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Abstract—With machine learning (ML) services now used
in a number of mission-critical human-facing domains, ensur-
ing the integrity and trustworthiness of ML models becomes
all important. In this work, we consider the paradigm where
cloud service providers collect big data from resource-constrained
devices for building ML-based prediction models that are then
sent back to be run locally on the intermittently connected
resource-constrained devices. Our proposed solution comprises
an intelligent polynomial-time heuristic that maximizes the level
of trust of ML models by selecting and switching between a sub-
set of the ML models from a superset of models in order to
maximize the trustworthiness while respecting the given recon-
figuration budget/rate and reducing the cloud communication
overhead. We evaluate the performance of our proposed heuristic
using two case studies. First, we consider Industrial IoT (IIoT)
services, and as a proxy for this setting, we use the turbofan
engine degradation simulation data set to predict the remaining
useful life of an engine. Our results in this setting show that the
trust level of the selected models is 0.49%–3.17% less compared
to the results obtained using integer linear programming (ILP).
Second, we consider smart cities services, and as a proxy of this
setting, we use an experimental transportation data set to predict
the number of cars. Our results show that the selected model’s
trust level is 0.7%–2.53% less compared to the results obtained
using ILP. We also show that our proposed heuristic achieves an
optimal competitive ratio in a polynomial-time approximation
scheme for the problem.

Index Terms—Adversarial attacks, automatic model selection,
deep learning (DL), Industrial IoT (IIoT), ML as a Service
(MLaaS), smart city, trusted machine learning (ML) models.

I. INTRODUCTION

THE GLOBAL market for machine learning (ML) has
grown rapidly over the last few years largely due to
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the fast pace of integrating ML with many facets of every-
day life, particularly for enabling smart Internet-of-Things
(IoT) services. Most of today’s IoT predictive analytics rely
on cloud-based services, in which IoT resource-constrained
devices continuously send their collected data to the cloud [1].
Resource-constrained devices have limited processing, com-
munication, and/or storage capabilities, and often run on bat-
teries. On the cloud, ML as a Service (MLaaS) providers carry
out the prediction process and provide data preprocessing,
model training, model evaluation, and model update capa-
bilities [2]. The MLaaS market is expected to exceed $3754
million by 2024 at a compound annual growth rate (CAGR)
of 42% in the given forecast period [3]. Typical systems
include electrical power grids [4], intelligent transportation and
vehicular management [5], health care devices [6], household
appliances [7], predictive maintenance (PM) systems [8] in
Industrial IoT (IIoT), and many more. However, ML models
can be targeted by malicious adversaries [9] due to the partic-
ipatory nature of such systems. Cyber attacks against critical
infrastructure are not just theories, they are very real and have
already been used to effect. For example, in December 2015, a
cyber attack on Ukraine’s power grid left 700 000 people with-
out electricity for several hours [10]. The Stuxnet worm, which
was first uncovered in 2010, is believed to be responsible for
causing substantial damage to Iran’s nuclear program [11].
In March 2016, the U.S. Justice Department indicated that
cyber attacks tied to the Iranian regime [12] targeted 46 major
financial institutions and a dam outside of New York City.

Perhaps, the most pressing challenge in the emerging cloud
computing area is that of establishing trust [13], [14]. Despite
the importance of trust in cloud computing, a common con-
ceptual model of trust in cloud computing has not yet been
defined [15] and it is becoming increasingly complex for
cloud users to distinguish between service providers offer-
ing similar types of services in terms of trustworthiness [16].
Trust has been investigated from different disciplinary lenses,
such as psychology, sociology, economics, management, and
information systems (ISs), but there is no commonly accepted
definition of trust [17], [18]. That is, depending on the context,
we may think of many different things when someone uses the
word “trust.” Merriam–Webster’s dictionary defines the word
“trust” as “assured reliance on the character, ability, strength,
or truth of someone or something.” Our definition for the trust
in this article refers to the ML models that agree most with the
predictions of an ensemble of ML models. Therefore, a model
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that agrees more with the predictions of the ensemble is more
“trustworthy” compared to the one that agrees less with the
ensemble. For example, assume that we have five models (M1,
M2, M3, M4, and M5), and the model M1 agrees with three
other models, while M2 agrees with only two other models,
then M1 is more trustworthy than M2.

The performance of ML models can be quantified based on
their decision time, accuracy, and precision of resulting deci-
sions [19]. However, as such models are used for more critical
and sensitive decisions (e.g., whether a drug should be admin-
istered to a patient or should an autonomous vehicle stop for
pedestrians), it becomes more important to ensure that they
provide high accuracy and precision guarantees. Assessing
learning models in terms of trustworthiness along with the
traditional criteria of decision time, accuracy, and precision
establishes a tradeoff between simplicity and power [20]. ML
classifiers are vulnerable to adversarial examples, which are
samples of input data that are maliciously modified in a way
that is intended to cause an ML classifier to misclassify simi-
lar examples. Moreover, it is known that adversarial examples
generated by one classifier are likely to cause another classifier
to make the same mistake [21]. In many cases, the modifica-
tions can successfully cause a classifier to make a mistake
even though the modifications are imperceptible to a human
observer. In general, adversarial attacks can be classified into
a misclassification attack or a targeted attack based on its
goals [22]–[24]. In a misclassification attack, the adversary
intends to cause the classifier to output a label different from
the original label. In a targeted attack, on the other hand, the
adversary intends to cause the classifier to output a specific
misleading label.

In this article, we envision the paradigm where resource-
constrained IoT devices execute ML models locally, without
necessarily being always connected to the cloud. Some advan-
tages of our proposed heuristic are its applicability to a number
of application scenarios beyond the pale of the traditional
paradigm, where it is not desirable to execute the model on
the cloud due to latency, connectivity, energy, privacy, and
security concerns. Consequently, it is expected that the users
should be able to determine the trustworthiness of service
providers in order to select them with confidence and with
some degree of assurance that their service offerings will not
behave unpredictably or maliciously. Our proposed heuristic
strives to minimize the communications overhead between the
cloud and the resource-constrained devices. Selected ML mod-
els are sent to resource-constrained devices to be used. The
proposed heuristic also has a limitation that it is not intended
to improve the trustworthiness of models trained in federated
learning (FL) systems when each client preserves its own data
locally. Instead, our approach can be applied to improve the
trustworthiness of the centralized approach of learning, when
all the clients send their data to an MLaaS provider to build
an ML model on the cloud, then this model will be sent back
to be hosted on resource-constrained devices. The target of the
proposed heuristic is not to handle all different types of attacks.
We only consider poisoning attacks on ML classifiers. Within
this scenario, an attacker may poison the training data by
injecting carefully designed samples to eventually compromise

Fig. 1. General architecture for the proposed system of selecting a trustworthy
subset of ML models built by different cloud service providers.

the whole learning process. Fig. 1 shows a general architec-
ture for the proposed system. On the cloud side, we have M
ML models, model1, model2, . . . , modelM .

The main contributions of the work can be summarized as
follows.

1) We formulate the problem of finding a subset of ML
models that maximize the trustworthiness while respect-
ing the given reconfiguration budget and rate constraints.
We also prove the problem is NP-complete.

2) We propose a heuristic that maximizes the level of trust
of ML models and finds a near-optimal solution in poly-
nomial time by selecting a subset from a superset of ML
models. Our trust metric of an ML model is based on
recent and past historical data that measure the degree
of agreement of the ML model with other models in an
ensemble of ML models.

3) The proposed system has a fail-safe state such that if
the proposed heuristic does not find a trusted ML (TML)
model in the superset of models, it sends a fail-safe exe-
cution alert. This alert informs the resource-constrained
devices that no TML model exists in the system. As a
result, the resource-constrained devices can fail safely
as required by the application that they service.

4) Building on the above insights, we apply the proposed
heuristic to two different training data sets. The first
data set, based on the CityPulse project [25], is used to
predict the number of vehicles as a surrogate use case
for smart city services. The second data set, provided
by the Prognostics CoE at NASA Ames [26], is used to
predict the remaining useful life of a turbofan engine as
a surrogate use case for IIoT smart services.

5) We applied the swap x and 100−x percentiles approach
as a causative adversarial attack by altering the training
data set label as we will describe in Section VI.

For the convenience of the readers, Table I provides a list
of the acronyms used in this article.

The remainder of this article is organized as follows.
Section III presents the most recent related work. The back-
ground information of case studies and thread model is intro-
duced in Section II. Section IV discusses the system model
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TABLE I
LIST OF IMPORTANT ACRONYMS USED

Fig. 2. Trust-based model selection problem for IIoT and smart city case
scenarios.

and problem formulation. Section V discusses our proposed
solutions and their competitive ratio analysis. Section VI
presents our experimental setup, experimental results, and the
lessons learned. Finally, Section VII concludes the article and
discusses future research directions.

II. BACKGROUND

A. Case Studies

Several case studies could be considered, in which the
proposed heuristic helps to gain the best trust level. Here, we
discuss two representative case studies. The first case study
considers IIoT PM while the second one considers real-time
traffic flow prediction in smart cities. Fig. 2 illustrates the
trust-based model selection problem addressed in this research
and also depicts the two considered case studies. During each
decision period, our proposed heuristic switches between the
subset of selected models with a goal of maximizing the over-
all trustworthiness while respecting the given reconfiguration
budget and rate.

1) IIoT Predictive Maintenance Case Study: A PM strat-
egy uses ML methods to identify, monitor, and analyze
system variables during operation. Also, PM alerts operators
to preemptively perform maintenance before a system failure
occurs [27]. Being able to stay ahead of equipment shutdowns
in a mine, steel mill, or factory, PM can save money and

time for a busy enterprise [28]. With PM, the data are col-
lected over time to monitor the state of the machine and are
then analyzed to find patterns that can help predict failures. In
many cases, it is desirable to have prediction models hosted
on resource-constrained embedded devices. PM systems need
to provide real-time control of the machines based on the
deviation of the real-time flow readings from the predicted
ones. In such systems, embedded sensors collect the short-
term state of the machine readings, which are relayed to the
cloud directly through communications infrastructure or indi-
rectly through the use of ferry nodes. Because of its compute
and store capabilities, the cloud is capable of collecting the
short-term readings to build long-term big data of sensor read-
ings. These readings are then utilized to build a PM model for
each of the underlying flow sensors. The constructed models
are then sent back to the flow sensors so that they actuate their
associated machines when a deviation is observed between the
actual and projected flow readings.

There are scenarios in which cyber attackers attempt to
compromise PM models directly. Consequently, the data that
leave its internal operating environment is subject to third-
party attacks. For instance, an adversary can create a causative
attack to poison the learner’s classifications. This is possible by
altering the training process through influence over the train-
ing data. Therefore, when the system is retrained, the learner
learns an incorrect decision-making function. Thus, it is impor-
tant to ensure the trustworthiness of ML models before they
are hosted and used on resource-constrained devices.

2) Smart City (Traffic Flow Prediction) Case Study: Traffic
flow prediction plays an important role in intelligent trans-
portation management and route guidance. Such predictions
can help in relieving traffic congestion, reducing air pollu-
tion, and providing secure traffic conditions [29]. Traffic flow
prediction heavily depends on historical and real-time traf-
fic data collected from various sensor sources. These sources
include inductive loops, radars, cameras, mobile global posi-
tioning systems (GPSs), crowdsourcing, social media, etc.
Transportation management and control are now becom-
ing more data driven [30]. However, inferring traffic flow
under real-world conditions in real time is still a challeng-
ing research problem due to the computational complexity of
building, training, learning, and storing traffic flow models on
resource-constrained devices.

In our proposed approach, various sensor technologies are
used to automatically collect short-term data of the traffic
flow and send them to the cloud through communications
infrastructure or through the use of ferry nodes. The cloud
is capable of collecting short-term readings to build long-
term big data of sensor readings. These readings are then
utilized by MLaaS service providers to build a model. The
constructed models are then sent back to be hosted on the
resource-constrained devices, in order to predict the traffic flow
in real time. Intelligent transportation systems are highly visi-
ble, and attacks against them result in a high impact on critical
infrastructure. For instance, the attacks can cause vehicular
accidents or create traffic jams that affect freight movements,
daily commutes, etc. Thus, to make the traffic movement
more efficient and improve road safety, road operators need
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Fig. 3. Exchange of data/models between resource-constrained devices and
the cloud using message ferries.

to constantly monitor traffic and current roadway conditions
by using an array of cameras and sensors that are strategically
placed on the road network. These cameras and sensors send
back real-time data to the control center [31]. The data are
subject to causative adversarial attacks, which are launched
by altering the training process by influencing the training
data and consequently causing the learner to learn an incorrect
decision-making function.

Fig. 3 illustrates the use of message ferries to collect data
from resource-constrained devices. The collected data are
delivered to the cloud in order to build ML models by the
MLaaS service providers. Next, the ferrying nodes deliver the
ML models to be hosted on the resource-constrained devices.

B. Threat Model

1) Adversary Knowledge: For both the case studies, we
only consider poisoning attacks on the ML classifiers. Within
this scenario, an attacker may poison the training data by
injecting carefully designed samples to eventually compromise
the whole learning process. Poisoning may thus be regarded as
adversarial contamination of the training data. In our experi-
ments, we use the swap x and 100−x percentiles attack model
as a causative attack against the LSTM algorithm.

2) Adversary Goal: The goal of an adversarial MLaaS
provider is to deliver an ML model that results in suboptimal
or erroneous results when executed on resource-constrained
IoT devices. The incentive of the adversarial MLaaS provider
is to seek gains by colluding with business competitors of
MLaaS clients.

III. RELATED WORK

In this section, we review recent related works. Fig. 4 shows
the research gap that we address in this research. To the best of
our knowledge, this article is the first attempt at designing an
intelligent polynomial-time heuristic on the cloud that selects
ML models that should be hosted on IoT resource-constrained
devices in order to maximize the trustworthiness of the overall
system.

A. Trust-Based ML Models

Researchers have proposed various approaches to design
ML algorithms that are trustworthy when using predictions

Fig. 4. Research gap addressed in this article.

to make critical decisions in real-world applications, includ-
ing healthcare, law, self-driving cars, etc. Speicher et al. [32]
proposed an approach to establish complex ML models by
ensuring that in a particular way, a complex model to achieve
correct predictions at least on all those data points, where a
trusted model was already correct.

Ghosh et al. [33] proposed the TML framework for self-
driving cars that use principles from formal methods for
learning ML models. These ML models satisfy properties in
temporal logic by using the model repair or the data from
which the model is learned. Zhang et al. [34] proposed debug-
ging using trusted items (DUTIs) algorithm that uses trusted
items to detect outlier and systematic training set bugs. The
approach looks for the smallest set of changes in the train-
ing set labels such that the model learned from this corrected
training set predicts labels of the trusted items correctly.

Ribeiro et al. [35] proposed the LIME algorithm, which
explains the predictions of any classifier or regressor in an
interpretable manner by approximating an interpretable model
locally around the prediction. The authors also proposed a
method called SP-LIME to select representative and nonredun-
dant predictions, which provide a global view of the model to
users. The authors applied the proposed algorithm on both
simulated and human subjects in order to decide between
and assess models and also identified reasons for not trusting
a classifier. Jayasinghe et al. [36] proposed a trust assess-
ment model that specifies the formation of trust from raw
data to a final trust value, and they proposed an algorithm
based on ML principles that determine whether an incom-
ing interaction is trustworthy, based on several trust features
corresponding to an IoT environment. Fariha et al. [37] intro-
duced data invariant technique as an approach to achieve TML
by reliably detecting tuples on which the prediction of a
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machine-learned model should not be trusted. They proposed
quantitative semantics to measure the degree of violation of
a data invariant and establish that strong data invariants can
be constructed from observations with low variance on the
given data set. Drozdal et al. [38] explored trust in the rela-
tionship between human data scientists and models produced
by AutoML systems. They find that including transparency
features in an AutoML tool increased user trust and under-
standability in the tool; and out of all the proposed features,
model performance metrics and visualizations are the most
important information to data scientists when establishing their
trust with an AutoML tool.

Wahab et al. [39] proposed a solution for maximizing
the detection of VM-based DDoS attacks in cloud systems.
Their proposed solution has two components. First, they
proposed a trust model between the hypervisor and its guest
VMs for the purpose of establishing a credible trust relation-
ship between the hypervisor and guest VMs. Second, they
designed a trust-based maximin game between DDoS attack-
ers and hypervisors to minimize the cloud system’s detection
and maximize this minimization under a limited budget of
resources. Liu et al. [40] made three arguments about the
trustworthiness of deep learning (DL) systems to prevent the
deception of the algorithm: 1) the trustworthiness should be
an essential and mandatory component of a DL system for
algorithmic decision making; 2) the trust of a DL model
should be evaluated along multiple dimensions in terms of its
correctness, accountability, transparency, and resilience; and
3) there should be proactive safeguard mechanisms to enforce
the trustworthiness of a DL framework.

In this work, the trust metric of an ML model is based
on recent and past historical data that measure the degree of
agreement of the ML model with other models in an ensemble
of ML models.

B. Adversary Attacks on ML Models

Recent research shows that ML models trained entirely
on private data are still vulnerable to adversarial examples,
which have been maliciously altered so as to be misclassified
by a target model while appearing unaltered to the human
eye [21], [22]. Madry et al. [41] proposed an approach to
study the adversarial robustness of neural networks through the
lens of robust optimization, and this approach enables to iden-
tify methods for both training and attacking neural networks
models. Finlayson et al. [42] demonstrated that adversarial
examples are capable of manipulating DL systems. They syn-
thesize a body of knowledge about the healthcare system
across three clinical domains to argue that medicine may be
uniquely susceptible to adversarial attacks. Huang et al. [43]
discussed the effective ML techniques against an adversar-
ial opponent. They introduce two ML models for modeling
an adversary’s capabilities and discuss how specific appli-
cation domains, features, and data distribution restrict an
adversary’s attacks. Saadatpanah et al. [44] discussed how
the ML methods in industrial copyright detection systems
are susceptible to adversarial attacks and why those meth-
ods are particularly vulnerable to attacks. Ren et al. [45]

introduced the theoretical foundations, algorithms, and appli-
cations of adversarial attack and defense techniques in DL
models. Chakraborty et al. [46] provided a discussion on
different types of adversarial attacks with various threat mod-
els and also elaborated on the efficiency and challenges of
recent countermeasures against them. Akhtar and Mian [47]
presented a comprehensive survey paper on adversarial attacks
on DL in computer vision. Yuan et al. [48] investigated and
summarized the approaches for generating adversarial exam-
ples, applications for adversarial examples, and corresponding
countermeasures for deep neural network models.

C. Automatic Model Selection

Researchers have proposed various automatic selection
methods for ML algorithms. ML model selection is the
problem of determining which algorithm, among a set of ML
algorithms, is the best suited to the data [49]. Choosing the
right technique is a crucial task that directly impacts the qual-
ity of predictions. However, deciding which ML technique is
well suited for processing specific data is not an easy task,
even for an expert, as the number of choices is usually very
large [50].

Auto-WEKA [51] considers all 39 ML classification algo-
rithms implemented in Weka to automatically and simul-
taneously choose a learning algorithm. Auto-WEKA uses
sequential model-based optimization and a random forest
regression model to approximate the dependence of a model’s
accuracy on the algorithm and hyperparameter values. Using
an approach similar to that in Auto-WEKA, Komer et al. [52]
developed the software hyperopt-sklearn, which automatically
selects ML algorithms and the hyperparameter values for
Scikit-learn.

In another work, Sparks et al. [53] proposed MLbase, an
architecture for automatically selecting ML algorithms that
supports distributed computing on a cluster of computers
by combining better model search methods, bandit methods,
batching techniques, and a cost-based cluster sizing estimator.

Lokuciejewski et al. [54] presented a generic framework for
automatically selecting an appropriate ML algorithm for the
compiler generation of optimization heuristics. Leite et al. [55]
proposed a method called active testing for automatically
selecting ML algorithms, which exploits metadata information
concerning past evaluation results to recommend the best
algorithm using a limited number of tests on the new data set.

Van Rijn et al. [56] proposed a method for automatically
selecting algorithms. They addressed the problem of algorithm
selection under a budget, where multiple algorithms can be
run on the full data set until the budget expires. Their method
produces a ranking of classifiers and takes into account the
run times of classifiers.

D. ML Models for Resource-Constrained Devices

Researchers have worked on the inference problem on tiny
resource-constrained IoT devices, which are not necessar-
ily always connected to the cloud. Kumar et al. [57] and
Gupta et al. [58] developed tree and k-nearest neighbor-based
algorithms, called Bonsai and ProtoNN, respectively, for clas-
sification, regression, ranking, and other common IoT tasks.
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Their algorithm can be trained on the cloud and then be
hosted onto resource-constrained IoT devices based on the
Arduino Uno board. Bonsai and ProtoNN maintain prediction
accuracy while minimizing model size and prediction costs.
Motamedi et al. [59] presented a framework for the synthesis
of efficient convolutional neural networks (CNNs) inference
software targeting mobile system on chip (SoC)-based plat-
forms. They used parallelization approaches for deploying a
CNN on SoC-based platforms. Meng et al. [60] presented two-
bit networks (TBNs) approach for CNN model compression to
reduce memory usage and improve computational efficiency
in terms of classification accuracy on resource-constrained
devices. They utilized parameter quantization for computa-
tion workload reduction. Shoeb and Guttag [61] presented
an ML approach on a wearable device to identify epileptic
seizures through analysis of the scalp electroencephalogram,
a noninvasive measure of the brain’s electrical activity.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this article, we assume an MLaaS provider that has M ML
models from which a subset needs to be selected and deployed
on IoT devices for T time slots. P is a constant matrix of size
M × T , where element pi,j indicates the trust value obtained
by model i at time j. This matrix is created based on recent
and past historical data that measure the degree of agreement
of ML model i with the other M−1 models in the ensemble of
ML models. B is the maximum number of allowed ML model
reconfigurations during T time slots. A is a variable matrix of
size M × T , where element ai,j ∈ {0, 1}. ai,j = 1 indicates that
the model i at time j is trustworthy; and ai,j is equal to zero,
otherwise. In other words, A is a variable selection matrix
where a value of 1 in row r column c indicates that model
number r is selected at time c; otherwise, if the value is 0,
then model r is not selected at time slot c. Thus, the objective
of the formulation is to find the values of ai,j and pi,j such that
the selected models maximize the overall trust values during
the entire time period as shown in (2).

As our proposed heuristic depends on the prediction out-
put of the ML model, it can be used with any supervised
ML algorithms as classification and regression problems. In
our experiments, we use the proposed approach to select
trusted LSTM models in regression problems. To compute
the trust level of model i at time j, we use (1), which
assigns a higher trust metric to models that agree more with
the average of all models. This equation is inspired by the
majority voting approach presented in the literature to quan-
tify the level of trust [62]–[66]. Therefore, model i at time
j is assigned trust level pi,j that represents the degree of
agreement [i.e., the reciprocal of the degree of deviation
([

∑M
k=1 d(Oi,j, Ok,j)]/M)] of model i with other models in

the ensemble of ML models. d(Oi,j, Ok,j) is a function that
provides the distance between Oi,j and Ok,j. The trust-level
metric ranges from 0 to pmax, where a higher value indicates
a higher level of trust

pi,j = min

⎛

⎝pmax,

[∑M
k=1 d

(
Oi,j, Ok,j

)

M

]−1
⎞

⎠ (1)

TABLE II
DESCRIPTION OF FORMULATION PARAMETERS

where pmax is the maximum attainable trust level in the given
application domain and pi,j is the trust level of model i at time
j, Oi,j is the output of model i at time j, and Oi,j ∈ R.

Problem Formulation: The goal of this work is to maximize
the trust level gained by selecting a subset of ML models
from a superset of models to be hosted on resource-constrained
devices for a period of time R, where 0 ≤ R ≤ T . The num-
ber of reconfigurations is limited to B and the maximum rate
of reconfiguration is limited to R. We formulate the problem
using integer linear programming (ILP) as follows:

max
T∑

j=1

M∑

i=1

ai,j · pi,j (2)

s.t.
M∑

i=1

ai,j = 1 ∀j ∈ 1 . . . T (3)

ai,j ∈ {0, 1} ∀i ∈ 1 . . . M

∀j ∈ 1 . . . T (4)

1

2
·

M∑

i=1

T∑

j=2

|ai,j − ai,j−1| ≤ B (5)

1

2
·

M∑

i=1

k+⌈ T
B

⌉

∑

j=k

|ai,j − ai,j−1| ≤ R

∀k ∈ 1 . . .

(

T − T

B

)

. (6)

The first constraint in (3) is to ensure that only one ML
model is selected at each time slot because there will be only
one ML model hosted in a resource-constrained device at
a time. The second constraint in (4) indicates that this for-
mulation is combinatorial, where the values can either be 0
or 1 with 1 indicating the trustworthiness of the ML model
and 0 indicating that it is not. In order to comply with the
maximum number of allowed reconfigurations (B), the third
constraint in (5) is used. The fourth constraint in (6) restricts
the solution to adhere to the models’ maximum reconfiguration
rate R (i.e., the maximum number of reconfiguration per time
unit). Table II summarizes the description of the formulation
parameters.
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Fig. 5. Illustration of our proposed splice heuristic work. Here, the splice heuristic selects three longest consecutive sequences of 1-s segments, then merges
the adjacent unselected segments.

V. PROPOSED SOLUTION

In this section, we discuss the proposed algorithms for
the lower bound and competitive solution along with the
upper bound algorithm. We also illustrate the proof of
NP-completeness of selecting a subset of ML models from
a superset of ML models in order to maximize the trust level
of ML models.

A. Lower Bound

To find a lower bound solution, we propose the splice
heuristic shown in Algorithm 1. The heuristic accepts A, a
matrix of size M × T , where the element ai,j represents the
trust level of model i at time slot j. Initially, the heuristic
considers A as one unselected segment. Next, the heuristic
iteratively uses three steps. In the first step, for each unse-
lected segment that is at least R in length, the heuristic finds
the model (row) k with the longest consecutive sequence of
1 s (i.e., the highest trust level). In the second step, the seg-
ment that has the highest trust level is marked as selected.
Additionally, the row k is selected by setting all the values
in row k to 1 and in rows other than k to 0. The third step
merges adjacent selected segments (from the previous rounds)
into a single selected segment if they share the same selected
model.

These three steps are repeated until at most B segments
are selected or on unselected segments are left. Finally, the
heuristic identifies unselected segments if such segments exist.
For each unselected segment, the heuristic finds the trust level
using the highest trust level from a selected adjacent segment,
if one exists. Finally, the heuristic compares the trust level
resulting from the adjacent ML models (if they exist) and
chooses the one with the highest trust level.

The example in Fig. 5 illustrates the details of our proposed
splice heuristic. In this example, we assume that R = 4 and
B = 2. Consequently, the heuristic selects B+1 = 3 segments
that maximize the trust level. The first section covers time
slots T1 − T4 with the selected ML model M3. M2 is selected
in the second segment, which covers the time slots T7 − T10.
Finally, the last segment has M4 selected in the time slots

Algorithm 1 Splice Heuristic to Find a Lower Bound Solution
Input: Matrix A of size M × T where element ai,j represents the trust
level of model i at time slot j;
Maximum number of allowed reconfigurations B;
Maximum reconfiguration rate R.
Output: matrix A, with each column having only 1 entry to indicate the
selected ML model at the given time slot.

1: Mark A as one unselected segment
2: Set i = 0
3: while i ≤ B AND number of unselected segments > 0 do
4: Set flag = False
5: Identify unselected segment j with at least R columns that has the

longest consecutive sequence of 1s in row k.
6: if Segment j exists then
7: Set all entries of row k to 1, and set all entries of other rows of

segment j to 0
8: Mark segment j as selected
9: if w is a selected segment that is adjacent to j and both have 1s in

the same row then
10: Merge segments w and j
11: Set flag = True
12: end if
13: end if
14: if flag = False then
15: Set i = i + 1
16: end if
17: end while
18: Merge adjacent unselected segments into one
19: for every unselected segment j do
20: Set leftSum = 0, rightSum = 0, selectedRow = 0
21: if there is a selected segment w with selected row k left adjacent to

segment j then
22: Set leftSum = sum of values of row k in segment j
23: Set selectedRow = k
24: end if
25: if there is a selected segment w with selected row z right adjacent to

segment j then
26: Set rightSum = sum of values of row z in segment j
27: if rightSum > leftSum then
28: Set selectedRow = z
29: end if
30: end if
31: Set all entries of selectedRow of segment j to 1 and all entries of the

other rows to 0
32: end for
33: Return A as the best solution.

T13−T16. After that, the heuristic determines which ML model
to use for the remaining unselected segments. For the time
slots T5 − T6, M2 is selected based on the selected adjacent
segment to the right. In addition, for the time slots T11 − T12,
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Algorithm 2 Fixing Heuristic to Produce a Competitive
Solution

Input: Matrix A of size M × T where element ai,j represents the trust
level of model i at time slot j;
Maximum number of allowed reconfigurations B;
Maximum reconfiguration rate R;
Maximum trust level selected from fractional solution H;
Epsilon ε, a small value subtracted from H.

Output: matrix A with each column having only one value as 1 to indicate
the selected ML model at the given time slot.

PART I - Fixing
1: Set XSplice = A
2: Run the Splice heuristic on matrix XSplice
3: Set PreviousTrustLevel = element-wise sum of A & XSplice where &

is the bitwise AND operator
4: Set XFraction = A and apply linear programming to generate a fractional

solution
5: Set X = XFraction
6: Compute CurrentTrustLevel using PART II
7: while H > 0 AND equation 1 through 3 are satisfied AND

CurrentTrustLevel > PreviousTrsutLevel do
8: Set PreviousTrustLevel = CurrentTrustLevel
9: Set H = H − eps

10: Set X = XFraction
11: Compute CurrentTrustLevel using PART II
12: end while
13: Return X as the best solution.

PART II - Computing CurrentTrustLevel
14: Set rowNum = -1
15: for t from t0 to T do
16: if maximum value from column t of matrix X ≥ H then
17: Set this maximum value to 1 and set rest of values in column t to 0
18: Set rowNum = row number of the maximum value
19: else if rowNum = −1 then
20: Set the maximum value to 1 and set rest of values in column t to 0
21: else
22: Set the value at rowNum to 1 and set rest of values in column t to 0
23: end if
24: end for
25: Set CurrentTrustLevel = element-wise sum of A & X where & is the

bitwise AND operator

M4 is selected based on the selected adjacent segment to the
right.

B. Upper Bound

We relax the ILP formulation presented in Section IV
to a linear programming (LP) problem by replacing the
constraint (4) with

ai,j ∈ [0, 1] ∀i ∈ 1 . . . M. (7)

This relaxed formulation produces an upper bound solution
for our problem.

C. Competitive Solution

To produce a competitive solution, we propose the fixing
heuristic shown in Algorithm 2. The algorithm accepts the
matrix A, of dimensions M × T , where the element ai,j rep-
resents the trust level of model i at time slot j. The heuristic
selects a maximum of B + 1 ML models (which results in
a maximum of B model reconfigurations) to be used during
T in order to maximize the overall trust level. The proposed
heuristic employs two constants: 1) a threshold H that rep-
resents the maximum trust level selected from the fractional

solution (0 <H< 1) and 2) epsilon ε, which is a small value
that is subtracted from the value of H during each iteration of
the fixing process (0 <ε< 0.1).

The proposed heuristic finds the lower bound solution first
using the splice heuristic (Algorithm 1) on matrix A. Next,
the proposed fixing heuristic applies LP on matrix A to find
a fractional upper bound solution using H. Actually, the ML
model with the highest trust level in each time slot of A is
compared with H. The highest trust level is rounded to 1 if it
is greater than or equal to H while setting all other ML models
to 0 during that time slot. The same process is applied for trust
levels less than H. If the highest trust level is less than H in
any time slot, the selected ML model in the previous time slot
is selected for this time slot and is rounded to 1 while other
ML models are set to 0. After converting the matrix into a
binary one (i.e., 0 or 1 entries), the upper bound solution is
computed by counting the number of entries in A that are set
to 1. If the upper bound solution is found to be greater than
the lower bound solution, the lower bound solution is set to
the value of the upper bound solution. Also, H is reduced by
ε and the upper bound solution is recomputed in the hope of
finding a better solution. This process is repeated as long as
the upper bound solution is improved.

Because our proposed algorithm depends on the solution
produced by LP, which can be solved using the Simplex
algorithm, then the complexity of our proposed algorithm
is similar to the complexity of the Simplex algorithm that
has polynomial-time complexity under various probability
distributions.

D. Proof of NP-Completeness

In this section, we show that the problem discussed in this
article can be reduced from the decision version of the set
cover problem, which is known to be NP-complete.

We define the universe U as a set of tuples (i, j), i, j ∈ T
and i ≤ j. Each tuple (i, j) represents a time interval that starts
at time i and ends at time j during which the system uses
the same model without any reconfigurations. We also define
S as a family of subsets of U . The union of S results in a
period that covers U . In other words, the union of S results
in a period that starts at time 0 and ends at time T . Now, the
cardinality of S is represented as follows:

0 ≤ ||S|| ≤
[

T∑

i=1

(
T

i

)]

∗ M. (8)

If k represents the maximum number of model reconfigura-
tions, the objective of our problem is to find k subsets from S
while maximizing the total trust level. This problem is similar
to the decision version of the set cover problem. The universe
U and the set S of our problem are the same as the universe U
and set S in the set cover problem. However, in our problem,
every element is a tuple. The maximum number of model
reconfigurations k is the same as the integer number k in the
set cover problem. Consequently, the problem introduced in
this article is NP-complete.
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Fig. 6. The data processing pipeline utilized in our experimental studies starting from the data collection phase and ending with the selection of trustworthy
ML models.

E. Worst Case Analysis (Competitive Ratio Analysis)

The performance of our proposed fixing heuristic is at least
as good as that of the splice heuristic. Consequently, the worst
case scenario is encountered when the proposed heuristic per-
forms as the splice heuristic. When the maximum number of
allowed reconfigurations is set to B, the splice heuristic finds
(B + 1) segments, each of length R that provide the maximal
trust level.

Proposition 1: For any configuration X, the splice heuris-
tic’s worst case performance has a competitive ratio of O(1)

when R is proportional to T and B is constant.
Proof: Let ALG be the splice heuristic and OPT be

the optimal algorithm. The first part of the splice heuristic
(Algorithm 1), specifically steps 1 through 17, finds the seg-
ments with the longest consecutive sequence of 1 s. Actually,
both ALG and OPT select those segments since they have the
largest sum of values (i.e., maximum trust levels). Specifically,
those segments have a total length of R(B + 1). However,
the two approaches differ in the rest of the solution, which
is the unselected segments in ALG. Now, at the end of the
first part and in the worst case scenario, Algorithm 1 may
already have performed B reconfigurations and cannot use
more reconfigurations. In other words, for every unselected
segment, Algorithm 1 can only use either of the selected mod-
els in the adjacent selected segments but never a different
model. Consequently, in the worst case scenario, the two mod-
els in the selected segments adjacent to the unselected segment
are different. Thus, the second part of Algorithm 1, specifi-
cally steps 17 through 32, will pick the model that has the
largest sum in the unselected segment. In the worst case sce-
nario, both the left and right adjacent selected segments may
have the same value when both used in the unselected seg-
ment, and therefore, Algorithm 1’s maximum loss is half the
segment length. However, the loss can never be less than half
the segment length. Mathematically, in the second part of the
solution, OPT achieves a maximum of T−R(B+1) while ALG
achieves a minimum of (1/2)[T − R(B + 1)]. Consequently,
the following proof is concluded as follows.

Competitive Ratio = [ALG(X)/OPT(X)]

= R(B + 1) + 1
2 [T − R(B + 1)]

R(B + 1) + [T − R(B + 1)]

=
1
2 T + 1

2 R(B + 1)

T

= 1

2

T + R(B + 1)

T

= 1

2

[
T

T
+ RB

T
+ R

T

]

= O

(
R(B + 1)

T

)

.

This competitive ratio is O(1) when R is proportional to T and
B is constant.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed heuris-
tic, we designed and implemented the data processing shown
in Fig. 6. In our experiments, we focused on two case studies
that serve as proxies for smart city and IIoT services. In our
experiments, we trained multiple ML models using sampled
experimental data sets to simulate multiple service providers
sending ML models to resource-constrained devices.

A. Experimental Setup

The first case study is a proxy for smart city services in
which the City Pulse EU FP7 project [25] data set is used for
traffic prediction. This data set conveys the vehicular traffic
volume collected from the city of Aarhus, Denmark, observed
between two points for a set duration of time over a period of
six months.

The second case study is a proxy for IIoT services in which
the Turbofan engine degradation simulation data set, provided
by the Prognostics CoE at NASA Ames [26], is used for
predicting the remaining useful life of engines. Engine degra-
dation simulation was carried out using a C-MAPSS tool. The
goal is to predict the remaining useful life or the remaining
number of cycles before the turbofan engine reaches a level
that no longer performs up to requirements. The requirement
is based on data collected from sensors located on the turbofan
and also on the number of cycles completed. The prediction
helps to plan maintenance in advance. The training data con-
sists of multiple multivariate time series with “cycle” as the
time unit, together with 21 sensor readings for each cycle.
Each time series can be assumed as being generated from a
different engine of the same type. The testing data have the
same data schema as the training data. The only difference is
that the data does not indicate when the failure occurs. Finally,
the ground-truth data provide the number of remaining work
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TABLE III
DESCRIPTION OF DATA SETS FOR CASE STUDIES

cycles for the engines in the test data. Table III shows the
description of data sets for both use case studies.

Each data set is divided into training and testing subsets.
Each training data set is sampled into 27 different data sets that
we used to train 27 deep LSTM models (17 of those models
are benign and 10 are malicious, and 20% of the training data
of the malicious models are poisoned with causative attacks).
Even though it is possible to sample our experimental data
sets differently to produce a higher/lower number of ML mod-
els, our choice of 27 was based on exploratory experiments
designed to explore the maximum number of ML models
that can be produced from our experimental data sets without
affecting the accuracy of the generated models. Specifically,
we use the swap x and 100 − x percentiles attack model as
a causative attack to intentionally poison the learners’ clas-
sifications by altering the labels of the training data set. In
the swap x and 100 − x percentiles attack, the x percentile
value is exchanged with the 100 − x percentile value. As an
example of the swap x and 100−x percentiles attack, consider
the numeric data set in Fig. 7. To find the ith percentile, we
need to sort the values in the unsorted list in ascending order.
Next, we multiply i% by the total number of items in the list
(i.e., ten items). Now, for example, let us find 20th and 80th
percentiles in the list. 20th percentile = 0.2 × 10 = 2 (item
index), which is value 174 in the list. 80th percentile = 0.8 ×
10 = 8 (item index), which is value 188 in the list. Now, to
swap the x and 100 − x percentiles in this data set, every 174
will be replaced with 188, and every 188 will be replaced with
174 in the region in which we want to introduce the swap x
and 100 − x percentiles attack.

Since our goal in this article is to assess the trust level of
LSTM models, we used grid search to tune the number of hid-
den layers, the number of neurons in a layer, the batch size, and
the activation function parameters that play a major role in the
building of LSTM models [67]–[69]. ML models are trained
using different configurations. Each configuration includes dif-
ferent values for the number of hidden layers, the number of
neurons in each layer, and activation functions. Finally, we
select the configuration that gives the best accuracy. Table IV
shows the ranges of the configuration parameters used in our
experiments to generate the LSTM models.

After building the models, we evaluated our model selec-
tion approach on two experimental data sets. Every row in the
traffic data set represents the number of vehicles during a spe-
cific hour. On the other hand, a row in the Turbofan engine

Fig. 7. Example of swap x and 100 − x percentiles attack model.

TABLE IV
CONFIGURATION PARAMETER RANGES

Fig. 8. Smart city traffic flow prediction use case: RMSE of the models
using the fixing heuristic versus individual models.

data set represents the remaining useful life during a specific
cycle. Figs. 9–12 for the smart city traffic flow prediction use
case and Figs. 14–17 for the IIoT PM use case show that the
trust level varies between the two data sets. This is because
the number of observations in the test set is different for the
two experimental data sets. For the traffic data set, the num-
ber of observations is ∼900 while for the turbofan data set,
the number of observations is ∼1800. Next, we utilize λ stan-
dard deviations strategy, which is inspired by the six sigma
strategy [70] to exclude the malicious models by identifying
and removing the causes of defects and minimizing variability
using statistical methods [namely, the mean and the standard
deviation as shown in (9) and (10)], which leads to better trust
prediction models

OutUpper = μ + λ × σ (9)
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Fig. 9. Smart city traffic flow prediction use case: trust level of upper bound,
lower bound, and proposed heuristics.

Fig. 10. Smart city traffic flow prediction use case: the effect of the number
of selected models on the trust level.

OutLower = μ − λ × σ. (10)

Every time step, we compute μ, which is the mean of the
outputs of all models. Also, we compute σ , the standard devia-
tion of the outputs of all models. λ defines the model exclusion
strategy (i.e., any model that has an output that is > μ+λ×σ

or is < μ−λ×σ is excluded). The λ standard deviations strat-
egy produces a trust matrix of size M ×T , with 1 indicating a
trusted model and 0 indicating a malicious model. The result-
ing matrix is then used as the input (i.e., matrix A) for the
proposed fixing heuristic.

B. Experimental Results

In this section, we discuss the results of using the proposed
fixing heuristic along with the lower bound and upper bound
heuristics on the two data sets introduced in the previous
section.

Fig. 11. Smart city traffic flow prediction use case: the effect of λ on the
trust level.

Fig. 12. Smart city traffic flow prediction use case: the effect of malicious
models on the trust level.

1) Traffic Flow Volume Prediction: In our first experiment,
we studied the root-mean-square error (RMSE) of the mod-
els selected using our proposed fixing heuristic vis-à-vis the
individual models. We set the reconfiguration budget B to 7
as shown in Fig. 8. As the figure shows, the proposed fixing
heuristic results in 11%–66.95% less RMSE when compared
to the individual models.

In our second experiment, the trust levels resulting from the
three heuristics are compared under different reconfiguration
budgets as illustrated in Fig. 9. The figure shows the con-
fidence interval for five replications. In each replication, the
malicious model is applied on a different model (e.g., MM1,
MM2, . . . , or MMn). In this experiment, we set λ to 0.85, M
to 7, and the number of malicious models C to 1. The number
of nonmalicious models is M − C.

In our third experiment, the trust level of the selected models
is studied as the number of models M is varied (5, 9, and 17) as
illustrated in Fig. 10. In this experiment, we set λ to 0.85 and

Authorized licensed use limited to: Qatar University. Downloaded on November 08,2022 at 09:57:28 UTC from IEEE Xplore.  Restrictions apply. 



2954 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 4, FEBRUARY 15, 2021

Fig. 13. IIoT PM use case: RMSE using the fixing heuristic versus individual
models.

Fig. 14. IIoT PM use case: trust level of upper bound, lower bound, and
proposed heuristics.

C to 1. In addition, the figure indicates that as M is increased,
the trust level of the selected models is increased too.

Fig. 11 shows the results of our fourth experiment. In this
experiment, the effect of using different values of λ (0.8, 0.85,
0.9, and 0.95) on the trust level of the selected models is
analyzed. In this experiment, we set C to 1 and M to 7. The
figure shows this effect for different reconfiguration budgets
B. The figure indicates that as λ is increased, the trust level
of the selected models is increased too.

Fig. 12 shows the effect of the number of the malicious
LSTM models C (3, 5, and 7) on the trust level of the selected
models for different values of λ (0.8, 0.85, and 0.9). The fig-
ure also shows the actual number of malicious LSTM models
versus the identified number of malicious LSTM models. In
this experiment, we set M to 17 and B to 7.

2) Predictive Maintenance in IIoT: In our first experi-
ment, we studied the RMSE of the models selected using our
proposed fixing heuristic vis-à-vis the individual models. We
set the reconfiguration budget B to 7 as shown in Fig. 13.
As the figure shows, the proposed fixing heuristic results
in 0.5%–15% less RMSE when compared to the individual
models.

Fig. 15. IIoT PM use case: the effect of the number of selected models on
the trust level.

Fig. 16. IIoT PM use case: the effect of λ on the trust level.

In our second experiment, the trust levels resulting from
the three heuristics are compared under different reconfigu-
ration budgets as illustrated in Fig. 14. The figure shows the
confidence interval for five different replications. In each repli-
cation, the malicious model is applied to a different model
(e.g., MM1, MM2, . . . , or MMn). In this experiment, we set λ

to 0.75, the number of malicious models C to 1, and M to 7.
The number of nonmalicious models is M − C.

In the third experiment, the trust level of the selected models
is studied as the number of models M is varied (5, 7, and 9) as
illustrated in Fig. 15. In this experiment, we set λ to 0.75 and
C to 1. In addition, the figure indicates that as M is increased,
the trust level of the selected models is increased too.

Fig. 16 shows the results of our fourth experiment. In this
experiment, the effect of using different values of λ (0.7, 0.75,
and 0.8) on the trust level of the selected models is analyzed.
In this experiment, we set C to 1 and M to 7. The figure shows
this effect given different reconfiguration budgets B. The figure
indicates that as λ is increased, the trust level of the selected
models is increased too.
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Fig. 17. IIoT PM use case: the effect of malicious models on the trust level.

Fig. 17 shows the effect of the number of malicious LSTM
models C (1, 2, and 3) on the trust level of the selected mod-
els for different values of λ (0.7, 0.75, and 0.8). The figure
also shows the actual number of malicious LSTM models ver-
sus the identified number of malicious LSTM models. In this
experiment, we set M to 7 and B to 7.

C. Discussion and Lessons Learned

We can conclude the following based on the results
presented in the previous section.

1) It is important to evaluate ML models used in critical
and sensitive decisions in terms of trustworthiness and
reliability. Additionally, other traditional criteria of the
ML model evaluation must be considered (e.g., accuracy,
run time, etc.).

2) Our proposed fixing heuristic strives to maximize the
trust level while not affecting the accuracy of the
selected models, as Figs. 8 and 13 indicate.

3) Figs. 9 and 14 show that our proposed fixing heuris-
tic is able to obtain a trust level that is 0.7%–2.53%
lower than that obtained by the upper bound solution in
smart city case study, and 0.49%–3.17% lower than that
obtained by the upper bound solution in the IIoT case
study. Figs. 9 and 14 also indicate that by increasing
the reconfiguration budget, the trust level is increased.
However, there is a limit beyond which increasing the
number of reconfigurations does not increase the trust
level.

4) Figs. 10 and 15 indicate that increasing the number
of selected models leads to an increase in the trust
level of the overall system. This fact is similar to the
concept of evaluating the seller feedback on online shop-
ping sites, restaurants, or hotel reviews. As the volume
of feedback increases, the level of reliability of such
reviews increases as well.

5) Figs. 11 and 16 indicate that increasing λ, the number of
the excluded models is decreased. However, increasing
λ beyond a specific threshold may lead to the use of

malicious models. On the other hand, using a small value
for λ leads to excluding more models, which might not
be malicious.

6) Figs. 12 and 17 indicate that increasing the number
of malicious models leads to a decrease in the trust
level of the overall system. This is due to the fact that
the proposed heuristic excludes malicious models and
it might reach a fail-safe execution state in which it
informs the resource-constrained devices that there are
no TML models to be hosted on them.

VII. CONCLUSION

In this article, we considered the paradigm in which
resource-constrained IoT devices execute ML algorithms
locally, without necessarily being connected to the cloud all
the time. This paradigm is desirable in systems that have strict
latency, connectivity, energy, privacy, and security require-
ments. There is a strong need in such environments to evaluate
the level of trustworthiness of ML models built by different
service providers, we formulated the problem of finding a sub-
set of ML models that maximizes the trustworthiness while
adhering to a given reconfiguration budget and rate constraints.
We proved that this problem is NP-complete and propose a fix-
ing heuristic that finds a near-optimal solution in polynomial
time.

To measure the performance of the proposed fixing heuris-
tic compared to ILP, we applied our proposed fixing heuristic
to two different case studies: 1) the traffic flow volume data
set to predict the number of vehicles (as a proxy case study
for smart cities services) and 2) the turbofan engine degrada-
tion simulation data set to predict the remaining useful life
for the engine (as a proxy for IIoT services). Our proposed
fixing heuristic returns impressive performance achieving a
high trust level that is less than the optimal ILP solution by
only 0.7%–2.53% in the smart city service case study and
0.49%–3.17% less in the IIoT service case study.

There are a number of avenues of future work that can
be pursued. Although we only use LSTM for developing the
models in this article, other types of models (e.g., CNN, deep
neural networks, and SVM) can also be explored. It would
be interesting to perform a comparative study of these models
and also consider their robustness to adversarial attacks com-
pared to our proposed fixing heuristic. Additionally, potential
applications of our proposed heuristic can be explored in the
speech, video, and medical domains, and in recommendation
systems.
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