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Abstract—The concept of federated learning (FL) was first
proposed by Google in 2016. Thereafter, FL. has been widely
studied for the feasibility of application in various fields due to
its potential to make full use of data without compromising the
privacy. However, limited by the capacity of wireless data
transmission, the employment of federated learning on mobile
devices has been making slow progress in practical. The devel-
opment and commercialization of the 5th generation (5G) mobile
networks has shed some light on this. In this paper, we analyze
the challenges of existing federated learning schemes for mobile
devices and propose a novel cross-device federated learning
framework, which utilizes the anonymous communication tech-
nology and ring signature to protect the privacy of participants
while reducing the computation overhead of mobile devices par-
ticipating in FL. In addition, our scheme implements a contribu-
tion-based incentive mechanism to encourage mobile users to
participate in FL. We also give a case study of autonomous driv-
ing. Finally, we present the performance evaluation of the pro-
posed scheme and discuss some open issues in federated learning.

I. INTRODUCTION

Nowadays, mobile devices are widely used in various ap-
plication scenarios, as a result, a huge amount of data is gener-
ated. The artificial intelligence (Al) technology can make the
data more valuable. Specifically, the data can be used to train
machine learning (ML) models and these models can be used
to improve the applications and services related to mobile de-
vices. For example, optimizing wireless networks (e.g., content
caching, spectrum management, 5G core network) [1], advanc-
ing intelligence of Internet of Vehicles, and so on. As we all
know, one of the most important factors for training a good
machine learning model is to employ a large amount of real
data. The data collected from a single mobile device is limited
and biased. Therefore, it should be enabled for multiple devic-
es to share their data for the training of machine learning mod-
els together. The sharing of large amounts of raw data may
leads to two main challenges: privacy leakage and excessive
communication overhead. Although existing technologies such
as anonymous communication, differential privacy, and public
key encryption, can be used to alleviate the risk of privacy
leakage to some extent, the later cannot be solved at the same
time [2].

Federated learning (FL) is a promising Al technology to
solve the above problems. However, in practical, due to the
limited capacity of wireless communication and computing
power of mobile devices, the application of federated learning
for mobile devices is restricted [3]. The emergence of 5G net-
works brings new opportunities for FL on mobile devices. The
FL coupled with the fast and reliable 5G wireless communica-
tions is ideal for the secure and practical data sharing among
mobile devices [4].

1.1. Introduction to Federated Learning

Federated Learning is a distributed ML technology that
provides privacy-preservation. In FL, multiple participants
collaborate to train a ML model, with the participants’ raw
data kept locally to themselves. In the server-client based hori-
zontal FL, each participant uses local data to train the model
and uploads the model parameters to an aggregation server.
The server is responsible for aggregating the model parameters
uploaded by each participant, generating the global model pa-
rameters and returning them to each participant. The above
process iterates until the model parameters converge or meet
the preset conditions.

In terms of training samples, the types of federated learning
mainly include horizontal FL and vertical FL. The Horizontal
FL is for horizontally partitioned data which has the same fea-
ture space but different sample spaces. For example, the same
type of information from different users in different banks. The
vertical FL is for vertically partitioned data which has the same
sample space but different feature spaces. For example, differ-
ent types of information from the same user in a bank and in a
medical care system. In this paper, we mainly talk about the
horizontal FL.

In terms of application scenarios, the types of federated
learning mainly include cross-device FL and cross-silo FL.
The cross-device FL is usually used in mobile device applica-
tions and has the characteristics of a large number of partici-
pants with a small amount of raw data owned by each partici-
pant. In contrast to the cross-device FL, only several reliable
organizations are involved in cross-silo FL. In this paper, we
mainly study the cross-device FL. [5]

Besides, in addition to the server-client FL, some research-
ers proposed peer-to-peer (P2P) FL. The key idea of P2P FL is
to avoid the potentially untrusted third party by using P2P
communication between the peer participants. However, the
excessive communication overhead has become a huge obsta-
cle to P2P FL.

In addition to using the cross-device FL to optimize 5G
wireless communications, there are many potential application
scenarios of cross-device FL in the context of 5G networks,
such as autonomous driving, vehicle to everything, medical
care, smart grid and other loT-based applications [4].

1.2. Challenges of Cross-Device FL and Our Motivation

Although the development of 5G networks makes it possi-
ble for federated learning to be efficiently carried out between
mobile devices, there are still some challenges:

1) Privacy leakage

Researchers found that the output vectors, model parame-
ters, gradients of ML model may reveal sensitive information
of the training data and the parameters of the model. In the
application process of ML models, there are some attacks (e.g.,
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model extraction attack, model inversion attack, membership-
inference attack) that may cause the leakage of model parame-
ters or the training data [5]. In the training process of FL, par-
ticipants need to send the updated gradients or the model pa-
rameters of each iteration to the server or other participants,
which may also reveal the private information of the training
data. Privacy leakage is still a challenge that cannot be ignored
in FL.

2) Unreliable mobile devices with limited computing power

Most existing FL schemes use the following privacy
preservation techniques to solve the above privacy leakage
problem during the FL training process:

a) Pairwise additive masking: Adding masks to the local

gradients and model parameters is a commonly used
privacy preservation technique in FL. To prevent data
from becoming unavailable due to the superimposition
of masked data during the aggregation process, partic-
ipants need to interact multiple times to eliminate the
mask in the aggregation [6]. This restricts the partici-
pants from withdrawing halfway. However, mobile
devices participating in FL may fail or drop out due to
various reasons such as network disruption, low bat-
tery, and so on. Therefore, this method may lead to
poor robustness of the system.

b) Differential privacy: Using differential privacy to add
noise to the local gradients and model parameters is al-
so a good solution to protect privacy. However, mobile
devices usually have less training data, and adding

noise may cause data to be inefficient [7].

¢) Secure multi-party computation: Some researches pro-
posed the FL privacy preservation schemes based on
secure multi-party computation such as garbled cir-
cuits, homomorphic encryption and secret sharing,
which aggregate the gradients and parameters in the
form of encrypted circuits or ciphertexts. [8]. This
method is computationally expensive, and not suitable
for devices with limited computing power (e.g., mo-
bile devices).

In general, the above methods are suitable for the cross-silo
FL with only a few stable participants: each participant has
sufficient computing capability, large training data set and the
communication between participants is stable, for example, FL
for several banks. On the contrary, most mobile devices rely
on wireless networks for communication and are often widely
distributed. In addition, the computing capability of mobile
devices is limited and the training data set is relatively small.
Therefore, a more practical privacy preservation scheme for
mobile devices is needed.

3) Incentive and fairness

Due to the concerns about privacy leakage or simply the
unwillingness to devote computing resources, mobile users
may be reluctant to participate in the federated learning. In
addition, participants with different contributions to the model
are rewarded with the same global model parameters, which
may discourage the active participants. In order to motivate
more mobile users to participate and ensure fairness, a reason-

able incentive mechanism needs to be added. The existing in-
centive mechanisms for FL mainly include: contribution-based
incentive mechanism [9], reputation-based incentive mecha-
nism and resource allocation incentive mechanism [10,11].
There are also some FL schemes that consider both privacy
preservation and performance when implementing the incen-
tive mechanism [10]. These schemes use game theory, block-
chain and other technologies to achieve novel incentive mech-
anisms. However, most of them motivate users by monetary
reward, ignoring the role of the models. In addition, some in-
centive mechanisms mainly focus on resource allocation, how
to quantify the value of participants' local data (e.g., data quali-
ty and data quantity) for FL training privately, and ensure the
fairness of FL is also a challenge. [12]

To address the above challenges, we propose a practical
cross-device federated learning framework and give a case
study on autonomous driving. Our framework has the follow-
ing features:

a) It adopts the anonymous communication technology,
participants do not need to interact multiple times and
waste additional computing resources, which can pro-
vide privacy preservation while reducing the computa-
tional overhead.

b) Considering that there may be adversaries posing as
participants to affect the training of the model, we
adopt the ring signature to verify the identities of par-
ticipants.

c) It utilizes a contribution-based incentive mechanism
that can quantify the value of participants' training data
privately, different from existing incentive mecha-
nisms that uses monetary rewards, model-based re-
wards can help to improve and/or optimize the mobile
applications and services on their devices.

II. THE GENERAL FRAMEWORK
2.1. Description of the Proposed Framework

Our FL framework contains two layers: the local training
layer and the aggregation layer, as shown in Fig. 1. In the local
training layer, participants (mobile devices) use their local data
to update the global model and get different local models. In
the aggregation layer, the aggregation server aggregates the
local models uploaded by participants to generate/update the
global model. This is an iterative process, the detailed steps are
as follows:

a) The aggregation server sets a unified initial global
model and distributes the model parameters to the mo-
bile devices participating in FL.

b) Each participant contributes to the global model by
training its own local data and generates the local
model. Since participants use their own local data for
the training, their trained local models vary from each
other.

¢) Each participant then uploads the local model parame-
ters to the aggregation server through the anonymous
communication network. As a result, the aggregation
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Figure 1. The proposed framework

server and the adversary cannot find out the true iden-
tities of the owners of the local model parameters col-
lected in a certain iteration.

d) The aggregation server aggregates the local model pa-
rameters uploaded by the participants and gener-
ates/updates the global model. There are multiple ag-
gregation rules, such as federated averaging (FedAvg),
centroid distance weighted FedAvg, and so on. The
aggregation server distributes the global model param-
eters to the participants. When the global model pa-
rameters converge or meet the preset requirements, the
iteration terminates. Otherwise, repeat steps b-d.

e) The aggregation server sends the final global model to
the incentive center.

f) The incentive center distributes the contribution scores
for each participant and ranks each global model ac-
cording to the preset’s rules.

g) Participants with a certain degree of contribution can
access the corresponding model. This step is imple-
mented by an access control scheme.

2.2. Characteristics of the Proposed Framework

Considering the features of the mobile device environment,
our proposed federated learning framework for mobile devices
has the following characteristics.

1)  Privacy-preservation

As we mentioned earlier that privacy leakage could happen
not only in the application of the model, but also in the training

and iteration of FL. The main focus of this paper is to prevent
the privacy leakage in the training and iteration of FL. To pro-
tect the privacy of participants, the anonymous communication
technology and ring signature is adopted. When a participant
submits updated model parameters to the aggregation server,
the network address can be anonymized to protect the partici-
pants' identities. In this way, the adversaries cannot figure out
who the model parameters belong to, so that they cannot infer
participants' privacy through the process of iterative updates.

2) Trade-off between privacy and computation overhead

In the mobile device environment, due to the limited com-
puting capability, reducing the computation overhead is always
a top priority. Therefore, we abandon the conventional privacy
preservation methods, such as homomorphic encryption (HE),
and instead make a trade-off between the level of privacy and
the computation overhead.

In terms of the computation overhead, we take the HE-
based FL scheme as an example. Before uploading the model
parameters to the aggregation server, participants need to en-
crypt each element in the vectors of the parameters using HE,
so that the parameters can be aggregated in the form of cipher-
text. In some deep neural network models, the number of ele-
ments can reach the size of millions, which means each partic-
ipant needs to perform millions of encryption operations. Alt-
hough some works have proposed the batch encryption, there
is still a limitation on the number of parameters that can be
encrypted at one time [8]. In this paper, the ring signature we
use does not need to calculate the elements one by one, instead,
it uses cascade or hash function to map all elements to one
element to achieve verification.
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In terms of privacy, under the security guarantee of encryp-
tion techniques, the server or the adversaries cannot obtain any
information about the parameters. In our paper, due to the use
of anonymous communication technology, neither the server
nor the adversaries can know the owner of the parameters in
each round. Therefore, even if the server receives the parame-
ters, it cannot infer any private information as the belongings
of these values are unknown. Besides, the ring signature used
in our scheme can prevent the adversaries from posing as par-
ticipants and submitting fake parameters.

3) System robustness

Since the large number of participants in the cross-device
federated learning can be widely distributed, the communica-
tion among the participants may be unstable. The privacy-
preservation methods such as adding mask require multiple
rounds of interactions among the peer participants to prevent
data from becoming unavailable. However, participants' inten-
tional or unintentional withdrawals may affect the accuracy of
the final model. In our FL framework, participants only need
to communicate with the server, which has better tolerance for
single-device failure or disconnection.

4) Incentive

Due to the concerns about privacy leakage, or simply the
unwillingness to devote computing resources, mobile users
may be reluctant to participate in the federated learning. In
order to get more mobile devices to participate the FL, we pro-
pose a contribution- based incentive mechanism with access
control. Different from existing incentive mechanisms, sharing
the outcome of federated learning — the global model with the
participants can help to improve and/or optimize the mobile
applications and services on their devices. This can motivate
mobile users to actively participate and provide high quality
data to the FL. Avoiding monetary incentives can also prevent
some legal issues.

III. CASE STUDY: APPLICATION ON AUTONOMOUS DRIVING

In recent years, autonomous driving has made some pro-
gress. However, it is still a huge challenge for autonomous
driving to deal with complex and unforeseen environments.
One of the main reasons is that the amount of training samples
used for autonomous driving learning algorithms is not suffi-
cient. Federated learning, as a promising solution, can use the
actual data collected from each autonomous car for model
training while protecting the privacy of each individual partic-
ipant.

3.1. Security Assumption

First, we define the security of the system according to the
actual conditions in autonomous driving.

1) Participant: We assume that the participants (autono-
mous cars) are honest-but-curious. They do not submit fake
model parameters maliciously, but they may try to figure out
the private information of other participants.

2) Aggregation server: The aggregation server is a semi-
honest third party, it may return wrong aggregation results due
to laziness and is curious about the privacy of the participants.

3) Malicious adversary: The malicious adversaries may try
to recover the participants' private information from their mod-
el parameters. Additionally, the malicious adversaries may
impersonate legitimate participants to send fake model pa-
rameters to the aggregation server to corrupt the global model.

4) Key generation center (KGC): The key generation center
is responsible for generating the system parameters of ring
signature. It is a fully trusted party and does not participate in
the training of FL. After it generates the system parameters, it
goes offline.

3.2. Preliminary
1) Ring Signature

The ring signature is a digital signature scheme that can
achieve the anonymity of the signer’s identity. The core idea of
the ring signature is that there are n users, and each user has a
public key and a private key. When a user signs a message m,
it needs to use the public key of other users and his own pri-
vate key to generate the signature. The verifier can verify that
the signature is generated by one of the n signers, but the actu-
al signer cannot be located. A user can choose any possible set
of signers to produce a valid ring signature, and use the public
key of these signers and his own private key to complete the
signing operation. We adopt ring signature to prevent adver-
saries from masquerading as the legitimate participants.

2) Homomorphic Hash

The homomorphic hash function is a kind of collision-
resistant hash function satisfying the homomorphic property.
Given an additive homomorphic hash function H, several ran-
dom numbers ay, az, ..., a,. According to the data field of the
corresponding hash function, the value of H(a;) + H(az) + ... +
H(a,) is equal to the value of H (a; + a> + ... + a,). This special
hash function can verify the correctness of the calculation re-
sult without knowing the raw data. The verifier only needs to
obtain the hash value of each parameter to verify whether the
calculation result (the sum of these parameters) is correct. Our
framework conducts the correctness verification for the aggre-
gation results using homomorphic hash.

3.3. Description of the scheme
1) System Initialization

When a new FL task needs to be initiated, the KGC first
uses the number of participants # and the aggregation server to
decide a unified initial model and parameters. The KGC needs
to generate the following parameters.

* A pair of public and private keys (pk;, sk;) for each
participant i, which is used for the ring signature.

* A hash function A with homomorphic property which
is used to verify the correctness of the aggregation
results.

The KGC sends the key pair (pk;, ski) to the corresponding
participant i and announces pk; and the hash function H to all
participants and the aggregation server.

2) Local Training
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The local training phase includes the following steps.

*  Each participant downloads the unified initial model
and parameters (represented by o) from the
aggregation server.

* FEach participant i uses the local data sets and
parameters ®o to perform the local model training
operation: LocalUpdate(i, wo)—wi;. Due to the
different local data sets used for training, the local
model constructed by each participant is different.

e  Each participant i calculates the ring signature of the
local model parameters, as shown in Fig. 2: RSign(®1,
pki, pki, ..., pki, ski)—Rw(,. The participant i can select
the public keys for the ring signature from all the n
participants (The greater the number of public keys
selected, the better for the privacy-preservation, but
the greater the computation overhead), and use the
public keys as well as his own private key sk; to sign
the parameters ®;;. Then it uploads the local
parameters ®i; the ring signature R.a, and the
signers’ public keys used for ring signature to the ag-
gregation server via the anonymous communication
network. In order to verify the correctness of the
aggregation results, each participant i calculates the
homomorphic hash of the local model parameters
H(®1,), and multicasts H(®1,) to other participants.

e If the local training is not the first round, after down-
loading the parameters oy from the aggregation server,
the participants first verify whether the aggregation re-
sults calculated by the aggregation server are correct.
Each participant only needs to verify whether the sum
of the homomorphic hash values H(wx;) of all partici-
pants is equal to H(wy).

3) Aggregation

In the aggregation phase, the aggregation server needs to
execute two tasks.

First, the aggregation server verifies if the identities of the
participants sending the parameters are legitimate.

We assume that VSign is the verification algorithm for the
ring signature. The aggregation server can use ®1; R, and
the public keys to verify whether VSign(wi,, pki, pkj, ..., pke,
Ro(1») 1s equal to 1,;. This verification can prevent malicious
adversaries other than the n participants from submitting fake
model parameters. During this process, the aggregation server
cannot figure out the identity of the uploader of the model
parameters, so the identities of the participants are protected.

Then, the aggregation server aggregates the local
parameters uploaded by each participant.

The aggregation server averages the local model
parameters ®;; of all the n participants and produces the
updated global model parameters ;. Then the aggregation
server checks whether the updated global model parameters w;
have converged. If they have converged, the federated training
ends and the final global model parameters are obtained.
Otherwise, each participant downloads ®; from the
aggregation server and the training process will repeat.
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4) Incentive

The incentive mechanism is shown in Fig.3. Its detailed
description is as follows.

Before participating in the federated learning training, the
user first uses his local data to train a local machine learning
model and proves the quality of the model to the incentive
center in the manner of zero-knowledge. The user holds the
model, and the incentive center holds the data to be inferred.
They perform secure inference over the ML model using se-
cure 2-party computation (2PC) such as oblivious transfer (OT)
and garbled circuits [13]. 2PC can ensure that the incentive
center cannot obtain the user’s model parameters, so as to pro-
tect the privacy of the user. The user also cannot get the in-
ferred data, and thus the deliberately modified inference results
become meaningless (step 1). The incentive center distributes a
contribution weight € to the user according to the inference
accuracy, which, to a certain extent, characterizes the possible
contribution that the user's data made to the corresponding FL
model (step 2).

After the federated learning task is completed, a global
model will be generated. The incentive center seeks the users’
consent, and adds tags to the trained model, grades it according
to the usage, accuracy, and so on. Assuming that these models
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are classified into four levels: A, B, C and D. The incentive
center encrypts the model to implement the access control
scheme. Each level corresponds to an attribute. For example,
the access policy of the D-level model is set to A or B or C or
D, and the access policy of the B-level model is set to A or B.
Only users who have reached the corresponding contribution
level can decrypt the model. The encrypted models are stored
in the model market (step 3). The participants in the model can
gain credits of contribution according to the number of times
the model is accessed, the model level and their respective
contribution weight € (step 4).

After reaching a certain contribution level, the user can re-
quest for a secret key SK of the access control scheme from
KGC to access models of the same level. In the access control
scheme, even if the users are of the same level, the granted
secret keys are different, which can prevent the abuse of the
secret key.

IV. PERFORMANCE EVALUATION

In this part, we evaluate the performance of our proposed
framework from two perspectives: (1) the impact of the num-
ber of participants on accuracy and (2) when there is an adver-
sary, the impact of verification of participants on accuracy.

We build the federated learning environment with Python
(version 3.6.2) and TensorFlow (version 2.3.2). A multi-layer
perceptron model is conducted as the experimental subject for
the training on MNIST dataset of handwritten digits with a
training set of 60,000 examples, and a test set of 10,000 exam-
ples. From Fig. 4, we can conclude that when a user conducts
learning only based on her own local data, the accuracy of the
model is much lower than that of the FL. Additionally, when
the sample number of each user is certain, the more users in-
volved in learning, the higher accuracy the overall global mod-
el can achieve - this also highlights the importance of using the
incentive mechanism.

In the case study, We use the ring signature to protect
privacy and verify the identity of participants to prevent
adversaries from impersonating legitimate participants. Here
we construct a malicious adversary in the experiment to show
the importance of verifying participants. As shown in Fig.5, in
the FL scheme without the verification function, a malicious
adversary may greatly downgrade the accuracy of the model.

To better show the advantages of our scheme in terms of
computation overhead, we also give a comparison of the com-
putation overhead between the privacy preservation technique-
used in our scheme (i.e., ring signature) and the HE commonly
used in FL.

We choose paillier as the HE algorithm, the encryption
time of each parameter is about 0.037s. For the linear
regression model, assuming that the feature dimension is 10,
the computation overhead of encryption for each participant in
one round is 0.407s. For a fully connected layer with 300 input
neurons and 100 output neurons, the number of parameters can
reach 330,100 and the corresponding computation overhead is
12213.7s. Similarly, some practical convolution layers also
have tens of thousands of parameters. At present, the
parameters of some popular deep neural networks can reach
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Figure 5. The effect of verification of participants on accuracy. A is
the number of adversaries, V=1 means that there is a verification
process, otherwise, V=0.

the level of one million or even hundreds of millions, in which
the HE can hardly work.

The computation overhead of ring signature used in our
scheme is only related to the number of public keys used for
signatures, for example, 2 public keys for 0.0165s, 10 public
keys for 0.0192s and 100 public keys for 0.056s.

V.OPEN ISSUES

1) How to solve the problem that participants may submit
fake parameters

To the best of our knowledge, none of the existing studies
has successfully solved the problem of participants submitting
fake parameters. Some related studies [14] have tried to solve
this issue. However, these studies only judge whether the par-
ticipant is honest based on the parameters submitted by the
participant. It may make a misjudgment, causing injustice to
the honest participants and may lead to overfitting of the mod-
el (The model performed well on the raw data set, but poorly
on the new data set). Zero-knowledge proof may be a promis-
ing solution.

2) How to realize efficient federated learning for vertically
partitioned data
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Most of the current federated learning schemes are for hor-
izontally partitioned data, but there are few studies on federat-
ed learning for vertically partitioned data. It is relatively diffi-
cult to implement federated learning for vertically partitioned
data [15]. However, in the cross-device FL, there are some
scenarios that require vertically federated learning, for exam-
ple, medical data and traffic data of the same user. It is neces-
sary to carry out more in-depth research on vertically federated
learning.

VI. CONCLUSION

In this paper, we employed the anonymous communication
technology to construct a cross-device federated learning
framework based on 5G mobile networks. Our framework has
lower computation overhead while protecting the privacy of
mobile users. We give a case study of autonomous driving.
The ring signature is used to verify the identity of participants
and the hash homomorphism is used for the correctness verifi-
cation for the calculation results of the aggregation server. In
addition, we implemented a contribution-based incentive
mechanism with access control to encourage mobile users to
participate in federated learning. The performance evaluation
proves the practicality of our scheme. Finally, we discussed
some open issues in federated learning.
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