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Abstract: A NASICON-based Na3V2(PO4)2F3 (NVPF) cathode material is reported herein as a
potential symmetric cell electrode material. The symmetric cell was active from 0 to 3.5 V and showed
a capacity of 85 mAh/g at 0.1 C. With cycling, the NVPF symmetric cell showed a very long and
stable cycle life, having a capacity retention of 61% after 1000 cycles at 1 C. The diffusion coefficient
calculated from cyclic voltammetry (CV) and the galvanostatic intermittent titration technique (GITT)
was found to be ~10−9–10−11, suggesting a smooth diffusion of Na+ in the NVPF symmetric cell.
The electrochemical impedance spectroscopy (EIS) carried out during cycling showed increases
in bulk resistance, solid electrolyte interphase (SEI) resistance, and charge transfer resistance with
the number of cycles, explaining the origin of capacity fade in the NVPF symmetric cell. Finally,
the postmortem analysis of the symmetric cell after 1000 cycles at a 1 C rate indicated that the
intercalation/de-intercalation of sodium into/from the host structure occurred without any major
structural destabilization in both the cathode and anode. However, there was slight distortion in the
cathode structure observed, which resulted in capacity loss of the symmetric cell. The promising
electrochemical performance of NVPF in the symmetric cell makes it attractive for developing
long-life and cost-effective batteries.
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1. Introduction

The environmental pollution caused by fossil fuels and their depletion has garnered
a critical urgency in developing renewable sources of energy such as solar energy and
wind energy [1–3]. In addition, a sustainable economic development is possible by paying
considerable attention to promoting sustainable and renewable energy sources [4]. The
exploitation of these intermittent types of energy systems requires adequate energy storage
methods, wherein a significant role is played by batteries as versatile energy storage
devices [5,6]. Lithium Ion Batteries (LIBs) are the leaders in energy storage systems
since the development of LiCoO2-graphite batteries in 1991 because of their appealing
characteristics such as high voltage, high energy density [3,7,8], low self-discharge rate [1],
and low weight [6]. The increasing cost of LIBs combined with the limited availability of Li
resources has moved the focus to Sodium Ion Batteries (SIBs) [4,6,7]. These are deemed a
promising candidate over the Li technologies owing to the abundant availability of sodium
in the Earth’s crust, the cost viability, and the technological similarity with LIBs [1,4,5,8–12].
However, the ionic radius of Na+ (1.02 Å) is larger than that of Li+ (0.76 Å) [13], which
induces slow ion diffusion, thus affecting the electrochemical characteristics of sodium-
based cathodes, especially the low rate performance, instability in cycling [9,14], and lower
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energy and power density [7,8,15]. Research aiming to develop a stable structure and to
create large open spaces for the rapid migration of Na+ is taking place at a fast pace.

In SIBs, Na+ ions follow the ‘Rocking chair’ mechanism as found in LIBs, for the
reversible insertion/extraction of Na+ between the anode and cathode during the charg-
ing and discharging process [13]. The materials used in the electrodes largely deter-
mine the electrochemical characteristics of the SIBs [11]. Taking this into account, a
lot of cathode materials in SIBs are being developed, which mainly includes layered
structures such as NaxMO2 (M = Mn, Co, Ni, Fe, Cr), olivine and maricite structures,
which include phosphate-based, fluoride-based [7], polyanionic-type NaFePO4, and Na
super-ionic conductor (NASICON)-type materials (Na3M2(PO4)3 (M = Ti, Fe, and V), and
Na3V2(PO4)2F3 [4,15,16].

Among these innovations, polyanion compounds, which have a high Na+ diffusion,
with the three-dimensional structure combined with stable cycling capabilities, are very
attractive as cathode materials in battery systems [17]. Among fluorophosphate-based
cathodes, Na3V2(PO4)2F3 referred to as NVPF has the NASICON structure and is a fa-
vorable choice primarily because of its structure with large interstitial spaces enabling
the rapid extraction and insertion of Na+ ions, outstanding stability, and higher energy
density. NVPF has an energy density value of 475 Wh/kg [1,9,15,18], which is identical
to the energy density of LiFePO4 in LIBs (~580 Wh/kg) [17]. Moreover, NVPF exhibits a
theoretical capacity of 128 mAh/g and a high working voltage, 3.7 V, vs. Na/Na+ when
used as a cathode [3,11,15,19,20] due to the presence of strong F-V bonding [8].

To explore the potential use of NVPF in symmetric configuration, its promising
electrochemical characteristics were considered. The electrochemical studies on NVPF
cathode materials showed two voltage plateaus at ~3.6 V and at ~4.1 V. These two plateaus
are linked to the V3+/V4+ redox pair and these two voltages correspond to two Na+

extracted from NVPF, with the 3.8 V being linked to the first Na+ ion from the Na(1) site
and the 4.1 V being linked to the second Na+ from the Na(2) sites [8]. The research aiming
to increase the specific energy in NVPF systems is targeted in methods that can extract the
remaining Na (Na1V2(PO4)3–Na0V2(PO4)3). In this aspect, the study by Yan et al. [5] found
that, upon oxidation to 4.8 V, the extraction of three Na+ ions from the NVPF is possible.
Upon oxidation to this high voltage, a change in the NVPF structure takes place, and this
new structure can extract and release three Na+ ions in the next cycle, two of them at the
voltages mentioned earlier (~4.2 V and the 3.6 V) and third extraction occurring at 1.6 V.
The oxidation of vanadium (V) from Vn+ beyond 4+ is considered to be the reason for this,
which also brings about the phase change from an orthorhombic to tetragonal structure [5].
In addition, using the NVPF@C@rGO as the anode material, it displayed a working voltage
plateau at 1.4 V vs. Na+/Na together with a discharge capacity of 95 mAh/g, when
discharged to 0.01 V [1,9]. This presence of a low-voltage plateau along with the high-
voltage plateau enables the potential use of NVPF in a symmetric configuration.

The salient characteristic of symmetric batteries is the use of the same cathode and an-
ode material, imparting a number of advantages such as (i) ease of fabrication, (ii) reduced
costs [21], as only one type of material needs to be synthesized, (iii) enhanced electrochemi-
cal performance, (iv) suppression of the volume expansion of electrode materials [21,22],
(v) reduced dendrite issue in LIBs and SIBs, (vi) improved safety, and (vii) longer battery
life [21,23]. Moreover, the unfavorable reactions between the electrode and electrolyte
are also eliminated with the use of symmetric electrodes, which boosts the cycling perfor-
mance [23]. The symmetric systems with the same intercalation compound are often with
low energy density and requires the same materials with distinct redox couples, which are
active in low- and high-voltage ranges [21]. Various LIBs and SIBs have been proposed with
the symmetric configurations of Li3V2(PO4)3-(LVP) [24–27] and Na3V2(PO4)3-(NVP) [27,28],
with modifications to them such as composite formation with carbon nanotubes, carbon
black [29], Na2VTi(PO4)3 [30], Na3MnTi(PO4)3 [31], Na2VTi(PO4)3 [32], Na3Co0.5Mn0.5
Ti(PO4)3 [33], Na3V2(PO4)2F3@C-rGO [9], Na3V2(PO4)3/C [34], K+- and Mg+-doped NVP [35],
double-carbon-embedded NVP [36], Li-containing symmetric material Li9V3(P2O7)(PO4)2 [37],
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Li- and Mn-rich layered oxide 0.3 Li2MnO3·0.7 LiNi1/3Co1/3Mn1/3O2 [21], and Al- and
Fe-doped Li3V2(PO4)3 [38].

In the present study, we reported the synthesis and electrochemical performance of
pristine Na3V2(PO4)3F3 NVPF in a symmetric cell. A detailed study on pristine NVPF
material in a symmetric cell configuration has not been carried out before. However,
only one brief study on the electrochemical performance of Na3V2(PO4)2F3@C-rGO in a
symmetric cell has been reported [9]. It was noticed that NVPF demonstrates a decent
electrochemical behavior in a symmetric cell, exhibiting a reversible discharge capacity
of ~85 mAh/g at 0.1 C and a cycling capacity retention of 61% after 1000 cycles at 1 C.
XRD, XPS, and GITT characterization were conducted and a postmortem XRD and XPS
analysis after 1000 cycles was also presented to investigate the effect of the intercalation/de-
intercalation of Na+ into/from the host structure.

2. Results and Discussion

The X-ray powder diffraction (XRD) patterns of the NVPF sample are shown in
Figure 1. The diffraction peaks of the synthesized NVPF material can be indexed to the
database NVPF (PDF code: 01-089-8485) with tetragonal symmetry, and the described space
group is P42/mnm. The synthesized material is crystalline and does not contain detectable
impurities, which suggests a pure phase formation of NVPF. The indexed sharp peaks (220)
and (222) represent a high crystallinity of NVPF. The synthesized material shows no major
difference compared to previous reports, suggesting a successful synthesis of phase-pure
material [20,39,40]. Figure S1 shows the refinement data (using MAUD software) and
shows agreement with the synthesized material spectra and calculated spectra. The lattice
parameters a, b, and c and the cell volume were calculated and are tabulated in Table 1.
The Table 1 shows the detailed comparison between the lattice parameter values of the
synthesized material and the reference. This matches with the lattice parameter value of
Reference [39]. Further XRD analysis involved the determination of crystallite size by using
the Scherrer equation. The average calculated crystallite size was ~26 nm. The Scherrer
equation was also used to calculate the d-spacing value of the largest intensity plane (220),
and it was found to be 3.19 Å.

Table 1. The lattice parameter values and cell volume of the synthesized and reference NVPF.

Material a (Å) b (Å) c (Å) V (Å3)

This work 9.038 9.038 10.747 877.873
Reference [39] 9.0378 9.0378 10.748 877.94

To understand the particle size and morphology of the synthesized NVPF material,
TEM was used. Figure 2a shows the TEM images of the synthesized NVPF sample. The
images suggest that the synthesized material is a well-defined structure having irregular
morphology. As illustrated in Figure 2, the particle size of NVPF material is ~200–700 nm.
In addition, as seen from the images, the nanoparticles tend to aggregate, forming a large
cluster. With the help of Image J software, the lattice spacing was calculated. As seen from
the inset in Figure 2b, the lattice d spacing was found to be 0.318 nm (3.18 Å), which is in
line with previous reports [41]. The calculated lattice spacing was characterized for the
(220) plane of the material. This is in line with the d-spacing value calculated through the
XRD spectra. Figure 2c shows the average particle size distribution for three runs. The
distribution shows a particle size between 200 and 700 nm. The average particle size of the
NVPF material is ~400 nm, which is consistent with the TEM images. The large particle size
of ≥700 nm can be attributed to the slight agglomeration of the synthesized NVPF material.
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To analyze the thermal stability of NVPF material, TGA was conducted under N2
atmosphere, and the curves are shown in Figure S2. The sample shows no significant
weight loss up to 450 ◦C, suggesting excellent thermal stability, and above this temperature,
a slight is weight loss is observed. A further increase in temperature to 800 ◦C results in a
gradual weight loss of ~8%. This shows that the NVPF material has good thermal stability
even at temperatures of 800 ◦C. The thermal stability observed in NVPF is consistent with
previous reports [20].

The electrochemical performance of NVPF in the symmetrical cell was investigated,
and the rate capability data are shown in Figure 3 in a voltage range from 0.0 and 3.5 V.
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The NASICON structure hosting Na ions in both the cathode and anode results in high
discharge specific capacities and rate capabilities at different C rates for the full cell. The
rate capability curve is shown in Figure 3a, and the galvanostatic charge–discharge curves
at different C rates are shown in Figure 3b. The rate capability curve (Figure 3a) indicates
that the NVPF symmetric cell shows good discharge capacities up to a 2 C rate. Initially,
at a 0.1 C rate, the observed discharge capacity is ~85 mAh/g. The discharge-specific
capacity decreases with the C rate. At 0.2 C, 0.5 C, 1 C, and 2 C, capacities of ~76 mAh/g,
~53 mAh/g, ~38 mAh/g, and ~25 mAh/g are observed, respectively. Consequently, after
running the NVPF symmetric cell at various C rates, the cell was run again at 0.1 C to
understand the discharge capacity recoverability. The cell showed a recoverable capacity
of ~80 mAh/g. For the galvanostatic charge–discharge curves, as shown in Figure 3b, at
0.1 C, two distinct voltage–capacity plateaus are observed. These plateaus correlate with
the Na diffusion during (de)intercalation from the Na(2) and Na(1) sites [42]. However,
toward higher C rates, there is a lack of distinct plateaus observed, suggesting incomplete
Na (de)intercalation. In terms of capacity, for a symmetric cell, the NVPF cell shows
very promising capacities at various C rates. The further modification of this material
through composite formation or coatings can help in improving the delivered capacity of
this material.
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Figure 3. (a) Rate capability of NVPF symmetric cell and its corresponding (b) charge–discharge curves at different C rates.

The cycling performance of the symmetric NVPF symmetric cells was tested in the
voltage range of 0–3.5 V at both 0.1 C and 1 C. Figure 4 shows the entire cycling performance
for both the cells and their respective galvanostatic charge–discharge cycles. At 1 C, the
symmetric cell delivers an initial discharge capacity of ~64 mAh/g. The discharge capacity
decreases to ~39 mAh/g after 1000 cycles. This corresponds to a capacity retention of 61%.
Throughout the cycling process, there exists regions where the cell overcompensates for a
lack of deficiency in the cathode, resulting in fluctuating discharge capacity values. This is
also observed from the columbic efficiency curves, which average about 98%. Figure 4b
shows the galvanostatic charge–discharge curves of the symmetric cell with a 1 C rate at the
1st, 250th, 500th, 750th, and 1000th cycles. The initial cycle is seen as irreversible as a charge
capacity of 110 mAh/g is observed. The two plateaus observed in the charge curve in the
first cycle are similar to that of the RC curve in Figure 3b, which corresponds to the Na
intercalation from Na (1) and Na (2) sites into the anode [42]. However, this phenomenon
is only observed in the first cycle. For the following cycles, no distinct plateaus can be
observed and, through the 1000 cycles, a distinct capacity fade is observed. The cycling
performance and its 1st, 5th, 10th, and 15th galvanostatic charge—discharge capacity
curves at 0.1 C is shown in Figure 4c,d. Here, an initial discharge capacity of 85 mAh/g is
shown by the symmetric NVPF cell and a coulombic efficiency of ~90%. There is a slight
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capacity fade observed and the capacity retention of the symmetric cell after 20 cycles is
~92%. The galvanostatic charge–discharge curves show two clear plateaus corresponding
to Na (de)intercalation. In the first cycle, once again, a slight irreversible charge capacity
curve is seen. Comparatively, throughout the rest of the cycles, the capacity fade is low,
mainly due to the slow C rate at which the cell is running.
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Figure 5a shows the cyclic voltammetry (CV) curves of the NVPF symmetric cell. The
CV curves mainly identify the redox peaks occurring during the (de)intercalation process
in a symmetric NVPF cell. A scan rate of 0.05 mV/s was used in the voltage range of
0.0–3.5 V for a period of four cycles to conduct the CV. Good ion transport and kinetics can
be identified from the CV curves and the peaks observed in them. During the oxidation
process, two peaks, one major and one minor peak, correlating with Na-ion extraction, are
observed in the symmetric cell. The minor peak ranging from 1 to 1.5 V corresponds to ion
extraction from the Na (2) site, whereas the major peak at ~2.4 V corresponds to Na-ion
extraction from the Na (1) site. Here, the peak ranging from 1 to 1.5 V is considered minor
mainly due to the cell being cathode-limited and, hence, there is no complete extraction
of Na-ions from this site. Being a symmetric cell, and cathode-deficient, during oxidation,
there is lack of complete extraction observed. In the case of reduction peaks, two distinct
peaks are observed in the 0–0.5 V range and at ~2.5 V. This corresponds to Na ion reinsertion
into the Na (2) site and Na (1) site at the cathode. Between the four cycles, only slight redox
peak shifts can be noticed, and these can be attributed to symmetric cell adjustment as a
result of electrode deficiencies occurring on both electrodes. To further analyze the diffusion
capabilities in the symmetric cell, the Na ion diffusion coefficient was calculated using the
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Randles–Sevcik equation, as reported previously, shown in Supplementary Information
(Equation (S1)), and it was found to be 3.7 × 10−11 cm2s−1 [43].
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To further understand the Na ion diffusion phenomenon in the NVPF symmetric cell,
the galvanostatic intermittent titration technique (GITT) was conducted and is shown in
Figure 5b. The GITT was performed in the range of 0–3.5 V at a 0.1 C rate with a pulse
time of 3600 s. The voltage–capacity curves of the GITT convey the polarization trend in
the symmetric cell. In the charge curve, a high polarization field is displayed in the region
from 0 to 2 V, indicating sluggish Na-ion diffusion in the high-polarization region. On
the other hand, from the 2–2.5 V voltage window, there is low polarization, confirming
smooth Na-ion diffusion in the low polarization region, contributing to the highest capacity.
After 2.5 V, the cell once again displays a high polarization region up until 3.5 V. The
high capacity in the charge curve at the cut-off voltage in the first cycle is 140 mAh/g,
which is irreversible in its nature. In the discharge curve, a similar trend is observed. The
region from 3.5 to 2 V is a low-polarization region where most of the capacity is delivered,
whereas the region from 2 to 0 V is a high-polarization region where the Na-ion diffusion
is restricted. The discharge capacity in the first cycle is ~80 mAh/g, which matches well
with the overall electrochemical performance of the symmetric cell at 0.1 C. The diffusion
coefficient values for both the charge and discharge curves were also calculated from
the GITT curves. The calculated Na-ion diffusion coefficient is 1.7 × 10−9 cm2s−1 for the
discharge curve and 9.3 × 10−11 cm2s−1 for the charge curve, which is in close range with
the diffusion coefficient values calculated from the CV curves. There is a slightly lower
diffusion coefficient observed in the charge curve, which is due to the initial irreversible
charge cycle. The diffusion coefficient values for the symmetric cell when compared to
the NVPF half-cell from previous reports show similar values, suggesting that the Na
ion diffusion occurring in the symmetric cell is similar to that of an NVPF||Na cell (half-
cell) [41,44]. The detailed calculation process is shown in the Supplementary Information
(Equation (S2)).

EIS measurements for the NVPF symmetric cells were conducted at a 1 C rate during
the 1st cycle, 10th cycle, and 20th cycle, and the resulting data were then fitted using RelaxIS
software. Figure 6 shows the EIS data of the NVPF symmetric cells at different cycles and
their fitting, including a magnified image of the region as an inset. The circuit used in
the analysis of the EIS fitting spectra is shown in Figure S4 given in the Supplementary
Information. At each cycle shown, there is a bulk resistance (Rb) shown due to internal
resistance from the cell. The bulk resistance increases from 66.5 Ω after the 1st cycle to
67.8 Ω after the 10th cycle and 71.6 Ω after the 20th cycle. This is related to the electrolyte
depletion, and cathode and anode microcrack formation, which increases the bulk resis-
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tance in the symmetric cell [45]. The first semicircle after the bulk resistance represents the
impedance arising due to the solid electrolyte interphase (SEI) layer present between the
electrode/electrolyte surface originating from electrolyte degradation (RSEI). With increas-
ing cycles, a similar trend of increasing resistance is seen, with resistance values of 25.5 Ω
after the 1st cycle, 26.3 Ω after the 10th cycle, and 29.0 Ω after the 20th cycle, suggesting an
increasing SEI layer with respect to the number of cycles. The next semicircle represents
the charge–transfer resistance (Rct), which correlates with the electrochemical kinetics of
the symmetric cell. Here, the resistance values increase with the number of cycles, as seen
from the values after the 1st cycle of 41.9 Ω, 64.2 Ω after the 10th cycle, and 106.9 Ω after
the 20th cycle. Based on the Warburg diffusion observed, the first cycles show a slightly
higher diffusion rate than the 20th cycle does. This can be attributed to the formation of the
SEI layer, which impedes ion movement and decreases the diffusion of the Na+ ions. The
diffusion coefficients after the 1st, 10th, and 20th cycle were calculated from the Warburg
diffusion coefficients and the corresponding equation in the Supplementary Information
(Equation (S3)), and they were found to be 3 × 10−13 cm2s−1, 2.56 × 10−13 cm2s−1, and
3.4 × 10−13 cm2s−1, respectively. This suggests that the diffusion rate is not severely
affected after 20 cycles and that the diffusion rate is consistent throughout the 20 cycles. On
comparing the diffusion coefficient values between the three tests (CV, GITT, and EIS), the
values calculated from EIS are slightly lower than the other tests due to the nonequilibrium
state of the symmetric cells during testing [45].
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The postmortem analysis of the NVPF symmetric cell after 1000 cycles at a 1 C rate
is shown in Figure 7. The XRD spectrum of the pristine, the anode, and the cathode after
1000 cycles is shown in Figure 7a. A careful comparison of XRD spectra indicates that
there is some distortion in the XRD spectra of the cathode and anode after 1000 cycles, as
compared to the pristine NVPF. As the NVPF symmetric cell is cathode-limited, the XRD
of the cathode shows much more distortion than the anode does. The slight distortion
observed in the structure of NVPF may be responsible for capacity loss (~61%) during the
charge/discharge process. However, even after 1000 cycles, there is no major structural
destabilization, suggesting that the cell is capable of a long cycle life. Figure 7b–d show the
XPS spectra of vanadium (V) for the pristine NVPF material and the cathode and anode
after 1000 cycles. The XPS data show the exact valence states of the transition metals in
the NVPF material. The XPS survey patterns for the pristine material, the cathode, and
the anode after 1000 cycles are shown in the Supplementary Information (Figure 5). The
peak at ~685 eV represents the F− in the NVPF material, whereas the peaks in the region
130–191 eV represent the P 2p and P 2s from the PO4

3− species in the NVPF material.
The vanadium in the NVPF material shows trivalent behavior and shows two peaks
corresponding to V 2p3/2 and V 2p1/2 at 516.7 eV and 524.0 eV, respectively, as seen in
Figure 7b. This is in agreement with the values from the literature regarding the NVPF
material [43,44]. Comparatively, the electrodes after 1000 cycles show distorted spectra
for the vanadium, showing binding energy intensities of 2p3/2 and V 2p1/2 at 517.2 eV
and 524.2 eV, respectively, for the cathode and 516.8 eV and 524.0 eV, respectively, for the
anode. The slight variation in binding energy of the electrodes after 1000 cycles when
compared to the pristine NVPF indicates promising structural stability of the NVPF material
after 1000 cycles. Although the structural stability of NVPF during the intercalation/de-
intercalation of Na into/from the host structure (NVPF) is quite promising, we feel that it
should be explored further, such as composite formation, to enhance its electrochemical
performance in the symmetric cell. The present study indicates that NVPF is a promising
material to be employed in the symmetric cell because of its promising structural and
electrochemical performance. However, its performance in the symmetric cell can be
further improved by other techniques such as (i) particle size reduction, (ii) composite
structure formation, and (iii) the use of ceramic coatings.
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3. Experimental
3.1. Materials Preparation

The Na3V2(PO4)2F3 was synthesized by employing a sol–gel technique using the NaF
(15 mmol), NH4VO3 (9.57 mmol), NH4H2PO4 (9.57 mmol), and citric acid (9.57 mmol) as
precursors, purchased from Sigma Aldrich. At first, the NaF and NH4H2PO4 were added
to 50 mL of distilled water with stirring at 200 rpm and at 85 ◦C. Another beaker with
the same amount of distilled water, stirred under the same conditions, was prepared for
mixing the NH4VO3 and citric acid. This mixture was stirred until it reached a bluish color.
At this stage, the drops of the first beaker were added slowly into it. The mixture was
stirred for 12 h, which resulted in a gel-like material. The prepared gel was then kept in an
oven at 120 ◦C for drying to completely remove water content from it. After, it was ground
in a mortar and pestle and subjected to a first sintering at 350 ◦C for 4 h in the presence of
flowing argon. The sample was then cooled to room temperature, ground again using a
mortar and pestle, and subjected to a second sintering treatment at 700 ◦C for 10 h, under
argon, to obtain the desired material. Figure 8 shows a schematic diagram for the synthesis
of NVPF.

3.2. Structural, Compositional, and Thermal Characterization

The crystal structure analysis and phase purity analysis were conducted using powder
X-ray diffraction analysis (PAN Analytical—Empyrean) with Cu-Kα radiation (1.5425 Å)
at room temperature. The sample scan range and the step size were 10 ≤ 2θ ≤ 90◦ and
0.01313◦, respectively. The morphology of the particles was studied using high-resolution
transmission electron microscopy (HR-TEM, JEOL JEM). The particle size of the synthesized
NVPF was determined using the Zetasizer Nano ZSP. The NVPF was dispersed in deionized
water for the particle size analysis. Thermogravimetric analysis (TGA, Perkin Elmer TGA
4000) was conducted under N2 atmosphere, from room temperature to 800 ◦C, to analyze
the thermal stability of the material. X-ray photoelectron spectroscopy (XPS, Thermo-
Scientific-Sigma Probe) was used to study the chemical states of different elements in
synthesized materials.
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3.3. Electrode and Cell Fabrication

For fabrication of the symmetric cell electrodes, the active material Na3V2(PO4)2F3,
acetylene black, and polyvinylidene fluoride (PVDF) binder in the ratio 80:10:10 were
mixed, respectively, in NMP solvent for 12 h. The mixed slurry was cast on aluminum foil
for the cathode and on copper foil for the anode using the doctor blade. The cast electrodes
were moved to a drying oven and dried at 120 ◦C for 6 h. Following complete drying,
the electrodes were calendered using a rolling press. From the calendered aluminum foil
and copper foil, 14 mm diameter discs were punched out to be used as the cathode and
anode in the coin cell. The punched disc electrodes were once again dried in a vacuum
oven at 120 ◦C for 2 h to remove the final traces of absorbed moisture. After shifting the
electrodes to an argon-filled glovebox, they were fabricated into CR2032 coin cells. The
loading mass of the electrode active material was calculated and known to be an average
of 3–3.5 mg/cm2. Furthermore, the symmetric cell was designed with a mass ratio of 1:1.5.
NaClO4 in propylene carbonate (PC) was used as an electrolyte for the symmetric cell, and
borosilicate glass-fiber (Whatman GF/D) was used as the separator for the coin cell. The
fabricated cells were extracted from the glovebox to undergo electrochemical testing.

3.4. Electrochemical Measurements

The charge/discharge tests for the symmetric cell were conducted at room temperature
and the voltage window used was from 0 to 3.5 V. The WonATech (WBCS 3000L, Seoul,
Korea) battery cycler was used to conduct cycling, rate capability (RC), cyclic voltammetry
(CV), and galvanostatic intermittent titration technique (GITT) tests. The electrochemical
impedance spectroscopy (EIS) tests were conducted using a Biologic VSP Potentiostat. To
conduct postmortem measurements, the processed cells were moved to an argon glovebox
and both the cathode and anode were carefully removed from the cells and washed with
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dimethyl carbonate (DMC) solvent to remove any trace amounts of electrolyte and other
undesired products formed during the electrochemical testing. The electrodes were then
dried in a glovebox for complete evaporation of the solvent. After drying, the active
material was extracted from the cathode and anode current collectors, and then sent for
postmortem analysis.

4. Conclusions

The phase-pure NASICON-based Na3V2(PO4)2F3 (NVPF) cathode material was syn-
thesized by a simple sol–gel route and its electrochemical performance was evaluated in a
symmetric cell. The NVPF symmetric cell showed promising electrochemical performance
by delivering an initial discharge capacity of 85 mAh/g at 0.1 C, a capacity retention of 61%
after 1000 cycles at 1 C, and a capacity retention of 92% after 20 cycles at 0.1 C. Furthermore,
the NVPF symmetric cell showed good discharge capacities up to a 2 C rate and good rate
capability. The diffusion coefficient (10−9 to 10−11 cm2s−1) calculated from GITT and CV
techniques confirmed the smooth intercalation/de-intercalation of sodium into/from the
host structure without any significant structural distortion. EIS analysis confirmed bulk
resistance, solid electrolyte interphase (SEI) resistance, and charge transfer resistance with
an increasing number of cycles, thus causing capacity fading in the NVPF symmetric cell.
The promising electrochemical performance of the NVPF symmetric cell makes it attractive
for future cost-effective and efficient energy storage applications.
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