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Abstract: Impaired adipogenesis is associated with the development of insulin resistance and an
increased risk of type 2 diabetes (T2D). GATA Binding Protein 3 (GATA3) is implicated in impaired
adipogenesis and the onset of insulin resistance. Therefore, we hypothesize that inhibition of GATA3
could promote adipogenesis, restore healthy fat distribution, and enhance insulin signaling. Primary
human preadipocytes were treated with GATA3 inhibitor (DNAzyme hgd40). Cell proliferation,
adipogenic capacity, gene expression, and insulin signaling were measured following well-established
protocols. BALB/c mice were treated with DNAzyme hgd40 over a period of 2 weeks. Liposomes
loaded with DNAzyme hgd40, pioglitazone (positive), or vehicle (negative) controls were admin-
istered subcutaneously every 2 days at the right thigh. At the end of the study, adipose tissues
were collected and weighed from the site of injection, the opposite side, and the omental depot.
Antioxidant enzyme (superoxide dismutase and catalase) activities were assessed in animals’ sera,
and gene expression was measured using well-established protocols. In vitro GATA3 inhibition
induced the adipogenesis of primary human preadipocytes and enhanced insulin signaling through
the reduced expression of p70S6K. In vivo GATA3 inhibition promoted adipogenesis at the site of
injection and reduced MCP-1 expression. GATA3 inhibition also reduced omental tissue size and
PPARγ expression. These findings suggest that modulating GATA3 expression offers a potential ther-
apeutic benefit by correcting impaired adipogenesis, promoting healthy fat distribution, improving
insulin sensitivity, and potentially lowering the risk of T2D.

Keywords: adipogenesis; insulin resistance; insulin sensitivity; subcutaneous fat; omental fat; type II
diabetes mellitus

1. Introduction

Obesity is at epidemic proportions with a steadily increasing prevalence that is expected
to reach 300 million patients by 2025 [1]. In addition, obesity is a significant risk factor and
a prominent contributor in the development of many pathological conditions, including
cancer, cardiovascular diseases, diabetes (particularly type 2 (T2D)), liver and kidney diseases,
and depression [2]. Impaired adipogenesis was linked to adipose tissue dysfunction and
underlines the development of insulin resistance [3], and therefore T2D. During this process,
subcutaneous adipose tissues (SAT) often have limited expandability, creating inappropri-
ate adipocyte expansion, hypertrophic adipocyte features, the recruitment of inflammatory
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cells, and insulin-resistant phenotypes [4,5]. Numerous factors and pathways, including
transcription factors, epigenetic regulators, signaling pathways, and inflammatory pathways,
are involved in the processes of preadipocyte commitment and differentiation [6]. Hence,
abnormalities in these pathways can result in the development of adipocyte dysfunction and
insulin resistance, leading to related comorbidities, including T2D.

Although the association between insulin resistance and obesity is well established [7,8],
the link between impaired adipogenesis and insulin resistance remains unknown in non-
obese individuals [9]. The dysfunction of SAT that includes adipocyte hypertrophy and
the impairment of adipogenesis may play a significant role in the development of insulin
resistance in non-obese individuals as it leads to fat deposition in the liver, skeletal muscle,
and other fat depots [3,10,11]. Other studies have indicated that fat mass and distribution
play a critical role in insulin resistance in non-obese individuals. In these studies, the
large abdominal fat surface area was associated with an increased risk of insulin resistance,
while the small size adipocytes was linked to the body’s insulin sensitivity [12], although
the omental fat remains the only depot that correlates significantly with the metabolic
syndrome [13]. The expression of high levels of cytokines by the hypertrophied adipocytes,
such as the monocyte chemoattractant protein-1 (MCP-1), IL-6, and IL-8, exacerbates the
infiltration of macrophages into the adipose tissue and secretion of IL-1β and TNFα. This,
in turn, lowers the expression of insulin receptor substrate 1 (IRS-1) and glucose transporter
type 4 (GLUT4) and leads to the development of insulin resistance [14,15]. Moreover,
PPARγ and CCAAT/enhancer-binding protein alpha (C/EBPα) represent the most critical
players in maintaining adipocyte homeostasis, and their expression was found to be altered
when impaired adipogenesis occurs [16]. Therefore, identifying molecular mediators of
insulin resistance in non-obese individuals may aid in reversing insulin resistance before the
onset of T2D. Among the potential molecular targets underlying adipogenesis impairment
is the high expression of the anti-adipogenic transcription factor GATA Binding Protein 3
(GATA3) [17].

Previous studies have shown that GATA3 suppresses the transition from preadipocytes
to adipocytes by inhibiting the expression and activity of PPARγ2 and C/EBPs [18–23];
however, most of these studies have focused on the benefit of adipogenesis inhibition
in reducing obesity. Other studies have suggested the GATA3′s crucial function as a
gatekeeper of terminal adipocyte differentiation [24], and that its inhibition may reverse
the impaired adipogenesis and linked insulin resistance. Therefore, in a previous study, we
investigated the inhibition of GATA3 using a new class of antisense molecules known as
DNAzymes [25] to rescue adipogenesis and improve insulin signaling. Pioglitazone was
used as a positive control in our study. De Souza et al. reported the effect of pioglitazone
on adipose tissue’s physiology, accumulation, and distribution in female Zucker rats.
Insulin resistance and hyperlipidemic states decreased with pioglitazone, whereas food
consumption and whole-body adiposity increased. The study revealed that the increase
in adiposity occurred throughout the body. Analyzing adipocyte sizing profiles, DNA
content, and fat histology indicated an increase in the number of new small adipocytes
and a shrinkage or/and disappearance of existing mature adipocytes [26]. Our results
indicated that such inhibition indeed improved adipocytes differentiation, modulated
the cytokine profile, and improved insulin sensitivity in insulin resistant cells [27]. In
this study, we investigated the role of targeting GATA3 expression in vitro and in vivo on
modulating adipogenesis, oxidative stress, inflammation, and insulin signaling. This is the
first proof-of-concept study aimed at showing that the inhibition of GATA-3 expression
can induce adipogenesis in human primary preadipocytes and at the site of treatment in
non-obese normal mice, testing the hypothesis that GATA3 inhibition can lead to healthier
fat redistribution.
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2. Results
2.1. Effect of GATA3 Inhibition on Preadipocyte Proliferation, Adipogenic Capacity, Gene
Expression, and Insulin Signaling

We previously showed that GATA-3 inhibition causes reduction in GATA-3 expression
in 3T3L-1 mouse preadipocytes after 48 h of treatment [27]. GATA3 inhibition was validated
in primary human preadipocytes isolated from five BFP biopsies. The results showed
that treating preadipocytes with GATA3 inhibitor caused an increase in the cell number
(Figure 1A) and adipogenic capacity with more mature adipocytes (1.8 Fold increase) in the
GATA3 inhibitor-treated group compared to the untreated group (Figure 1B). Moreover,
a significant increase in the expression levels of the adipogenic genes (PPARγ, CEPBβ)
from the preadipocytes treated with the GATA3 inhibitor was observed (Figure 1C). In
order to assess the effect of GATA3 inhibition on insulin signaling, we also measured the
phosphorylation levels of different insulin response-associated kinases. The results showed
a significant reduction in p70S6K phosphorylation level from the GATA3 inhibitor-treated
group compared to the untreated group (Figure 1D).
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Figure 1. Effect of GATA3 inhibition on primary adipocytes (A) proliferation, (B) adipogenic capacity,
(C) gene expression, and (D) insulin signaling. Data are presented as mean± SEM with representative
images below each bar (A,B). The tests were conducted on 4 independent biological replicates, with at
least 3 technical replicates of each. Statistical analysis for effect of GATA3 inhibition was determined
by Mann–Whitney U test (* p < 0.05) for (A–C) and two-way ANOVA followed by Bonferroni Posttests
(* p < 0.05) for (D). Scale bars represent 200 µm.

2.2. Effect of GATA3 Inhibition on Total Animal and Tissue Weight

Twenty-eight animals were divided among three groups: the Vehicle Control (N = 8),
Positive Control (N = 8), and GATA3 inhibitor-treated (N = 12) Group. Repeated treatment
of animals with 10 µg/0.1 mL of DNAzyme over a period of 2 weeks showed a significant
increase in animal total weight at the end of the study compared to the animal weight at the
beginning of the study (Figure 2A) in all groups. Control group showed a 1.04-fold (p-value
0.020246) increase in animal weight, with positive and treated groups showing a 1.03-fold
(p-value 0.049796), and 1.04-fold (p-value 0.000469) increase, respectively. When comparing
the weight difference between the right (treatment site) and left (opposite control side)
SAT, there was a significant increase in the right adipose tissue weight from the GATA3
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inhibitor-treated group of 1.3-fold (p-value 0.02), but not in the control group (p-value 0.4).
However, the positive control group showed a significant decrease in the weight of the
right adipose tissue of 0.9-fold (p-value 0.004) (Figure 2B). As reported by de Souza et al.,
the remodeling effect of pioglitazone on adipose tissue is time dependent. The existing
mature adipocytes will start to shrink or/and disappear, followed by the appearance of
new adipocytes as indicated below (Figure 2B) [26]. Furthermore, there was a statistically
significant reduction in the omental adipose tissue weight between the GATA3 inhibitor-
treated group and the vehicle control groups of 0.6-fold (p-value 0.003), and between the
GATA3 inhibitor-treated and positive control groups of 0.7-fold (p-value 0.02) (Figure 2C).
However, there was no statistically significant difference in the omental weight between
the vehicle control and positive control groups (Figure 2C).
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Figure 2. In vivo effect of GATA3 inhibition on (A) total animal weight between start and end of
experiment, (B) weight of SAT tissue between treated (site of injection) and untreated (control) sites,
and (C) weight of omental tissue. Bar graphs show paired data for each mouse for n = 6–12 animals
per group. Statistical analysis was determined by paired (A,B) and unpaired (C) t-test (** p < 0.02,
*** p < 0.01).

2.3. Effect of GATA3 Inhibition on SOD and Catalase Levels in Animal Sera

There was a significant increase in SOD activity in the GATA3 inhibitor-treated group
compared to the vehicle control group, but no significant difference between the positive
control and vehicle control groups (Figure 3A). Moreover, there was no significant difference
in the catalase levels among the three groups (Figure 3B).
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2.4. Effect of GATA3 Inhibition on Gene Expression Levels from Different Adipose Tissues (Right,
Left, and Omental Sites)

In terms of gene expression from the SVF derived from different adipose tissue sites
(SAT and omental), we found that GATA3 inhibition decreased the expression levels of
MCP-1 in the right (injection site) compared to opposite SAT site (Figure 4A). In addition,
the inhibition of GATA3 caused a reduction of PPARγ expression levels in the omental site
compared to the vehicle control group (Figure 4B). No difference in gene expression was
seen between the right (injection site) and left (opposite control side) tissues in the vehicle
and positive control groups.
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gene expression levels were compared for GATA3, PPARγ, PGC1alpha, MCP-1, Adiponectin, NrF2,
KEAP-1, IL-6, and IL-10. Data are presented as mean ± SEM for n = 6 replicates from 3 animals each.
Statistical analysis for was determined by (A) paired t-test and (B) ANOVA (* p < 0.05).

3. Discussion

Various studies have suggested that non-obese individuals could equally become
insulin resistant and develop T2D if left untreated, with the term metabolically obese
apparently healthy individuals being used to describe insulin-resistant non-obese indi-
viduals [3,8,28]. Modulators, including GATA3, were shown to be highly expressed in
insulin-resistant tissues and to be responsible for preventing adipogenesis. Despite its
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potential role in obesity prevention, such approach has a great risk of preventing adipogen-
esis, which is required to maintain adipose tissue homeostasis and insulin sensitivity [29].
GATA3-associated impaired adipogenesis affects lipid homeostasis contributing to body
fat distribution, causing the deposition of ectopic fat in the liver, kidney, and skeletal
muscles; triggering insulin resistance; and increasing the risk of T2D [29]. Conversely, our
recent studies have shown that targeting GATA3 expression could provide an alternative
strategy for inducing adipogenesis at healthy fat depots, in addition to the modulation of
inflammation and oxidative stress [27,30]. The emerging data provide a confirmation of
the pro-adipogenic and insulin-sanitizing effect of GATA3 inhibition in primary human
adipocytes derived from non-obese individuals. Moreover, our data provide a further
proof of concept showing that inhibition of GATA-3 expression in non-obese animals can
induce adipogenesis at site of treatment and test the hypothesis whether it can lead to fat
redistribution. Pioglitazone was used as a positive control shown previously to trigger a
decrease in the ratio of visceral to subcutaneous fat [31].

Recent reports have suggested that both preadipocytes and mature adipocytes play an
equally important role in the maintenance of adipose tissue hemostasis and the develop-
ment of insulin resistance when dysfunctional [32]. These reports were consistent with our
findings showing an increased cell number and adipogenic capacity in the GATA3 inhibition
group, indicating the presence of active adipogenesis and differentiation of preadipocyte to
mature adipocytes. To elucidate the roles of adipogenesis in the early development of in-
sulin resistance, we characterized the gene expression profile in human primary adipocytes.
Previous studies have reported that down-regulation of PPARγ/CEPBβ was observed in
preadipocytes isolated from insulin resistant individuals [33]. Other studies have shown
that adipocyte differentiation was compromised under these conditions; thus, using modu-
lators such as GATA3 inhibitor could improve adipogenesis and correct insulin signaling
in adipose tissue from insulin-resistant individuals [34]. Our results indicated that PPARγ
and CEPBβ genes were differentially expressed in these cells, with high expression levels
seen in the GATA3 inhibition group compared to the cells in the untreated group.

Impaired adipogenesis could affect the levels of different proteins and kinases in-
volved in insulin signaling pathway [3]. Our in vitro results showed a reduction in the
phosphorylation of the p70S6K from primary adipocytes treated with the GATA3 inhibitor.
However, our in vivo p70S6K (ribosomal protein S6 kinase 1, p70S6K,) is a serine kinase that
was reported to inhibit the function of IRS-1 by facilitating its degradation, thus inhibiting
insulin signaling [35]. Previous in vivo studies showed that knocking out p70S6K in mice
protected them from diet-induced insulin resistance. Moreover, obese mice were shown to
have elevated p70S6K activity in the adipose tissue, skeletal muscles, and liver, which are
strong indicators that could contribute to insulin resistance [35]. Together, these findings
highlight the important role GATA3 plays in the development of impaired adipogenesis
and insulin resistance, therefore blocking GATA3 could reverse these mechanisms and
enhance both adipogenesis and insulin signaling.

In order to validate the effect of GATA3 inhibition in vivo, we carried out a proof-of-
concept study utilizing normal-weight mice. Our findings demonstrate that there was an
increase in the total animal weight at the end of the experiment from the GATA3 inhibitor-
treated group. The increase in the animal weight was accompanied by an increase in the
weight of the tissues dissected from the right site (injection site) compared to the left-site
tissues. Inhibiting GATA3 in the injection sites might have enhanced the mobilization,
recruitment, and differentiation of adipocyte progenitor cells to the right site, therefore
promoting adipogenesis and causing an increase in the tissue weight. In contrast, the
GATA3 inhibitor-treated group showed a reduction in the omental adipose tissue weight
compared to the other groups, perhaps accounting for the increased weight of fat tissue
at the injection site in treated animals. Such reduction was marked by a decrease in
the expression levels of PPARγ. These data suggest a protective effect associated with
GATA3 inhibition, which is in agreement with previous studies associating the omental
adipose tissue mass/size with the amplified inflammatory status and insulin resistance [36].
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Moreover, other studies correlated omental adipose tissue size with the degree of insulin
resistance [13]. A similar finding was found in the pioglitazone-treated animals where
the visceral fat area and ratio of omental to SAT fat decreased. Interestingly, there was
a decrease in SAT fat mass in the pioglitazone-treated animals. This unexpected result
could be due to the local administration of pioglitazone, whereas previous studies have
shown a systemic administration causing increased subcutaneous but reduced visceral
adipogenesis [31]. This interesting observation requires further investigation to explain the
discrepancy in the effect of pioglitazone.

Impaired adipogenesis is characterized by having an imbalance between the oxidative
and antioxidative markers. SOD, a major antioxidant enzyme that protects adipocytes
during proliferation and differentiation, was found to be elevated in tissues and cells
undergoing active adipogenesis and cellular differentiation [37]. Impaired adipogenesis
causes a reduction in the SOD levels, increasing the oxidative stress in the adipose tissues.
Therefore, having an antioxidant modulator might restore the balance between the oxidative
and antioxidative markers. Our results showed that GATA3 inhibition caused an increase
in the SOD levels measured from the animals’ serum, which correlates with the increase in
the animals’ total weight indicating the presence of active adipogenesis [37].

The proinflammatory profile of dysfunctional adipose tissue plays a critical role in
lowering the adipogenic capacity of preadipocytes, leading to a reduction of the lipid
storage space and elevation in ectopic lipid accumulation [38]. To validate this point, we
measured to what extent GATA3 inhibition could account for the expression of MCP-1 [38].
MCP-1 is the most extensively studied CC chemokine linked to etiologies of obesity-related
insulin resistance and T2D [39]. Studies have shown that MCP-1 is overexpressed in obese
and insulin-resistant animals, suggesting that the elevation in the MCP-1 levels could
reduce adipocyte differentiation, alternatively causing metabolic abnormalities associated
with obesity, as well as hyperinsulinemia (e.g., T2D) [40]. In addition, MCP-1 is a well-
known potent inflammatory chemokine that recruits macrophages; thus, targeting it could
prevent macrophage-induced inflammation in adipose tissue [39]. Our results showed
that expression levels of MCP-1 at the site of GATA3 inhibitor injection were significantly
lower than the opposite side. This suggests that GATA3 inhibition has the potential
to reduce macrophage infiltration associated with adipose tissue inflammation seen in
impaired adipogenesis.

However, this study has potential limitations, including the need to verify whether
the increased adipose tissue weight at the injection site is due to increased fat content or
adipocyte number. In addition, since this in vivo study is a proof of concept, the used
animal models were healthy mice with normal insulin signaling. Hence, the effect of
GATA3 inhibition on activation (phosphorylation) of insulin signaling was not investigated.
These limitations must be addressed in future studies using diseased models with insulin
resistance to explore the effect of GATA3 inhibition effect on reversing IR in vivo.

In conclusion, our in vitro and in vivo data indicate that inhibiting GATA-3 expres-
sion restores adipogenesis and fat distribution, improves adipocytes differentiation, and
enhances insulin signaling. Our data therefore suggest the potential utilization of GATA-3
modulation for preventing the development of insulin resistance in non-obese as well
as obese individuals. However, despite holding great potential and being a promising
modulator, such approach requires further investigation and validation in relevant animal
disease models.

4. Materials and Methods
4.1. In Vitro Effect of the GATA3 Inhibition

Recruitment criteria of participants were previously described [17]. Approvals of the
Institutional Research Board (IRB) committees of Hamad Medical Corporation and Qatar
University for the proposed project were sought before the onset of research (MRC-03-
21-154, and QU-IRB 1548-EA/21). Five patients undergoing maxillofacial surgeries were
recruited, and information about the donors’ gender and BMI were collected. Stromal
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vascular fractions (SVFs) were isolated from buccal fat pad (BFP) biopsies collected from
the recruited subjects as described. SVF were re-suspended in stromal media contain-
ing DMEM-F12 with 10% FBS, 1% Antibiotic-Antimycotic solution and 1% L-Glutamine
(200 mM) and plated at 4 × 104/cm2. The cells were then maintained in a humidified
incubator at 37 ◦C with 5% CO2. The media was changed every 2–3 days until the cells
achieve 80–90% confluence. When confluent, cells were either harvested or induced to
differentiate by changing the medium into differentiation medium (DMEM-F12, 3% FBS,
1% Antibiotic-Antimycotic solution, 1% L-Glutamine (200 mM), 1 µM dexamethasone,
0.25 mM IBMX, 0.2 µM Insulin, Biotin (66 µM), Rosiglitazone (PPARγ agonist) (5 µM)))
for 3–7 days, followed by 9–10 days in maintenance medium containing the same com-
ponents as the differentiation medium, excluding IBMX and rosiglitazone as described
previously [41]. To investigate the effect of GATA3 inhibition, cells were grown as described
above and treated with GATA3 inhibitor as mentioned previously [27]. Briefly, 24 h after
seeding, the cells were transfected with 1 ng/µL hgd21 (human GATA3 mRNA specific
DNAzyme) and Lipofectamine 3000 transfection reagent. The cells were incubated for
6–8 h, and the media was then changed to induce adipogenic differentiation.

Assessment of Cell Viability and Adipogenic Capacity

Cells were fixed with 4% formaldehyde (Thermo Scientific, Waltham, MA, USA, 28908)
and stained with DAPI (Molecular probes by life technologies, D1306) and Lipidtox (Invit-
rogen, H34476) as previously described [27]. Total number of nuclei (DAPI-positive) and
differentiated adipocytes (Lipidtox-positive) were automatically scored in 25 fields/well
by Cytation 5 Cell Imaging Multi-Mode Reader (Agilent Technologies, Santa Clara, CA,
USA). Adipogenic capacity was assessed by calculating the percentage of Lipidtox-positive
cells to the total number of nuclei.

4.2. In Vivo Assessment of the GATA3 Inhibition
4.2.1. Liposomes Preparation

Liposomes were prepared using the ethanol-based proliposome technology by adapt-
ing a previously published protocol [42]. Briefly, 50 mg of phospholipid was mixed
with 100 µL of absolute ethanol and dissolved at 70 ◦C. Then, 50 mg of cholesterol
was added to the previous mixture and dissolved at 70 ◦C water bath. After, 1 mL of
0.1 mg/mL DNAzyme hgd40 (mouse GATA3 mRNA specific DNAzyme) was added to
the phospholipid-cholesterol mixture with continuous vigorous mixing for 4 min. The
resulting blend was left at room temperature for 2 h, followed by sonication for 10 min.
The liposomes were centrifuged at 12,000 rpm for 15 min to eliminate the titanium particles
released by the probe of the sonicator.

4.2.2. Assessment of Insulin Signaling

Insulin signaling was measured by assessing the phosphorylation levels of IRS-1,
GSK3B, IGF1R, Akt, Mtor, p70s6k, IR, PTEN, GSK3, TSC2, and RPS6 in total cell lysates
(equal volume) as previously described (Al-Mansoori, Al-Jaber et al. 2020), using a
commercial Bio-Plex Pro™ Cell Signaling Akt Panel (Bio-Rad, Heracles, CA, USA) us-
ing Luminex 200 technology (Thermo Fisher Scientific, Waltham, MA, USA) following
the manufacturer’s instructions. The Bio-Plex Pro cell signaling assays sensitivity, as
well as the intra- and inter-assay %coefficient variation per species, can be found at
https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6285.pdf (accessed
on the 17 September 2022).

4.2.3. Animal Care, Experimental Design and Treatment

Adult normal weight male (12–16 weeks old) BALB/c mice were provided by the Lab-
oratory Animal Research Center (LARC) at Qatar University (QU). Animals were housed
in individually ventilated cages (IVC) under standard husbandry conditions (room temper-
ature 18–22 ◦C, relative humidity 40–65% and 12/12 h light/dark cycle), provided with
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normal chow diet and drinking water ad libitum. All animal procedures were performed
according to approved institutional ethical rules and regulations and were approved by
Qatar University-Institutional Animal Care and Use Committee (QU-IACUC 024/2020).
A total of 28 animals was used in this study and divided into three groups: (A) Vehicle
Control Group, with 8 animals that were treated with 100 µL of DNAzyme-free liposomes;
(B) Positive Control Group, with 8 animals that were treated with liposome-loaded with
1 µM of pioglitazone (40 mg/Kg); and (C) GATA3 inhibitor-treated Group, with 12 animals
treated with liposome-loaded DNAzyme (10; µg/mL, hgd40). Treatments were adminis-
tered subcutaneously to the right flank region (site of injection), twice a week for 2 weeks.
The mice were housed under standard animal husbandry conditions with 12 h dark and
light cycle and were provided standard rodent chow and water ad libitum. Animals were
weighed at the beginning and the end of the study. All the animals were euthanized as per
AVMA guidelines, and the subcutaneous adipose tissues from right flank (site of injection),
left flank (opposite site), and omental were collected from scarified mice, weighed. Blood
was drawn via a cardiac puncture.

4.2.4. Assessment of Oxidative Stress

Oxidative stress was assessed by measuring the activity of antioxidant enzymes,
including catalase and superoxide dismutase (SOD), in serum samples prepared from
collected blood using the Catalase Assay Kit (Merck Millipore, Singapore), and the SOD
kit (Merck Millipore) following the manufacturer’s instructions. Measurements and data
analysis was performed using the Cytation 5 Cell Imaging Multi-Mode Reader (Agilent
Technologies, Santa Clara, CA, USA).

4.2.5. Assessment of Gene Expression from Both in Vitro and in Vivo Experiments

For the in vivo experiments, SVFs were isolated from adipose tissue biopsies collected
from right/left thighs and omental depots using established protocol [43–45]. Briefly, the
collected adipose tissue biopsies (0.5 g) were homogenized using gentleMACS™ Dissociator
(Miltenyi Biotec, Bergisch Gladbach, Germany). Then, the biopsies were digested using
collagenase solution (0.1% collagenase I/1% BSA in PBS) for 1 h at 37 ◦C. Samples were then
centrifuged at 1500 rpm for 5 min to separate SVF. The resulting cell pellet was then washed
with 1% BSA, followed by erythrocyte lysis buffer for 10 min. TRizol reagent (Invitrogen)
was added to the pellet for the RNA extraction using the TRizol method according to
the manufacturer’s instructions. For the in vitro experiments, RNA was extracted from
preadipocyte cultures before and after the induction of differentiation using TRIzol method
(Invitrogen) according to the manufacturer’s instructions. Then, 3 µg of the resulting RNA
from in vitro and in vivo experiments was used for first-strand cDNA synthesis using
the Superscript III first-strand synthesis super mix kit (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s instructions. Real-time PCR was carried out for gene
expression analysis using 10 ng of the produced cDNA with the listed primers (Table S1)
using the 7500 Real-Time PCR System from Applied Biosystem. The PCR conditions were
as follows: 1 cycle of 95 ◦C for 10 min, 45 cycles of 95 ◦C for 15 s, 55 ◦C for 40 s, 72 ◦C for
30 cycles, and finally, 60 ◦C for 15 s. Real-time PCR was carried out in triplicate, and the
GAPDH was used as a housekeeping gene for normalization of the amplified signals of the
target genes. The data analysis was performed using the ∆∆Ct-based calculations [46].

4.3. Statistical Analysis

Comparisons were performed using a t-test, one-way ANOVA, two-way ANOVA,
or linear.

5. Patents

The authors declare a patent involved in the reported work (US Patent App. 16/909,755).
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