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ABSTRACT To mitigate global warming and energy shortage, integration of renewable energy generation
sources, energy storage systems, and plug-in electric vehicles (PEVs) have been introduced in recent years.
The application of electric vehicles (EV) in the smart grid has shown a significant option to reduce carbon
emission. However, due to the limited battery capacity, managing the charging and discharging process of
EV as a distributed power supply is a challenging task. Moreover, the unpredictable nature of renewable
energy generation, uncertainties of plug-in electric vehicles associated parameters, energy prices, and the
time-varying load create new challenges for the researchers and industries to maintain a stable operation
of the power system. The EV battery charging management system plays a main role in coordinating the
charging and discharging mechanism to efficiently realize a secure, efficient, and reliable power system.
More recently, there has been an increasing interest in data-driven approaches in EV charging modeling.
Consequently, researchers are looking to deploy model-free approaches for solving the EV charging man-
agement with uncertainties. Among many existing model-free approaches, Reinforcement Learning (RL) has
been widely used for EV charging management. Unlike other machine learning approaches, the RL technique
is based on maximizing the cumulative reward. This article reviews the existing literature related to the
RL-based framework, objectives, and architecture for the charging coordination strategies of electric vehicles
in the power systems. In addition, the review paper presents a detailed comparative analysis of the techniques
used for achieving different charging coordination objectives while satisfying multiple constraints. This
article also focuses on the application of RL in EV coordination for research and development of the cutting-
edge optimized energy management system (EMS), which are applicable for EV charging.

INDEX TERMS Artificial intelligence, electric vehicles, machine learning, management, smart grids.

I. INTRODUCTION Numerous algorithms, such as rule-based and optimization

Thanks to the recent advancements in the battery industry, and
the growing pressure from climate change and greenhouse
gas emission reduction policies, the concept of plug-in elec-
tric vehicles (PEVs) has been prompted. The PEVs directly
use electricity instead of fossil fuels, thus providing environ-
mental and economic benefits [1]. The increasing numbers
of PEVs will significantly affect the power systems’ electric
load profiles, creating dynamic and unpredicted demands for
electricity that pose new challenges and constraints on the
grid. Thus, developing high-efficiency energy management
controllers for the coordination of EV charging systems is
becoming a challenging task.
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methods, have been proposed in the literature for energy man-
agement systems [2]. Rule-based approaches are constructed
by pre-defined policies, heuristics, or human expertise to cal-
culate the energy distribution of multiple power sources. This
method is highly reliable and robust but lacks the adaptability
and flexibility to changing cycles. The optimization tech-
niques formulate a mathematical model of an environment
and calculate the optimal behavior systems. However, in the
case of an EV charging management application, the system
is highly dynamic, and optimization techniques cannot be
used to evaluate the optimal behavior for EV charging man-
agement systems.

The literature is congested with extensive and detailed
reviews analyzing the PEV charging impacts on the elec-
tric distribution system [3], [4], and [5]. Some researchers
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highlighted the benefit of using vehicle-to-grid (V2G) tech-
nology, which is discharging some of the energy stored in the
batteries of PEVs into the grid, to reduce the peak demand
in the microgrid [6]. The literature review presented in [1]
summarizes the impact of EV charging and presents the pros
and cons of charging with V2G mode. The impact of V2G
on electric power systems is also reviewed in [7]. Recent
studies focus on analyzing V2G service impact on increasing
the degradation process of the PEV battery [8].

The integration of PEVs poses several challenges to the
operation and control of electric power systems. New PEV
battery management systems need to be developed to over-
come these challenges, to operate and control the charging
mechanisms and energy flow in the grids with increasing and
high penetration of PEVs. The coordinated charging problem
is arelevant research topic that has been extensively studied in
the literature, and various solutions have been [9], [10], [11].
For instance, survey papers [12] and [13] show that for the
distribution networks to accommodate the increasing demand
for PEV charging in the future, smart charging strategies
must be put into operation. The studies related to PEV charg-
ing coordination are usually classified by their optimization
objectives and charging approaches.

Researches in [14] emphasized the smart grid development
to set forward PEV movement in a positive direction. The
smart grid enhances EV coordination strategies by allowing
communication and control. The smart grid is an electric
power grid that uses two-way data exchange through commu-
nication technology with several objectives such as: to save
energy, reduce cost, increase reliability and transparency, and
enable new applications such as renewable distribution gen-
eration, electric-vesicles etc. [15]. Several surveys conducted
on EV transportation with smart grid systems are analyzed
and summarized in [16].

EVs interact with elements in an environment with high
uncertainties such as; the status of the power grid, the demand
of other EVs, EV arrival and departure times, battery state of
charge, availability of chargers, price of electricity, charging
preferences, etc. Furthermore, the integration of renewable
energy sources causes high uncertainty because of their inter-
mittency.

It was noticed that the literature pays less attention to
the handling of uncertainties in the systems, which involve
human behavior as in connecting/disconnecting loads and
PEVs, or as unpredicted data such as the intermittency of
renewable sources, etc. Since a smart grid is a largescale sys-
tem, it is exposed to frequent changes such as grid voltages,
EV arrival/departure times, frequency fluctuation, distribu-
tion system loading etc. In this case, large data requirement
and lack of scalability makes centralized algorithms unfeasi-
ble to obtain global information and is relatively expensive to
implement. For instance, [17] and [18] proposed a centralized
strategy in real-time that runs a load flow to update data every
5 minutes. The network data is required for the control of
commands sent to the chargers to avoid voltage violations
and electrical equipment overloading. However, this method
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is unable to define individual EV driver’s status or needs,
such as energy requirement or arrival and departure times.
Also, centralized coordination faces difficulties in responding
to intermittent power sources such as solar or wind because
of the frequent changes in the grid voltages. This creates a
significant disadvantage in the centralized approach of EV
energy management. A large number of EVs in the system
need great computational power and large data-transfer rates.

The authors of [19] concluded that the correct understand-
ing of future data can significantly improve the performance
of online algorithms. A day-ahead (DA) charging scheduling
method is proposed in [20]. While [21] suggests solving EV
scheduling within the smart environment to minimize the
generation and charging cost. A centralized approach by [22]
minimizes power losses. However, none of these works
addressed the uncertainty of driving demand or electricity
prices, which are the smart grid’s challenges [23]. Decentral-
ized coordination can meet the driver’s requirements while
considering the grid and power quality. Decentralized control
algorithms are deemed as a promising alternative for several
reasons suggested in [24]. The previous studies based on
the optimization approaches cannot perform well in case of
high uncertainties and flexibility for modeling the behavior
of EV.

Some researchers have also utilized the concept of
Machine Learning (ML) to address the issue of EV energy
management systems. In this case, real-time charging control
is necessary, but because these parameters are highly variable,
huge data sets, and uncertain prediction, the adaptation of ML
for EV charging control has become crucial [25]. ML models
can use both historical data as well as daily variables, such
as weather and traffic data, to accurately capture the trends in
charging behavior. The transportation sector acquires a large
amount of data collected from multiple sources such as the
Global Positioning System (GPS), closed-circuit television
(CCTV), road sensors, event reports, etc. Handling such an
amount of data for control and management is rather chal-
lenging if it is done through conventional methods. Therefore,
recently ML approaches are becoming recommended in both
the research field and industrial applications [26], [27].

More recently, there has been an increasing interest in data-
driven approaches in EV charging infrastructure modeling
and control. Consequently, researchers are looking to deploy
predictive analysis methods for solving EV charging manage-
ment problems with uncertainties. A comprehensive review
in [25] presents the use of supervised and unsupervised ML
as well as Deep Neural Networks (DNN) in the literature for
charging behavior analysis and prediction. A challenge with
ML predictive models is that they are trained with specific
data sets, which can only be used for a particular, well-defined
case. For instance, a predictive driving behavior model for
a specific city is obtained by training a particular data set
obtained for that location. Therefore, the same model cannot
be reused for other geographical locations. On the other
hand, algorithms that are based on Artificial Intelligence (AI)
are powerful approaches with outstanding advantages in
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complicated decision-making problems [26] and can be
applied to systems with ongoing changes.

According to [25], many studies showed the superiority
of Al models over the probabilistic models in performance.
Authors in [28] review the deep learning methods applied to
the transportation sector, such as traffic incident processing,
travel demand prediction, traffic signal control, and traf-
fic flow prediction without covering the EV coordination
problem. However, several existing ML-based techniques are
highly dependent on the nature of the datasets and cannot
perform well if introduced in dynamically changing envi-
ronments. However, some new unsupervised ML techniques,
using Deep Learning (DL) and Reinforcement Learning (RL)
are more suited to such environments. RL utilizes trial-
and-error in order to learn the best action for maximizing
the reward. Deep Reinforcement Learning (DRL) integrates
reinforcement learning with deep learning, providing mod-
els that interact with the environment while maximizing the
long-term reward. Therefore, the deep reinforcement learning
agent interacts with the real-time variations in the electricity
prices and EV charging schedules, while providing online
solutions. It also has different execution methods includ-
ing the simplex and hybrid algorithms, in their applications
in EVs.

The knowledge production within the research field of EV
battery charging infrastructure management is accelerating
at a tremendous speed while at the same time remaining
fragmented and interdisciplinary. This makes it difficult to
keep up with state-of-the-art technologies and to be at the
cutting edge of research, as well as to assess the collective
studies related to the PEV charging management area of
research. Therefore, an updated literature review on this topic
is more relevant than ever.

Although there exist several review papers with regards
to EV charging, they do not focus on charging coordination
from a data-driven approach, specifically with the applica-
tion of learning-based coordination. For instance, the review
in [29] classifies the literature in EV charging to infras-
tructure planning, charging operations, public policy, and
business models. Various technologies and standards for EV
charging is reviewed in [30] as a case study from Germany.
The authors of [31] reviewed the models and algorithms
related to the location problem of charging stations. The
studies related to EV charging scheduling, forecasting, and
clustering are summarized in [11]. In contrast, the survey
work presented in this article is solely focusing on the
RL concepts for EV charging coordination. This extensive
review addresses the solutions, opportunities, prospects, and
algorithms used in solving the EV charging management
problem.

The key contributions of the paper are as follows:

o Classify different types of EV charging strategies and
discuss the limitation within the environment of high
uncertainties.

« Address the application of the RL-based approach in EV
coordination and identify algorithms and objectives.
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« Provide context and guidance to researchers seeking to
apply RL-based approaches to solve problems of the
charging schedules of the EVs.

« Discuss the limitations of the existing studies and iden-
tify future research directions.

Il. BACKGROUND

A. EV CHARGING CONTROL STRATEGIES

This section presents the charging strategies classifications
found in the literature. Coordination strategies are divided
into two categories: centralized and decentralized, which
depend on the kind of information available and communi-
cated between the EV and power network [9]. In the cen-
tralized strategy, a central unit collects information about the
grid, load, and power generation to decide on the charging or
discharging of the EV fleet. The decentralized strategy is a
distributed charging strategy where each EV driver decides
on when to charge the battery, assuming there is no central
controller.

Three state-of-the-art controlled charging schemes were
introduced in [10]. Indirectly controlled charging, smart
charging, and bidirectional charging. Controlled charging
means that the EV charging process is coordinated according
to the controlling parameters.

As the name suggests, indirectly controlled charging does
not affect the charging parameters, like charging duration, in a
direct way. However, it may control other parameters that can
affect the charging parameters. For instance, the energy cost
can be managed as part of the charging mechanism that will
influence users to charge at required times throughout the day.
The charging rates are defined based on the power system to
avoid congestion, voltage violations, and overloading of elec-
trical network equipment. In return, the charging parameters
are controlled indirectly.

Smart charging coordinates the charging operation through
managing sets of parameters to reach certain goals like min-
imizing power loss, reducing charging costs, reducing the
burden on the grid, maximizing the operator’s profit, etc.

Bidirectional charging is a mechanism that permits EVs to
act as storage systems by allowing EVs to inject energy into
the smart grid through a discharging process. This coordina-
tion scheme is deployed with an objective to stabilize the grid
that has intermittent renewable energy sources.

In [11], the authors classify EV charging control schemes
into three types of strategies. They are scheduling, clus-
tering, and forecasting strategies. The paper explains the
benefits and risks of each strategy and focuses on the EV
scheduling strategy, which uses optimization objectives such
as economic saving, peak reduction, network utilization, and
market participation. The authors concluded that centralized
charging faces a challenge due to high computation require-
ments and lack of scalability. Most of the researchers focus on
decentralized strategies and hybrid centralized-decentralized
management to reduce system costs. The clustering studies
have shown adverse outcomes and led to difficulties with the
assessment process and suggested using statistical measures
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to overcome this problem. The forecasting of EV demand
is unpredictable, which is challenging in large-scale EV
demand. The probabilistic methods for EV scheduling are
compared with supervised/unsupervised Al methods. Finally,
the review in [11] compares the strategies with summary, data
used, region and software used.

Other studies focus only on centralized and decentralized
control [31], [32]. Centralized coordination is impractical due
to poor scalability and its requirement to know user behavior,
while decentralized strategies are scalable but suffer from
uncertainty issues [32]. On the other side, decentralized con-
trol requires accurate prediction and forecasting of consumer
reaction, which is not possible in the case of a dynamic EV
environment.

Combining EVs and intermittent renewable generation
requires more flexibility because of the high fluctuation in
renewable generation based on the weather conditions. A ded-
icated chapter in [33] discusses three main control methods
which investigate the role of EVs in the modern electric-
ity network project Intelligent Zero Emission Urban System
(IZEUS) in Germany. There are three main control methods
for integrating EV's with renewable energy generation: direct,
indirect, and distributed autonomous control methods. For
direct control, the scheduling operation is done by a third
party, such as the system service provider or utility. For
perfect control, information about the battery and consumer
preferences are required. The high implementation of renew-
able sources in the power network caused an increase in the
share of distributed generation. In return combining flexible
loads with high penetration of distributed generation causes a
high degree of uncertainty compared with the conventional
situation. The direct control method used in this situation
is the disconnecting of EVs from the grid zones that face
breakdowns.

Indirect control is realized by applying incentives such as
dynamic electric tariffs or time-of-use (TOU), which reflect
on the power system status. In this case, the consumer has
two choices: Reacting with the incentives or disallowing the
operating schedule from controlling the EV locally. How-
ever, predicting the PEV’s reaction to the applied incentives
proposes a challenge in the indirect control method. This
causes an increase in forecast errors and thus, points to the
superiority of the direct control method over the indirect
method in terms of reliability. Therefore, the advantage of
direct control over indirect is better reliability, but at the same
time, it requires more information and communication.

In autonomous control, there are no external control sig-
nals, and EVs only use internal sensors. The deviation in
voltage and frequency can act as an indicator that shows if
an increase in the generated power is required in the case
of negative measurement and vice versa. Hence, the volt-
age and frequency measurements are related to the state
of the system, making them suitable control signals. Some
researchers proposed controlling PEVs using frequency [33].
Voltage measurements can also be used by EVs to observe
the local situation in order to control the charging behavior
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optimally. This, in turn, leads to optimized integration of
renewable energy resources and flattening the peaks resulting
from simultaneous charging.

The heart of the EV economy is the control of the EV
charging and discharging mechanism or what is called the
control strategies, which are categorized into rule-based and
approximation-based approaches [2]. Rule-based strategies
are set without the requirement of prior knowledge of the
system and solve the charging problem in real-time but do not
necessarily reach the optimum solution. The other category of
EV charging management strategies follows an optimization
algorithm that solves an objective cost function with solu-
tions such as off-line and prediction-based approaches, which
require prior knowledge of the system and has a high compu-
tation cost. However, learning-based strategies can balance
between having an online scheme and reaching an optimum
solution. Machine learning approaches can be supervised,
unsupervised, RL, Deep learning, and deep RL, see Fig. 1.
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FIGURE 1. Energy management methods for electric vehicle charging
coordination.

The most recent papers consider EV coordination with the
EMS within a smart grid. The smart grid concept allows
for energy exchange among PEVs, renewable sources, and
energy storage systems. In this case, the EV coordination
scheme becomes part of the EMS. A review of the concept
of EMS and the different objectives and control architectures
is presented in [34].

B. MACHINE LEARNING

Machine learning (ML) is the program’s ability to learn from
experience through a training algorithm. The classification of
ML approaches is in Fig. 2. ML methods used for obtain-
ing the behavior of EV charging are reviewed in [25]. The
paper explains in detail the ML approaches for predicting
the charging behavior and does not discuss the coordination
problem. Initially, ML programming starts with the learning
process, which involves finding the trend and patterns in
the training dataset and ends with the model that can make
accurate predictions. These ML algorithms are categorized
as supervised unsupervised. Another approach to teaching
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FIGURE 2. Machine learning approaches and definitions.

a machine by rewards when it achieves the expected job
regardless of having a model is called RL.

There are two types of machine learning approaches super-
vised learning (SL) and unsupervised learning (UL) [35].
A continuous response variable is called a regression prob-
lem, while a categorical response variable is called a classi-
fication problem. Energy is therefore taken as the continuous
variable, while night/day charging is a categorical variable.
The learning process of SL or backpropagation approaches is
defined in the literature as forward neural networks (FNNs)
and recurrent neural networks (RNNs). The system param-
eters need to be known to supervise the training of these
types of neural networks (NNs). In SL, the training data sets
contain input variables and corresponding response variables
called target variables. The SL is grouped by different learn-
ing styles such as linear regression, decision trees, random
forest, support vector machine, k-nearest neighbor. Unlike
SL, UL are statistical models that use training data sets of
input variables only without target variables. This type of
learning is deployed for clustering EV consumer behavior
patterns. The types of UL are k-means clustering, Gaussian
mixture model and Kernel density estimator.

A generalized type of ML is the RL, an approach where an
agent learns from the environment from previous actions and
does not need a model of the environment. After periodically
making action decisions, the algorithm learns and observes
the returned rewards, which is trial and error. The process is
repeated by adjusting the policy of selecting certain actions
to find the optimal strategy, yielding to the highest sum of
rewards.

Another type of learning is called deep learning, and it
is the composition of a large number of learned functions.
It specifically uses hierarchy concepts that are defined by
simpler and abstract representations. Multilayer Perceptron
(MLP), Artificial Neural Networks (ANN), Recurrent Neural
Networks (RNN) are examples of DL.

In the concept of energy management and control, the SL
approach assumes that events are independent of previous
events, while this cannot apply in real-world problems that
have dependable events. For instance, the optimal strategy
for coordination of electric vehicles’ charging is a sequential
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decision-making problem. This is because the parameters
involved in EV charging coordination depend on previous
events in time. In [25], RL techniques was used to provide
solutions for EV problems concerning complex scheduling,
leading to the application of RL techniques in [26] con-
cerning smart grid. The smart grid application was mainly
about scheduling the charging in dynamic urban environ-
ments. Therefore, the literature is surveyed to find the RL
approach-based used for EV charging.

C. REINFORCEMENT LEARNING

The learning agent in RL techniques observes the input state
parameters obtained from the environment and chooses cer-
tain actions in order to maximize the reward. The learning
agent in the EV charging problem is the charging manage-
ment controller, which uses trial and error to decide on the
best actions to execute in order to achieve the largest cumula-
tive reward. Actions can affect the current and future rewards,
so the cumulative reward is considered in RL algorithms.
Therefore, the RL algorithm aims to achieve a certain goal
which is reflected in the reward, that the learning agent tries
to maximize through choosing the best actions depending on
the observed states [36].

This article presents a comprehensive survey of the recent
studies in the learning-based approaches in EV charging
management. The application of RL algorithms in energy
management can be generally classified into two categories:
Simplex and hybrid algorithms. Simplex algorithms are algo-
rithms in which the policy of energy management is derived
using only one algorithm, such as Q-learning, Sarsa and
Dyna algorithms [37]. On the other hand, hybrid algorithms
integrate other types of algorithms with RL algorithms to
derive the policy. These algorithms may include predic-
tive algorithms, deep learning and model predictive control
(MPC) [38]. The integration of additional algorithms leads
to a more realistic and efficient approach to control EVs in
real-time.

1) MATHEMATICAL REPRESENTATION

Reinforcement learning learns by trial and error to reach an
optimal policy [37]. The application of RL is effective for
non-stationary environments that change over time. This is
applied to the RL algorithm as a constant weight o to make
the recent reward heavier than past ones. RL can be applied
to a sequential decision task such as the discounted episodic
Markov Decision Process (MDP).

The reinforcement learning cycle is illustrated in Fig.3,
which shows the basic elements of an RL system. In an MDP
problem (S, A, y, P, r), where S is a set of all possible states,
A is the set of all possible actions at states;, and the reward R is
discounted and cumulative reward using a discounted factor
y € (0, 1]. In the RL learning process, for every episode,
the next state sy is based on the transition probability
P(st+11s¢, a;) and the reward. Policy is the function that maps
the new state to the selected possible action a;. Policy m;(als)
is the probability that a; = a and 5, = 5.
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FIGURE 3. Illustration of the reinforcement learning cycle.

At each time step ¢, the agent receives the state s; € S from
the environment. Then, the action a, € A of state s; is chosen
by the agent using a policy m;(als) to maximize the reward
rr+1 € R. The environment, in its turn, sends an updated 7,41
reward as a reaction to the agent’s chosen actions at every
time step. The process is repeated until the termination state
or time step has reached its limit [37].

A complete probability distribution of the environment’s
respond at time ¢ + 1 to an action taken at time ¢ depends on
previous actions and rewards.

/
Pr{St+1 =8,rt+1

=r|S;,a;,r;,S[_1,a;_1,...,rl,S(),a()|,} (1)

MDP has a clear basis of choosing the action and new state
s;+1 = s att + 1 considering the state s;and action a; at ¢
only without the need of previous states and actions, where s’
is the next new state value.

Pisir1 =811 =rls,al,} )

‘When the agent follows a certain policy, the expected value
of the state V7™ (s) for an MDP problem is called the state-
value function for the policy m. The expectation when using
policy 7 is denoted as E, and i is the iteration number before
end of an episode [37].

o0 .
V() = Ex (Rilsy = s} = Ex {3 viricils =5} @)

The value of the action a under the same given policy fol-
lowed by the environment in state s is called the action-value
function for policy = denoted by Q7 (s, a).

00 .
0" (@) = Ex (Y Viritls =s.a =af ()

The objective RL algorithms is to maximize the long-term
reward and this is done by policy iteration. The concept of
policy iteration is the bases of RL algorithms and consists of
three steps: 1) Policy initialization, 2) Policy evaluation and
3) Policy improvement [36].

RL algorithms can be classified into two groups;
value-based and policy-based methods. For value-based,
the agent learns policy by updating the value function, and
for policy-based, the policy is learned straight forward.
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Monte-Carlo method (MC) and Temporal-Difference
method (TD) are RL methods. The TD method has a faster
convergence than MC because it does not wait to make an
update at the end of the episode, but rather it makes an update
within an episode [37].

TD method is divided into two categories:1) on-policy
TD control (Sarsa, Actor critic) 2) off-policy TD control
(Q-learning). The state-value functions are extended to the
action-value function, decomposed to action and state, using
the Bellman equation. On-policy means that the selecting
policy and learning policy are the same. Where else in the
off-policy method, they are the different. The mathematical
representation for V7 (s) and Q7 (s, a) of the above RL meth-
ods are summarized in Table 1.

TABLE 1. Sate and action values of model free RL algorithms [36].

RL learning | V™ / Q™(s, a) for current step i in episode

method

Simple V(se) « V(s) + a(R, — V(sy)) ®)

Monte Carlo

Simplest TD V(sy) « V(sy) + 6)

a (Tt+1 + YV (sehn) — Viil(st))

Sarsa Q(spar) « Q(spar) + )
a(r + ¥ Q(Ses1, Ars1) — Q(se, at))

Q-learning Q(sp,ap) « Q(spap) + )
a (7” + ymaxg,,,Q(Se+1, Arer) — Q(se, a:))

Q-learning is a widely used off-policy algorithm and it
is a value-based method. This method obtains all possi-
ble actions of the next step and chooses the maximum Q,
where else Sarsa uses the next values’ estimation. These are
RL basic learning algorithms referred to as one-step return.
Online incremental method is called eligibility trace such as
Kernel-based RL (KBRL) [37]. Deep neural networks can
approximate RL components in deep RL method such as
Deep Q-Networks (DQN) and Deep Deterministic Policy
Gradient (DDPG). RL algorithms are improved by value
function approximators, policy gradient and actor-critic to
accelerate learning [37].

IIl. LITERATURE ANALYSIS APPROACH
A. CRITERIA FOR INCLUDING STUDIES
The method used to conduct this critical review paper is
proposed in [39] to present a detailed survey and analysis of
the peer-reviewed literature related to our topic, EV charg-
ing management, and discuss the theories presented in the
surveyed papers along with their hypotheses, methods, and
results if they exist. The advantages and drawbacks of certain
methods are discussed along with their practicality in solving
the EV management problem. The critical review follows a
systematic review, as illustrated in Fig. 7.

First, the criteria, of included studies, are defined accord-
ing to the research topic: EVs charging coordination based
on unsupervised machine learning methods specifically
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Criteria for

Study selection

Identification of .
studies

including studies

Data extraction

FIGURE 4. Process followed in systematic review.

the RL-based approaches. Firstly, we define and consider the
keywords relevant to the topic, see Table 2. A research term
is a combination of all main terms: electric vehicle, charging
strategy, coordination method and objectives, with a selective
term either from Group 1 or Group 2. Table 2 presents the
keywords that were used to find papers in peer-reviewed
journals related to the topic in online databases.

TABLE 2. List of search terms.

Group 1 Group 2
Electric “Electric vehicle” “trar‘lgsportition”
Vehicle OR "PEV
OR “HPEV”
“charging” “discharging”
OR “centralized” OR “V2G”
. OR “online” OR “renewable”
% (;ltizil;yg OR “schedule” OR “storage”
OR “smart” OR “energy”
OR “distributed” OR “demand
OR “decentralized” response”
“coordination” “uncertainty”
OR “Q-learning” OR “data”
OR “Reinforcement” OR “predictive”
a8 . OR “RL” OR “model”
:<Z: (ST OR “unsupervised” OR “future”
OR “DRL”
OR “AI”
OR “ML”
“electricity price” “grid”
OR “losses” OR “smart grid”
OR “battery” OR “operator”
a8 . OR “cost” OR *“transformer”
<Z: Qs OR “load” OR “aggregator”
OR “satisfaction”
OR “peak”
OR “SoC”

Keywords were selected according to characteristic fea-
tures of RL and EV charging problems. The two groups
of keywords were selected based on the inputs, constraints,
objective, coordination scheme, and the algorithm of the
RL-based framework used for the EV charging problem.

In the following two steps (2nd & 3 the electronic
database considered in this search is defined as (Scopus,
ISI Web of Knowledge, Google Scholar). The studies were
identified based on the search results. In the next step, the
studies resulted from the search in the online databases were
examined by screening the abstract and selected for surveying
if the results of these paper were considered beneficial and
promising.
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The fourth step in the survey is the data extraction,
it includes classifying the information obtained in each
research according to methods, objectives, algorithms, and
contributions. Analysis of the studies selected was per-
formed, and the advantages, disadvantages, contributions,
further improvements, practicality, and several other aspects
of the EV management problem were discussed and evalu-
ated. Then the work’s quality is assessed according to the
published journal rank, the author’s scientific contribution,
paper number of citations, methods used in the research work,
highlighted weakness, and the authors’ contribution.

In the final step, we sort the studies and outcomes into
different subtypes and classifications and compare work out-
comes accordingly. Therefore, this survey paper provides a
detailed discussion of the RL-based solutions used in the
EV management problem and explains the drawbacks of
traditional approaches to the problem while guiding scholars
to improve the existing methods.

IV. STUDIES REVIEWED

A. PAPERS INCLUDED IN THIS STUDY

The papers included in this critical review include journal
articles, conference papers, reports and PhD dissertations.
A geographical distribution of the contributing countries of
the corresponding authors’ affiliations is plotted in Fig. 8.
The most contribution comes from China, the United States,
Canada, then Europe. At the same time, China has the World’s
largest EV market shares and global electric car sales. It is
logical to say that counties with accelerating sales of EVs
subsequently are contributing to the research field related to
EV charging coordination with advanced artificial techniques
based on the RL approach.

B. EXISTING LITERATURE ON HANDLING CHARGING
COORDINATION WITH UNCERTAINTIES

Modeling and simulation are useful for EV coordination
applications, but they contain assumptions and uncertainties,
which can cause accuracy limitations. Uncertain PEV load
demand is considered one of the challenges in EV charging
scheduling approaches.

As addressed in [40], finding the global optimal with a
large population and random EV arrivals is not practical with-
out the information of future loads, arrival times and charging
periods. The study suggests a scalable distributed charging
mechanism that finds a local optimal from individual EVs
over a current set in a local group. The study in [40] is
a simulation-based evaluation that proposes a local optimal
scheduling scheme instead of a globally optimal schedul-
ing scheme. The information required for system operation
such as feeder loading, network congestion, EV demand are
often unavailable to make informed decisions. Therefore,
a stochastic approach is used instead of deterministic models
to address uncertain PEV load demand [41].

Another way of handling the charging optimization prob-
lem with uncertainties from driver demands is by using
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FIGURE 6. Summary of the parameters involved in the EVs charging coordination problems solved using RL approaches.

dynamic charging, model predictive control (MPC), and
driving control solution as simulated in [42]. Deploying
MPC-based feedback control is used to convert the problem
from optimization to solving for least-squares. An MPC tech-
nique optimizes the plant’s future behavior by calculating
future adjustments as a sequence of controlled variables, and
this process is iterated through the following time intervals;
surveyed in [43]. The studies in [44] and [45] theoretically
conclude that MPC is useful for handling uncertainties asso-
ciated with distributed analysis.

Most common approaches have widely adopted MPC over
dynamic charging and cost-driving schemes. [46] assumes
the demand for the load is periodic in time and presents
a plug-and-play approach based on MPC, aiming to bring
the fluctuations in voltage to a minimum. Two studies [45]
and [44] minimize load variation by predictive deferrable load
control.

Not considering the load demand distribution, an online
MPC approach is proposed in [19] instead of using generic

VOLUME 9, 2021

convex optimization. The arrival times of EV are consid-
ered through statistical modeling. Dynamic programing with
finite-horizon is used to model the problem of providing
an online schedule. The model has continuous state-space
and action-space. The future demand is unknown, but rather,
the estimation of its statistic information is used where the
charging cost is a function of the load demand. The charg-
ing coordination objective is to minimize charging cost and
impact on the grid.

Dynamic programming approaches by [47] utilize itera-
tive methods and can obtain optimal results. However, this
method cannot predict under uncertainties. On the other hand,
the day-ahead scheduling approach in [48] and real-time
scheduling approach in [49] minimize uncertainties by robust
optimization [50], [50] or stochastic optimization [51]. Real-
time scheduling in [49], [49] is a model-based approach that
highly depends on modeling the environment and the system
parameters. However, deep learning (DL) in neural networks,
reviewed by [35], uses an automated learning procedure that
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does not include human interference and is of hierarchical
nature.

The existing techniques for handling the charging coor-
dination with uncertainties cannot perform well with the
flexible and uncertain characteristics of the EV model. Thus,
aresearch gap exists in order to accurately model the charging
coordination with uncertainties. Hence, the next section intro-
duces the concept of RL to address the EV charging problem
with different RL techniques in the literature.

C. THE EV CHARGING MANAGEMENT PROBLEM WITH
REINFORCEMENT LEARNING APPROACH

This section explains the recent techniques of the RL used
in the EV charging management problem. The novelty of
the survey is to explain the RL approach in EV charging
management problems with respect to explaining the states,
rewards, constraints, and algorithms used in the recent work.

The EMS’s primary function for EV charging is to bal-
ance the power distribution of different power producers or
consumers with an optimization goal. The EV coordination
problem is part of the EMS used to control the charging
parameters and achieve specific objectives such as operation
objectives or financial satisfaction.

Operational performance objectives mentioned in the lit-
erature are, for example, load curve flattening, fairness in
charging, minimizing voltage variation, avoiding transformer
overloading, etc. The financial objectives are also considered
as user satisfaction which is a type of objective that aims to
minimize operating costs. Examples of financial objectives
are charging cost minimization, power loss minimization,
operator profit maximization, electrical network utilization
maximization, etc. A summary of the inputs or states, objec-
tives constraints, and RL algorithms found in the reviewed
literature is illustrated in Fig. 9.

Solving the problem of managing the charging EVs is
mostly an optimal control problem [52]. To operate the
emerging grid optimally and efficiently, different methods
were used in energy management systems or EMS. The
strategy of solving energy management problems begins with
gathering inputs and using them in an optimization frame-
work to achieve economic and technical objectives under
some constraints using some RL algorithms [53].

1) INPUTS

To develop an RL solution, some parameters define the state
of the environment, which the agent read as inputs to take
actions to change the state of the environment toward the
desired goal. After surveying several papers (see Table 3),
many parameters in the environment have been used depend-
ing on the desired objectives of those papers.

Some parameters have been used by many researchers as
state features of the environment. Their recurrent usage may
imply that these parameters significantly represent the state
of the environment. Another implication is that they are the
parameters most needed by the agent to achieve the desired
objective set by the specific study. For instance, studies that
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are concerned with meeting the EVs’ charging demands used
the battery SOC and the EVs’ demands as state parameters
such as [55] and [57]. Likewise, studies that are concerned
about the energy cost or charging prices, took the operation
cost, charging and discharging costs, TOU, energy prices as
state parameters such as [56], [61], and [104].

Research targetting the balancing of the load profile and
flattening the peaks deploy V2G as a state parameter to
monitor EVs’ availability that can discharge into the sys-
tem and act as energy sources. Some other studies focus
on using renewable energy sources and their inflexibility
in producing energy, monitored their energy production to
achieve better managing of the distributed energy systems.
Other studies maintained the battery SOC of the EVs above
a certain threshold by monitoring the battery SOC to be able
to produce the appropriate actions [60], [74], [91], [92], [98],
[99], [100], [102]. Other parameters were used less frequently
in studies as state parameters, as they were not related to the
frequently desired objectives [65] and [76]. The pattern in all
these approaches is that you observe the parameters that you
need to monitor to achieve your goal, and the agent learns how
to optimize its actions through the action-reward system.

The authors in papers [56]-[65], [67], [69], [71], [72], [74],
(751, [77], [791-[84], [86], [88], [90]-[92], [94], [95],
and [97]-[99], used the charging or discharging cost as a state
parameter. However, other operational costs, like waiting
cost and traveling, were used mainly in two of the surveyed
papers [66] and [92]. This may lead to concluding that they
were not that crucial in deducing the best actions to achieve
the objectives of the methods presented in these papers to
control the energy distribution system costs. TOU, on the
other hand, appeared in several published research work
([591, [68], [701, [73], [81], [86], [87], [91], [93], and [104])
as a state parameter, but not as frequent as the charging or
discharging cost

Methods proposed in [86] and [87] used both charging
or discharging, cost and TOU as state parameters, which
may imply that TOU is a good parameter for observ-
ing costs. TOU was used with V2G as state parameters
in [59], [68], [86], and [104]. Only [104] had the objec-
tive of balancing the power usage or flattening the peaks,
the other three papers aimed for either controlling energy
cost, or, like [59], maximizing the distribution system’s
profit. V2G, as a state parameter, was used in [59], [60],
[63], [64], [67]-[69], [75], [83], [86], [97], [100], Like TOU,
V2G was used by methods that aimed to control the energy
cost or maximize the profit of the distribution system.

Another parameter that was used as a state parameter by
many of the proposed methods in [54], [57], [58], [63], [67],
(681, [711, [72], [74], [75], [77], [78], [80]-[82], [85],
[86], [88]-[90], [93], [94], [96], [97], [99], and [100]-[102],
is the EVs charging demand satisfaction. These proposed
methods aimed at controlling the energy cost, reducing the
prices for the customers, or even increasing the charger’s
profit. The relation between the demand and the prices
is existent in any business, so, eventually, it exists in the
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TABLE 3. Summary of the RL parameters in the EV coordination problems found in the studied literature.

Reference Algorithm States Rewards Constraints Agent
[54] Q-Learning Energy Consumption Levels Single objective: Increase | EV charging constraints Single
individual welfare
[55] Deep RL, deep Q- | Battery SOC, EV location and | Single objective: Reduce | Parking places, charging | Single
network DQN and | direction, number of occupied | charging time and fares availability
DDPG parking spaces and chargers
[56] Batched RL, fitted Q- | Battery SOC, Electricity Prices and | Single objective: Reduce | Battery capacity, charging rate Single
iteration Price Fluctuations energy prices
[57] Batched RL, fitted Q- | Required Energy, Charging | Single objective: Energy | Power consumption parameters, | Single
iteration Parameters cost unpredictability
[58] Hyperopia SARSA | Charging Demand, Parking Time Single objective: Maximize | Charging rates Single
approach (HAS) charging station profit
[59] Deep RL, deep Q- | Arrival/departure time, weather | Single objective: | EV physical constraints, network | Single
network DQN and | and traffic information, charging | Distribution system profit constraints, charging constraints
DDPG station load
[60] Q-Learning Battery SOC, price, remaining time | Single objective: EV | Battery and charging constraints Single
till departure owner’s profit
[61] Q-Learning Time till departure, battery SOC, | Single objective: Charging | NA Single
renewable energy, energy price, | station profit
type of user
[62] SARSA Battery SOC, Energy price Single objective: Minimize | EV energy consumption Single
charging cost
[63] Deep RL, deep Q- | Electricity Price, Battery energy | Multi-objective: Minimize | Battery capacity Single
network DQN levels, and time till charging charging cost, satisfy
charging demand
[64] Safe Deep RL Battery SOC, Energy prices Single objective: Maximize | Charging demand satisfaction Single
EV’s owner profit
[65] Deep RL, deep Q- | Traffic information, waiting time, | Multi-objective: Minimize | Battery SOC and consumption, | Single
network DQN charging prices energy cost and waiting time | waiting and  driving time,
charging cost
[66] Decentralized learning, | Battery SOC, EV location, time till | Multi-objective: Minimize | Charging station capacity Multi
with centralized | EV is available electricity  costs,  waiting
decision making using time, EV operation cost
RL
[67] Control deep | Battery SOC, Energy prices, | Multi-objective: Maximize | Arrival/departure time, Battery | Single
deterministic ~ policy | Arrival/departure time the EV owner’s profit, | energy consumption
gradient CDDPG Satisfy EV charging demand
[68] Q-Learning Energy prices, EV charging | Multi-objective: Maximize | Physical battery constraints Multi
demands the EV owner’s profit,
Satisfy EV charging demand
[69] Deep RL, deep Q- | ESS states, electricity price, load Single objective: Maximize | ESS constraints Multi
network DQN EVCS profit
[70] MASCO Battery SOC, EV location, | Multi-objective: Satisfy EV | Transformer load, number of | Multi
Transformer load charging demand, Reduce | friendly agents
energy costs, Reduce
transformer overloading
[71] W-learning Battery SOC, System load, | Multi-objective: Satisfy EV | Transformer load Multi
Transformer load charging demand, Minimize
operation  costs, Reduce
transformer overloading
[72] Distributed W-learning | Wind-energy  generation, load | Multi-objective: Satisfying | Renewable Energy constraints Multi
information, battery SOC EV  charging  demands,
Maximize Renewable energy
use
[73] Q-Learning Battery SOC, EV location Multi-objective: Reduce | NA Multi
waiting time, Satisfy EV
charging demand, Increase
the revenue
[74] Q-Learning Battery SOC, Time till departure Multi-objective: Satisfy EV | Charging constraint Multi
charging demand, minimize
charging cost
VOLUME 9, 2021 41515
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TABLE 3. (Continued.) Summary of the RL parameters in the EV coordination problems found in the studied literature.

[75] Q-learning Battery SOC, Energy price, | Single objective: Minimize | NA Single
charging time charging cost
[76] Batched RL Temperature, Energy | Single objective: Reducing | Infrastructure constraints Multi
Consumption, Renewable energy | peak power consumption
Production, Battery SOC
[77] Q-Learning Battery SOC, time till departure Multi-objective: Minimize | Network constraints, EV energy | Multi
energy cost, Satisfy EV | requirements
charging demand
[78] Distributed W-learning | System Demands Multi-objective: Satisfy EV | NA Multi
charging demand,
Transformer load balancing
[79] Batched RL, fitted Q- | Battery SOC, charging cost, Multi-objective: Minimize | Driving pattern constraints Single
iteration charging costs, avoid battery
depletion
[80] Q-Learning Energy price, temperature, weather | Multi-objective: Reduce | NA Single
energy  Ccosts, customer
satisfaction
[81] Q-Learning EV charging demand, | Single objective: Reduce | EV owner’s constraints Single
arrival/departure time energy costs
[82] Q-learning Baseload, weather information Multi-objective: Balance | NA Multi
load profile, Satisfy EV
charging demand
[83] Q-Learning Battery SOC, EV  mobility, | Single objective: Satisfy | Battery SOC Single
charging demands Micro grid demand, reduce
energy prices
[84] Deep RL, deep Q- | Battery SOC, Energy prices Multi-objective: Reduce | Battery constraints, | Single
network DQN energy cost, Satisfy EV | arrival/departure time
LST™M charging demand
[85] Batched RL, fitted Q- | EV requested energy, arrival time, | Multi-objective: ~ Balance | Parking places Single
iteration time till departure, charging rate load profile, Satisfy EV
charging demand
[86] Q-Learning EV charging demand, Battery SOC | Single objective: Reduce | ESS capacity Single
energy costs
[87] Q-Learning Energy consumption, ESS state of | Single objective: Reduce | ESS constraints Single
energy energy costs
[88] Deep RL, deep Q- | Energy prices, charging demand, | Single objective: Reduce | Physical grid constraints, | Multi
network DQN renewable energy generation energy costs transformer capacity
[89] Deep Neural Network | Energy price, battery SOC, | Single objective: Reduce | Battery specifications Single
DNN charging rate energy costs
[90] Deep RL Battery SOC, charging demand, | Multi-objective: Reduce | Driving demands, traffic | Single
charging cost energy costs, Satisfy EV | constraints, charging
charging demand, reduce | infrastructure
emissions
[91] Deep RL, Proximal | Baseload, Battery SOC, Home | Single objective: Reduce | Charging constraints Multi
Policy  Optimization | SOC, power consumption, | energy costs
PPO electricity price, departure time,
renewable energy
[92] Q-Learning EV position, battery SOC Multi-objective: Reduce | Battery constraints Multi
grid losses, reduce waiting
time, increase EV owner’s
profit
[93] Batched RL, fitted Q- | Time  till  full-charge, EV | Single objective: Reduce | Charging constraints Single
iteration availability, flexibility of EV | energy cost
aggregation
[94] Q-Learning Energy Consumption Single objective: Increase | Charging constraints Single
customer welfare
[95] Deep RL, deep Q- | Battery SOC, available charging | Multi-objective: Reduce | Charging availability Multi
network DQN places charging time and charging
fares
[96] Deep RL, deep Q- | Electricity price, home SOC, | Multi-objective: Reduce | Price constraints Multi
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TABLE 3. (Continued.) Summary of the RL parameters in the EV coordination problems found in the studied literature.

network DQN and A2C | renewable energy, power | energy costs, balance load
consumption, EV availability, time | profile
till departure, battery SOC
network DQN and A2C | renewable energy, power | energy costs, balance load
consumption, EV availability, time | profile
till departure, battery SOC
[97] Deep RL, deep Q- | Electricity price, charging power Single objective: Increase | Price, Net power consumption, | Single
network DQN  and charging station profit charging constraints
DDPG
[98] Q-learning Electricity price, Battery SOC, time | Single objective: reduce | Battery constraints Single
till full-charge energy prices
[99] Adaptive Heuristic- EV charging demand, electricity | Multi-objective: balance | Charging constraints Multi
Critic Recursive- price load profile, increase
Least-Squares charging station profit
AHC-RLS
[100] ES-MARL Battery SOC, number of available | Multi-objective: reduce | Battery  constraints,  driving
Equilibrium-Selection- EVs energy prices, reduce | patterns Multi
Based MARL customer dissatisfaction,
avoid battery degradation
[101] Complementary Weather, Number of controllable | Multi-objective: reduce | Power balance constraints Single
Generation Control | EVs energy costs, balance load
CGC profile
[102] Deep RL, DDPG with | Weather  information,  traffic | Multi-objective: Reduce | Power constraints, renewable | Single
Deep Genetic Policy | information traffic congestion, integrate | energy constraints, battery SOC,
DGP renewable energy charging constraints
[103] Batched RL, fitted Q- | EV requested energy, arrival time, | Multi-objective: ~ Balance | Parking Places Single
iteration time till departure, charging rate load profile, Satisfy EV
charging demand
[104] Q-learning V2G, TOU Single objective: balance | NA Single
load profile

energy distribution systems. Some other proposed methods
([581, [63], [72], [82], [85], [94], [96], [99], and [100])
aimed to better control the load profile and used the charg-
ing demand as a state parameter, as the load of the system
increases when EVs demand electricity.

Methods presented in [55], [56], [59]-[68], [70], [73], [74],
(771, [79], [82]-[84], [861, [87], [90]1-[94], [95], [98], [100],
and [100] used the battery SOC as a state parameter. The
objectives of these methods range from cost and profit man-
agement to load profile and transformer load management.
Battery SOC is a crucial parameter as it indicates at which
process is the EV. The EV could be charging, discharg-
ing, traveling, or still. Battery SOC is needed almost in all
papers as a significant ecological parameter that helps in
many decisions. Maximum charging rates of EV charging
stations (EVCS), maximum and minimum charging power,
ESS, EV consumption at road, and remaining time to charge
are all parameters that were used less frequently than the
battery SOC. Maximum and minimum appeared several times
but were not as frequent as the battery SOC.

Renewable energy sources are monitored in distributed
energy systems as some papers were trying to solve the
inflexibility challenge of using renewable sources by using
reinforcement learning to find a solution to that prob-
lem while satisfying the demands of the energy systems.
The papers that used it as a state parameter are [61],
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[69], [72], [76], [86], [87], [88], [91], [96], and [100]-[102].
Emission was used only once by paper [90]. Also, other
parameters were rarely used as state parameters, like distance,
location, times of arrival and departure, and the direction of
EVs.

In conclusion, Battery SOC, EV charging demand, and
charging or discharging costs were the most prevalent param-
eters as state parameters, as they are physically and logically
crucial for action selection toward achieving the objectives
of the surveyed methods in managing the distributed energy
systems. Their recurrence may be the result of the inclination
of the authors to control the cost, manage the load profile, and
satisfy the charging demand. Other parameters that were less
crucial and contributed to less frequent objectives appeared
less as state parameters or inputs.

2) OBJECTIVES

Although all the methods surveyed were concerned about
managing distributed energy systems with EV penetration
using an RL approach, the objectives of the solutions pre-
sented in the surveyed papers vary. The learning agent takes
the necessary actions to accomplish its goal. In other words,
the RL agent learns the optimum actions to achieve these
goals through assigning rewards for the actions that achieve
the goals and penalties for actions that do not achieve the goal.
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Most of the studies surveyed in this paper were con-
cerned about the energy cost and the EV charging prices
(see Table.3) EV charging prices is a business objective,
which makes it a crucial topic to be tackled widely in
research. In [57], [62], [77], [79], [811, [861, [87], [93], [54],
[56], [98], [102], [89], and [101], the authors presented
several single-agent RL-based solutions with the objective
of reducing all the energy-related costs in the distributed
EV charging systems. The authors of [57], [62], and [79]
attempted to develop solutions that reduce energy costs by
managing the charging schedules of the EVs and forecast-
ing energy prices to achieve the most cost-effective daily
charging schedules for the EVs. Authors in [87] studied the
effect of integrating renewable energy generators in the EV
charging system with the aim of reducing the energy charging
prices.

Also, [101] presented an RL solution to reduce
energy-related costs in EV charging systems by trying to
reduce regulation costs caused by the imbalance between the
generation and consumption sides.

The studies in [54], [56], [98], [102], and [89] provide
solutions that target only lowering the end-consumer energy
charging price and increasing consumer welfare.

Different studies have different aims, but they all have
the same objective of reducing energy-related costs in EV
charging systems. On the other hand, some studies aimed
to increase the profit of EV charging. Chargers included
the EVCS or the energy distribution systems. Authors [61]
and [97] presented solutions that maximize the charging sta-
tions’ revenue in distributed EV charging systems. Likewise,
the studies in [58], [60], [63], [64], [65], [66], [67], [68],
[70], [71], [80], [84], [88], [91], [94] and [96] presented
a likely solution that minimizes the energy costs and
increase EV charging profit but with the use of multi-agent
RL (MARL) techniques instead of the single-agent tech-
niques. The advantage of using multi-agent or single-agent
RL techniques are explained in a later section.

Energy cost seemed to be a reasonable objective as charg-
ing services providers care more about profit.

Many studies also aimed to use RL methods to satisfy
the EV charging demands while maintaining the energy
system needs. In fact, the main goal of using RL is to
deal with the uncertainties that emerged from the energy
systems’ interaction with the numerous EVs. The studies
in [73], [74], [78], [82], [83], [85], [90] and [100] presented
some RL based solutions with the objective of satisfying
the charging needs of the EVs’ charging distributed systems.
Some studies, such as those in [73], [74], and [83], tried to
accomplish meeting the EVs’ demands by ensuring that the
battery SOC does not drop below a certain threshold for the
whole traveling time. The authors of [85] tried to accomplish
the same goal by lowering the waiting time of the EVs at
the EVCS. Most of these studies relied their solutions on
multi-agent RL techniques, while [90] and [100] used single-
agent reinforcement-learning-based solutions. Meeting the
EVs charging demand is crucial to achieving consumer
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satisfaction. Another objective that appeared in the literature
is achieving a better load profile through balancing the power
mismatches and aiming to flatten the power consumption
peaks.

The studies [72], [99], and [100] attempted to manage the
load on the transformers at the EVCS in order to maintain
and ensure that no failures happen in the charging system.
The papers [101], [103], and [104] proposed single-agent RL
solutions targeting balancing the power between the genera-
tion side and the consumption side.

Actually, some papers used more than one objective in their
RL models. Other less significant objectives were also con-
sidered in some studies like using renewable energy resources
in the energy distribution network such as in [72] and maxi-
mizing power-saving such as in [99] and [104].

Although all the studies that were surveyed discussed man-
aging distributed energy systems with the introduction of
EVs and the challenging uncertainty that appeared with them,
the objectives of these studies differed according to what
aspect of the problem the authors tried to solve.

3) CONSTRAINTS

Ensuring that the learning agent is following realistic and
practical environmental scenarios, some constraints must
be considered to control the learning process of the agent
(see Table 3). Also, constraints are needed to achieve the
desired objectives without ignoring other important factors
related to the distributed energy system. The nature of the
constraints is dependent on the nature of the goals of the
algorithms. Since different studies had different objectives
for using RL, different constraints appeared in the surveyed
papers. As some objectives appeared more frequently than
others in these studies, some constraints also appeared more
frequently than others.

Most of the proposed methods have used energy net-
work constraints so that the RL agent is guaranteed not
to target the ultimately optimum states, but the optimum
states that can be realistically achieved by the existing EV
charging network. The methods proposed in [54], [57], [58],
[60], [63], [67], [701-{72], [76]-{78], [82], [88], [90], [91]
and [94] have all restricted the RL agent with some con-
straints related to the EV charging network that represents
the environment in which it learns. These constraints are
needed for the learning agent to avoid unrealistic scenar-
i0s. For instance, the authors in [63], [70], and [71] forced
some constraints on the transformers’ loading to prevent the
learning agent from going to network states that include
transformers’ over-loading conditions. Going through these
network states can optimize the desired objectives such
as satisfying the demand or reducing charging prices, but
these states will harm the charging network and cause many
faults in it. Therefore, by using this constraint, the learn-
ing agent can be directed towards an effective behavior.
In [82] and [94], the utilization of the EV charging sta-
tions have been considered in the constraints that are con-
trolling the learning agent behavior. The EVCS utilization
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was used to measure the loading of the charging network
and try to balance the charging demand on the available
charging stations to prevent the overloading of particu-
lar stations while leaving other charging stations unem-
ployed. This constraint enhanced the charging scheduling
and the charging network sustainability. Several methods
presented in [58], [60], [71], [72], [76], [77], [88], [90],
[91], and [94] used some network limits such as the maxi-
mum and minimum rate of charging, the maximum charging
station capacity, and the minimum charging station capac-
ity. These constraints represent the physical limitations of
the EV charging system, and the authors of these papers
claim them to be very necessary to constraint the RL model.
In general, network limits are very crucial to be considered
as constraints since they represent the physical limits of the
system.

Another example is defining some battery parameters like
capacity and charging rate as constraints to provide a realistic
representation of the battery’s behavior in the model. The
studies [56], [87], and [100] have used the EV’s battery’s
maximum rate of charging and SOC as constraints in the RL
model. These constraints were used to keep the state of charge
of the EV batteries always above some threshold. By doing
so, the RL model can prevent the depletion of the EV battery.
In [60], [62], [67], [79], [84], [98] and [100], the authors
also used the state of charge constraint in their models to
provide some protection for the EV batteries. Hence, some
battery-related parameters have been shown in these studies
to have an effective impact on leading the RL agent towards
some desired behavior.

Charging demand satisfaction constraints were used
in [58], [64], [65], [68], [77], [78], [80], [81], [83], [99],
and [100]. These aimed to meet the charging demand of EVs
and used the EVs charging demand satisfaction as a state
parameter. It is logical to assign a constraint on a parameter
you are observing to control the performance of the system.

Other constraints appeared less frequently, like price,
power balance, and net power consumption. These con-
straints did not function as an approach to a realistic repre-
sentation of the components of the environment, but as an
approach to achieve some conditions related to the objec-
tive of the authors in different papers. For instance, [65]
used EVCS routing topology, driving time, and waiting time,
in addition to the charging demand satisfaction constraint.
Price was used as a constraint in [96], [97], and [101]. Price
is a target to be achieved through the algorithms, using it
as a constraint might not be of significant need in most
cases, as the agent is already learning to find the optimum
prices. The price constraint might have been a second degree
of controlling the energy prices. Power balance constraints
were used in [101] and [102] only, as balancing the power
usage was not a frequent objective in the surveyed paper.
Renewable energy constraints appeared in [69], [72], [76],
and [102]. However, only [76] aimed to manage renewable
energy sources, while the others were concerned mainly
about the cost.
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FIGURE 7. Model-free RL algorithms used for the EV charging
coordination problems.

Constraints by nature are a part of the solution, and their
relationship with the objectives and behavior of the system
is important because it can lead to the failure of the model
if not well selected. Therefore, constraints may be used as
an approach to control the behavior of the learning agent
to achieve a realistic solution to the defined problem or to
achieve a desired objective for the algorithm.

4) ALGORITHMS
Several algorithms were used to solve the problem of EV
charging systems with the uncertainties (see Fig.7).

The methods used in model-free RL are classified RL,
or Deep RL which combines RL with deep machine learning.
Most papers used Q-learning, or the deep extension of it,
DQN as a method to solve the RL problem. Other papers tried
to solve some issues that happened to exist with Q-learning
with other techniques, like W-learning. Some papers did not
consider Q-learning and used SARSA, State-Action-Reward-
State-Action, to solve the learning problem. In this section,
we provide an explanation of each algorithm used in the
surveyed paper and the reason for using it.

To develop an RL model that can achieve a certain objec-
tive for the EV charging system, the authors of [62] con-
sidered modeling the EV charging problem as a Markov
Decision Process (MDP). The MDP is a mathematical model
that is usually used in problems involving achieving optimum
decisions.

In [62], the authors suffered from this drawback as they
could use only three inputs and discretized them to very lim-
ited levels, which affected the representation of the charging
system environment. Another drawback is also the discretiza-
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tion of the possible actions, which force the agent to select an
action from the pre-defined actions set; consequently, it limits
the model from achieving the optimum actions.

In [58], the authors considered an enhanced version of the
SARSA algorithm which is the Hyperopia SARSA (HAS).
The HAS learning algorithm is the same as SARSA but with
the exception of representing the Q values of the state-action
pairs as a linearly approximated function instead of a table
of values. This enhancement enabled the study to use con-
tinuous spaces for the states and actions, which removed the
disadvantage of the restricted environment representation as
aresult of discretizing the state space. This enhancement can
also help the agent to take better actions through the use of
continuous action space. However, the algorithm still suffered
from the remaining conventional SARSA drawbacks.

Most of the studies in the literature, though, used the
Q-leaning as the learning algorithm for their RL-based solu-
tions. All of the studies [54], [60], [61], [66], [68], [74], [73],
[77], [80], [81], [83], [86], [87], [92], [94], [98], [100], [101]
and [104] have used the Q-leaning algorithm. The Q-leaning
algorithm is an advanced version of the SARSA algorithm.
It defines a set of state values (V), a set of actions (A),
and a set of state-action pairs (Q). Moreover, it follows
the epsilon greedy algorithm for picking the actions and
accordingly updates the state values and the state-action
pairs’ values. However, the Q-learning algorithm considers
the whole future trace and guarantees reaching the absolute
optimum policy.

Moreover, the Q-learning algorithm still has issues with
high-dimensionality and the discretization of the state-space
and action-space. The curse of dimensionality is the inability
of using many input features in the RL model. The problem
of the discretization of the state and action spaces can be
solved by the integrating function approximation with the
Q-learning. The resulting algorithm from integrating function
approximation with the Q-learning algorithm is called the
We-learning algorithm, which has been used in some papers
like [70], [711, [72], [75], [78], and [82]. However, this can
affect the algorithm badly to the extent that it can make the
algorithm diverges and not converges to any policy at all.
That is why most of the studies always prefer not to integrate
function approximation with the Q-learning algorithm even
at the cost of discretizing the input features. This makes
the Q-learning algorithm suffer from both discretization and
dimensionality problems.

A deep version of RL was introduced in some papers
to deal with the high dimensionality of the state space and
the action space. The DRL approach represents an extended
version of Q-learning, where the learning agent uses deep
neural networks (DNN) as the function approximator. The
type of DNN used is deep Q-Network (DQN), which returns
a set of action values for each state. The papers that used deep
RL and DQN are [53], [61], [63], [67], [82], [86], [88], [89],
[93], and [94]. Two important features of the deep RL and
the DQN algorithm are the target network and experience
replay. The target network is of a similar structure as the used
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DNN, but the parameters in the target function are updated
in a slower manner, and the values do not change except at
the update time. Experience replay replaces the immediate
state transitions by storing them in a buffer and sampling them
uniformly to update the network. Furthermore, the introduc-
tion of the deterministic policy gradient DPG to the DQN
method extends it to continuous control. Therefore, the deep
deterministic policy gradient DDPG is used along with the
DQN approach.

In [67], the DQN and DDPG approaches were modified,
and a control deep deterministic policy gradient (CDDPG)
was presented by the authors. They used a type of RNN called
LSTM, long short-term memory, to extract state features from
the environment and DQN to select and execute the actions.
They stated that the behavior of their algorithms included
three stages interaction, training, and testing. This approach
relies on experience replay and target network features of
deep reinforcement learning. Another paper that improves
the DQN and DDPG approach is [97]. The authors presented
prioritized experience replay (PER), which gave higher pri-
ority to experiences that dealt with higher absolute TD error,
deriving better policies and learning faster.

A batch RL method that was used in several papers is fitted
Q-iteration, where the state transition dynamics are learned
from a batch of sampled transitions. On-policy methods like
SARSA, update the policy used in the action selection agent.
However, fitted Q-iteration, like Q-learning, is an off-policy
value iteration method, learns the optimum policy through
iterations till the best action is selected. The agent’s behavior
is independent of the updated policy. Hence, it does not
follow a greedy policy to select the actions. The optimum
policy for action selection is based on experiences gained
by deploying a random policy then observing the transition
dynamics. The papers that use fitted Q-iteration and batch RL
are [56], [57], [76], [79], [85], [93], and [103].

All the RL models that have been discussed so far are
explained in the context of an RL class called the single-agent
reinforcement learning. However, some studies have used
these RL algorithms in another context which is another class
of RL called multi-agent reinforcement learning (MARL),
which has been used as well in the literature of RL-based
solutions for EV charging systems. The advantage of the
MARL over the single-agent RL is that it can allow for much
more complex environments that have high feature dimen-
sions, high action dimensions, and continuous space for both
states and actions. That is because the MARL algorithms
involve multiple agents interacting together in the environ-
ment. So, MARL algorithms can overcome the problems that
have been encountered in the single-agent RL models which
are the dimensionality problem and the discretization prob-
lem. However, MARL is not used so widely in the literature
since its over-complexity and the non-stationarity of the algo-
rithms. The over-complexity of the MARL is a consequence
of the use of a usually high dimensional complex environment
and the need to train several learning agents simultaneously,
which leads to the complexity of the theory of the algorithm
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and the expensive computational cost of its implementation.
The non-stationarity of the environment is also another prob-
lem that arises in the MARL because of the use of several
agents learning independently in the same environment. So,
every learning agent has its own perceived version of the
same environment. The problem arises because this agent’s
version of the environment can never be fixed, as many other
agents regularly alter the state of the environment. In other
words, the state of the environment changes based on the joint
actions taken by all the agents, not the actions of a single
agent. Hence, the non-stationarity of the environment is a
crucial challenge that has to be addressed when using MARL
models. The authors of [99] and [100] have used MARL
algorithms in their RL models. In [99], the authors used
ES-MARL algorithm, while in [100], the authors used AHC-
RLS algorithm. Actually, both of these MARL algorithms
are based on the concept of deploying multiple agents in
the environment. Each agent has its own reward function,
and it learns independently from the other agents. However,
there are some non-avoidable interactions among the learning
agents. In these studies, the agents’ interactions have been
dealt with through sharing the complete information of the
learning agents with some tweaks to lower the computation-
ally cost of this information sharing. By doing so, the algo-
rithms have been guaranteed to converge, and with the right
representation of the environment, the algorithms have been
guaranteed to converge to an optimum policy for the problem.

As presented above, Q-learning, and in some cases
SARSA, was used to solve the RL problem of managing
distributed energy systems. However, concerned by the high
dimensionality of the action and state spaces, other tech-
niques were proposed. The most used one was DQN along
with DDPG, followed by W-learning. DQN integrated with
DDPG represented a good solution to the high dimensionality
problem while extending the learning model to continuous
models. Of course, the choice of algorithm is always related
to the type of problem the authors of the papers tried to solve,
see Table 4.

D. THE APPLICATION OF RL IN EV CHARGING
MANAGEMENT

A summary of the RL approaches used in managing energy
systems containing EVs is presented in this section. The
application of reinforcement-learning solutions in smart
grids [26] is inspired by their results in the complicated
scheduling problems involving EVs [25]. The recent reviews
in model-based EV charging coordination show that such
algorithms are hindered by (i) the need for a precise system
model, and (ii) cannot be a generalized solution. We catego-
rize the RL applications based on the location of the controller
such as is in residential charging, centralized or distributed,
and if it is real-time or day-ahead planning (see Fig.8).

1) RESIDENTIAL CHARGING
A study in [54] proposed using RL to learn the individual
energy consumption in a household then use the information
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TABLE 4. Pros and cons of main RL algorithms.

Algorithm Pros Cons
SARSA - Simple - Does notconsider
- Guaranteedto future actions
converge to an - May converge to a
optimum policy local optimum
- Limited numberof
states
Q-learning - Considers future - High-dimensionality
actions issues
- Converges to a - Discretizationof
global optimum state and action
spaces
W-learning - Solves the - May notconverge to
discretization issues any optimum policy
Fitted Q- - Converges faster - High-dimensionality
iteration - Continuous stateand issues
action spaces
DON - Solves the high- - Discretization of
dimensionality issue state and action
spaces
DDPG - Continuousstateand | - Assumes experiences
action spaces are of the same
priority
—  Residential Charging The agentis in the household|
n controlling unit
g
S The agent ~
‘2 Centralized Day-Ahead cagent is the EV charging
< Planning station, aggregator, or EV
Q fleet coordinator
=
o
o | | Distributed Hierarchical EV Multiple agents hierarchically
< Coordination controlling EV charhing
—
Qﬁ Single or Multiple agents
— Real-Time Charging reactingtoreal-timechanges
in the environment

FIGURE 8. Types of RL application systems for EV charging management.

for EV battery charging management to maximize the total
individual welfare which is obtained from household con-
sumption and EV charging.

Individual EV user behavior profile is created to model the
customers based on statistical data using a bottom-up design
approach [105]. The EV user’s driving distance is obtained
from mobility data and the distance per day required is related
to the social groups part-time employee, full-time employee,
students, and retired unemployed people, and the driving
behavior is related to weekends/weekdays activities. The
model of EV customer gives the charging demand according
to the inputs given used to simulate the driver’s behavior.
A stochasticity factor is considered based on probability
from historical data which considers the uncertainty of social
group, activities thus daily driving distances. EV charging
is scheduled optimally with respect to individual maximum
welfare. RL is applied to learn household consumption and
the Q-learning mechanism algorithm reaches the learned pol-
icy corresponding to the individual household consumption
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over a daily horizon. The learning mechanism learns the
household consumption trend through iteration over the states
which represent consumption levels. The states are the con-
sumption which are levels of 1 watt, i.e., discrete values. The
agent chooses the policy that results in the highest utility from
each state corresponding to the highest reward. Rewards are
related to the utility function where the higher the utility, the
closer the state is to the actual household consumption. Then,
after learning the consumption of each individual, the agent
adjusts the EV charging to maximize the total individual
welfare, which is obtained from household consumption and
EV charging.

The study in [71] presents a residential EV charging coor-
dination based on three different policies to avoid overloading
the transformer, ensure minimum desired charging achieved,
and charge during off-peak loading. Five scenarios are con-
sidered, baseline with no control where EVs start charging
once they arrive home. In the second scenario, agents have
information about the load to allow charging during off-peak
with high reward and is panelized otherwise. The third sce-
nario investigates periods for charging during medium and
high peaks when the off-peak period is insufficient to charge
the EV demand. In order to enable the agent to learn this
scenario, information about the predicted load for the next
24 hours is provided in the state space. The fourth scenario
considers that all EVs need a complete charge for a con-
siderable mileage. In this case, the agents learn to spread
out their charging periods while considering the transformer
limitation. The fifth scenario enables the agent to charge
based on the current load and predicted loads.

2) CENTRALIZED DAY-AHEAD PLANNING
The authors in [56] solve the EV scheduling problem based
on day-ahead and following predicted electricity prices. Their
goal was to reduce the individual PEV charging cost in the
long-term. The RL algorithm utilizes a set consisting of
historical samples of transition to learn the optimal policy
leading to lowering the charging cost. The authors mod-
eled the problem of calculating the energy used in charging
as a decision-making problem on a day-to-day basis, with
unknown transition probabilities. To predict energy prices,
the authors used a Bayesian neural network, while using
historical data to train the RL program. Consumption pat-
terns and plug-in and plug-out states in optimization linear
programming are used to select the best action in every
scenario. The MDP is modeled using continuous state-space
and daily timesteps. Therefore, the aggregator can calculate
the energy needed for buying from the energy market for the
next. The aggregator controls the charging power of the EVs
to minimize imbalance costs between day-ahead purchased
power and the actual load. Therefore, the aggregator has to
custom itself to its corresponding fleet of EVs flexibility to
minimize the cost difference.

An electric vehicle fleet dispatch solution for the prob-
lem of ride-hailing services is presented in [66] using RL
with the aim to bring the waiting time of the customers,
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EVs’ operational costs, and electricity cost to a minimum.
They use decentralized learning combined with centralized
decision-making for finding a solution to the MDP-modeled
EVs fleet problem. In the training process, individual EV
experiences from interacting with the changing environment
are used to train the common state-value function approxi-
mator and its parameters. Then, in the centralized decision-
making process, the coordination of the EV fleet is solved as
a linear assignment problem by using the estimated parame-
ters state-value function in the learning stage. Therefore, the
scalability of the algorithm is improved, and the results show
better performance compared with benchmark algorithms
concerning the operating costs of the EVs, as well as the
customers’ time of waiting.

Another day-ahead scheduling plan to charge a fleet of
EVs is presented in [57], and it considers addressing flexi-
bility by a heuristic charging control scheme. The study aims
to produce a day-ahead plan for the charging consumption
of the EV fleet. Batch RL is used to predict a day-ahead
plan for a cost-effective charging consumption. The resulting
behavior from various factors is used by the learning agent
to produce the plan. Furthermore, controlling the actions of
the whole fleet of EVs instead of every single EV reduces
the size of the state and action spaces. The objective of the
charging strategy is to allow for the aggregator to manage
an EV fleet demand schedule by purchasing the energy in
the day-ahead market. In day hours, the aggregator receives
charging requests from the EVs and decides on the power for
each EV (control power) based on the objective to balance
the difference between the requested demand and purchased
energy. A dispatch algorithm obtains the state information
and schedules purchased power, then calculates the control
power values. The states considered are minimum charg-
ing power, maximum charging power, requested energy, and
departure time. The benchmark used to test the algorithm was
a multistage stochastic-programing solution. Then a heuristic
division strategy based on historical data is used to retrieve
the individual control actions back from the collective control
ones.

To overcome the problem of continuous spaces, and to
provide a generalization of different observed values, fitted
Q iteration in [106] is used instead of temporal difference
learning [107]. The solution is evaluated for a small company
with an EV fleet of 15 EVs where there are 4 EVs in the
morning shift, which starts from 6:00 till 14:00. 8 EVs work
in the day shift, which starts from 9:00 till 17:00. Therefore,
3 EVs work in the afternoon shift, which starts from 12:00 till
20:00 [108]. The scenarios were formed by the assumption
of time of departure, time of arrival, and wanted amount of
charging energy. The amount of energy requested by the EV
is obtained according to an artificial probability distribution
to provide the variability needed for the benchmarking of
the presented solution. The study did not consider compar-
ing different pricing mechanisms [109] used for the charg-
ing flexibility of EVs by motivating the consumers using
incentives.
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3) DISTRIBUTED HIERARCHICAL EV COORDINATION

A distributed, multi-agent EV charging coordination system
considers the network impact is presented in [110]. The
agents considered are based on the Microgrid concept [111].
Electric Vehicle Supplier/Aggregator (EVS/A), Regional
Aggregation and Microgrid Aggregation Units, (RAU) and
(MGAU), and Vehicle Controller (VC). The control method
is based on Nash Certainty Equivalence Principle to consider
network impacts. The controlling strategy of EVS/A aims
to maximize the charging profit by valley-filling. The RAU
agent optimizes network operation, while the VC agent tries
to satisfy the charging demands. MGAU agents treat the
network and grid violations using RAU pricing policy [111].
Game-theoretic methods are used to solve the pricing poli-
cies [112] The proposed charging management system is
tested for its efficiency using an urban network realistic simu-
lation for different cases. The study considers dumb charging,
dual tariff, uncouples EVs, and weekly coupled EVS, and for
both cases summer and winter. The results are of the same
range of quality as the centralized approach, but requiring
less communication and less computation power. The better
hierarchy improves the scalability of this approach. The pro-
posed MAS system is written using a Java developing agent
(JADE) [113].

4) REAL-TIME CHARGING

The random nature of the EVs in the times of arrival and
departure, rendered the traditional day-ahead learning algo-
rithms applicable, due to their indifference to the real-time
behavior of EVs.

In [55], the authors presented a solution to calcu-
late the optimal policy of charging schedules using deep
reinforcement-learning, or DRL. The objective of the pre-
sented solution is to minimize the EVs’ overhead, such as
charging fees and time. The deep learning approach uses
the TOU tariff for the algorithm while using the charging
availability and parking places as constraints. The constant
speed movement of each EV is independent of the others on
two-way roads, while the EVs ask for fast charging services.
The online collected information at a certain moment are
battery-state-of-charge, location, speed, and direction of each
individual EV. The highest priority for charging is based on
first-come-first-served (FCES). In the FCSs, the rate of charg-
ing is assumed to be fixed for each plug-in charger. The TOU
mechanism is applied where the electricity price varies on the
same day, having its own flat, peak, and valleys. The charging
price is calculated momentarily when the EV charging starts,
it is assumed that the users would not stop the charging
for another time with a lower price of electricity. Deep RL
is an extension of Q-learning to solve the dilemma of the
high dimensions of the action and state spaces. The learning
agent uses DQN, which is a DNN, in the role of function
approximator. Considering more environmental factors like
the EVs changes in the real-time velocity is recommended by
the study.
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An online strategy to obtain optimal energy prices and
charging schedules, which takes into consideration the ran-
dom behavior of EVs in arrival and departure, proposed
in [58] is based on the RL algorithm solved with Hyperopia
SARSA-based approach (HAS). It is a model-free based
decision model that is based on stochastic models of assumed
uncertainties in future events. The control mechanism tackles
the problem of real-time variation in the state-space and
action-space that results from the randomness of the EVs’
arrival and departure times. The state-action function is pre-
sented by linear approximation. The algorithm learns only
from the observations of past events, such as the arrival time
and the departure time of the EVs, and the prices of electricity
to charge the batteries. The time in the system model is
divided into slots. During every time-period, the charging
station determines the charging rate based on previous obser-
vation including departure time and charging demand, and the
decision then is affected by the remaining charging demand
at the station left for future EVs. Therefore, the problem is an
MDP problem that aims to satisfy the charging demands of
EVs before their departure by optimizing the overall rates of
charging. The proposed algorithm is experimented with using
different EV load profiles, namely emergent, normal, and res-
idential from a historical database. Results are compared with
Robust Simulation-based Policy Improvement (RSPI) [114].
The presented Hyperopia SARSA-based algorithm (HAS) is
also compared with sample average approximation (SSA) and
greedy policy.

Authors of [60] presented a real-time algorithm based on
V2G control services for EVs to decide whether the EV
should charge, discharge, or regulate the frequency. It is a
novel V2G control algorithm that considers the uncertainty of
electricity prices as in the demand response algorithm [115].
The algorithm can learn from past experiences and automat-
ically adapt to the unknown pricing and makes hourly opti-
mal control decisions for V2G control. MDP is formulated
after one EV’s point of view. They maximized the owner
of EV’s profit in the time of parking. To achieve this, they
used Q-learning to control the operation after modeling the
electricity price with a two-state Markov chain, while not
knowing the probabilities of transitions. The electricity price
is calculated in an hourly manner. The EV arrival time is
assumed to be 6:00 p.m. every day with a SOC of 40%,
while the departure time is assumed to be 8:00 a.m. with
a SOC of 70%. With the absence of coupling constraints,
the state-space and action-space are if small size, as MDPs
are formulated for the individual EV. The control actions are
coordinated for creating a collective day-ahead schedule.

Authors of [61] proposed an online RL-based charging
application station automated electricity distribution sys-
tem (SAEDS) to increase the profits of a single EV charg-
ing station connected to a renewable energy source (RES).
The learning agent uses Q-learning to determine the EVs’
dynamic charging amount of energy, based on the prices
of electricity and hourly generated renewable energy. The
algorithm presents a reward as the station’s profit calculated
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by the sum the station earns at the current hour of the day.
The station has k slots, a max number of vehicles charging
or waiting, time to leave (TTL), state-of-charge (SOC) the
energy from the RES, and the extra price of energy bought
from the grid. The non-homogenous Poisson model was used
for the arrival time of the vehicles, while historical data was
used to estimate the number of EVs arriving at certain times.
A normal distribution with different parameters for the differ-
ent day hours is used to obtain TTLs of arriving vehicles. The
authors introduced a sigmoid function to present user type
based on the willingness to pay depending on the difference
in price between their initial SOC and the SOC they want
to reach. The algorithm outperforms the solution of using
uniform distribution over each possible decision, on every
step, the increase in the station’s revenue is in the range
of 40-80%.

The previous studies in the literature proposed energy
scheduling on short time periods such as hourly-based
scheduling, whereas battery charging is scheduled on a daily
basis. Additionally, energy prices are given by the utility
over the entire scheduling horizon ahead of schedule in some
cases, and in other cases, they are unknown [60]. In [62],
the authors considered the price uncertainty by combining the
day-ahead energy prices, which is known, with the second
day-ahead energy price, which is predicted, to develop EVs
charging schedules. The objective of their algorithm is to
minimize charging costs while ensuring the full charging of
the EVs. The authors used state—action—-reward—state—action
(SARSA) to learn the changing patterns of the price of elec-
tricity, solving the problem of charging. Also, they assumed
that driver’s daily patterns are known. They also modeled
the charging/discharging schedules as a constrained Markov
decision process (CMDP) and used safe deep reinforcement
learning (SDRL) to solve the problem. One year of historical
data was used for the prices of electricity, while a truncated
normal distribution was used to estimate the battery energy,
the times of arrival and departure, and the behavior of driving.

The aforementioned studies provide EV schedules using
RL approaches based on the driver’s patterns like arrival
and departure times, and also the SOC of the battery at the
arrival of EVs. The values of these parameters were fixed
or estimated using normal distribution or real driving pat-
terns or even modeled using Poisson stochastic processes.
Unfortunately, these models fail to provide sufficient infor-
mation to predict the behavior of the several users at a
single charger, rendering it impractical for real-life appli-
cations. The authors of [63] generate the arrival time and
charging duration using kernel density estimation (KDE)
and then solve the scheduling problem using model-free RL
algorithm DQN. Furthermore, the proposed EV management
deep RL algorithm aimed to reduce the charging cost of
EVs, while at the same time increase the reliability of the
grid. The approach considers charging and discharging at one
public charger which can be used by several users instead
of only one charger per person. The action space presents
the charger’s charging/discharging levels as a discrete space
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(—4 kW, —2 k kW, 0 kW, 2 kW, 4 kW). The authors assumed
users required full-charged batteries. The remnant energy in
the battery at the start of the charging was estimated based
on the end-time charging and the efficiency of the charger.
The results of the proposed method, random variable-RL
method, and fixed-RL method are compared with the cost
of the unscheduled charging (for specific site A) which are
69.7%, 74.6%, and 75.7% respectively.

There is no guarantee that an EV has a fully-charged
battery at its time of departure set in a specific charging
schedule because of the random behavior of the EVs in arrival
and departure times. The authors in [64] address this issue
by considering the EV problem as a constrained Markov
Decision Process (CMDP) and solves the problem with con-
strained policy optimization (CPO) [116]. They propose a
real-time strategy for charging and discharging the EVs that
tackles the random behavior of EVs in arrival and departure,
prices of electricity, and battery remnant energy. A con-
strained optimal charging/discharging schedule is obtained
using SRL which is a model-free approach and uses a deep
neural network (DNN) without the need of setting of penalty
coefficients manually as in DRL. The states at each time
step are the battery energy and the past 24 hrs. electricity
price. Furthermore, the action is set to be the charging and
discharging quantity and it is a continuous variable. The
reward during charging action is presented by the electricity
cost but as a negative quantity. On the other hand, the revenue
from selling electricity is the reward while discharging. The
buying cost and the selling cost of electricity are assumed
to be the same. The optimal policy is assumed to have the
maximum discounted return. The state parameters of the
system are the network inputs. The extraction of features
from the information in the system states is the role of the
policy network. The output of the policy network is a nor-
mal distribution, including its mean values and logarithmic
standard deviations. Then, the action of the EV charging or
discharging is generated by the policy after sampling the nor-
mal distribution. State values are produced by a value network
after the extraction of state information. The value and policy
networks are of similar architecture. The proposed method is
compared with baseline approaches Deep Q-Network (DQN)
and Deep Deterministic Policy Gradient (DDPG) with a
penalty term in the objective. Also, the approach is compared
with the deterministic optimization problem solved using
SCIP [117]. The algorithm code is written in Python3.6,
especially using TensorFlow1.12, as it has a deep learning
package.

A control system proposed in [59] addresses the voltage
security by maximizing the operator of the distribution sys-
tem’s profit while considering the power system’s physi-
cal constraints. Their approach analyzes how uncertainties
affect the charging strategy by deploying the DDPG-based
RL technique.

In [64], the EV user’s perspective is considered and the
effect on the user’s decisions on electricity prices is not
considered. It is worth investigating the effect of adjusting
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the electricity prices when new peaks are developed on the
EV’s learning.

Different from the previous studies, the authors in[65] pro-
poses a charging navigation application aimed to minimize
the EVCS charging cost and the EV traveling time without
requiring the uncertainty data of a prior system. An MDP
is used to model the problem with the transition probabil-
ities unknown, while the state features were extracted by a
deterministic shortest charging route model (DSCRM) from
stochastic data. The system states are constructed according
to the road velocity, the charging price of the EVCS, the time
of waiting of the EV, the location of the EV, and battery SOC
at every timestep. The reward is realized by the waiting time
and charging cost at the EVCS, the charging cost is assumed
constant for all charging groups in this study. The action by
the EV driver determined the EVCS and the corresponding
rout.

The charging strategy in the previous studies did not
consider the power system limits. While the study by [70]
propose simultaneously minimizing the energy cost and
transformer loading. It proposes a MultiAgent Selfish COI-
laborative architecture (MASCO) which is a multiagent
multi-objective RL architecture used to develop a heuristic
controls strategy to schedules the EV charging at appropriate
times. The RL framework aims to optimize for high bat-
tery level, minimum price paid, and minimize transformer
overload. The proposed policy is compared with the always
charging policy (ACP), ransom policy (RP), and DWL-DWL,
and the experiment was implemented in BURLAP.

E. NOVEL RL ALGORITHMS

A study by [67] uses RL to learn the optimal strategy to
satisfy the EV’s battery energy requirement and to minimize
the charging expenses at the same time. The method proposed
is to control deep deterministic policy gradient (CDDPG),
which can solve continuous problems in real-time [26]. This
approach is superior to the deep QL-based approach, which
is limited to discrete estimates only, and also the DDPG
approach.

The uncertain nature of the parameters, such as energy
prices, can be addressed as an MDP [118]. The (MDP)-
based algorithm assumes known and stochastic future events
distributions.

A novel multi-agent charging strategy in [68] considers
EV users participating in the electricity market by deploying
V2G technology for selling or buying electricity to the grid
without any aggregator or central agent. The method uses
a Q-learning algorithm where agents buy energy and sell it
aiming to minimize costs while always satisfying the trip
energy needs. The algorithm also considers the behavior of
owners of the EVs and the uncertainties involved. The authors
assume each EV as an agent and model the variable times of
arrival and departure and energy required during the trip as
probability density functions (pdf) of Gaussian distribution.
The study considers three scenarios, fixed-rate strategy, TOU
and dynamic tariff strategy. Stochastic driving behavior was
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simulated considering only one trip per day for each vehicle.
At first, the agent determines the energy required for the
trip and the market bidding price of electricity. A penalty
is assigned when the algorithm determines an insufficient
amount of energy for the trip at departure. Then, EV owners
should determine the benefit of selling electricity to the mar-
ket. Subsequently, the RL algorithm determines the policy
based on the highest reward calculated by subtracting the
revenue from energy sold from the buying cost of energy.
The effecting factors of time-independent environments are
electricity prices, driving patterns, and random energy con-
sumption for each trip. The system considers 500 agents to
simulate the three scenarios, fixed-rate strategy, TOU, and
dynamic tariff, and the average cost results are 5.5 €/day,
5.3 €/day, and 4.8 €/day, respectively.

An energy management system for EVCSs with solar PV
and an energy storage system (ESS) is proposed in [69]. The
novelty of this study is that the scheduling solution is com-
puted in a distributed manner while handling time-varying
data related to the charging of EVs, such as the amount of
energy charged in the ESS, the charging price, and the total
demand of the EVCSs. The proposed scheme is based on
a multi-agent RL framework with solar PV and an energy
storage system (ESS) at each EVCS. For policy choosing,
the rewards are related to the EVCS operation cost of charg-
ing, discharging, and loss caused by overcharging during the
charging process.

Authors of [72] applied a multi-agent RL control for maxi-
mizing renewable energy use with EV charging management
by considering that each load is a separate device in charge
of its own schedule. The state information is the generated
power from a renewable source (wind power), load power,
and the charge energy. Three policies are proposed in this
study, the renewable energy policy which can enable EVs
to learn charging only during the periods where there is
sufficient load that enable EVs charging, and it is the differ-
ence between transformer load and the maximum specified
load. The second policy is the battery charge policy which
gives a positive reward to agents every time a battery charge
is charged to 60% and every time the charge is increased.
The baseload policy provides agents with the predicted load
of 24-hrs which is related to the energy price directly. The
results show that the algorithm enables the EV load to follow
the wind generation patterns up to 35% of the overall energy.

State-of-the-art algorithms usually concentrate on single
EVs or central aggregate controllers to control an EV fleet
through multiple steps which are aggregate load decisions and
sending translated decisions to individual EVs. The authors
in [85] propose a coordination approach that does not need
a heuristic algorithm but instead provides coordination for
a set of charging stations that decides which cars to charge
to meet the schedule of a target load (i.e., load flattening)
in the RL framework. They formulate a scalable MDP that
can work on a group of EVCSs that do not share the same
characteristics. The optimal chagrining policy is learned by
batch RL and fitted Q-iteration. The problem is formulated by
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setting a maximum number of charging stations for different
EV groups and charging levels, the arrival and departure of
EVs are considered dynamically over discrete timeslots. The
variables considered are the arrival time, the time remain-
ing for departure, energy requested and the charging rate of
the EV.

RL approaches determine the charging schedule quality by
using action-value functions. Estimating the best action-value
function differs from one approach to the other. A Q-table
of discrete estimates the action-values of the charging sched-
ule in [80]. However, discretization cannot represent a large
number of action-sets required for real-world application.
In [58], the authors use a linear approximator to estimate
the action-value function. However, it shows a limitation
in handling real-world scenarios which are of nonlinear
action-value function. Non-linear approximators are used
to estimate the action-value function, as in [56]. They use
kernel-averaging regression, which requires manual selection
of the kernel function with carefully designed parameters.

In [84], the authors used deep reinforcement learning,
as they proposed a function approximator for the actin-values
to control the EV real-time charging, LSTM network predicts
electricity prices. The proposed approach has an architecture
of two networks. A Q-network estimates the action-value
function, while a representation network represents the prices
of electricity. The information presented by the states are
EV availability at home or not, the remnant battery energy,
and the price of electricity for the past 24 hrs. The actions
presented in the problem are charging or discharging power
and the problem is constrained by the maximum and min-
imum power allowed for charging and discharging for the
discrete action space. As for rewarding an action, a reward is
defined as a positive value of the charging cost and a negative
value of the same cost if discharging action. The authors
present the term “range anxiety” to the uncharged energy
which introduces insufficient energy to reach a required des-
tination by the user. As a result, a penalty proportional to
the amount of uncharged battery energy is presented in the
RL problem. To develop a schedule, a deep neural network
is used. The random variables of EV arrival, departure, and
state of charge are modeled as truncated normal distributions.
YALMIP solves the problem of the charging and discharging
schedules. The amount of energy saving depends on the
driver’s preference presented by the anxiety coefficient in
this study. For instance, a large anxiety coefficient can be
interpreted as a small anxiety range, which results in a large
charging cost.

V. LESSONS LEARNT

A. RL LIMITATIONS

In all the papers surveyed, RL methods had proven to be
outperforming the traditional distributed energy management
methods and continuously improving themselves. Whether
the RL methods were tested against a benchmark, histor-
ical data, or sophisticated simulation models, are proven
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to be superior to their predecessor methods. In the algo-
rithms section, we surveyed how several papers used different
RL methods to solve the distributed energy management
problem.

Starting from the primitive SARSA, passing by Q-learning,
reaching DQN with DDPG, all these methods proved to be
superior to the previously surveyed literature in their cor-
responding papers. However, an interesting pattern appears
after further analyzing the nature of the algorithms used.
SARSA was used in [58] and [62]. Q-learning seemed to pro-
vide better policy selection and was adopted by the majority
of the papers. However, the curse of dimensionality problem
was introduced and needed a solution.

Thus, W-learning and deep RL were proposed by several
papers. W-learning was observed to have a high probability
to diverge, even though, it can extend to continuous mod-
els. Therefore, the majority of papers tended toward deep
reinforcement learning. DQN was the method used to solve
the high dimensionality problem using DNNs. It proved to
be performing better than Q-learning in the surveyed papers.
DQN was integrated with DDPG to enable the use of contin-
uous models. Therefore, DQN integrated with DDPG solves
most of the problems that arose with the introduction of
RL to distributed energy system management. Thus, we can
conclude that deep reinforcement methods like DQN can lead
to better results.

To test the performance of proposed RL methods,
the majority of the surveyed papers used historical data and
statistics, while other papers relied on sophisticated simu-
lations. Of course, both of the testing schemes are not as
promising as using the models in real life. However, many
papers assigned constraints to ensure the practicality of their
methods. Others also induced parameters to imitate real-
life systems. These testing methods avoid applying the RL
methods in real life to obtain results and serve as a safe area
for experimentation. Using new methods to solve real-life
problems might introduce risks of underperformance, fail-
ures, and custom dissatisfaction. Therefore, predicting the
behavior of the RL methods on historical data and sophisti-
cated simulation test cases might give the researchers an idea
of how the algorithms might work in real distributed energy
systems, and thus, the decision of using the novel algorithms
in real systems, if available, may be based on more solid
information.

Nevertheless, that brings us to the point where we discuss
the application of RL methods in real distributed energy sys-
tems. Although RL methods are proving to be superior to the
traditional ways of managing the distributed energy systems
with EVs, this is all a theoretical approach to solve the prob-
lem. The RL approach, and the machine learning approaches,
in general, are less computationally heavy than using opti-
mization and centralized control of distributed energy sys-
tems and they converge faster to an accepted suboptimal
solution. Still, they need serious computational power, which
would cost the distributed energy systems to place machines
in every EVCS. Even if a multi-agent approach is used,
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a hardware design problem would present itself, as choosing
the hardware to be battery-efficient with the desired perfor-
mance cannot happen arbitrarily. In conclusion, RL methods
are promising but still need improvement to be integrated into
real-life distributed energy systems.

B. RL AND THE FUTURE SMART GRID

The smart grid’s complexity is gaining attention worldwide,
and because it requires communication and extensive data
collection, RL techniques can enable smart grid development
and future technologies. RL is a smart tool that enables
applications such as energy management, EV charging coor-
dination, vehicle to grid (V2G), Vehicle-to-vehicle (V2V),
Vehicle-to-Building (V2B), and Vehicle-to-House (V2H).
These technologies are the most recent adopted applications
deploying the smart grid [111] and [6].

There are utility advantages of V2G where injecting elec-
tricity back to the grid can reduce peak loads and electricity
generation cost. V2H can reduce the house’s energy bills or
enable the vehicle to become an emergency power source
from an individual perspective. The same concept is applied
to V2B, where a firm or company can benefit from this
technology. Other than buildings, V2V enables vehicles to
charge each other. Consequently, it will reduce range anxiety,
which is an effecting factor on EV adoption [6].

Adopting smart charging is challenging with the
uncertainty and complexity of power networks [1]. The
drawback of smart EV charging or discharging is the battery
degradation, uncertainty of EV arrival or departure, user
behavior dependency, and lack of data about the environment
or system. RL utilization enables smart charging, load pre-
diction, demand response, renewable generation prediction,
Microgrid, and dynamic pricing of electricity, which all fall
under smart grid deployment [1]. In summary, model-free RL
with smart grids enables EVs, renewable energy sources, and
storage systems to share an infrastructure that enhances both
economy, power grid, and user satisfaction but present-related
research is still at their initial stage. Indeed, RL will have
great utilization potential for smart grids in the future, but at
present, the relevant studies are still at their initial stages.

C. RECOMMENDATIONS FOR FUTURE RL APPLICATIONS
In this section, future prospects for EV energy management
based on RL are discussed. The current EV management
approaches share the need to adapt to some issues. First,
they need to tackle the problem of heterogeneous agents and
how agents react with each other. Also, the models devel-
oped for the distribution infrastructure and their interaction
with EVs are either impractical or suggest changing the
existing infrastructure. Furthermore, the currently proposed
approaches mostly consider one type of energy tariff and
cannot be applied for other tariffs. Moreover, there is an
unrealistic assumption among the existing approaches that the
users know the precise amount of energy they consume each
day.
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The future steps in deploying reinforcement learning for
EV charging management starts with applying the successful
RL algorithms in real energy management systems. Then,
the integration of the smart grid with the EV management
systems is the next step. Therefore, the optimized control
of energy management systems will cover a wide range of
applications and grow more complicated. Furthermore, multi-
agent deep RL approaches will be developed to allow the
collaborative interaction between the charging stations and
the numerous EVs.

As it has been shown in the last few sections, RL has a
great potential in contributing considerably to enhancing the
distributed EV charging system applications. The literature
in this field is greatly rich and promising. However, the inte-
gration between RL and EV charging system applications
is still emerging and facing some deployment challenges as
discussed in the previous section.

Some researchers, as in [75] and [82], have used
single-agent reinforcement-learning approaches in their EV
charging related applications through the deployment of the
developed RL applications in the EVCS, but most of them
have suffered from the limited representation of the environ-
ment with complex relationships that the single learning agent
can process poorly. Other researchers as in [99] and [100]
have used multi-agent reinforcement-learning approaches in
their EV charging related applications through the deploy-
ment of the developed RL applications in the numerous
mobile EVs and having them cooperatively take the opti-
mum actions, but most of them have suffered from the EVs
complexity and the poor computational structure of the EV
charging system in general.

In recent years, a new technology has been proven to be so
promising in many of the real-life distributed system applica-
tions, which is fog computing. Fog computing is a computing
architecture that positively enhances the computational power
of any distributed system. The idea behind fog computing
lies in the concept of vertical sub-layering the system. Due
to its proven efficiency, many distributed systems that deploy
machine learning solutions in general and RL solutions have
started to integrate fog computing in the systems’ structure.

So, it can be very promising to integrate fog computing
with RL applications deployment in EV charging distributed
systems. The EVs will act as the edge devices, which is the
very lower layer in the hierarchy. Furthermore, the chargers
(EVCS) will act as the middle layer and it can be divided
into sub-layers depending on the needed architecture. And
at the top, there will be the centralized EV charging service
operator centers that are usually connected to the cloud. All
of these identities will be considered learning agents in the
environment. MARL solutions which are promising solutions
will now have a well-structured system for information shar-
ing between the multiple learning agents in the environment,
which is going to lead a very high probability of converging
to an optimal policy.

A few papers actually have shed light upon the tremendous
gain that can be achieved with the enhanced computational
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structure of the EV charging-based systems. The very recent
study [119] has shown some results of considerably reducing
the EV charging waiting time and effectively managing the
EV charging scheduling using the fog computational struc-
ture. Also, another recent study [120] has shown that using the
fog hierarchy in the EV to Grid systems can have very bene-
ficial applications in the future. So, this integration between
the fog computing and the RL may have the opportunity to
shape most of the future applications deployed in the EV
charging systems. It is expected that in the few coming years,
this integration will dominate the literature of EV charging
systems.

VI. CONCLUSION

The introduction of PEVs in distributed energy systems
can address the challenges of managing intermittent renew-
able energy resources. However, uncertainties are emerged
from introducing new flexibilities to the system. Traditional
approaches such as optimization techniques have been used
to solve the issues of uncertainties in the PEV. However,
it is not possible to mathematically model the uncertainties
using optimization techniques. RL approaches have proven
their ability to interact with the environment of the distributed
energy systems to learn the optimal solution to the EV man-
agement problem. Solving with RL showed the opportunity
of applying the approaches in real-life. In this paper, we per-
formed a comparative analysis of the RL methods used in the
EV management system.

Different aspects of the algorithms used were surveyed and
compared. Q-learning and its deep extension DQN proved
to be the most useful algorithms to tackle the problem. The
integration of DQN with DDPG solved both the dilemma of
high dimensionality and discretization. Also, the differences
between using single-agent RL. and MARL approaches in
the context of EV charging systems were discussed in this
paper. Single-agent RL solutions deployed in EVCS are very
likely to converge to a sub-optimal policy due to the limited
environment representation perceived by the single agent.
MARL solutions deployed in EVs can converge to optimal
policies since actions are taken jointly by multiple agents in
the same environment, but they are computationally expen-
sive and more difficult to converge.

Different combinations of state parameters were intro-
duced and related to the objectives of the papers surveyed.

The formulation of the states, rewards, and actions used
to represent the environment is a very crucial step in the RL
solution. The input features are chosen based on the objective
of the solution and the particular part of the system to achieve
the intended goal. The surveyed research showed that solving
different parts of the problem may lead to different solutions.
Most of the papers assigned constraints and included them in
the cost function of the algorithm to produce practical models
that do not violate system physical limitations.

The RL methods proved to perform better than the
traditional centralized methods, requiring less computa-
tional power and providing faster solutions. However, more
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research is needed to apply RL techniques in real-life dis-
tributed energy systems, as most of the results of the algo-
rithms were obtained through testing against historical data
or sophisticated simulations. Nevertheless, the integration of
RL techniques and other advanced technologies such as the
fog computational architecture shows promise in providing
more reliable, and realistic models.
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