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ABSTRACT

Ahmad Yousef Qadeib Alban, Masters : June: 2022, Master of Science in Computing

Title: AI for meltdown detection in autism using wearable sensors.

Supervisor of Thesis: Dr. Uvais Ahmed Qidwai.

Autism spectrum disorder is a neurodevelopmental disorder that is associated with many

symptoms, such as impairments in social skills, communication, and abnormal behav-

iors. Children on the spectrum exhibit atypical, restricted, repetitive, and challenging

behaviours. The occurrence of such behaviours poses challenges to caregivers and ther-

apists during therapy sessions. In this study, we investigate the feasibility of integrating

wearable sensors and machine learning techniques to detect the occurrence of challeng-

ing behaviours among children with autism in real-time. Children wore a wearable

device, which collected physiological data in five sessions. The video recordings of

the sessions were analyzed to identify the instances of challenging behaviours. Four

machine learning techniques were used to leverage various features extracted from the

wearable sensors to automatically detect challenging behaviors. The best prediction

performance was observed when the XGBoost algorithm was used with all gathered

features (i.e., accuracy of 99%). Physiological features were found to be more effective

than kinetic ones for the prediction task. Among various physiological features, the

heart rate was the main contributing feature in the detection of challenging behaviours.

Furthermore, experiments revealed that changes in the HRV parameter (i.e., RMSSD)

correlated to the instances of challenging behaviours. The findings of this work moti-

vate research towards methods of early detection of challenging behaviours which enable

timely intervention by caregivers and parents. iii
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CHAPTER 1: INTRODUCTION

Autism spectrum Disorder (ASD) is a heterogeneous and complicated neurodevel-

opmental disorder. it usually accompanies with difficulties in social communications,

restricted or repetitive behaviors, and difficulties in verbal/nonverbal interactions. It’s

reported that 1 in 88 individuals have ASD [1]. Children on the spectrum experience

a set of challenging behaviors that might lead to a meltdown event and even can cause

self-damaging behaviors if the child still be stimulated [2]. Challenging behaviors

include hand flapping, body rocking, and head banging [3][4]. Early intervention

can help in managing such behaviors [5][6]. Software solutions based on machine

learning techniques will be applied in this work to anticipate such behaviors and to

provide reactions through therapist-child sessions. To employ machine learning models

for challenging behaviors detection, several behavioral characteristics need to be mea-

sured, such as physical movements and social interactions. There are three traditional

methods for measuring such behaviors [7]: (1) paper-and-pencil evaluation, (2) di-

rect observation of behaviors, and (3) video camera-based method. Paper-and-pencil

evaluation is based on making live interview which suffers from the subjectivity in

evaluation. Also, the detection of intensity and duration of the challenging behaviors

isn’t accurate in this method [8]. The direct observation procedure is also unreliable,

as the therapists can’t capture the high-speed movements and document all the chal-

lenging behaviors instantaneously by using this method. Second, detecting the start and

end points of the challenging behaviors is difficult. Third, the therapists are not able

to record concurrently all the environmental conditions and the challenging behaviors.

In the video-based method, therapists depend on video capturing, offline annotation,

and analysis of the challenging behaviors. This observational approach is much more
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accurate than the two previous methods. However, it’s time consuming and can’t be

adopted as a practical clinical tool [9]. In light of the increased frequency of autism

in children and the lack of reliable methods for measuring challenging behaviors, it is

critical to develop efficient and automatic methods to detect accurately such behaviors in

real-time. Therefore, constructing a time-efficient tool and quantification system would

benefit ASD researchers, families, caregivers, and therapists [10]. Furthermore, such

a tool will help evaluate the adaptation of individuals with autism to the different life

contexts within an ecological approach. In other words, it would lead to mitigating

the frequency of the meltdown events that are predicted by the sudden rise in atypical

behaviors [10]. In addition, any automated quantification of atypical behaviors would

certainly assist parents or caregivers in removing the stimuli that might cause develop-

ing the challenging behaviors by involving children in certain educational activities or

social interactions. Releasing such stimuli would decrease the intensity and frequency

of the undesired behaviors. Consequently, alleviate their severity on the child and the

surrounding individuals [11][12]. A real-time implementation of challenging behav-

iors detection system would be advantageous for therapists to evaluate the efficiency

of the required interventions. A wristband wearable sensor (Empatica E4, Milano,

Italy) was used in our experiments to measure the different physical activities and the

corresponding physiological signals of the body during the experiments via embedded

accelerometer, Electrodermal Activity, Temperature, Heart Rate, and Blood Volume

Pulse sensors. Manual annotation was carried out for the participants behaviors. The

behaviors were annotated as either ‘Challenging’ or ‘Non-challenging’. A challenging

behavior is considered to be any action that is interfering, repetitive, stimming, and might

inflict harm on oneself or others. Challenging behaviors also included head banging,
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arm flapping, ear pulling, kicking, and scratching. Despite considerable research in this

orientation, several challenges for automatic detection of challenging behaviors using

wearable sensors are still unsolved, particularly in real-time approaches. One of the crit-

ical challenges for accurate and reliable detection of challenging behaviors is to extract

robust and efficient features from the vital signals obtained from the wearable sensors.

Therefore, four-time domain features were extracted from the raw data acquired from

the wearable device to be fed into the machine learning-based models. Another chal-

lenging point toward developing a real-time detection system is due to personalization

factors attached with inter and intra-subject variability [13]. Intra-subject difference

is basically mapped with variability in the shape, frequency, duration, and intensity

of challenging behaviors in each subject with ASD. On the other hand, inter-subject

variability identified by the identical variability through different subjects [10]. These

two types of variances within and across individuals with ASD triggers the imperative

of developing an adaptive algorithm which is able to adjust to new behavioral patterns.

To this end, here we present two complementary studies with four main contributions:

1. Integration of machine learning techniques and wearable sensors to detect chal-

lenging behaviours

2. Investigating the influence of different physiological signals in the prediction of

challenging behaviours.

3. Demonstrating the feasibility of automatic and real time detection of challenging

behaviours using machine learning techniques.

4. Developing an assistive annotation tool to monitor the physiological signs, videos,

and to visualize the predictions of the developed machine learning algorithms.
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CHAPTER 2: BACKGROUND

This chapter presents a theoretical background about the essential topics included

in this search. This chapter begins with a general description of autism disorder, its

prevalence rates, and its discriminating symptoms. Then, it describes the challenging

behaviors experienced by individuals with autism. Finally, the chapter provides previous

studies on the various applications of challenging behaviors detection and the applied

methods.

Autism

Autism is a neurodevelopmental disorder characterized by lifelong challenges and

difficulties in communication, social interaction, and the verbal/nonverbal behaviors

(American Psychiatric Association [14]). Autism spectrum Disorder (ASD) is a con-

dition that impairs neurodevelopment and diagnosed in early infants. Furthermore,

compared to neurotypical children, children with ASD are exposed to experience a

variety of behavioral challenges on regular basis [15][14]. The prevalence rate of

ASD among children constitutes a growing source of concern worldwide. For example,

The Centers for Disease Control Prevention (CDC) estimates that one out of every 59

children in the United States has ASD (Autism and Developmental Disabilities Mon-

itoring Network [16]). However, based on the results of a recent parent survey; that

found a prevalence rate of one in 45, this might be an underestimate (Zablotsky et al.

[17]). Due to the high prevalence rate and the diverse nature of ASD, the manifestation

of challenging behaviors among children on the spectrum may change significantly in

their intensity and frequency. Consequently, determining such differences was a critical

approach for many researchers.
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Challenging Behaviors

The dispositions and manifestations of ASD in children on the spectrum are quite

distinct and complicated. Autism affects such individuals and creates many deficiencies

and obstacles in their communication abilities, social interactions, behaviors, sensory in-

put perception, and social life [15]. Self-stimulatory behaviors, perfectionist tendencies,

meltdowns, and delayed echolalia are also exhibited [18]. Children with ASD have more

extreme and aggressive behaviors than their neurotypical counterparts due to the nature

of the disorder. Those with perfectionist inclinations and emotional regulation issues,

for example, are more likely to engage in depression, anxiety, and aggressive behavior.

Frustration is another component that contributes to the expression of more challenging

behaviors. When children with ASD are exposed to new unexpected, stressful, and

loud situations, such as those seen in hospitals, they may become frustrated [18][19].

Furthermore, such situations are rich in stimuli that may overwhelm their bodies’ senses,

making addressing their needs even more difficult as a result of the increasing conflict

with the new environmental alterations. Withdrawal, repeated and stereotyped routines,

violence against others, self-injury, tantrums, meltdowns, and property damage are all

examples of challenging behaviors. Not only such acts harm the children, but they might

also injure everyone around them, including other children, nurses, patients, caregivers,

parents, and family members [20].

Applications of Machine Learning in ASD

Machine learning can be categorized into two sections, supervised and unsupervised

learning. Supervised machine learning includes algorithms that predict an output feature
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(the dependent variable) based on input features (i.e., the independent variables). The

output feature can be continuous or categorical. Unlike unsupervised learning (i.e.,

clustering), supervised learning contains datasets where the target variable is given to

the model at training time to map the input data with the target feature. To build a

successful supervised learning model, the model must be able to (a) predict the target

feature accurately for a training dataset with an acceptable degree of accuracy and (b) be

generalized to new input data other than those given to training the model. To enhance

the ability of a model to make forecasting on unseen data, the cross-validation method

is often applied. This technique allows the model to be tested on a subset of data

after removing it during the training phase. A K-fold cross-validation method splits the

training data into K-categories then trains the model on all but one of the categories and

tests on the rest. The procedure is repeated until the model has been trained on all the

given data. The performance scores are averaged across all the rounds. The success

of the supervised machine learning model is commonly measured according to the

accuracy metric (i.e., the ability to correctly classify the unseen datapoints into distinct

classes). Furthermore, sensitivity (i.e., the ability to correctly determine true positives)

and specificity (i.e., the ability to correctly determine true negatives) are also used as

evaluation metrics. Another metric to measure the success of the supervised machine

learning model is AUC or area under the receiver operating character curve (ROC).

The ROC metric provides a plot of specificity versus sensitivity. And the area under

the curve represents how well a model can distinguish between positive and negative

categories.
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Supervised Machine learning and wearable sensors in ASD Diagnoses

The supervised learning experiments, conducted by the related studies, applied sev-

eral classification algorithms to detect behavioral patterns in different datasets. Such

algorithms is SVM which has been utilized in attempts to enhance the accuracy of diag-

noses and give valuable insight into how various characteristics (such as eye movement

data, standardized assessments, neuroimaging data) can assist in differentiating between

patients with and without ASD. Bone et al. [21]. trained and cross-validated using

SVM classifier to distinguish ASD from other developmental disorders based on data

collected from two well-known standardized assessments, the Social responsive Scale

(SRS; Constantino and Gruber [22]) and the Autism Diagnostic Interview, Revised

(ADI-R; Le Couteur et al. [23]). The participants were categorized into two categories:

10 years old or older individuals and under 10 years of age individuals. The data sam-

ple contained 1264 individuals with ASD and 462 individuals with a developmental

disorder other than ASD. A classification specificity and sensitivity were reported as

59.0% and 89.2% respectively for individuals 10 years of age or older, and 53.4% and

86.7% respectively for individuals under 10 years old. Jarraya et al, [24]. investigated

different emotions during meltdown in order to construct an emotion recognition system

using several machine learning techniques. The best trained model (i.e., Random Forest

Classifier) achieved promising results (i.e., 91.27%) using feature selection techniques.

For aggressive behaviour classification among children with autism, a movement detec-

tion method using wearable sensors was also investigated [25]. The study considered

simulating aggressive behaviours by an expert to generate data. Their best machine

learning model achieved an accuracy of 69.7% when tested with data acquired from a
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session with a child with autism.

Goodwin et al [26], investigated the detection of stereotypical motor movements

in children with autism using three-axis accelerometers worn on different parts of the

body (i.e., wrists and torso). The data were collected from six individuals with autism.

The recognition performance of two employed classifiers (i.e., decision tree and support

vector machines) achieved accuracies ranging from 81.2% to 99.1%. Rad et al [27],

used the same datasets published by Goodwin et al [26], to implement a convolutional

neural network and long short-term memory algorithms. Their results showed that ap-

plying deep learning techniques on the acceleration data would improve the detection of

stereotypical motor movements in real-time conditions. Another study explored tech-

niques to detect common motor movements for children diagnosed with autism [28].

The study investigated the impact of these motor movements on learning and social

interactions using deep learning approaches. Another study investigated the potential

of sensory processing in assisting in the diagnosis and classification of ASD [29]. The

study used a wristband wearable to measure the changes in electrodermal activity during

virtual environmental settings displaying different stimuli. The experiments included

children with autism and without. Their method showed promising results (i.e., 84.6%)

in identifying autism sensory dysfunction during the visual stimuli condition. Another

study considered using physiological measurements namely electrocardiograms, respi-

ration, skin conductance, and temperature to categorize evoke valence (i.e., positive or

negative) and arousal intensities (i.e., low and high) [30]. A machine learning model

based on an ensemble of classifiers was trained with data obtained from 15 children.

The average accuracies of the trained models were all around 80%. Other studies inves-

tigated the possibility of integrating wearable sensors and machine learning techniques
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to interpret the physiological and kinematic properties of the human body to predict or

detect specific affective patterns of emotions or behaviours[31] [30][32]. Some of the

sensors and modalities considered were photoplethysmogram, electrodermal activity or

galvanic skin response, heart rate, temperature, acceleration, and skin conductance level.

There is a growing interest in incorporating wearable sensors in autism therapy. For ex-

ample, Fazana et al, presented a framework that incorporates a set of existing programs

for augmentative and alternative communication with wearable sensors to improve the

communication skills, enhance behaviours, and promote health monitoring of children

with autism [33]. Pollreisz et al [34], established an emotion recognition system using

Empatica E4 watch to collect electrodermal activity, heart rate, and temperature values

from ten young adults. The reported success rate for emotions recognition was 65%

using a decision tree algorithm. Heart rate variability parameters were also considered

(Table 4.1). Lee et al [35], measured both the heart rate variability and galvanic skin

response to identify emotions using neural networks. They analyzed the data collected

from participants in the frequency and time domains. They found that changes in some

of the HRV parameters (i.e., RMSSD and SDNN) might lead to elevated activity in

the sympathetic nervous system, which could be inlpterpreted as a sign of fear. Their

reported accuracy of the best trained model was 80.2%.

Yap et al [36], investigated the impact of listening to music on the heart rate and

anxiety levels of children with autism to identify which music genre could calm the

children. They devised a mobile application that was connected wirelessly to a pulse

sensor to measure the heart rate. The goal of their application was to improve com-

munication and learning skills, supporting emotion regulation, and monitoring heart

rate while listening to music. Lydon et al [37], focused on investigating the correlation
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between heart rate and challenging behaviours experienced by children with autism.

They analyzed the heart rate data before, during, and after the instances of challenging

behaviours in three children with ASD. They found that such behaviours might increase

arousal for some children with autism. The prediction of challenging behaviours has

also been proposed by J. Nuske et [38]. They investigated the possibility of applying

heart rate to predict such behaviours in children with autism based on statistical analysis

for the acquired data. Forty-one children diagnosed with autism were involved in their

experiments. The participants wore an electrocardiograph monitor and low-level stress

was stimulated. considering the intrusive nature of the device and to avoid pulling the

ECG electrodes, vests with pockets were used to house the device while placing the

electrodes on the backs of the children. Their results showed that physiological stress

could be an early sign for the occurrence of challenging behaviours.
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CHAPTER 3: DETECTION OF CHALLENGING BEHAVIOURS: A PILOT STUDY

Introduction

Children on the spectrum exhibit challenging behaviours and aggression at higher

rates compared to their neurotypical peers [39][40]. Challenging behaviours take

different forms at varying intensities depending on the degree and manifestation of

ASD [41][42]. For example, a challenging behaviour could manifest as sensory stim-

ming behaviours, head banging, hand flapping, kicking others, throwing of nearby

objects, hand biting, and screaming.

Therapy techniques, such as positive behaviour support, were reported to help

in increasing positive interactions while decreasing negative reactions and interfer-

ing behaviours among children with autism [5] [6]. There is a growing interest in

the integration of technologies, such as wearable devices and robots, in healthcare

applications such as health monitoring, surgery, and in the diagnosis and therapy of

children with autism [43][44][45][46]. Children on the spectrum are found to be

fascinated with technologies such as social robots, which are reportedly leading to

positive outcomes [47][48]. However, some studies reported instances of aggression

toward robots during therapy sessions [49]. Such challenging behaviours could po-

tentially lead to injuries [50]. To mitigate potential harm, hardware approaches in

social robotics were investigated, but found to be limited in terms of applicability

and effectiveness [51][52][53][54][55]. Alternatively, some approaches resorted to

using machine learning predictive models to detect the occurrences of challenging be-

haviours and aggression using embedded sensors within a social robot and wearable

devices [56][57][58][59][60].
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To employ machine learning models for challenging behaviour prediction, several

behaviour characteristics need to be investigated, such as physiological signals and

physical movements. Different physiological data such as movement, heart rate, temper-

ature, and electrodermal activity can be measured through the use of wearable sensors.

The physiological arousal of children with autism is found to influence challenging

behaviours due to the relation between hyperarousal and sensory reaction [61]. Jansen

et al. [62] reported that individuals with ASD experienced lower heart rate compared to

neurotypical adults during public speaking. Another study found unusual skin conduc-

tance readings in children with autism compared to control group [63]. A strategy that

relies on a low arousal approach was proposed to manage challenging behaviours [61].

To date, limited work has been done incorporating wearable devices to detect challenging

behaviours during child and robot interaction.

Contributions

In this study, we investigate the potential of using a wrist wearable device coupled

with machine learning techniques to identify the occurrence of challenging behaviours

during child-robot interaction (Fig. 3.1). Furthermore, different machine learning

models with various wearable data configurations are tested. The following are the

contributions of this study:

1. Defining an effective annotation to distinguish challenging behaviours.

2. Investigating the influence of different physiological signals in the prediction of

challenging behaviours.

3. Demonstrating the feasibility of automatic and real time detection of challenging

12



Figure 3.1: The intervention framework with wearable sensors and social robots. The
wearable sensor detects the occurrence of physiological arousal and notifies the social
robot to intervene. The highlighted area represents the focus of this study (Adapted
from [64]).

behaviours using machine learning techniques.

4. Development of an assistive annotation tool to monitor the physiological signs,

videos, and to visualize the predictions of the developed machine learning algo-

rithms.

Methodology

Participants

A ten years old male child with autism took part in this study. The participant is

a student at a local center for special needs in Doha, Qatar. The center obtained the

necessary parental consent to conduct the study. During the session, the child was with

his caregiver and a teacher. The procedures for this work did not include invasive or

potentially hazardous methods and were in accordance with the Code of Ethics of the

World Medical Association (Declaration of Helsinki).
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Stimuli

The experiments considered different toys and two social robots as stimuli (Fig.

3.2a). The toys were a green ball made of rubber, cymbals, a plastic train with multiply

colors, a humanoid robotic toy, and a truck made of wood with blocks that have letters

on them. A humanoid robot (Nao, SoftBank Robotics, France) and a seal robot (PARO

Robots, USA) were the two social robots considered. More details about the stimuli can

be found in an earlier work [65].

Wearable Device

The wearable sensor (Emaptica E4 wristband) was used in the experiment (Fig. 3.2b).

The E4 wristband contains an internal memory that allows up to 36 hours of recording

with a real-time internal clock. The wristband has multiple sensors.

This study used the data readings obtained from the wearable device worn by the

child with autism. The signals readings recorded were as follows:

1. Acceleration (ACC): Measured the amount of acceleration that the child was

exhibiting in the X, Y and Z axes.

2. Electrodermal Activity (EDA): Measured the variation of skin conductance and

the electrical properties of the skin.

3. Inter-Beat Interval (IBI): Determined the time between the child’s individual heart

beats.

4. Temperature (TEMP): Measured the temperature of the child.

5. Heart Rate (HR): Determined the number of heart beats per minute of the child.
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6. Blood Volume Pulse (BVP): Measured the blood volume changes.

Algorithms

In this study, three supervised machine learning algorithms were considered.

Support-Vector Machine (SVM) is among the supervised learning models that can be

used in classification and regression. SVMs are based on statistical learning frameworks

and are non-probabilistic binary linear classifiers that can solve both linear and non-

linear problems. The SVM’s training model labels new example to either category while

aiming to maximize the gap between them.

Multilayer Perceptron (MLP) is a feedforward class of Artificial Neural Networks

(ANN) that uses back propagation, a supervised learning technique, for training. Inspired

by the biological brain, an MLP model consists of at least an input, hidden, and output

layer of nodes. Every node except for the output layer is a neuron that employs a

nonlinear activation function.

Decision tree (DT) is a very popular ML algorithms, due to its simplicity and ease

of visualization. DTs are predictive models that use a tree structure to move from one

decision to another until it reaches a target. Classification tree is when the target can

take a discrete value. If not, the model is called a regression tree.

Procedures

Annotation

The video recording of the child was manually annotated using an annotation soft-

ware (BORIS, v. 7.10.2, Torino, Italy). The annotation categorises the child’s valance

into ‘Challenging’ or ‘Non-challenging’ behaviour. To elaborate, any behaviour that is

15



a)

b)

c)

Figure 3.2: An overview of the adopted methodology in this study. a) The two social
robots (i.e., Nao and Paro) that were used in this study as part of the stimuli group [65].
b) The wrist wearable device Empatica E4. c) A snapshot of the developed observation
and annotation assistive tool during the session with the child when he was exhibiting
challenging behaviours during the session with social robots. The tool displays the
recorded video, wearable signals acquired from the child, and a summary of the
machine learning predictions in real time (See supplementary material).

harmful or has potential to cause injuries to the child or others, or destructive is con-

sidered as a challenging behaviour. This includes but not limited to head banging, arm

flapping, ear pulling, kicking, scratching. These behaviours may be produced to express

various emotions and feelings such as frustration , anxiety, anger, and sadness. Anything

that was not labeled as ’Challenging’ behaviour was annotated as ’Non-Challenging’.

An assistive tool was developed to monitor the vital signals changes as the child inter-

acts with the stimuli (Fig. 3.2c). Additionally, the tool displays the current predictions

of the developed machine learning algorithms. The tool can be used to assist annotators,

caregivers, and developers in evaluating their therapy sessions and recognition systems.

Machine Learning Model Development

The annotated data was preprocessed to ensure consistency between the different

signal types. The sensors inside the wearable device acquire the data at different fre-

quencies. Hence, frequency matching at 32 Hz was performed to ensure the frequencies
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of all the signals were the same. Elimination of outliers due to sensors’ errors was

performed to ensure accurate representation of the signals. Resampling techniques were

performed on the training set to ensure both classes were balanced. A portion of the

original dataset was left as part of the unseen testing set.

Preliminary tests were conducted using the raw sensors data and time-domain ex-

tracted features in the development of machine learning models. The considered time-

domain features were maximum, minimum, mean, and standard deviation over a window

size of two seconds (i.e., 64 samples). The preliminary results showed that the extracted

features performed better compared to the raw features. Hence, only the time-domain

extracted features were considered in this study.

Results

Three classifiers were evaluated in their performance. Cross validation with 10 folds

was used to report the evaluation metrics. Scikit-Learn and keras libraries in Python

were used to develop the models. The Decision Tree (DT) algorithm was trained using a

dynamic maximum-depth number and a Gini function to measure the quality of splitting

the tree. As for the SVM, the adopted kernel was radial basis function (RBF) with a

value of 0.1 as a regularization parameter and the gamma parameter was set to scaled.

The MLP consisted of one hidden layer with 100 neurons and weights adjusted using

stochastic gradient descent at 0.01 regularization. The activation function considered

was Relu with Adam as the solver for weight optimization.

In the first experiment, we investigated the effect of adding each physiological signal

(one at a time) to the commonly used kinetic feature vector. In the three employed

learning algorithms, the impact and contribution of each signal is shown in (Table 3.1).
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With ACC alone, all models performed poorly. Adding the HR sensor data to the feature

vector (Set 2) led to substantial performance improvements, and further improvements

were observed when the IBI signal was added (Set3). When the BVP and EDA features

were added, a small overall improvement in the performance of the three models was

achieved. The addition of TEMP in (Set 6) led to further improvements albeit only in

the MLP and SVM classifiers.

In the second experiment, we sought to establish whether using the physiological signals

alone (without kinetic ones) is sufficient for detecting challenging behaviors.

Features from the wearble device were divided into three categories to study their

influence on the performance of the machine learning algorithm. The first category

Kinetic contained the acceleration data only while the second category Physiological

was comprised of HR, IBI, BVP, EDA, and temperature. The third category contained

the combined data. As can be seen by the results depicted in (Fig. 3.3a), the use

of physiological features led to better classification performance than kinetic ones.

Physiological and combined features performed the best at a rate of 0.97 in terms of

accuracy and specificity. Combined features gave the best results for recall (0.97) and

precision (0.91) while physiological performed the best in terms of false positive rate

(0.025). The importance of each feature was investigated using Scikit-Learn library (i.e.,

ExtraTreeClassifer). The sound extracted from the recorded video was also included in

this test. The IBI feature was reported to be the most influencing feature in the model

followed by HR, TEMP, and EDA (Fig. 3.3b).
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Table 3.1: Results for the experiments considering the impact of adding each feature to
the feature set.

Set 1 2 3 4 5 6

Feature ACC Set 1 + HR Set 2 + IBI Set 3 + BVP Set 4 + EDA Set 5 + TEMP

Metric Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1

SVM 0.11 0.36 0.17 0.50 0.66 0.52 0.76 0.83 0.73 0.78 0.76 0.74 0.88 0.77 0.74 0.91 0.78 0.76

MLP 0.14 0.31 0.18 0.61 0.63 0.55 0.71 0.84 0.72 0.72 0.76 0.68 0.84 0.95 0.83 0.90 0.97 0.90

DT 0.15 0.11 0.11 0.84 0.47 0.51 0.70 0.85 0.72 0.77 0.86 0.78 0.74 0.78 0.74 0.74 0.72 0.66
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Figure 3.3: The outcomes of the experiments conducted in this studies. a) The
evaluation metrics’ results for the three tested categories on the best performing
classifier (i.e., MLP). b) The feature importance scores for each of the investigated
features.

Discussion

Understanding the interactions during the session is essential to better interpret the

occurrence of the challenging behaviours through this study. The child with autism

displayed varying levels of interaction with the stimuli groups (i.e. green ball, cymbals,

plastic train, humanoid robotic toy, and a wooden truck). The subject was most attracted

to the colourful plastic train, which produced soap bubbles. This triggered a state

of excitement in his facial expressions and physical movements such as jumping and

arm waving. After 13 mins of interaction, the child started to experience challenging

behaviours (e.g. body rocking and screaming). During the session with social robots,
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the child exhibited an increase in the challenging behaviours to some social robots more

than others perhaps due to specific undesirable features of these robots which appeared

to scare him. He jumped in refusal to interact with any of the two social robots and

continued to scream while exhibiting stimming and repetitive behaviours. In the entire

session, there were only a few occurrences of challenging behaviors observed.

The investigation of kinetic and physiological features’ contributions to the prediction

performance have shed insights into the instances of challenging behaviours. Specifi-

cally, many challenging behaviours involved hand movements. Hence, the accelerometer

inside the wrist wearable was able to record these instances that are distinguishable com-

pared to other hand movements. The evaluation metrics results of the best performing

classifier supports these finding. However, considering the kinetic features alone did

not provide the best outcomes in this study. Although, some challenging behaviors are

expressed by physical movements, others may not be as such. For example, fear of

a social robot may only be captured by a sudden increase of heart rate and inter beat

interval signals (Fig. 3.2c). This is especially more evident in children of young ages

where abrupt physical movements are expected. This highlights that some forms of

challenging behaviours can only be identified with sensors that measure the physiologi-

cal signs. Adding the physiological data to kinetic data would increase the accuracy of

prediction. Hence, the combined effects of both improved the overall performance of

the machine learning model as supported by the results.

Parents or caregivers need to observe the children directly to be aware of challenging

behaviours. Continuous observation might pose as a challenge to many busy caregivers.

Hence, having a technology that help in monitoring and detecting challenging behaviors

will improve the quality of therapy. This is achieved by constructing real-time systems to
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detect such behaviours. Such systems will be beneficial to parents, therapists, caregivers,

and even researchers. With the help of an automatic detection system, assessments can

be made on the adaptation of a child to different environmental conditions and stimuli.

Hence, preventive measures can be taken early to reduce the probability of detrimental

behaviours. In this study, a tool was developed toward achieving the goal of developing

such systems using wearable sensors and social robots for early intervention purposes.

Unlike human professionals and experts, machine learning models lack the means

to explain the reasons behind their predictions. This limitation might be hindrance to

the adoption of such technologies in sensitive applications such as detecting challenging

behaviours among special needs population. Parents would use this technology if it

could provide some form of an explanation. Hence, the need for interpretation is

vital. To undermine such limitation, interpretability techniques attempt to provide

some reasoning behind models’ predictions [66]. Such techniques can help parents and

healthcare providers understand their patients better by omitting any confusion behind

a machine learning model’s prediction. A detection system would explain why a child

is or about to undergo a challenging behaviour or meltdown event based on reading the

physiological data. For example, by telling the parents that your child vitals (e.g. IBI

or HR) are not within the normal range. We believe that future studies should focus on

incorporating interpretability techniques into their systems.

Collecting comprehensive data to account for the spectrum of children with autism

represents a challenge. To account for inter-individual differences, a large amount of

data is needed to be collected so a reliable machine learning model can be developed.

While the exhibition of challenging behaviors among this population is high, collecting

enough data to account for the differences in their characteristics represents a major

21



limitation. Children with autism show heterogeneous profiles in their symptoms and

dispositions. Hence, their display of challenging behaviours can vary from one indi-

vidual to another. Therefore, focus group can be narrowed down to children with ASD

who exhibit sensory stimming behaviours (e.g. kinetic and motor movements). This

gives a rise toward the need of personalized machine learning models to consider such

distinctive differences among this population and to gather the requisite comprehensive

data. The machine learning models developed in this study showed promising results

toward the establishment of personalized detection systems for challenging behaviours.

The investigations in this study were limited to one child with autism. Hence,

the findings can not be generalized to other children on the spectrum. Additionally,

there is a need to acquire more data to cover a wider range of different challenging

behaviours. Future works will consider conducting longer and repeated sessions with

different children on the spectrum. The data collection process was limited to using a

wrist wearable device. However, children on the spectrum may get irritated by it, try

to remove it, or use it to harm themselves. Furthermore, wrist wearable alone may not

be able to capture the movements of other body parts (e.g. leg). Future studies should

consider the application of other wearable devices embedded within the child’s clothing

or shoes.

Conclusion

The occurrence of challenging behaviours among children with autism interferes

negatively in all aspects of daily functioning including therapy sessions. Technology

can be used to detect such behaviours and improve therapy. In this study, we have

investigated the feasibility of detecting challenging behaviours using wearable sensor
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and machine learning techniques. An annotation was proposed and used to identify

instances of challenging behaviours in a recorded session between a child with autism

and stimuli group that included social robots. Different features were extracted and

investigated with three different machine learning algorithms. Additionally, an assistive

tool that displays the session, physiological changes, predictions of the three algorithms

was developed and presented. The best developed model showed promising results

across all the evaluation metrics.

The findings of this work will help in addressing challenging behaviours among

children with autism more efficiently. A detection system built using wearable sensors

would notify the parents or caregivers to intervene early and prevent the progression

of unwanted behaviours. Incorporating social companion robots would also assist in

mediating and reacting accordingly to mitigate the intensity and frequency of challenging

behaviours.
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CHAPTER 4: HR AS A PREDICTOR OF CHALLENGING BEHAVIOURS

Introduction

Autism Spectrum Disorders (ASD) is a developmental and neurological disorder

that causes impairments characterized by difficulties in social communication and re-

stricted behaviours [14]. Children with ASD exhibit challenging behaviours frequently

at varying intensities and in different forms, such as meltdowns, tantrums, property de-

struction, and aggression [39][67][41]. The prevalence rate of challenging behaviours

and aggression among children with ASD is high [68][69][70]. Being frustrated and the

presence of new stimuli are some of the contributing factors that increase the occurrence

of challenging behaviours [71].

Early intervention can help in managing challenging behaviours [5][6]. The advances

in technology are being integrated in the screening of ASD and in therapy sessions to

improve the outcomes [72]. Social robots are examples of adopted technologies in

therapy that reported positive outcomes (e.g. improved communication, motor, and

social skills) among children with autism [73].

Physiological changes of the human body can provide indicators about the current

state using wearable devices and machine learning techniques. A previous study found

that challenging behaviours are influenced by the physiological arousal of children with

autism [61]. Another study reported a difference in the heart rate between adults with

ASD and normal adults during public speaking [62]. Research that detects challenging

behaviours among children with autism during interactions with social robots is still

limited [64].
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Table 4.1: Some of the common heart rate variability (HRV) parameters that were
previously considered in autism research [74]

Parameters Units Domain Description

RMSSD ms Time Square root of the mean squared differences between successive

RR intervals

SDNN ms Time Standard deviation of NN intervals

LF Hz Frequency Peak in low frequency range (0.04 to 0.15 Hz)

HF Hz Frequency Peak in high frequency range (0.15 to 0.4 Hz)

Contributions

In this study, we conduct experiments using data acquired from five children with

ASD and machine learning techniques to detect challenging behaviours during interac-

tion sessions with toys and social robots. The contributions of this study are summarized

as follows:

1. Integration of machine learning techniques and wearable sensors to detect chal-

lenging behaviours.

2. Evaluation of physiological and kinetic features in identifying challenging behav-

iors.

3. Analysis on the HR and HRV roles in supporting the detection.
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Materials and Methods

Participants

Five male children with autism, ages ranging between 7 and 10 years old, participated

in this study. The participants attended a local center for special needs in Doha, Qatar.

Parental consent was obtained by the center. The sessions were conducted with each

child individually with the supervision and assistance of a teacher or their caregiver.

The procedures for this work did not include invasive or potentially hazardous methods

and were in accordance with the Code of Ethics of the World Medical Association

(Declaration of Helsinki).

Stimuli

Social robots and regular children’s toys were used as stimuli in this study. The social

robots were the humanoid Nao robot (Nao, SoftBank Robotics, Japan) and a white furred

robotic seal (PARO Robots, USA). These social robots are shown in (Fig. 4.1b). The toys

consisted of a squishy green rubber ball, multi-color train, brass cymbals, and wooden

letter blocks that are placed on a toy truck. Further details regarding the stimuli used

can be found in [65].

Wearable Device

A wristband wearable sensor (Empatica E4, Milano, Italy) was used to obtain the

data readings from the children during the experiments (Fig. 4.1a). The E4 wearable

sensor contains a real-time clock and it is capable of recording physiological data signals

to an internal memory (Fig. 4.1c). The physiological signals considered are as follows:
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Figure 4.1: An overview of the adopted methodology in this study. a) The Empatica
E4 wearable device. b) One of the children interacting with the social robots (See
supplementary material). c) A sample of the acquired data using the wearable device.

1. Acceleration (ACC): measures wrist’s motion changes in terms of the acceleration

changes in the x,y, and z directions.

2. Electrodermal Activity (EDA): determines the change in skin conductance and

the skin’s electrical properties.

3. Temperature (TEMP): determines the temperature of the skin.

4. Heart Rate (HR): the number of beats per minute.

5. Blood Volume Pulse (BVP): determines the changes in the blood volume.

Algorithms

Several machine learning models were applied to detect the challenging behaviours

in real time. The implemented algorithms were as follows:

1. Support-Vector Machine (SVM): non-probabilistic binary linear supervised learn-

ing model that can solve and classify both linear and non-linear problems.
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2. Multilayer Perceptron (MLP): learning technique inspired by the biological brain

that consists of layers of artificial neurons that can learn from data.

3. Decision Tree (DT): an algorithm that predicts the output by moving through the

different discrete decision options that are represented in a tree-like structure until

a conclusion is reached.

4. Extreme Gradient Boosting (XGBoost): an ensemble supervised machine learning

technique which utilizes regularized gradient boosted decision trees to improve

performance and classification speed.

Procedures

Annotation

Manual annotation was carried out for each of the five children’s behaviours. This

was done with the help of a free annotation software (BORIS, v. 7.10.2, Torino,

Italy). The behaviours were annotated as either ’Challenging’ or ‘Non-challenging’.

A Challenging behaviour is considered to be any action that is interfering, repetitive,

stimming, and might inflict harm on oneself or others. Challenging behaviours also

included head banging, arm flapping, ear pulling, kicking, and scratching.

Data Preprocessing

To ensure consistency, the data acquired from the wearable device were preprocessed

and the sampling frequency of every acquired data signal was set to 64 Hz. This is crucial

since the different sensors obtain data at different sampling rates. The preprocessing

stage included outliers removal and resampling the training data to ensure that classes
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are equally balanced. A portion equals to thirty percent of the original dataset was used

as the unseen testing set. Initial experiments with the dataset indicated that the extracted

features produced better performance when compared to the raw features alone. For this

reason, only time-domain extracted features (i.e., mean, standard deviation, min, and

max) were considered throughout this study.

Results

Machine Learning Models

Four machine learning algorithms were evaluated based on the evaluation metrics

in addition to the prediction speed (Table 4.2). In the results, challenging behaviors

were considered to be the positive class. The models were developed using Python

libraries (i.e., Sklearn [75] and XGBoost [76]). The depth of the DT algorithm was set

to dynamic and the Gini function was used for the splitting criteria. SVM used a radial

basis function kernal with regularization parameter of 0.1 and a gamma parameter was

set to scale. As for the MLP, it contained one hidden layer that consisted of 100 neurons

with weights adjusted using stochastic gradient descent at 0.0001 L2 regularization.

XGBoost was trained with logistic objective, max depth of 6, aplha equal to 1, learning

rate of 0.3, and 100 estimators.

XGBoost showed better overall performance compared to other classifiers in terms

of precision (0.88), recall (0.99), F1-Score (0.93), and accuracy (0.99). Additionally, it

has achieved the fastest time (i.e., 0.24 sec) to predict the test samples. The second best

performing algorithm was DT followed by MLP. SVM achieved the lowest performance

and took the longest time to predict the test samples, which was around 2.5 seconds.

Due to its performance, XGBoost has been considered in the upcoming experiments.

29



Features Effects

To measure the contribution of each sensor to the prediction performance, sensor

features were added gradually to the overall feature vector and the results were compared

for the individualized models and combined model (Table 4.3). With ACC alone, the

classifier performed poorly on all five participants individually and on their combined

model. Set 2 considered the effect of adding the HR sensor reading to the feature

vector that has led to a large increase in performance for all participants individually

and their combined model. As for Set 3, adding BVP had little effect on all the models.

Adding TEMP improved the performance of the individual personalized models and

their combined model slightly. Finally, adding EDA in Set 5 has led to a further increase

in the overall performance for most of the models.

Kinetic vs Physiological

To understand which category of features are most significant, kinetic, physiolog-

ical, and a combination of the two were investigated. The evaluation metrics results

for the two categories and their combined features are depicted in Figure 4.3. The re-

sults showed that kinetic features alone performed poorly with respect to physiological

and combined features. Physiological features were found to perform similarly to the

combined features. In spite of this, the overall best performance comes from using the

combined features.

To further investigate how each individual feature contributes to the performance of

the machine learning model, the importance of each individual feature with respect to

F-score were plotted using the built-in XGBoost tool [76]. The individual plots for each
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participant revealed a discrepancy between the importance of each features (Fig. 4.2a).

However, HR appears to be the most important factor for the majority of the participants

followed by either EDA or TEMP. The combined plot for the generalized model revealed

that the most important feature was HR then followed by EDA, TEMP, ACC readings in

the Y, Z, and X directions, and finally BVP (Fig. 4.2b).

a)

b)

Par�cipant 1 Par�cipant 2 Par�cipant 3

Par�cipant 4 Par�cipant 5

Figure 4.2: The contributing features on the performance of the best prediction
algorithm (i.e., XGBoost). a) For each child. b) For the combined model.
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Figure 4.3: The evaluation metrics results for the three categories using the best
performing algorithm (i.e., XGBoost).

To further investigate the importance of heart rate parameters, the heart rate variabil-

ity (HRV) based on calculating the RMSSD was considered. The RMSSD was derived

from the interbeat interval signal of the wearable device using a sampling frequency of

64 Hz. The HRV changes for one of the children during different states were investigated

(Fig. 4.5). The HRV values appear to be highest during rest state while lowest during

the occurrence of a challenging behaviour (Fig. 4.5c).

A machine learning model was trained that contained an additional feature called

HRV. The results showed the importance of HRV for a child that exhibited more challeng-

ing behaviours (Fig. 4.4a) is higher compared to a child that exhibited less instances of

challenging behaviours (Fig. 4.4b). Furthermore, the contribution of HRV outweighed

that of HR in the child exhibiting challenging behaviours and vice verse in the child ex-
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Figure 4.4: The contribution of HRV in the performance of the machine learning
model (i.e., XGBoost). a) Represents the feature importance for one of the participants
whose challenging behaviours were more frequent and intense. b) The feature
importance for another participant who displayed less challenging behaviours.

Table 4.2: The evaluation metrics scores for the four algorithms and their test times (in
seconds) needed to evaluate the test samples

Precision Recall F1-Score Accuracy Testing Time

XGBoost 0.88 0.99 0.93 0.99 0.24

MLP 0.67 0.98 0.80 0.97 0.36

SVM 0.24 0.91 0.38 0.85 2.48

DT 0.87 0.92 0.89 0.98 0.29

periencing less challenging behaviours. Hence, the detection of challenging behaviours

appears to depend on the changes in HRV.

Discussion

To properly understand the occurrence of challenging behaviour, it is vital to analyze

the interactions of the participants throughout their sessions. The children displayed

different levels of activity and interaction with the presented stimuli. The participants
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4.5. DISCUSSION 34

8:57:00 8:57:30 8:58:00 8:58:30 8:59:00 8:59:30 9:00:00 9:00:30 9:01:00

a)  8:57:41 (Stimulating state) (Rest state)b)  8:58:30 c)  9:00:49 (Challenging state)

Figure 4.5: The changes in the HRV (i.e., RMSSD) corresponding to different states.
a) The child is overwhelmed and stimulated by the bubble gun toy. b) The child is in a
rest state. c) The child experiences a challenging behaviour.

Table 4.3: Results for the experiments considering the impact of adding each feature to
the feature set for the personalized models of each participant and their combined
generalized model.

Set 1 2 3 4 5

Feature ACC Set 1 + HR Set 2 + BVP Set 3 + TEMP Set 4 + EDA

Metric Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1

Participant 1 0.35 0.87 0.50 0.63 1 0.78 0.62 1 0.77 0.79 0.97 0.87 0.79 0.97 0.87

Participant 2 0.53 0.89 0.67 0.72 1 0.84 0.71 0.97 0.82 0.77 0.99 0.86 0.92 1 0.96

Participant 3 0.51 0.75 0.61 0.69 0.90 0.78 0.69 0.89 0.78 0.96 0.99 0.97 0.96 0.99 0.98

Participant 4 0.37 0.72 0.49 0.75 0.98 0.85 0.75 0.98 0.85 1 0.98 0.99 1 0.98 0.99

Participant 5 0.26 0.64 0.37 0.43 0.91 0.58 0.58 0.97 0.73 0.54 1 0.70 0.57 1 0.73

All Participants 0.36 0.66 0.46 0.62 0.86 0.72 0.63 0.86 0.72 0.82 0.98 0.89 0.88 0.99 0.93



showed fascination in the colourful train that produced bubbles, which encouraged their

engagement. The fascination and interaction came in various forms that included both

facial expressions and physical movements. Most of the participants did not prefer the

white robotic seal, which could be due to its animal-like appearance. Hence, that might

have led to participants exhibiting challenging behaviours. Furthermore, the robotic

humanoid caused confusion and curiosity as some of the sudden movements produced

by it led to negative reactions by some of the participants.

In this work, we investigated the detection of challenging behaviours among children

with autism using wearable sensors to acquire data and machine learning techniques.

While there are many machine learning approaches, not all are suitable to be considered

in such application. In addition to prediction accuracy, a system must also make

predictions fast enough for timely intervention. In our evaluations, XGBoost algorithm

fulfilled these two criteria.

The findings showed that the heart rate (HR) was the most significant contributing

feature on the performance of the classifying model for almost all the participants. Our

interpretation is that challenging behaviours are usually accompanied by higher stress

levels, which lead to an increasing in the HR above the baseline [77]. Studying the

contributions of both kinetic and physiological features in behavioural classification

helped us to better understand the nature of challenging behaviours. More precisely,

it was observed that most challenging behaviours tend to involve some sort of specific

hand movements. With this in mind, these hand movements were distinguished from

regular hand motion through the help of the accelerometer. Considering HR along with

other modalities would offer a valuable decision support during moment-to-moment

treatment planning for individuals with autism.
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Another experiment was conducted to elucidate the relationship between heart rate

variability (HRV) and challenging behaviours. We found that HRV decreased during

stress and stimulating episodes while it increased through rest states. With exception

to one participant, the HRV analysis for the participants showed a strong correlation

between the fluctuations of HRV and the occurrence of challenging behaviours. A

possible explanation for these disparate findings is that children with autism may not

have a stable system for regulating emotions [38]. The children initially interacted

with the social robots with fear at different levels and intensities. This variation in

emotions has led to distinct representations of the HRV signal. Hence, HRV can be

used as an indicator for the occurrence of challenging behaviours when it is associated

with high reactive interactions in children with autism. Nonetheless, further research is

required on a larger number of participants to outline the psychological changes during

the exhibition of challenging behaviours.

Employing wearable sensors allows for lower costs, non-invasive, and less restrain-

ing methods in tracking motor movements and physiological stress for children with

autism. Based on the findings, it is promising to derive HRV parameters from the

wearable sensors to acquire extra information. Dedicated warning techniques that get

activated due to an increase in challenging behaviour episodes would provide a valuable

support for children with autism. The benefits of such systems are magnified for non-

verbal individuals who have restricted means to express their stress to their parents or

caregivers [78]. Hence, parents or caregivers, or even a social robot intervene early to

remove the stimuli causing that challenging behaviour [64].

One of the main limitations in this study was the low frequency of the observed chal-

lenging behaviours compared to non-challenging ones. While resampling techniques to
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balance the challenging and non-challenging behaviours can be used during the train-

ing phase, collecting more data that contain more instances of challenging behaviours

is essential to capture the full spectrum of such behaviours. Another limitation was

that collecting data was restricted to utilizing a wrist wearable device within controlled

environmental conditions. Children with autism might not tolerate the wrist wearable.

Hence, they might attempt to remove it, throw it, or even hurt themselves with it (e.g.

in head banging). Future work should investigate different body’s locations that are less

intrusive to place one or multiple wearable devices that can recognize different patterns

of behaviours at the same time. Additionally, acquiring data should be conducted under

less controlled conditions and closer to their daily living scenarios to generalize the

observed challenging behaviours in children with autism throughout the day.

Conclusion

The advances in technology can be exploited to help target challenging behaviours

among children with ASD. The combination of wearable sensors to detect behaviours

and social robots to respond have a great impact on the outcomes of therapy sessions. In

this study, we have conducted several investigations using wearable sensors and machine

learning techniques to detect challenging behaviours among children with autism. The

wearable sensors acquired different physiological and kinetics signals from five children.

Annotated video sessions and time extracted features were considered to evaluate the

detection models. Four machine learning techniques were evaluated and the best, based

on XGBoost, was considered in further tests. Features tests were conducted to evaluate

the effects of adding each feature to the existing pool of features. In terms of feature

importance, heart rate followed by electrodermal activity and temperature were found
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to be the most affecting features on the performance of the prediction model. Testing

the categories of features revealed that physiological based features provided more

useful information to the machine learning model compared to kinetic features, hence,

improving its performance considerably. The heart rate variability changes based on

RMSSD parameter was also derived and investigated. This parameter was found to

correlate with challenging behaviours and to be a major contributor to the prediction

performance.

The outcomes of this work pave the way towards the development methods and tools

based on machine learning techniques and wearables technologies that can be used to

detect challenging behaviours and to be integrated into social robots-aided sessions.
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