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Abstract: Demographics of individuals could largely influence their behaviors and interactions with
surrounding pedestrians. This study investigates the influence of pedestrians’ gender on microscopic
walking dynamics of single-file movements using the trajectory data collected from a controlled
experiment conducted under different density levels. Instantaneous acceleration (with a time lag
that varied from 0.12 s to 0.68 s) versus relative speed between the subject pedestrian and the
pedestrian in front of him/her plots displayed significant correlations, which is analogous to the car
following behavior, indicating that the relative speed is a key determinant of pedestrians’ acceleration
behavior. Time-delayed instantaneous accelerations and decelerations of pedestrians were modeled
as functions of relative speed and spacing that are used in microscopic behavior models and gender
using multiple linear regression. The outcomes revealed that in addition to relative speed, gender has
a significant influence on instantaneous acceleration and deceleration for all density levels. Spacing
displayed significant influence on acceleration and deceleration only for several density levels, and
that influence was not as strong as relative speed. Males were likely to accelerate more and decelerate
more compared to females for all density levels. The findings of this study provide important insights
into gender dependence on microscopic walking dynamics. Furthermore, the results emphasize the
importance of considering gender influence in microscopic behavior models.

Keywords: pedestrian behavior; gender effect; single-file movements; microscopic models; microscopic-
walking dynamics; linear models

1. Introduction

It is well known and generally agreed upon that the behavior of an individual in a
crowd is determined by the interactions between individuals in the walking environment.
As a result, local interactions between individuals lead to the emergence of global patterns
of motion in a crowd [1]. This feature is used by the majority of microscopic pedestrian
simulation models to predict the future state of a crowd, given its current state. In addition
to interactions between individuals, geometric settings in walking environments could
also influence walking behaviors [2]. Studies on how pedestrian crowds interact with
various geometrical settings are of particular interest due to their prevalence in pedestrian
facilities. To this end, a number of experimental studies have been carried out to explore
the influence of common geometrical settings in the walking space, e.g., crossing [3–7],
merging or T-junction [8–13], and turning [14–17] configurations under microscopic as
well as macroscopic levels. In addition to these geometries, the influence of the width of
the corridors [18–20] and exits [21–25] on pedestrian behaviors has also been well studied.
Comprehensive reviews on experiment-based studies can be found in Shi et al. [26] and

Appl. Sci. 2022, 12, 9714. https://doi.org/10.3390/app12199714 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199714
https://doi.org/10.3390/app12199714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0773-5662
https://orcid.org/0000-0002-1845-4540
https://orcid.org/0000-0002-7940-0562
https://doi.org/10.3390/app12199714
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199714?type=check_update&version=2


Appl. Sci. 2022, 12, 9714 2 of 14

Haghani [27]. These studies have mainly emphasized the microscopic behaviors specific
to different geometric configurations, fundamental relationships, the bottleneck effect
of different geometric features, and the self-organized phenomena arising as a result of
the interactions between individuals moving through such configurations. Based on the
outcomes of such empirical studies, several previous studies have attempted to incorporate
the influences of different geometrical settings in microscopic behavior models [28–31]. As
mentioned in Duives et al. [32], a crowd simulation model should be capable of reproducing
the motions, which are specific to the geometrical settings of the walking space, and self-
organized phenomena that might arise during crowd movements. Most of the time, these
studies have treated different pedestrians similarly without taking into account their
specific characteristics, e.g., age, gender, cultural background, etc. Individual behaviors
and interactions could be significantly influenced by the characteristics of the individuals.
Previous studies have highlighted that demographics, i.e., gender and age, have direct
influences on walking speed [33–35]. These studies have shown that, in general, men walk
faster than women, and younger people walk faster than older people. In addition to the
studies on walking speed, several previous studies have investigated the influence of age,
gender, and cultural background on walking behaviors. Using the data collected from a
walking experiment on single-file movements, Zhang et al. [36] compared the fundamental
diagrams and time-space diagrams for middle- and old-aged adults. They concluded that,
although the trends were similar, the fundamental diagrams of these two groups were
significantly different. Cao et al. [37] compared the fundamental diagrams of three groups,
i.e., the young student group, the old people group, and the mixed group. The outcomes of
this study indicated that the fundamental diagrams of the three groups cannot be unified
into one diagram as there were significant differences between those three fundamental
diagrams. Their results further indicated that the congestion occurred more frequently in
the mixed group. Ren et al. [38] compared the walking dynamics of elderly people and
other-aged people using the data collected from an experiment on single-file movement.
Their results indicated that when changing speed, younger pedestrians are less sensitive
to the space headway compared to older pedestrians. Furthermore, they claimed that not
only age but also heterogeneity in terms of gender or culture could affect the walking
dynamics. Subaih et al. [39] studied the effect of gender on the fundamental diagram using
the data obtained from a single-file walking experiment conducted in Palestine. The results
indicated that the gender effect on pedestrian fundamental relations was insignificant. Later,
using the same empirical data, Subaih et al. [40] compared the speed-density diagrams
for exclusive males, exclusive females, and mixed groups. This comparison revealed that
because of social customs, male and female pedestrians tend to walk slowly when they
are in a mixed-gender group. The outcomes of this study further indicated that factors,
such as age and culture, could affect the movement of pedestrians. The outcomes of the
study by Cao et al. [41] also highlighted that there was no significant effect of gender on
fundamental diagrams. The recent study by Paetzke et al. [42] also examined the age
and gender influences on pedestrian fundamental diagrams. The outcomes of this study
explained that even though age could influence the fundamental diagrams, gender has
no influence. Xue et al. [43] investigated the time-delayed speed correlation between
consecutive leading and following pedestrians in a single-file crowd. They used the data
collected from a single-file experiment conducted with German students in the 5th and
11th grades (11–12 years old and 17–18 years old, respectively). Their results indicated that
the characteristic delay time depends only on the crowd density. However, demographics
(age and gender) of the leading, and following pedestrians did not show any significant
influence on it.

It can be noted that almost all these studies have focused on macroscopic characteris-
tics, i.e., mainly related to fundamental diagrams of pedestrian dynamics. The influence of
gender on microscopic behaviors has not been comprehensively studied so far. Microscopic
walking dynamics are the underlying mechanics of microscopic pedestrian simulation
models. This study aims to explore the effect of gender on microscopic walking behaviors
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when people walk in a mixed crowd. The data were obtained from a walking experiment
on single-file maneuvers conducted under controlled conditions.

The paper is organized as follows: The next section will discuss the methods that
include a description of the data and microscopic variables. This is followed by the results
of the study. Finally, a discussion and conclusions are presented.

2. Methods
2.1. Data

This study uses the data of the single-file walking experiment conducted by Subaih et al. [40]
at the Arab American University in Palestine. The experiments’ participants consisted of
26 females and 21 males from various university departments. A schematic diagram of the
experiment setup is shown in Figure 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 14 
 

of gender on microscopic behaviors has not been comprehensively studied so far. Micro-

scopic walking dynamics are the underlying mechanics of microscopic pedestrian simu-

lation models. This study aims to explore the effect of gender on microscopic walking 

behaviors when people walk in a mixed crowd. The data were obtained from a walking 

experiment on single-file maneuvers conducted under controlled conditions. 

The paper is organized as follows: The next section will discuss the methods that 

include a description of the data and microscopic variables. This is followed by the results 

of the study. Finally, a discussion and conclusions are presented. 

2. Methods 

2.1. Data 

This study uses the data of the single-file walking experiment conducted by Subaih 

et al. [40] at the Arab American University in Palestine. The experiments’ participants 

consisted of 26 females and 21 males from various university departments. A schematic 

diagram of the experiment setup is shown in Figure 1. 

 

Figure 1. Schematic representation of the experiment setup (redrawn from Subaih et al. [40]). 

The participants were placed one after another in an alternative way based on their 

gender and instructed to walk normally and not to overtake. That is, a male participant is 

led by a female, and a female participant is led by a male. Four experimental scenarios 

were considered depending on the total number of pedestrians walking within the exper-

imental walkway, namely 14 (7 males and 7 females), 20 (10 males and 10 females), 24 (12 

males and 12 females), and 30 (15 males and 15 females) participants on the walkway. 

These scenarios were named as N = 14, N = 20, N = 24, and N = 30, respectively. Global 

densities for these cases were 0.81 m−1, 1.16 m−1, 1.38 m−1, and 1.73 m−1, respectively. Several 

snapshots taken during each experiment scenario are shown in Figure 2. The entire series 

of experiments was video recorded, and the trajectories were extracted at 25 frames per 

second using an automatic tracking tool called PeTrack [44]. More details about the exper-

iment setup and procedures can be found in Subaih et al. [40]. 

Figure 1. Schematic representation of the experiment setup (redrawn from Subaih et al. [40]).

The participants were placed one after another in an alternative way based on their
gender and instructed to walk normally and not to overtake. That is, a male participant is
led by a female, and a female participant is led by a male. Four experimental scenarios were
considered depending on the total number of pedestrians walking within the experimental
walkway, namely 14 (7 males and 7 females), 20 (10 males and 10 females), 24 (12 males
and 12 females), and 30 (15 males and 15 females) participants on the walkway. These
scenarios were named as N = 14, N = 20, N = 24, and N = 30, respectively. Global densities
for these cases were 0.81 m−1, 1.16 m−1, 1.38 m−1, and 1.73 m−1, respectively. Several
snapshots taken during each experiment scenario are shown in Figure 2. The entire series of
experiments was video recorded, and the trajectories were extracted at 25 frames per second
using an automatic tracking tool called PeTrack [44]. More details about the experiment
setup and procedures can be found in Subaih et al. [40].
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2.2. Microscopic Variables of Walking Behaviors

The key assumption of this study, where a single-file movement is considered, is
that the walking behavior of the pedestrian under consideration is determined by his/her
interaction with the pedestrian in front. It should be noted that this is the key assumption
of microscopic behavior models, e.g., the social force model.

From individual trajectories, microscopic variables are derived as follows:

si,i+1(t) = xi+1(t)− xi(t) (1)

where, si,i+1(t) is the spacing between leading and following pedestrians, xi(t) is the x-
coordinate of the positions of pedestrian i, who is under consideration, at time t and xi+1(t)
is the x-coordinate of the positions of pedestrian walking in front of the pedestrian i at
time t.

vi(t) =
xi(t + ∆t/2)− xi(t − ∆t/2)

∆t
(2)

where, vi(t) is the instantaneous speed of the pedestrian i at time t, ∆t = 0.4 s is the
sampling interval.

ai(t) =
vi(t + ∆t/2)− vi(t − ∆t/2)

∆t
(3)

where ai(t) is the instantaneous acceleration of the pedestrian i at time t.

2.3. Modeling Pedestrians’ Interactions Using Multiple Linear Regression

Instantaneous acceleration and deceleration of individual pedestrians were modeled
as functions of several variables, i.e., the instantaneous walking speed of the pedestrian, the
relative speed between the pedestrian under consideration and the pedestrian in front of
him/her, spacing, and gender, using multiple linear regression. It should be noted that the
instantaneous walking speed, relative speed, and spacing are widely used in microscopic
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simulation models, e.g., the social force model [45], to predict the motion of pedestrians.
The general form of a linear regression model can be given as:

y = β0 + β1x1 + β2x2 + · · ·+ βnxn (4)

where, y is the predicted or the dependent variable, β0 is the intercept, {β1, β2, . . . , βn} are
the regression coefficients, {x1, x2, . . . , xn} are predictor or independent variables.

In this study, the predicted variable is the instantaneous acceleration (ai(t + τ)), where
τ is a time lag that was obtained using instantaneous acceleration versus relative speed
plots for each individual. The independent variables are spacing (si,i+1(t)), instantaneous
speed (vi(t)), relative speed (vi+1(t)− vi(t)), and gender. Previous studies have also used
linear relationships in microscopic behavior models. For example, Helly’s car-following
model [46] used a linear model to predict the acceleration behavior of a vehicle, and
Duives et al. [47] modeled pedestrians’ acceleration behaviors using linear models.

3. Results
3.1. Characteristics of the Microscopic Interactions

The relative speed versus acceleration plot for an individual is shown in Figure 3.
This is called the Lissajous diagram, and it can be observed that the correlation between
instantaneous acceleration and relative speed improves when a time lag (τ) is introduced
to the acceleration. These plots are analogous to drivers’ acceleration behaviors during
car-following situations [48,49].
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Figure 3. Relative speed versus acceleration plots for an individual pedestrian without and with a
time lag.

For each individual, Lissajous diagrams were constructed, and relative speed versus
acceleration plots were obtained. In this study, the time lag varied from 0.12 s to 0.68 s, and
this difference could be due to individual characteristics. Even though such a time lag is
incorporated in car-following models as “the reaction time”, pedestrian simulation models
do not specify such a time lag or reaction time. In pedestrian dynamics, this time lag may
be comparable to the time delay specified as “visual-motor delay” in previous studies,
e.g., Le Runigo et al. [50] and Rio et al. [51]. This value varied depending on the individ-
ual characteristics and was approximately set as 0.40 s [50,51]. However, Xue et al. [43]
reported a higher average delay time for the speed correlation between leading and fol-
lowing pedestrian dyads, and the average time delay value in that study ranged from
0.75 to 0.84 s. Furthermore, according to Xue et al. [43], this time delay did not have any
gender dependence.

Aggregated time-delayed acceleration versus relative speed plots for different density
levels and genders are compared in Figure 4. As can be observed from the figure, the
acceleration tends to increase with increasing relative speed for both genders. This means
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that people accelerate or decelerate more when the speed difference between him/her
and the leading pedestrian is larger. Further, it can be observed that the accelerations
(and decelerations) of males are higher than females in all cases, which indicates that the
acceleration (and deceleration) capacities of males are higher.
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Figure 4. Relative speed versus time-delayed instantaneous acceleration plots for different density
levels: (a) N = 14; (b) N = 20; (c) N = 24; (d) N = 30.

ANCOVA (analysis of covariance) tests were performed to compare the regression lines
for males and females for the four density levels separately. The test results indicated that,
for all density levels, there is a significant difference between the slopes of the regression
lines for males and females. The test statistics, i.e., (F, p), for N = 14, N = 20, N = 24, and
N = 30 scenarios were (12.14, 0.0005), (29.77, <0.0001), (42.66, <0.0001), and (16.97, 0.000038),
respectively. It can further be noted that the slopes of the lines tend to decrease when the
density level increases. This means that for a given relative speed, the acceleration and
deceleration capacities decrease with increasing density.

Relationships between acceleration and walking speed for different density levels
and genders are compared in Figure 5. It is clear that the walking speeds decreased with
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increasing density. Further, it can be observed that for all density levels and both genders
the accelerations decrease with increasing instantaneous walking speed. In particular, when
the speed is higher, people tend to decelerate more, and when the speed is lower, people
tend to accelerate more. This observation is logical when general microscopic walking
dynamics are considered. However, it should be noted that only walking speed may not
determine the acceleration behaviors and the speed of the leading pedestrian, which is
considered in relative speed, could also play a significant role.
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Figure 5. Instantaneous speed versus time-delayed instantaneous acceleration plots for different
density levels: (a) N = 14; (b) N = 20; (c) N = 24; (d) N = 30.

As verified with the t-test, the slopes of the regression lines for males and females
were significantly different for all cases. The test statistics, i.e., (t-stat, p), for N = 14, N = 20,
N = 24, and N = 30 scenarios were (7.138, <0.001), (5.512, <0.001), (7.771, <0.001), and (3.576,
<0.001), respectively. This outcome indicates that for a given walking speed level, gender
has a significant influence on acceleration behavior and the acceleration (and deceleration)
capacities are higher for males compared to females.
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3.2. Outcomes of the Multiple Linear Regression Model

Eight multiple linear regression models were developed for acceleration and deceler-
ation behaviors for four different density levels. It should be noted that the acceleration
and deceleration were modeled separately to prevent the averaging effect of positive and
negative values of the acceleration when they are modeled together. The predictor variables
of the model were relative speed (DV), which was calculated as the speed of the leading
pedestrian minus the speed of the pedestrian under consideration (i.e., vi+1(t)− vi(t)),
spacing (DS), and gender, while the dependent variable was time-delayed instantaneous ac-
celeration (ai(t + τ)). Males and females were coded as “0” and “1”, respectively. To avoid
multicollinearity, instantaneous speed (vi(t)) was not used as a predictor variable because
it had a significantly high correlation with relative speed and spacing. Outcomes of the
linear regression models for acceleration and deceleration behaviors are described below.

• Models for acceleration behavior

Only the positive values of instantaneous acceleration (ai(t + τ)) were considered in
these models, and four models were developed for the considered density levels. As shown
in Table 1, the ANOVA results indicated that all four models for acceleration behavior were
significant. The R-squared values were 0.428, 0.288, 0.243, and 0.189 for N = 14, N = 20,
N = 24, and N = 30 cases, respectively. The highest R-squared value was found for N = 14
case (global density = 0.81 m−1). All the predictor variables were found to be significant
for all the density levels except spacing, which was not significant for N = 24 cases (global
density = 1.38 m−1). Gender was significant for all the density levels. The unstandardized
coefficients for all the significant predictors are shown in Table 2. For all four density levels,
relative speed and spacing had a positive association with instantaneous acceleration.
That is, people tend to accelerate when the relative speed is increasing, or in other words,
when the leading pedestrian’s speed is higher. This is logical that an individual tends to
accelerate to gain speed to reach the leading individual and to move ahead with the crowd
when the individual’s speed is lower than the leading pedestrian. The negative sign of the
gender indicates that males are likely to accelerate significantly more than females for all
the density levels. Spacing also had a positive association with instantaneous acceleration,
which is logical that people tend to accelerate to gain speed when the spacing in front of
them increases. Gender had the greatest significant effect on acceleration behaviors for the
lowest density level, which decreased with increasing density levels.

Table 1. ANOVA results for the multiple regression models for acceleration.

Model Sum of
Squares df Mean

Square F Sig.

N = 14
Regression 26.229 3 8.743 541.478 0.000
Residual 35.086 2173 0.016

Total 61.315 2176

N = 20
Regression 40.382 3 13.461 757.273 0.000
Residual 99.719 5610 0.018

Total 140.100 5613

N = 24
Regression 66.333 3 22.111 1433.751 0.000
Residual 207.021 13,424 0.015

Total 273.353 13,427

N = 30
Regression 64.867 3 21.622 1701.145 0.000
Residual 278.269 21,893 0.013

Total 343.136 21,896
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Table 2. Coefficients in the multiple regression models for acceleration.

Model
Coefficients

t Sig.
B Std. Error

N = 14

(Constant) 0.048 0.014 3.480 0.001
DS 0.067 0.011 6.295 0.000
DV 1.072 0.027 39.274 0.000

gender −0.050 0.005 −9.214 0.000

N = 20

(Constant) 0.085 0.010 8.539 0.000
DS 0.088 0.012 7.607 0.000
DV 0.791 0.017 46.529 0.000

gender −0.027 0.004 −7.418 0.000

N = 24

(Constant) 0.134 0.005 24.581 0.000
DS 0.009 0.007 1.286 0.198
DV 0.706 0.011 64.663 0.000

gender −0.010 0.002 −4.539 0.000

N = 30

(Constant) 0.110 0.003 42.342 0.000
DS 0.036 0.004 9.916 0.000
DV 0.523 0.008 69.504 0.000

gender −0.003 0.002 −1.960 0.050

• Models for deceleration behavior

In these models, negative values of instantaneous acceleration (ai(t + τ)), i.e., decel-
erations, were considered without the negative sign. Four models were developed for
the considered density levels. All four multiple linear regression models of deceleration
behaviors corresponding to the four different density levels were significant, as indicated
by the ANOVA results (see Table 3). The R-squared values were 0.244, 0.343, 0.254, and
0.225 for N = 14, N = 20, N = 24, and N = 30 cases, respectively. All the predictor variables
were found to be significant for all the density levels except spacing, which was only
significant for N = 24 cases (global density = 1.38 m−1). Further, gender was found to be
significant for all the density levels. Table 4 shows the unstandardized coefficients for all the
significant predictors. For all four density levels, relative speed had a negative association
with instantaneous deceleration. Moreover, deceleration increases with decreasing relative
speed. Decreasing relative speed means that the speed of the following pedestrian or
the one under consideration is higher than the speed of the leading pedestrian. In such
circumstances, pedestrians tend to decelerate or decrease their speed to avoid a collision
with the leading pedestrian. The negative sign of the coefficient of the gender indicated
that males were likely to decelerate significantly more than females for all the density
levels (note: males were coded as “0” and females were coded as “1”). Gender had the
greatest significant effect for N = 20 cases (global density = 1.16 m−1). The spacing was
significant (at 0.05 level) only for N = 24 cases, and the sign is negative, which indicates
that pedestrians tend to decelerate more when the spacing is decreasing. However, it can
be noted that the spacing is not significant for other density levels, and the influence is
weak even for N = 24 cases as compared to other variables.
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Table 3. ANOVA results for the multiple regression models for deceleration.

Model Sum of
Squares df Mean

Square F Sig.

N = 14
Regression 3.099 3 1.033 124.576 0.000
Residual 9.584 1156 0.008

Total 12.683 1159

N = 20
Regression 46.374 3 15.458 893.690 0.000
Residual 88.974 5144 0.017

Total 135.348 5147

N = 24
Regression 52.049 3 17.350 1394.864 0.000
Residual 153.253 12,321 0.012

Total 205.302 12,324

N = 30
Regression 61.715 3 20.572 2027.086 0.000
Residual 212.323 20,922 0.010

Total 274.038 20,925

Table 4. Coefficients in the multiple regression models for deceleration.

Model
Coefficients

t Sig.
B Std. Error

N = 14

(Constant) 0.135 0.012 10.910 0.000
DS 0.003 0.010 0.260 0.795
DV −0.585 0.032 −18.269 0.000

gender −0.027 0.006 −4.967 0.000

N = 20

(Constant) 0.182 0.009 19.570 0.000
DS 0.003 0.011 0.270 0.787
DV −0.852 0.017 −49.695 0.000

gender −0.064 0.004 −17.193 0.000

N = 24

(Constant) 0.163 0.005 32.863 0.000
DS −0.013 0.006 −2.025 0.043
DV −0.677 0.011 −64.249 0.000

gender −0.020 0.002 −10.133 0.000

N = 30

(Constant) 0.129 0.002 57.295 0.000
DS 0.000 0.003 −0.072 0.942
DV −0.554 0.007 −77.549 0.000

gender −0.011 0.001 −7.694 0.000

4. Discussion and Conclusions

Crowds in public places are diverse in terms of demographics, such as gender, age,
culture, and socioeconomic characteristics, such as income level, occupation, travel purpose,
and so on. The interactions between individuals in a crowd determine the global movement
patterns of the crowd motion. Characteristics of the individual pedestrians could largely
influence the microscopic interactions between individuals, and as a result, that will affect
the macroscopic and global patterns of motion.

The purpose of this study was to determine whether pedestrians’ gender influences the
microscopic walking dynamics when they walk in a mixed-gender crowd. The trajectory
data was obtained from an experiment on single-file movement that was conducted under
four different global density levels. Key microscopic variables of walking dynamics, i.e.,
spacing, speed, and acceleration, which are widely used in microscopic pedestrian behavior
models, were derived from these trajectory data. Multiple linear regression was used
to model individuals’ acceleration and deceleration behaviors as functions of relative
speed, spacing, and gender. Eight regression models were obtained for acceleration and
deceleration behaviors and for the four considered density levels separately. The gender
and the relative speed were significant in all models, which indicated that these two
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variables are the key determinant of individual acceleration and deceleration behaviors. In
particular, males are more likely to accelerate and decelerate than females when they are
interacting with the opposite gender. Spacing was significant only for several models that
indicated that the spacing was not a strong predictor of the acceleration or deceleration of a
pedestrian in a single-file crowd of mixed genders.

In this study, individual pedestrians’ time-delayed instantaneous accelerations were
used as the dependent variable as it is the commonly used predicted variable in microscopic
behavior models, such as car-following models [52] and force-based pedestrian simulation
models [45]. One key outcome of the current study was that relative speed is the main
determinant of acceleration and deceleration behaviors. Spacing displayed a marginal
influence on acceleration and deceleration behaviors. These findings are consistent with
the findings by Rio et al. [51], who modeled pedestrians’ following behaviors using six
car-following models. The outcomes of Rio et al. [51] indicated that the speed matching
model [53], which explained that if the follower is traveling slower than the leader, they
should accelerate, and if they are traveling faster, they should decelerate, performed
better as compared to distance-based models. The spacing between the leading and the
following pedestrian had no influence on the follower’s behavior. However, simplified
versions of the social force model used the spacing or the distance between pedestrians to
predict interactive repulsive forces or accelerations, and relative speed is used to estimate
pushing force when simulated agents are physically contacting [54]. Nevertheless, recent
specifications of the social force model consider relative speed to estimate repulsive forces
more realistically [55]. The behavior model proposed by Tang et al. [56] to simulate
pedestrian following behaviors when they board an aircraft also considered the relative
speed in addition to the optimal speed and the current walking speed of the pedestrian. The
numerical results of this study indicated that the model that used the variables mentioned
above could reasonably reproduce the dynamics of aircraft boarding behaviors.

Duives et al. [47] derived several linear regression models to predict change in speed,
which can be considered a proxy for the acceleration and walking direction of a pedestrian.
The outcomes of this study indicated that the absolute speed, distance headway (spacing),
time headway, number of pedestrians located nearby, angle of sight, and angle of interaction
are significant predictors of the change in speed and direction of a pedestrian. As can be
noted, the result that the space headway or spacing is a significant predictor of the change
in speed partially agrees with the outcomes of the current study. However, as we noted,
spacing was not a strong predictor of acceleration behavior. Even though the absolute
walking speed was not considered in the regression models presented in our study (as
it had a high correlation with spacing), as shown in Figure 5, walking speed displayed a
strong negative correlation with acceleration. This finding also agrees with the findings by
Duives et al. [47], who established that absolute speed is a strong predictor of the change
in speed.

There are several limitations to this study. Instead of a single model to predict acceler-
ation behaviors, eight separate models were obtained in this study. As mentioned earlier,
to avoid the averaging effect, acceleration and deceleration behaviors were considered
separately. A single model should be able to predict pedestrian walking dynamics as
most microscopic behavior models do. However, different density levels and acceleration
and deceleration behaviors were considered separately to comprehensively explore the
gender influence on walking dynamics. Furthermore, walking speed was omitted in the
regression model due to multicollinearity. The linear relationship between spacing and
speed, particularly when the spacing is less than 1.5 m, is well-studied in previous studies,
e.g., Jelić et al. [57], Cao et al. [37], Cao et al. [58], and Paetzke et al. [42].

Culture may significantly influence the interactions of pedestrians in a crowd [40,59].
This study did not consider the cultural dimension of the gender influence on microscopic
interactions, and future studies may explore such aspects. Furthermore, it should be noted,
however, that the microscopic simulation models and statistical regression models perform
differently. Thus, future studies may explore the acceleration (and deceleration) behaviors
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using microscopic simulation models incorporating gender as well as other parameters,
including walking speed, relative speed, and spacing.
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57. Jelić, A.; Appert-Rolland, C.; Lemercier, S.; Pettré, J. Properties of pedestrians walking in line: Fundamental diagrams. Phys. Rev.

E 2012, 85, 036111. [CrossRef] [PubMed]
58. Cao, S.; Chen, M.; Xu, L.; Liang, J.; Yao, M.; Wang, P. Analysis of headway-velocity relation in one and two-dimensional pedestrian

flows. Saf. Sci. 2020, 129, 104804. [CrossRef]
59. Chattaraj, U.; Seyfried, A.; Chakroborty, P. Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst.

2009, 12, 393–405. [CrossRef]

http://doi.org/10.1080/02640410903502782
http://doi.org/10.1167/14.2.4
http://doi.org/10.1016/S1369-8478(00)00005-X
http://doi.org/10.1038/35035023
http://doi.org/10.1142/S0219525907001355
http://doi.org/10.1007/s11071-011-9992-7
http://doi.org/10.1103/PhysRevE.85.036111
http://www.ncbi.nlm.nih.gov/pubmed/22587153
http://doi.org/10.1016/j.ssci.2020.104804
http://doi.org/10.1142/S0219525909002209

	Introduction 
	Methods 
	Data 
	Microscopic Variables of Walking Behaviors 
	Modeling Pedestrians’ Interactions Using Multiple Linear Regression 

	Results 
	Characteristics of the Microscopic Interactions 
	Outcomes of the Multiple Linear Regression Model 

	Discussion and Conclusions 
	References

