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ABSTRACT Because location-based cyber services are increasingly found in mobile applications (e.g.,
social networking and maps), user location privacy preservation is essential and remains one of the several
ongoing research challenges. In this paper, we propose a region-of-interest division-based algorithm to
Preserve the location Privacy of mobile device users in location-based Cyber Services (PPCS). Unlike
existing methods, our proposed PPCS approach generates dummy locations while considering the semantic
information of those locations. The PPCS algorithm enables the generated locations to exclude or reduce the
exposure of a user’s real location. In our analysis, we demonstrate that PPCS is resilient to both colluding
attacks and inference attacks. We also evaluate the efficiency and demonstrate the utility of our proposed
approach through extensive simulations.

INDEX TERMS Location privacy preservation, location-based service, semantic information, mobile users.

I. INTRODUCTION
Use of location-based service (LBS) applications from
mobile devices and applications (apps) is rapidly increas-
ing [1]. However, LBSs have privacy and security issues that
need to be solved. For example, it has been demonstrated that
user location information can be abused to facilitate nefari-
ous activities such as cyberstalking [2], [3]. Unsurprisingly,
the research community has expressed interest in designing
location-based privacy techniques, including the following:
• Cloaking: sending a group of locations instead of a

single real location [4];
• Dummy generation: creating fake queries and locations

to hide users’ true locations [5]; and
• Private information retrieval: searching data from a

database without leaking query content or users’
identities [6].

Because most mobile devices (e.g., smart phones, tablets,
and smart entertainment systems in vehicles) include GPS
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modules, users can easily obtain accurate location informa-
tion [7]. An LBS query can include the identity, point of
interest (POI), real location, and region of interest (ROI) of
the user. For example, when responding to a user’s query, a
service provider will deliver a POI in the user’s ROI, such as
a gas station, hospital, or supermarket, to the user.

A. RELATED WORK
Various approaches [8]–[11] have been proposed to solve
the problem of location privacy preservation. For example,
k-anonymity cloaking [8] is used to protect a client’s location
privacy in LBS and aims to make a client’s location informa-
tion indiscernible from other k − 1 clients. In [12], a spatial-
temporal cloaking algorithm was proposed that collects the
LBS requests of k different users, forms a CR for a specific
time period and then submits the k LBS requests to an LBS
provider. In this scheme, a personalized k-anonymity model
is used to allow a user to have different privacy demands in
various contexts because different users can require different
degrees of privacy in the same context. However, when the
number of requests in a specified cloaking area is less than
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k , a user’s request is rejected. If the user density in a region
is large, the k clients’ locations may be close to each other;
therefore, the client’s location privacy may be divulged. The
authors of [13] proposed a cloaking algorithm to safeguard
a client’s location privacy in vehicular networks in which
the cloaking must include k or more different vehicles and
l different road segments. However, an insufficient number
of vehicles in the specified cloaking area can cause an unex-
pected response delay. When the number of road segments in
the specified cloaking area is insufficient, the cloaking area
must be enlarged, which can affect the quality of service.
To better protect a client’s location privacy, users interchange
their pseudonyms within a mixed zone [14]. Thus, the rela-
tionship between clients’ pseudonyms and their locations
may be broken.

Consequently, security policies and cryptography-based
approaches have become more popular. In contrast to the
k-anonymity cloaking technique, the dummy locationmethod
aims to protect a client’s location privacy by inserting many
dummy locations in his or her LBS query without any third-
party involvement [15], [16]. The authors of [17] proposed
a dynamic pseudo-ID scheme in which diverse pseudo-IDs
are used in different queries with the goal of unlinking the
correlation between a client’s real identity and the trajec-
tory. The authors of [18] designed a framework for fine-
grained privacy preservation in LBS for mobile users. The
authors of [19] designed a private block retrieval protocol
and proposed an efficient and secure location-based service
system. In their proposal, users can retrieve information of
interest associated with a current location without revealing
their locations. The authors of [20] proposed a method that
mixes the actual location of a user with that of other dummies
and then submits a query to an LBS provider. The LBS
provider searches for all the related POI locations and returns
them to the user. The authors of [21] designed grid- and
circle-based algorithms for generating dummy locations that
consider regional privacy requirements. The authors of [22]
proposed a distributed dummy client generation method to
give clients control over their privacy protections. When
generating dummy clients, that method selects clients with
movement patterns that are close to the primary user’s move-
ment pattern based on his or her privacy requirements. The
dummy location selection (DLS) algorithm [23] considers
ancillary information that might be exploited by malicious
users. The DLS algorithm adopts an enumeration method to
select dummy locations according to an entropy metric [24]
and attempts to choose the locations whose historic proba-
bility is similar to the user’s true location, which enhances
the entropy. The authors of [25] proposed two dummy-based
solutions for privacy-aware users that preconsider the ancil-
lary information [26] in LBS. In contrast to [23], the selected
dummy locations are placed in a virtual circle or virtual grid,
thus ensuring that the chosen dummy locations are not close
to each other.

Obfuscation-based mechanisms send a user’s real location
by altering it in nonreversible ways. For example, the authors

of [27] employed a time obfuscation-based scheme by send-
ing dummy queries at leisure times to confuse adversaries by
introducing extra background information. Authors in [28]
introduced the N-Rand, N-Mix, and N-Dispersion techniques
to add Gaussian noise when changing locations. In [29], two
different obfuscation operators (R-family deobfuscation and
E-family deobfuscation) were proposed to protect location
privacy by manipulating the radius of the obfuscated area.

B. RESEARCH MOTIVATION
Despite the convenience and entertainment provided by LBS,
a user’s privacy may be compromised when LBS providers
retain the user’s accurate location. For example, if a dating
app user near a Center for Infectious Disease requests LBS,
attackers can infer both the sexual orientation of the user
and that the user may have some sexually transmitted dis-
ease [30]. In addition, if an LBS provider is compromised, its
attackers can take advantage of users’ location information to
track clients or leak users’ private information to a third party
for commercial gain or to facilitate hate crimes against certain
populations. Thus, it is necessary to preserve the privacy of
LBS users’ locations. LBSs generate large amounts of data;
thus, collectively, such data can be used to profile individuals
for cyber threat intelligence.

However, the existing approaches have not yet considered
semantic location information, i.e., the correlation between
location and time. Therefore, these existing methods may
have serious deficiencies; for example, the chosen dummy
locationsmay not be similar to real locations or may represent
locations with low probabilities of LBS queries. The existing
dummy-location-based approaches can preserve the location
privacy of a user only when the dummies cover the actual
location of the client. To address this issue, Li et al. presented
a geometric approach—n-CD—to preserve a client’s loca-
tion privacy [31]. The n-CD algorithm partitions a client’s
ROI into n sectors of equal size and then creates n cryptic
disks (CDs) to cover the client’s ROI. The n-CD algorithm
sends the centers and radii of the n CDs rather than the real
user location to an LBS provider. Although the query sent
by this method does not contain any information about a
user’s real location, attackers can deduce that the user must
be within a specific area.

C. RESEARCH CONTRIBUTIONS
In this research, we design a novel approach to Preserve the
location Privacy of users in location-based Cyber Services
(PPCS). The main contributions of this paper are as follows:
• We study location privacy preservation for mobile users

in location-based cyber services and design an efficient
algorithm to solve this problem.

• We propose an approach to generate dummy locations
based on entropy while considering semantic location
information that might be used by attackers.

• We divide the range of the user’s interests into equal n
sectors and then select one location in each sector with
the maximum entropy for hiding the user’s real location.
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• We theoretically analyze the security performance of
the proposed approach and conduct extensive simulation
experiments under various scenarios to verify and eval-
uate the PPCS.

D. STRUCTURE OF THE PAPER
The remainder of this paper is organized as follows. We dis-
cuss the preliminaries and problem statement in Section II.
We describe our PPCS approach, analyze and evaluate its
security performance in Sections III through VI. Finally,
Section VII concludes this study.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. PRELIMINARIES
In this subsection, we provide the definitions of some terms
used in our research.

1) LBS QUERY
Assume that there is a probability distribution of a user being
in each possible location in an LBS system. Each user can
send queries to the LBS provider. Here, an LBS query Lq is
defined in Equation (1).

Lq = (uid , {(x, y),R,C}), (1)

where uid denotes a user’s identity; (x, y) represents the user’s
location information such that x and y represent latitude and
longitude values, respectively; R represents the radius of the
user’s query scope (that is, the region of interest, ROI), which
is at (x, y) with respect to the center; and C denotes the user’s
query content (that is, a POI).

However, the LBS provider may be malicious. Thus,
the user’s location may be disclosed if the user directly sends
the query Lq to the LBS provider. In this paper, to preserve
location privacy, we employ k-anonymity to preprocess the
user’s query, Lq. Thus, query Lq will be transformed to Lq∗,
as follows:

Lq∗ = (uid , {(x1, y1), . . . , (xk , yk ),R,C}), (2)

where (x1, y1), . . . , (xk , yk ) are k dummy locations that
obfuscate the user’s real location (x, y). Thus, as the LBS
query Lq is transformed to Lq∗, attackers will be unable to
determine the user’s real location from the k dummy loca-
tions, and the client’s location privacy will remain protected.

2) LOCATION TYPE
The location information (x, y) is the real geographic location
on the map (e.g., a Baidu or Google map). Typically, popula-
tion density is low on roads but can be high at shopping mall,
hospitals or restaurants. In this research, we assume that each
location has its own location attributes and can be categorized
according to their location attributes. Thus, an LBS provider
can classify all the locations within its service area into
different types based on location attributes. An example of
various location types is shown in Figure 1. Here, we list only
5 location types. In this study, the LBS provider is responsible
for disseminating the location types to the LBS users.

FIGURE 1. Examples of location types.

3) SEMANTIC LOCATION INFORMATION
In each location, users may request entertainment, medical
treatment, transportation or other services. Thus, a correla-
tion exists between the location type and the content of an
LBS query. For example, when near a hospital a user has a
higher probability of requesting medical treatment. However,
the user may also request other services (e.g., transportation)
from that same location (near the hospital). This correlation is
called semantic location information. Through the semantic
location information, we can analyze the user’s request and
obtain the location information to a certain degree.

To quantize the correlation between location type and con-
tent of an LBS query, a semantic parameter bi is used to
measure the semantic location information. A location type
with a semantic parameter bi that has a large value represents
a high probability of users submitting LBS queries for that
type of location. In this study, the users are responsible for
specifying the semantic parameter to measure the semantic
location information when sending requests in LBS.

4) ENTROPY
We employ entropy [24] to assess a user’s privacy level.
Entropy represents the uncertainty of identifying a client’s
true location among k dummy locations. For each location,
we can calculate the corresponding historical query probabil-
ity qi [23]. We provide the definition of qi in Equation (3).

qi =
number of queries in location i

number of queries in all locations
. (3)

Thus, based on the historical query probability qi and the
semantic parameter, we can amend the query probabilityqi to
qi for location i:

qi = qi × bi. (4)

Based on the definition of entropy, we can compute the
entropy H of k locations according to Equation (5):

H = −
k∑
i=1

{
(log2 qi)× qi

}
. (5)

Then, from Equation (5), we can achieve the maximum
entropy Hmax = log2k when the k locations have the same
query probability 1/k . In addition, the sum of the k query
probabilities must be 1. Thus, we need to normalize the k

VOLUME 7, 2019 87427



G. Sun et al.: Location Privacy Preservation for Mobile Users in Location-Based Services

FIGURE 2. The system model.

query probability by rewriting the entropy H as

H = −
k∑
i=1

{
(log2 pi)× pi

}
, pi =

qi∑k
i=1 qi

. (6)

B. SYSTEM MODEL
In this paper, we employ the distributed system model shown
in Fig. 2, which is comprised mainly of the users and the
LBS provider and no third party. Each user owns a mobile
device used to request the LBS service. Furthermore, these
mobile devices are capable of computing and storage. They
can complete the process of transformation from Lq to Lq∗ for
the LBS query. However, the LBS provider is responsible for
receiving and servicing the requests sent by the users. Then,
the LBS provider offers query results to users.

In the distributed system model, the LBS provider can
also calculate the historical query probability associated with
all locations based on historical user logs and is responsible
for disseminating and updating the historical query proba-
bility [23]. In addition, the LBS provider is responsible for
classifying all the locations into different types based on
their location properties and disseminating the location types.
Therefore, attackers can compromise the LBS provider and
obtain all its information. Moreover, the provider may also be
an assailant due its interest in determining clients’ locations
for commercial gain. Thus, in the distributed system model,
the LBS provider cannot be fully trusted and may be an
attacker.

C. BASIC IDEA
We consider the scenario in which a location genera-
tion scheme selects dummy locations without considering
the semantic location information. The location generation
scheme can generate k − 1 other dummy locations to safe-
guard a user’s location privacy; then, the probability for
leaking the actual location of a user is 1/k . Attackers can
exploit the semantic location information to filter kf locations
from the k locations, after which the probability of revealing
a client’s location information is enhanced to 1/(k − kf ).
Figure 3 shows an example of selecting dummy locations
using the location generation scheme. In Figure 3, the dif-
ferent cell shades represent different location types, and dif-
ferent location types have different semantic parameters. The
dummy locations in the areas whose semantic parameter is
less than 0.2 can be easily filtered by attackers. Thus, when
using location generation schemes that do not consider the

FIGURE 3. Example of dummy location generation.

FIGURE 4. Example of replacing the user’s real location.

semantic location information, filtered locations can be elim-
inated to enhance the probability of deducing users’ locations.

To address this problem, our solution is to carefully select
dummy locations based on the entropy value while consid-
ering the semantics of the location information, which can
be used by hackers. We attempt to select dummies with
similar/identical query probabilities. If we select only dummy
locations that maintain a client’s location privacy, the client’s
true location should be included among the dummies. To bet-
ter protect a client’s location privacy, we adopt a strategy to
ensure that a client’s actual location is not contained in these
selected dummies. As shown in Fig. 4, we select dummy
locations to replace the client’s true location in a user’s ROI
and ensure that the client obtains the required information.
This process is introduced in the PPCS algorithm described
in next section.

III. ALGORITHM DESIGN
A. n-CIRCULAR AREAS
In our PPCS approach, if the actual location of a user is
not contained in the dummy locations, then the ROI is par-
titioned into n sectors with equal sizes. Then, PPCS selects
one location from each sector. The PPCS algorithm carefully
generates n circular areas based on n locations that cover the
client’s ROI. Because a user’s ROI is completely covered by
the generated n circular areas, the query results for the user’s
ROI must be included in the query results of the generated
n circular areas. Although an LBS query does not contain
the client’s location information, users can obtain information
related to their interests. We provide a detailed description
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FIGURE 5. Example of dividing a user’s ROI into four sectors.

FIGURE 6. Generating circular areas to covering a user’s ROI.

regarding how to cover a user’s ROI by generating n circular
areas using our PPCS approach. In our example, n = 4.
As shown in Fig. 5, our PPCS approach partitions the

original ROI into four equal-sized parts, denoted by S1, S2, S3
and S4. The client’s true location is the centerO. In the client’s
ROI, the PPCS algorithm assumes that the four dummy loca-
tions have been carefully chosen based on the entropy of the
four sectors, which are designated C1, C2, C3 and C4. The
PPCS algorithm designates the ith(1 ≤ i ≤ 4) circular area
as CAi, and the radius and the center of CAi are designated
as ri and Ci, respectively. To guarantee that CAi completely
covers Si (1 ≤ i ≤ 4), we set ri = max {d1i , d

2
i , d

3
i }, where

d1i , d
2
i , and d

3
i denote the line segments CiO, CiQi, CiQi+1

(i ≤ 3) and CiQ1(i = 4), respectively.
Although Si can be completely covered by CAi, a user’s

real location may still be exposed to adversaries. When
ri = d1i = CiO, the intersections of the four circles (i.e., point
O) is the user’s real location, as shown in Fig. 6(a). To ensure
that none of the intersection points of the four circles includes
the client’s true location, the PPCS algorithm amends ri =
d1i × (1 + D) when ri = d1i = CiO, where D ∈ (0.1, 0.5).
Because the value of ri (1 ≤ i ≤ k) is greater than the value
of the distance between O and Ci, the user’s real location
(i.e., the point O) must be located in the ith circular area
rather than on the ith circle. Thus, after amending the radius
of each circular area, none of the intersection points of the
four circles is the user’s real location, as shown in Fig. 6(b).
Instead, the client’s true location is in the intersection area
(i.e., the shadowed area) of the four amended circles.

In this study, to prevent attackers from learning that the
client’s true location is included in the specific intersection
area (i.e., the shadowed area in Fig. 6(b)) the value of n

should be less than the anonymity degree k . Thus, to achieve
k-anonymity, our PPCS approach must select an additional
(k-n) dummies based on their entropies. The result is that
hackers and attackers cannot determine which intersection
area contains the client’s true location when more than one
intersection area exists.

B. PPCS ALGORITHM
The basic idea of our PPCS approach is to employ the
semantic position information that hackers and attackers can
leverage to generate multiple dummy locations such that
the query probabilities of all dummy locations are nearly
equivalent. Our PPCS approach uses a greedy strategy to
select dummies based on their entropies. From the definition
of entropy H , the maximum entropy value of k locations is
log2k . An attacker is increasingly less able to identify the real
location as the entropy increases. Thus, the greedy strategy
selects each location to maximize the entropy. Without loss
of generality, we introduce the entropy of the i + 1 iteration
with the greedy strategy. First, we assume that i locations
have been selected using the PPCS approach, where k > i.
When choosing the (i+ 1)th location, the PPCS algorithm
must ensure that the query probability of the current selected
location causes the functionHi+1(p) to achieve the maximum
value, in other words, the value closest to log2(i+1). Assume
that the query probability of the (i+ 1)th location is pi+1
and that the query probabilities of i locations are the set
{p1,. . . , pi}. Then, based on Equation (6), we can compute
the entropy Hi+1(p) of the i+ 1 locations using Equation (7):

Hi+1(p)=−
i∑

j=1

pj
i∑

l=1
pl + p

log2
pj

i∑
l=1

pl + p

−
p

i∑
l=1

pl + p

× log2
p

i∑
l=1

pl + p

, (7)

where pj (j ∈ [1, i]) is a variable that represents the current
query probability of a user at position j.

To achieve k-anonymity and l/2 diversity, we select l loca-
tion types according to the semantic parameter of a client’s
true location. Then, we choose an additional k − 1 dum-
mies based on entropy to protect the client’s location pri-
vacy among the chosen location types, where a minimum of
l/2 location types must be ensured. As shown in Algorithm-1,
our PPCS algorithm is composed of Procedure-1 and
Procedure-2.
Procedure-1 describes that the selected k locations exclude

the true user location. When the k positions/locations that
we choose do not include the client’s true location, then the
client’s ROI is divided into n equal sectors. The PPCS algo-
rithm then chooses n dummies based on the entropy from the
ROI with n centers and generates n circular regions that com-
pletely cover the user’s ROI. Note that n is less than k . Thus,
to achieve k-anonymity, our PPCS approach must select
an additional k-n dummies based on their entropy values.
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Procedure-2, however, describes the situation in which the
selected k locations do contain the true location of the user.
The PPCS algorithm then directly chooses an additional
k−1 dummies based on entropy. After choosing k dummies,
the PPCS algorithm generates other appropriate dummy POIs
to further obscure the client’s true POI, if necessary. Detailed
descriptions of the PPCS approaches are as follows:

(1) First, the anonymity degree (i.e., k) is determined by
a user according to his or her location privacy requirement.
A larger k value represents a higher user privacy requirement.
Generally, the degree of anonymity k is greater than 1 because
k = 1 indicates that the user does not care whether his or her
location privacy is exposed. In this situation, users send their
LBS queries directly to the LBS server.

(2) After obtaining the historical query probability that is
associated with all the locations and location types in an LBS
provider’s service area, the user should prespecify a semantic
parameter for each location type in the LBS provider’s service
according to the current time and his or her POI.

(3) According to the historical query probability associated
with all locations and the semantic parameter of every loca-
tion type, the PPCS algorithm calculates the current query
probability according to the rule given in Section II. The
PPCS algorithm then classifies the probabilities based on
location type and sorts the current query probabilities of each
type in ascending order.

(4) When the true location of a user is not included in
the selected dummies according to the user’s location type,
the PPCS algorithm selects l different location types whose
semantic parameters are similar to the user’s location type.
For every selected l location type, the PPCS approach chooses
k − 1 other locations whose current query probabilities are
similar to those of the user’s actual location. Thus, there are
(k−1)× l candidate locations. To easily select dummies, our
PPCS approach sorts all the candidate locations in ascending
order according to their probabilities.

(5) In the sorted candidate locations, the PPCS algorithm
selects k − 1 locations whose existing query probabilities are
similar to or the same as the true location of the user until it
has selected a minimum of l/2 location types.

(6) If the dummy locations exclude the client’s true loca-
tion, the user must determine the value of n according to
his or her privacy requirement, which determines the number
of sectors into which his or her ROI should be divided.
After obtaining the value of n, the PPCS approach divides
the client’s ROI into n parts of equal size. Then, the PPCS
algorithm randomly generates one location in the client’s
ROI, which is part of the first sector, and applies a greedy
strategy to select additional n − 1 locations from the ROI
based on their entropy values.

(7) Our PPCS approach generates n circular regions to
completely cover the ROI of a user and uses the longest
radius to update the radius of the ROI according to the rules
introduced in Section III.A.

(8) If the chosen n locations have l∗ different location
types (where l∗ is not less than l), the PPCS algorithm selects

k-n other locations based on the entropy from the remaining
locations in a greedy manner. If l∗ is less than l, the PPCS
algorithm has to select (l− l∗) different location types, whose
semantic parameters are similar to the l∗ location types. For
every l selected location types, PPCS selects (k−n) locations
whose current existing probabilities are similar to the first n
chosen locations. Thus, (k − 1)× l candidate locations exist.
Then, the PPCS algorithm sorts all the candidate locations
according to their probabilities in ascending order.

(9) From the sorted candidate locations, the PPCS selects
(k–n) additional locations based on the entropy in a greedy
manner while ensuring that at least l/2 location types exist.

(10) After selecting the k dummy locations, for users
who want to preserve their POI, PPCS chooses (bl/2c − 1)
dummy POIs in which the users are more likely to
have an interest. Then, the LBS query q∗ is trans-
ported to the LBS provider. At this point, q∗ =

(uid , {(x1, y1) , . . . , (xk , yk)},R, {P1, . . . ,Pbl/2c}, where uid
denotes the user’s identity, {(x1, y1) , . . . , (xk , yk)} represents
the coordinates of all the dummy locations, R denotes the
radius of the client’s ROI and the set {P1, . . . ,Pbl/2c} rep-
resents all the dummy POIs.

Algorithm 1 PPCS Algorithm
Input: (1) Historical query probability P;

(2) Parameters: option, k , l;
(3) LBS query q = (uid , {(x, y),R,P}).

Output: LBS query q∗.
1: Compute the present query probability Q according to

P and the semantic information;
2: Sort elements in Q according to location type;
3: if (option == 1) then
4: Call Procedure-1;
5: else
6: Call Procedure-2;
7: ifa user has a privacy preservation requirement,
8: Select (bl/2c− 1) dummy POIs based on k dummies;
9: return q∗ = (uid , {(x1, y1), . . . , (xk , yk )},R, {P1, . . . ,
Pbl/2c})
10: else
11: return q∗ = (uid , {(x1, y1), . . . , (xk , yk )},R,P)

IV. ALGORITHM ANALYSIS
A. DEFENSE AGAINST A COLLUSION ATTACK
For nefarious purposes, passive hackers or attackers may
cooperate with an LBS provider or other users to compromise
some users’ location privacy. Here, we demonstrate that the
proposed PPCS algorithm can efficiently protect against such
attacks.
Remark 1: If increasing the size of the colluding group

cannot improve the possibility of identifying the true location
of a user from the dummies, we consider this algorithm
capable of protecting against a collusion attack.
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Procedure 2 Generating Dummies That Include the True
Location of a User

Input: (1) Location (x, y) of a user;
(2) Existing query probabilities;
(3) Parameters: k , l.

Output: k dummies {(x1, y1), . . . , (xk , yk )}.
1: Select an additional l−1 types of locations considering

the semantic location information;
2: for (1 : l − 1)
3: Select k − 1 candidate locations in each type of

location;
4: Choose k − 1 locations from the candidate locations
based on their entropy values;

5: return

Procedure 3 Generating Dummies That Exclude the True
Location of a User

Input: (1) Location (x, y) of a user;
(2) Parameters: k , l, n, R;
(3) Current query probabilities.

Output: k dummies and new radius {(x1, y1), . . . ,
(xk , yk )},R)}.
1: Divide the ROI into n sectors;
2: Generate n circular regions to cover the ROI;
3: l∗← number of location types;
4: if (l∗ < l)
5: Choose an additional l − l∗ types of locations;
6: for (1 : l − 1)
7: Select k-n candidate locations;
8: Greedily choose additional k-n locations from the

candidate locations;
9: return

The proposed PPCS approach can withstand a collu-
sion attack. A collusion attack is a type of attack involv-
ing multiple users. The location privacy of a user can be
efficiently preserved by choosing additional dummies in our
PPCS approach. If a hacker or attacker (hitherto denoted as
attacker) compromises userUA, he/she can obtain the location
information, which contains k locations of this user. Because
the current query probabilities of these k locations are approx-
imately the same and because any query probability may be
the true location of a user, the attacker can randomly select a
query probability from the k positions as the user’s true loca-
tion, even though the actual user location is not included in
the k locations. Thus, the probability of identifying the actual
location of the user is 0 or 1/k . The attacker subsequently
chooses user UB and intercepts his or her LBS query and
then obtains the location information of this user. However,
the probability that the attacker can successfully infer the
actual location of a user remains stable in our PPCS approach
because the dummies for different users are independently
generated. Therefore, among the intercepted k dummies, the
attacker can only make an uncertain conjecture concerning
the true location of the users, i.e., the attacker can randomly

speculate each user’s true location from the k dummies
while colluding with numerous participants. Thus, we can
conclude that the possibility of successfully identifying the
real location of a user remains stable in our proposed PPCS
approach.

B. DEFENSE AGAINST AN INFERENCE ATTACK
In this attack type, we assume that the LBS provider acts as an
active attacker who knows the historical queries, the historical
query possibility of each location, the users’ current queries
and the performance of a protection scheme.
Remark 2: If an attacker cannot correctly distinguish the

user’s true location from that user’s location information,
we consider this algorithm capable of defending against an
inference attack.

The proposed PPCS approach can be used to defend
against inference attacks. In our proposed PPCS approach,
regardless of whether the k locations we select contain the
user’s real location, PPCS is capable of ensuring k loca-
tions with minimum differences in query probability. Thus,
the LBS provider cannot be sure that the location information
includes the user’s true location when it receives the user’s
query.

In the analysis in this subsection, we assume that the loca-
tion information contains the true location of a user and that
the LBS provider knows this information. Although the LBS
provider has the historical query possibilities for all locations,
it cannot readily identify the true location of the user because
the k positions from the user have almost the same current
query probabilities and the location types have similar seman-
tic parameters and historical query probabilities. Despite the
efforts of the LBS provider, it will fail to reverse-engineer our
PPCS scheme because it does not know the location types
prespecified by users or their semantic location information.
Although the LBS can predict the semantic information of
each location type, that information is likely to differ from
the parameters prespecified by the user, which may produce
different dummy selection results.

In contrast, if we assume that the LBS provider knows that
the true location of the user has not been included in the
location information, then the LBS provider cannot deduce
the user’s true location because it does not know the num-
ber of sectors or the selected locations for a specific user
because our PPCS approach randomly selects dummies from
candidate locations. Although the LBS provider can attempt
to deduce the true location of the user based on the spatial
distribution of the selected k dummy locations, this attempt
will fail because the number of sectors is smaller than the
anonymity degree k in our PPCS approach. Thus, the k circu-
lar areas may generate more than one intersection area, and
some intersection areas will not enclose the real user location.
If the k circular areas generate more than one intersection
area, the provider will be unable to identify the intersection
area that includes the user’s true location. Even if the k
circular areas imply one intersection area, the provider knows
only that the intersection area contains the true location (e.g.,
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the shadowed area in Figure 5(b)), but will still be unable to
identify the user’s true location.

C. THEORETICAL ANALYSIS
In this subsection, we assume that an LBS provider may be
acting nefariously. Although the selected k locations have
equivalent or similar historical query probabilities in both the
PPCS approach and the DLS approach [23], the average prob-
abilities of successfully deducing the true location of a user
differ between these two algorithms. Although the selected
dummies cannot contain the true location of a user in either
the PPCS or the n-CD algorithm, the average probabilities
of successfully conjecturing the true location of a user using
these algorithms also differs. Let event X represent the LBS
provider, which filters the true location of a user from k loca-
tions, and let P(X = 0) and P(X = 1) denote the probability
of failure and the probability of success, respectively.

In the DLS algorithm [23], although the location infor-
mation contains the true user location, the LBS can only
randomly conjecture the true location of the user from k
locations when it obtains the user’s LBS query. Thus, we have
P(X = 0) = (k−1)/k and P(X = 1) = 1/k . Then, the math-
ematical expectation of X can be computed by Equation (8):

E(X )DLS =
1
k
. (8)

In our PPCS approach, the LBS provider cannot determine
whether the actual location of a user is included in the loca-
tion information; it can determine only whether the k loca-
tions include the true location of the user by the probability
of 1/2 and conjecture the true location of the user from k
locations when it receives the user’s LBS query. If the LBS
provider determines that the true location of a user is not
contained in k locations, then it must guess which locations
include the true user location. Here, we assume that an LBS
provider is aware of the number of sectors of the ROI and that
the LBS provider can obtain the actual location of a user once
it determines the n locations. If the LBS provider determines
that k locations do not contain the true location of the user,
then the probability of identifying the true location of the
user becomes 1/num. If the LBS provider determines that one
of the k locations contains the true user location, then the
probability of selecting the true location of the user becomes
1/k . Thus, we can obtain P(X = 1) = (1/k + 1/num)/2 and
P(X = 0) = 1−(1/k+1/num)/2 for the PPCS approach. The
mathematical expectation for X is defined in Equation (9):

E(X )PPCS =
1

2num
+

1
2k

. (9)

when k is greater than n, k must be smaller than num; there-
fore, we know that 1/k must be larger than (1/2k+1/2 num),
i.e., E(X )DLS is larger than E(X )PPCS.
In the n-CD algorithm [31], a user’s ROI is directly divided

into n sectors, where the value of n is equal to the value of k .
Then, we have P(X = 1) = 1 and P(X = 0) = 0. As shown
in Eq. (10), we obtain the expectation of X. When an LBS
provider discovers that one of the n locations contains the true

FIGURE 7. Entropy achieved by various schemes.

user location, we assume that it would be able to locate the
user’s true location.

E(X )n-CD = 1. (10)

The n-CD algorithm achieves the greatest E(X ) of the three
previously mentioned algorithms using the same assump-
tions.

V. SIMULATION AND ANALYSIS
A. SIMULATION ENVIRONMENT
To assess the performance of our designed PPCS approach,
we implemented it on a server with a 3.0 GHz CPU and
4 GB of memory. In this implementation, we assume that
the LBS provider’s service area contains 1600 equal-sized
cells, in which we generated 20 uniformly distributed POIs.
Each location is denoted by one cell. We associate each loca-
tion with a corresponding location type. In our simulations,
we assume that different users have different preferences
regarding anonymity.

B. SIMULATIONS FOR PRIVACY LEVEL
In the scenario in which a user’s real locations are included
in the dummy locations, we compare the privacy level of our
proposed PPCS algorithm and the privacy level of the DLS
algorithm [23] in terms of entropy.

Fig. 7 presents the simulation results for the privacy levels
of different approaches. The optimum entropy Hmax can
be calculated as Hmax = log2k . Generally, the entropy
increases as k increases. The optimal solution achieves the
highest entropy because the k value of every submitted loca-
tion has the same current query probability. Compared to
the DLS scheme, the PPCS scheme achieves higher entropy
because the DLS scheme considers only ancillary informa-
tion that hackers can exploit, whereas PPCS considers either
the semantic location information or the ancillary information
of each location type. The PPCS algorithm can achieve an
entropy close to the optimum value, which indicates that
PPCS can efficiently protect a user’s location privacy.

We investigate the relation between k and the privacy level
according to entropy and running time when a user’s real
locations are included in the dummy locations. Fig. 8 and
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FIGURE 8. Entropy of PPCS for various l values.

FIGURE 9. Running time of PPCS for various l values.

Fig. 9 illustrate the running times and entropies of the PPCS
scheme, respectively, for various l values. As shown in Fig. 8,
the entropy always increases as k increases. Different l values
result in different entropies (i.e., a larger l value generates
a larger entropy because the value of l directly influences
the number of candidate dummies selected, which enables
PPCS to generate multiple suitable dummies. Fig. 9 shows
the increase in the running time of PPCS for various sce-
narios. Additional candidate dummies must be selected by
PPCS while the value of k increases, resulting in greater time
consumption when generating dummies. As shown in Fig. 9,
a longer running time yields a larger l because the selected k
locations must belong to at least l/2 location types. When this
condition is not satisfied, other suboptimal dummy locations
must be chosen to replace dummies until the condition is
satisfied.

C. SIMULATIONS FOR E(X)
From the performance analysis in Section IV, the n-CD
approach achieves the highest average probabilities for suc-
cessfully identifying a user’s true location (i.e., E(X )) under
our assumptions. In this subsection, we compare the E(X ) of
the DLS and PPCS algorithms.

We explore the relationship between E(X ) and the value of
k. In this group of simulations, we let n equal four; the E(X )
of DLS and PPCS are defined in Eq. (8) and Eq. (9), respec-
tively. Note that E(X ) is influenced by both k and n in the

FIGURE 10. Simulation results for E(X).

FIGURE 11. Simulation results for E(X) of PPCS.

PPCS algorithm. As shown in Fig. 10, E(X ) decreases when
k increases because a larger k indicates that the LBS provider
cannot readily identify the real location of a user. Our PPCS
guarantees that the selected dummies do not include the real
location of a user, which enhances the challenges to the LBS
provider in distinguishing the true user location.

Fig. 11 provides the simulation E(X ) results of the PPCS
approach for various values of n. Generally, E(X ) decreases
while the value of k increases for a given n. E(X ) first
fluctuates and then remains stable. In contrast, the value of n
increases for a fixed k for the following reasons: the number
of cases for randomly selecting n locations from k locations
is Cn

k , i.e., nummax = Cn
k . Because C

n
k = Ck−n

k , for a specific
k , Cn

k increases with increasing n when n is less than k/2.
However, Cn

k increases while n increases if n equals k/2.
A similar trend appears when Cn

k is less than num for a given
value of k .

D. SIMULATIONS FOR ANONYMITY ZONE
Hackers can know only that the true location of a user is
not contained in the chosen k locations. The hackers can
infer which intersection area includes the true location of a
user based on the spatial distribution of the k chosen dummy
locations. We simulate the worst situation, in which a hacker
knows that the true location of a user is not included in
the k chosen locations. Although the hacker can infer the
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FIGURE 12. Simulation results for the anonymity zone.

true user location with a low probability, he or she knows
that the user must be within a certain intersection region
(e.g., the shadowed area in Fig. 6(b)) according to the spatial
distribution of the k chosen dummy locations, which is called
the hidden anonymity zone of a user. That is, the anonymity
zone is the ROI of the target users that hackers cannot infer.
In our designed PPCS approach, because the value of n is
less than the anonymity degree k , the spatial distribution of
the k chosen dummy locations generate anonymity zones, and
some of these locationsmay not contain the true user location.
In our simulation, we assume that the hacker knows the
anonymity zone that encloses a user’s real location. Based on
these assumptions, we evaluate the user’s hidden anonymity
zone. In our designed PPCS, the anonymity zone is affected
by the value of n and the amended parameter D for a specific
radius of the user’s ROI.

Fig. 12 provides the simulation results for the anonymity
zone of our PPCS and the n-CD approach proposed in [31].
In these simulations, we fix R at ten. The size of the
anonymity zone decreases as n increases. A large n produces
a smaller radius of each circular area, which decreases the
size of the anonymity zone (i.e., the overlapping of n cir-
cular areas). Fig. 12 shows that the anonymity zone of the
PPCS approach is substantially larger than that of the n-CD
approach. The size of the anonymity zone obtained by the
PPCS approach decreases more rapidly than that of the
n-CD algorithm as the number of sectors increases. Our PPCS
approach sets the ROI radius as the maximal radius of the n
generated circular regions, unlike the n-CD approach. There-
fore, our PPCS approach more efficiently preserves user
privacy than does the n-CD approach.
Fig. 13 shows the impact of parameter D on the anonymity

zone when R = 10. In PPCS, to generate n circular areas,
we define parameter D to amend their radii such that none of
the intersection points of the n circles is the true user location.
As shown in Fig. 13, a largeD value yields a large anonymity
zone because a largeD results in a large ROI radius for a user.
Thus, the size of the intersection zone of the n circular areas
is large. When D = 0.2, the rate of decline of the anonymity
zone size is higher than the rate of decline ofD = 0.1 because
the semidiameter of the n created circular areas decreases as n

FIGURE 13. Anonymity zone achieved by PPCS.

TABLE 1. Core syntax of the LBS(Service()).

increases, and a largeD value causes the size of the anonymity
zone to decline at a faster rate.

VI. EXPERIMENTS WITH LARGE-SCALE SIMULATIONS
AND REAL LOCATIONS
Experiments with large-scale simulations and real locations
are important for validating our PPCS approach. We devel-
oped an LBS Facebook API to test the validity of PPCS. The
system design and implementation are based on the cyber-
netics cloud software [32]. We used extensible access control
markup language (XACML) to define the privacy setting,
which can be enhanced by the LBS API. The core concept is
to add additional layers to hide users behind an identity-free
firewall and an anonymous identity layer. Thus, two layers of
defense are involved. First, a firewall layer protects all users.
Second, an anonymous identity layer completely hides users’
identities. The term ‘‘status ()’’ indicates that the LBS offers
real-time privacy enforcement. All LBS commands support
the functioning of these two privacy layers.

Table 1 lists the core syntax that enables the CTI LBS for
cyber security to attain the maximum level of privacy. When
the privacy is on (equal to 1), then the firewall service and
anonymous identity service are prompted to switch on. If they
cannot, the algorithm reports to the system, prepares the LBS
to take control, and starts both the firewall service and the
anonymous identity service before reporting to the central
service that the LBS(service()) is functional.
where
• ‘‘LBS(service( ))’’ is used to initiate the LBS and prompt

for a sequence of actions to support the LBS.
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• ‘‘check(status( ))’’ is used to denote privacy status as 0 or
1. When the status is 1, the risk of identity exposure is
high, and the identity firewall is set to the highest level
to cause it to revert to 0.

• ‘‘firewall(status( ))’’ is used to enable the firewall
(setting it to on).

• ‘‘ (status( ))’’ is used to turn the anonymous identity to
on to maintain privacy.

• ‘‘report(status( ))’’ is used to report to the central sys-
tems about issues regarding the service or at the end of
the commands.

• ‘‘action(status( ))’’ is used to prepare all steps for ‘‘pri-
vacy == 1’’.

A. ACCURACY TESTS
One approach to testing the accuracy of the CTI LBS for
cybersecurity is to adopt the F-measure, precision and recall
metrics. Precision is the ratio of correctly detected positions
with privacy preserved to the number of all detected positions
with privacy preserved:

precision =
tp

tp + fp
. (11)

Recall is the ratio of the true detected positions with privacy
preserved to the number of known positions:

recall =
tp
tv

, (12)

where
• True positives (tp) represent the number of correctly

detected positions with privacy preserved;
• False positives (fp) refer to the number of detected posi-

tions that do not actually exist; and
• True detected positions (tv) represent the total number of

correctly detected positions (tp+fn).
The F-measure is presented in terms of precision and
recall as expressed in Eq. (13):

F − measure =
2× precision× recall
precision+ recall

. (13)

High values F-measure values indicate better reliabil-
ity [33]. To ensure a reliable measurement, we conducted
two sets of experiments using private cloud services with
100 CPUs running at 3.0 GHz each with 64 GB of RAM
and 2 TB of storage to perform the experiments. In the first
set of experiments, a maximum of 10,000 experiments are
performed to identify the extent of the F-measure over the
number of experiments. In the second set of experiments,
the F-measure values are tracked for 10,000 experiments
over a period of time to test the robustness. We compare the
LBS(service( )) = ‘‘on’’ and the LBS(service( )) = ‘‘off’’
to identify any differences between the sets of experiments.
The results of the first set of experiments are presented
in Figure 14. The F-measure values range between 0.89 and
0.91 for the LBS(service()) = ‘‘on’’ and decrease to between
0.41 and 0.44 as the number of experiments increases to

FIGURE 14. F-measure values for a maximum of 100,000 simulations
between an LBS((service) that is ‘‘on’’ and an LBS((service) that is ‘‘off’’.

FIGURE 15. F-measure values when the LBS(service()) is ‘‘on’’ over a
period of 100 hours.

100,000. These results indicate that when the LBS(service())
is ‘‘on’’, the F-measure values remain large and ensures
a greater level of location privacy under the experimental
conditions.

The goal for the second set of experiments is to identify
the quality of service (in terms of F-measure values) over a
period of time when the LBS(service()) is ‘‘on’’ (because the
F-measure values must remain high for as long as possible
to protect the users). The experiments were conducted over a
period of 100 hours to test the robustness of LBS(service()).
We obtained the results five times per hour and calculated the
mean values. As shown in Figure 15, the F-measure values
decrease from 0.91 to 0.80 by the end of 100 hours of service.
The F-measure values are 0.86 after 70 hours. At this point,
the quality of service (QoS) has decreased significantly.

B. EXPERIMENTS WITH REAL LOCATIONS
Experiments with real locations for the LBS for cybersecurity
are required to test the robustness of our proposal by involving
actual people directly in the verification process. Gedik and
Liu [12] demonstrated their k-anonymity-based architecture
and algorithms through simulation results but did not test with
real data.We tested our work with 20 real volunteers to ensure
the validity of our LBS service.

Twenty volunteers were recruited in Southampton and
London. Each volunteer had an LBS setting of ‘‘on’’ or
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FIGURE 16. F-measure value comparison between Southampton and
London with LBS privacy ‘‘on’’ for the first hour.

FIGURE 17. F-measure value comparison between Southampton and
London with LBS privacy ‘‘off’’ for the first hour.

‘‘off’’ and were located at least 100 meters apart to test
the validity. The results from each volunteer were treated as
individual results. All the experiments were performed five
times, and the mean values were calculated. The F-measure
values indicate the extent of the accuracy in these experi-
ments. Figure 16 shows the F-measure values of the same
volunteers/identities between Southampton and London with
LBS privacy set to ‘‘on’’ for the first hour. Higher F-measure
values were reported in Southampton. Because London
has more people, buildings and traffic than Southampton,
the validity and robustness of the F-measure values can be
expected to differ.

Figure 17 shows the F-measure values of the same volun-
teers/identities between Southampton and London with the
LBS privacy set to ‘‘off’’ for the first hour. The trend is similar
to that of Figure 15, with the exception that the F-measure
values are close to half of the F-measure values in Figure 15.
Our proposed LBS privacy preservation approach provides
significantly better location privacy and user anonymity in
our real-location experiments.

VII. CONCLUSION
Ensuring the location privacy of LBS users is important in our
increasingly connected society. To effectively preserve users’
location privacy, we design an efficient approach named
PPCS that efficiently generates dummy locations for which
we consider the semantics of location information that may be
used by hackers. Our proposed PPCS approach can generate

dummy locations that do not contain the real location of a
user and resist inference and collusion attacks. The simulation
results show the effectiveness of our PPCS approach. Com-
pared with the existing approaches, our PPCS approach has
the average optimization gain of 85% and 60% on E(X ) and
ROI metrics, respectively.

However, the trajectory privacy preservation for mobile
users in LBS leaves as a challenge. In our future work, we are
going to design efficient framework and algorithms to protect
the trajectory privacy of users in LBS.
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