. The performance of the DF technique is directly proportional to the

version of the HTDS model. To calculate the performance of IDS, various statistical

measures are used. In binary classification, a set of samples are labeled benign or

malicious classes. Generally, the performance of the ML/DL algorithms is evaluated

by the metrics extracted from the confusion matrix. This section provides a detailed

experimental analysis of the proposed model. We describe the metrics that are used for

26

the evaluation of the model below. The parameters of the confusion matrix are

explained below to evaluate the performance of the classification models.

• True Positive (TP):

Depict the number of malicious samples classified correctly as malicious

• True negative (TN):

Depict the number of benign samples classified correctly as harmless.

• False Positive (FP):

Depict the number of benign samples incorrectly classified as malicious.

• False Negative:

Depict the number of malicious samples incorrectly classified as benign.

Based on the confusion matrix, the metrics that are used to evaluate the performance of

the ML models are explained as follows:

1) Accuracy: The ratio of correctly identified records to the complete test dataset.

Accuracy is considered a suitable parameter for the test dataset, which contains

balanced classes as shown in equation 5.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∗ 100 (5)

2) F1-Score: The harmonic mean of Recall and precision is the harmonic mean. It is

defined as:

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (
∗

) ∗ 2 (6)

The accuracy and f1-score as shown in equation 6 of the proposed model are shown in

Figure 7 and Table 2. The results demonstrate that most ML models performed

similarly in both metrics, among which KNN, DT, and RF gave more than 98%

accuracy. For IoMTs, accuracy and computational capability, and memory

consumption of the ML algorithm are also significant. From the selected ones, KNN,

DT, and RF are lightweight algorithms that are suitable for our scenario, but DT and

27

RF performance are relatively better than the KNN, while KNN has the biggest file size

with approximate 130Mb, which is not suitable for the resource-constrained

environment, for that we have selected RF for our model.

Figure 7. Accuracy and F1-Score

3) Recall measure is to understand the genuinely correct predictions.

4) Precision is the ratio of correctly recognized malicious samples to the total number

of entire malicious samples.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (7)

The precision-recall measure gives the actual performance of our model. Therefore, it

is a significant metric to evaluate the classifier output quality. Like accuracy metrics,

the precision, and Recall are shown in Figure. 8 and Table 3, for the selected algorithm,

RF is best and very near to the highest value in the chosen list.

28

Figure 8. Recall and Precision

5) False Positive Rate (FPR): The ratio of benign samples is tagged as malicious to

the complete benign samples. It is defined as

𝐹𝑃𝑅 = (8)

6) True Positive Rate (TPR): It is also referred to as Recall. The ratio of correctly

classified malicious samples to the entire negative samples

𝑇𝑃𝑅 = (9)

In an attempt to prove the performance of the proposed model, we have included two

other metrics, TPR and FPR, which correctly give the error rates of the classifier

models. Figure. 9 and table 3show that the lowest TPR and FPR values are recorded for

RF.

29

Figure 9. FPR and TPR

The Following Table 3. shows all the percentages for each Machine learning model:

Table 3. Result for each ML model

ML models Accuracy (%) F1-Score (%) Recall (%) Precision (%) TPR FPR

Logistic

Regression
92.3 92.80 91.0 93.80 0.08 0.918

Gaussian NB 91.83 92.73 94.33 89.15 0.091 0.92

KNN 99.01 99.32 98.33 99.54 0.02 0.989

DT 99.09 99.47 99.12 99.51 0.009 0.995

RF 99.12 99.55 99.45 99.67 0.007 0.995

SVC 96.7 97.33 97.5 99.02 0.09 0.982

SVM linear 93.7 95.7 93.74 94.44 0.06 0.984

DNN 99.27 99.76 99.12 99.51 0.9912 0.9951

30

CHAPTER 5: CONCLUSION AND FUTURE WORKS

The Thesis reviewed the attack detection of the Hardware Trojan Detection System.

And the HTDS models that followed a combination of these methods, security, and

privacy of the data from various sources are significant to deal with HTDS. But our

model has considered the security and privacy issues of the intelligent environment by

preprocessing the steps on the IoT device itself and merging the network traffic with

the data of power utilized by the IoT device. Then, this process data is transmitted to

the edge node of the smart environment to the HTDS to detect the HTDS on the

network. The proposed model gives us more than 99% accuracy in detecting all

different scenarios including concurrent attacks or detecting any attacks based on power

profile alone, which suggests the real-time detection of the proposed methodology.

Further, we would like to investigate other types of attack detection using various AI

approaches.

31

REFERENCES

[1]. M. Mohammadi and A. Al-Fuqaha, "Enabling cognitive smart cities using big

data and machine learning: Approaches and challenges," IEEE

Communications Magazine, vol. 56, no. 2, pp. 94–101, 2018.

[2]. R. O. Andrade, S. G. Yoo, L. Tello-Oquendo, and I. Ortiz- Garce's, "A

comprehensive study of the IoT cybersecurity in smart cities," IEEE Access,

vol. 8, pp. 228922–228941, 2020.

[3]. N. B. Gaikwad, H. Ugale, A. Keskar, and N. Shivaprakash, "The internet-of-

battlefield-things (iobt)-based enemy localization using soldiers' location and

gunshot direction," IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11725–

11734, 2020.

[4]. G. Corera, "Spy bosses warn of cyber-attacks on smart cities."

https://www.bbc.com/news/technology-57012725/, 2021. [On- line; accessed

29-Sep-2021].

[5]. J. Bowles, "America's cities are under cyberattack. that's bad news for IoT and

smart cities." https://diginomica.com/ americas-cities-cyberattack-thats-bad-

news-iot-smart-cities/,2021. [Online; accessed 29-Sep-2021].

[6]. N. A. Gunathilake, A. Al-Dubai, and W. J. Buchana, "Recent advances and

trends in lightweight cryptography for iot security," in 2020 16th International

Conference on Network and Service Management (CNSM), pp. 1–5, 2020.

32

[7]. S. Alharbi, P. Rodriguez, R. Maharaja, P. Iyer, N. Bose, and Z. Ye, "Focus: A

fog computing-based security system for the Internet of Things," in 2018 15th

IEEE Annual Consumer Communications Networking Conference (CCNC),

pp. 1–5,2018.

[8]. DavidJBianco, “Enterprise detection response.” http://detect-

respond.blogspot.com/2013/03/the-pyramid-of-pain. html, 2013. [Online;

accessed 29-Sep-2021].

[9]. V. Venugopalan and C. D. Patterson, "Surveying the hardware trojan threat

landscape for the internet-of-things," Journal of Hardware and Systems

Security, vol. 2, no. 2, pp. 131–141,2018.

[10]. C. Dong, Y. Xu, X. Liu, F. Zhang, G. He, and Y. Chen, "Hardware Trojans in

chips: a survey for detection and prevention," Sensors, vol. 20, no. 18, p. 5165,

2020.

[11]. A.Tiwari and C. Soni, "Hardware Trojans: An austere menace ahead," in Cyber

Security, pp. 349–359, Springer, 2018.

[12]. X. Chen, G. Liu, N. Xiong, Y. Su, and G. Chen, "A survey of swarm intelligence

techniques in VLSI routing problems," IEEE Access, vol. 8, pp. 26266–26292,

2020.

[13]. H. Tang, G. Liu, X. Chen, and N. Xiong, "A survey on Steiner tree construction

and global routing for VLSI design," IEEE Access, vol. 8, pp. 68593–68622,

2020.

[14]. W. Guo and X. Huang, "Pora: A physarum-inspired obstacle- avoiding routing

algorithm for integrated circuit design," Applied Mathematical Modelling, vol.

78, pp. 268–286, 2020.

33

[15]. N. Q. M. Noor and S. M. Daud, "A defense mechanism against hardware trojan

insertion by third-party intellectual property (ip) design blocks in aes-based

secured communication system," International Journal of Information

Technology, vol. 9, no. 1, pp. 87–92, 2017.

[16]. N. Fern, I. San, I. K. Koc ,̧ and K.-T. T. Cheng, "Hiding hardware trojan

communication channels in partially specified soc bus functionality," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 36, no. 9, pp. 1435–1444, 2016.

[17]. L. Liu, Z. Zhou, S. Wei, M. Zhu, S. Yin, and S. Mao, "Drmasv: Enhanced

capability against hardware trojans in coarse-grained reconfigurable

architectures," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 37, no. 4, pp. 782–795, 2017.

[18]. H. Mohammed, S. R. Hasan, and F. Awwad, "Fusion-on- field security and

privacy preservation for IoT edge devices: Concurrent defense against multiple

types of hardware Trojan attacks," IEEE Access, vol. 8, pp. 36847–36862, 2020.

[19]. G. Li, Z. Yan, Y. Fu, and H. Chen, "Data fusion for network intrusion detection:

a review," Security and Communication Networks, vol. 2018, 2018.

[20]. W. Ding, X. Jing, X. Yan, X. L. T. Yang, "A survey on data fusion in

internet of things: Towards secure and privacy-preserving fusion," Information

Fusion, vol. 51, pp. 129–144,2019.

[21]. H. Zhang, J.-L. Li, X.-M. Liu, and C. Dong, "Multi-dimensional feature fusion

and stacking ensemble mechanism for network intrusion detection," Future

Generation Computer Systems, vol. 122, pp. 130–143, 2021.

[22]. T. Omrani, A. Dallali, B. C. Rhaimi, and J. Fattahi, "Fusion of ann and SVM

classifiers for network attack detection," in 2017 18th International Conference

34

on Sciences and Techniques of Automatic Control and Computer Engineering

(STA), pp. 374–377, IEEE, 2017.

[23]. L. Ni, J. Li, S. Lin, and D. Xin, "A method of noise optimization for hardware

trojans detection based on bp neural network," in 2016 2nd IEEE International

Conference on Computer and Communications (ICCC), pp. 2800–2804, IEEE,

2016.

[24]. F. K. Lodhi, I. Abbasi, F. Khalid, and S. O. Hasan, F. Awwad, and S. R. Hasan,

"A self-learning framework to detect the intruded integrated circuits," in 2016

IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1702–

1705, IEEE, 2016.

[25]. M. Xue, R. Bian, W. Liu, and J. Wang, "Defeating untrustworthy- thy testing

parties: A novel hybrid clustering ensemble-based golden models-free hardware

trojan detection method," IEEE Access, vol. 7, pp. 5124–5140, 2018.

[26]. D. Jap, W. He, and S. Bhasin, "Supervised and unsupervised machine learning

for side-channel based trojan detection," in 2016 IEEE 27th International

Conference on Application-specific Systems, Architectures and Processors

(ASAP), pp. 17–24, IEEE, 2016.

[27]. Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, "Silicon demonstration of

hardware trojan design and detection in wireless cryptographic ics," IEEE

Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 25, no. 4,

pp. 1506–1519, 2016.

[28]. H. Zhang, J. Zhou, D. Gao, X. Wang, Z. Chen, and H. Wang, "Hardware Trojan

detection based on ordered mixed feature gep," Security and Communication

Networks, vol. 2021,2021

35

[29]. T. Hoque, J. Cruz, P. Chakraborty, and S. Bhunia, "Hardware ip trust validation:

Learn (the untrustworthy), and verify," in 2018 IEEE International Test

Conference (ITC), pp. 1–10, IEEE, 2018.

[30]. S. P. Moustakidis, K. G. Liakos, G. K. Georgakilas, N. Ske- topoulos, S.

Seimoglou, P. Karlsson, and F. Plessas, "A novel holistic approach for hardware

trojan detection powered by deep learning (hero),"

[31]. Z. Pan and P. Mishra, "Automated test generation for hardware Trojan detection

using reinforcement learning," in Proceedings of the 26th Asia and South

Pacific Design Automation Conference, pp. 408–413, 2021.

[32]. P. Dahiya and D. K. Srivastava, "Network intrusion detection in big dataset

using spark," Procedia computer science, vol. 132, pp. 253–262, 2018.

[33]. N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, "Survey on sdn based

network intrusion detection system using machine learning approaches," Peer-

to-Peer Networking and Applications, vol. 12, no. 2, pp. 493–501, 2019.

[34]. R. Singh, H. Kumar, R. K. Singla, and R. R. Ketti, "Internet attacks and

intrusion detection system: A literature review," Online Information Review,

2017.

[35]. Sumaiya Thaseen, J. Saira Banu, K. Lavanya, M. Rukunud- din Ghalib, and K.

Abhishek, "An integrated intrusion detection system using correlation-based

attribute selection and artificial neural network," Transactions on Emerging

Telecommunications Technologies, vol. 32, no. 2, p. e4014, 2021.

[36]. M. Li, "Application of cart decision tree combined with PCA algorithm in

intrusion detection," in 2017 8th IEEE International Conference on Software

Engineering and Service Science (ACCESS), pp. 38–41, IEEE, 2017.

36

[37]. Y. Zhou, G. Cheng, S. Jiang, and M. Dai, "An efficient intrusion detection

system based on feature selection and ensemble classifier," arXiv preprint

arXiv:1904.01352, 2019.S. Bhattacharya, P. K. R. Maddikunta, R. Kaluri, S.

Singh, T. R.

[38]. Gadekallu, M. Alazab, U. Tariq, et al., "A novel PCA-firefly based boost

classification model for intrusion detection in networks using GPU,"

Electronics, vol. 9, no. 2, p. 219, 2020.H.-T. Wang, J. Smallwood, J. Mourao-

Miranda, C. H. Xia, T. D.

[39]. Satterthwaite, D. S. Bassett, and D. Bzdok, "Finding the needle in a high-

dimensional haystack: canonical correlation analysis for neuroscientists,"

NeuroImage, vol. 216, p. 116745, 2020.

[40]. Z. Chen, S. X. Ding, T. Peng, C. Yang, and W. Gui, "Fault detection for non-

gaussian processes using generalized canonical correlation analysis and

randomized algorithms," IEEE Transactions on Industrial Electronics, vol. 65,

no. 2, pp. 1559–1567, 2017.

