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The field of electric drives in general, and medium-voltage high-power drives in particular, has recently experienced
considerable progress. Numerous interesting developments have been reported in the literature. Various reliable, ef-
ficient, and cost-effective medium voltage drive topologies, handling high powers up to 120 MW, have been proposed
in the literature. This paper provides a detailed overview of the current state-of-the-art in medium-voltage high-power
drives and the challenges facing them.
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1. Introduction

Low Voltage (LV) drives have input voltages less than
690 V and are used for Low-Power (LP) applications, while
Medium Voltage (MV) drives are generally covering out-
put power from approximately 200 kW to 120 MW and us-
ing voltages from 2.3 kV to 11 kV (1) (2). Recently, many in-
dustrial applications such as refiners, mills, crushers, blast-
furnace blowers, gas compressor stations and gas liquefaction
plants, require high-power (HP) ratings. Advances in power
electronics made the development of HP and MV adjustable-
speed electric drives possible for various industrial applica-
tions. The main objective of these drives is to control the load
speed and/or torque in an efficient and reliable way, without
injecting harmonics to the grid.

Electric drives, in general, went through different devel-
opment eras. In the 1960–70s, electric drives were mainly
DC motor based. At that time, AC motor variable-speed
drive controls have not been able to go beyond a simple
open-loop Voltage/frequency (V/f) control (3). HP AC motors
were dominated by Induction Motors (IMs) and Synchronous
Motors (SMs) types. In early 1980s, due to the introduc-
tion of the microcomputer-controlled PWM power electron-
ics inverters, more advanced and complex AC motor drive
controls became possible (4)–(8). However, these advanced and
complex control techniques were limited to mainly LP and
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LV applications. The HP and MV drives were predomi-
nantly based on Load Commutated Inverters (LCI) or Cyclo-
converters, for applications such as the steel industry (rolling
mills). However, the LCI-based drives suffer from draw-
backs such as low harmonic torque ripples, complex start-
ing technique, notches in their terminal voltages, and quasi-
square wave currents (3) (9). Besides, limitations on the ratings
of power-electronic devices have restricted the power capa-
bility of the PWM-inverter-based electric drives. This has
changed since the apparition of multilevel converters and new
devices such as the GTOs and IGBTs, which paved the way
for the application of PWM inverters in HP and MV motor
drives (1) (3)–(10). Numerous MV inverter topologies were pro-
posed and investigated in the literature since mid-1980s (1)–(10).
The efforts in advancing this technology led to the apparition
of various topologies of MV drives such as: (2) (10)

1) Series connection of LV inverter modules to satisfy the
motor voltage and power requirements;

2) Multilevel inverter topology implemented in three or
more levels using high power switches;

3) Parallel connection of multilevel inverters which in-
creases the power handling capability; and

4) Multilevel-inverter-based multiphase motor drives.
Beside the focus on inverters’ topologies, several other is-

sues (as depicted in Fig. 1) were also investigated in the liter-
ature. This paper reviews the state of the art in HP and MV
electric drives, highlighting their related challenges and pro-
posed solutions. The paper is organized as follows: section
2 introduces the MV machines; section 3 presents MV drives
topologies; Section 4 discusses multilevel inverters for MV
drives; section 5 presents multiphase machines and drives;
section 6 discusses challenges related to MV drives; section
7 concludes the paper.

2. MV Motors

IMs and SMs are dominating the HP and MV drives’
applications and the type of motor selection depends on
the application requirements, the electric power network
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Fig. 1. General drive structure

Fig. 2. Areas of IMs and SMs use

specifications and environmental conditions (11). In practice,
a detailed analysis and comparison between various types of
motors is necessary in order to select a suitable type for a
given application. The following general facts are usually
considered when selecting a motor type (10):
• IMs are stiffer, lighter, and more robust because of their

simple rotor structures.
•Although SMs need exciter for proper operation, they

have higher efficiency, controllable power factor, and
constant rotating speed regardless of load variation.
• SMs are preferred for the HP applications since they can

produce larger output torque.
Figure 2 shows the SMs and IMs power capacity versus

rotating speed, along with their physical limitations (10) due to
centrifugal force. Notice that, for high rotating speeds, IMs
are preferred, while for larger power capacity, the SMs are
better choices.

This can be explained by the fact that the higher is the ro-
tating speed, the higher is the centrifugal force, applied to the
rotor, which increases as the rotor radius increases (e.g. case
of SMs due to exciter windings). Since the centrifugal force
is proportional to the square of the rotor speed and the radius

of the rotor (10), larger motor should withstand larger centrifu-
gal force. The rotor should be manufactured with specific
types of materials so that it has finite stiffness to withstand
the centrifugal force exerted on its rotor and shaft when ro-
tating at high speeds. Therefore, when the rotating speed is
very high, a magnetic bearing may be required to levitate the
rotor shaft (11) and provide mechanical-contactless rotation;
thus, leading to smaller rotational losses and reduced mainte-
nance cost. However, in magnetic levitation, the motor needs
a controller to regulate its shaft position (12) (13). Besides, mo-
tor cooling consideration is necessary to reduce losses, and
explosion-proof construction is also required for use in haz-
ardous locations such as in oil and gas plants (14).

Multiphase motors with more than three phases, in their
stators, are becoming a better choice for HP and MV drives’
applications. The first 5-phase induction motor drive was
proposed in 1969 (15) for LV applications. The real interest
on multiphase machines at that time was due to the (2n ± 1)f
torque ripples produced by an n-phase machine (16). When us-
ing a three-phase inverter six step mode of operation of the
torque ripples are of low order frequency which is not de-
sirable. Therefore, the use of a machine with higher phase
number looked as the best solution to overcome the low or-
der torque ripples. Henceforth, multiphase drives using var-
ious types of inverters were developed (17)–(21). However, with
the development of better PWM techniques, this is no more
an issue (16). Multiphase machines have several superior fea-
tures when compared to their three-phase counterparts. These
features are: better fault tolerance, smaller wires (low cross
section area) used in the winding and hence lower skin ef-
fects, lower power per phase and hence lower converter de-
vices’ rating. Actual HP and MV industrial drives’ develop-
ment, using multiphase machines for applications, such as in
oil pumping (23) and wind energy (24), are also promising. Re-
cently, the focus is on high-reliability, small-size, and fault-
tolerant configurations development. Moreover, under fault
conditions, multiphase motors are more reliable and maintain
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self-starting ability, with minimum effect on the output power
level (25). New designs aiming at higher torque density were
achieved through stator current harmonic components injec-
tion (26) (27). For instance, authors in (28) proposed a fractional-
slot concentrated-winding (FSCW) design for five-phase IM
that has a better flux-weakening capabilities. Owing to their
advantages, the multiphase FSCW surface and interior PM
machines are becoming an interesting choice for low voltage
applications, especially for electric vehicles (29) (30). However,
at high speeds, they suffer from excessive rotor losses due
to large spatial harmonic components (31). The fluctuation of
magnets price and availability, as well as the need for a higher
power wind generation without excess of weight and size,
have enforced researchers to explore and develop multiphase
(nine-phase) superconducting high power (12 MW) electri-
cal generators for large-scale direct-drive wind turbines (24) (32).
The trends in HP and MV multiphase machine technology
is expected to grow, and significant new improvements are
likely to appear in the near future. More details and pro-
gresses in multiphase machine design, modeling, and control
can be found in several review papers (33)–(37).

3. MV Drives

In the variable frequency operation of HP and MV drives,
to match the inverter power to the power of the motor, various
topologies or combinations of many inverters are used. Fig-
ure 3 shows the main used topologies for high power motor
drives. To create an adequate output satisfying high power
as well as the medium voltage level of the motor, multiple
inverters are used via a parallel connection through balanced
reactors at the output (Fig. 3(a)), or through multi-winding
transformer at the output (Fig. 3(b)). The two other options
to use either multi-phase/multi-winding motor (Fig. 3(c)),
or/and multilevel inverter (Fig. 3(d)).

For the first two topologies, installation space is required
for the balance reactors or the transformers in addition to
the motor and the inverters (10). The combination of multi-
level topology based drive system and one of the first two
connections can form a very large power drive system (2) (10).

(a) Parallel connection using reactor (b) Multi-winding motor drive us-
ing dual converters

(c) Parallel connection using reac-
tor and Multi-winding motor

(d) Series connection using multi-cell
converter

Fig. 3. Main MV motor drive topologies

Multilevel inverters based drive systems are addressed in sec-
tion 4.

4. Multilevel Inverters Topologies for HP-MV
Drives

Multilevel inverters experienced tremendous growth af-
ter the introduction of the Gate Turn Off Thyristors (GTO),
Insulated Gate Bipolar Transistor (IGBT), Gate Controlled
Thyristor (GCT), and Insulated Enhanced Gate Transistor
(IEGT) devices.
4.1 Switching Devices The historical progress of the

power electronic devices used for HP and MV motor drive is
illustrated in Fig. 4. Thyristor, GTO, IGBT, IEGT and GCT
are the main power electronics components used in the MV
and HV inverters construction. The first released high power
devices were the thyristor. In 1990s, Thyristors were able to
handle several kV and several kA power.

Transistors are the second developed devices and in the
1980s were released for high power applications. IGBTs
were developed to handle higher voltage than the conven-
tional transistor. A continuous progress of IGBT technol-
ogy has led to the commercialization of its 6th generation and
the development of the enhanced IEGT, which can handle
larger range of current (few kAs) and low voltage drop by the
injection enhanced effect (38). All the devices from GTO to
IEGT were made of silicon wafer. New devices, with better
performances, were developed using Silicon Carbide (SiC)
wafer (38). Although, presently the SiC device development is
for low power and low voltage applications, the SiC material
exhibits better performance than the silicon one, especially
for high voltage and high current applications (40) (41). SiC
switching devices can operate at higher switching frequen-
cies while exhibiting lower switching losses. Many com-
panies are working hard to develop high-voltage and high-
current switching devices. The successful development of
inverters for large-capacity AC motor drives rated at MW
ranges using this switching device is considered as a mat-
ter of time (42). New progress in power semiconductor devices
will be the key element to achieving MV drives up to end-
users’ expectations, such as simplicity, greater functionality,
and better reliability.
4.2 Multilevel Topologies Although the concept of

multilevel converters has been first introduced in 1975 (43),
it was only in the late 1980s, early 1990s that the multi-
level PWM inverters topology was used for PWM electric
drives with higher power capability (44). The multilevel era
began with the Neutral Point Clamped (NPC) three-level con-
verter (45). Successively, various new topologies of multilevel

Fig. 4. Development of semiconductor switching device
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converters have been developed (46)–(55) (61)–(94). The output volt-
age, of multilevel converter, is mainly obtained by appropri-
ately cascading several individual DC voltage sources. The
synthesized voltage waveform has a staircase shape, which
becomes closer to its sinusoidal reference when a higher
number of levels (stairs) is used. The main advantages of
such converters over conventional two-level converters are
the low harmonic distortion of the generated output voltage,
low electromagnetic emissions, high efficiency, the capabil-
ity to operate at higher voltage ranges, and modularity. In
many cases, capacitors can be used instead of the DC volt-
age sources. In order to achieve high voltage at the output
of the inverters, the power electronics switches’ controls are
synchronized to aggregate these multiple DC voltage sources.
However, the rating of the switching devices depends on the
individual DC voltage source from which they are powered.
The multilevel inverter uses low voltage steps to produce a
staircase AC output terminal voltage waveform. These low
voltage steps make a significant contribution to mitigating the
so-called “dv/dt stresses” in a broad sense of the equipment
and, therefore, reduce the long-cable effects and the electro-
magnetic compatibility (EMC) problems. Furthermore, they
produce smaller Common-Mode (CM) voltage and, there-
fore, reduce the stress on the motor bearings. Advanced
PWM techniques can also further reduce the CM voltage (95).
Beside the excellent output waveforms, input currents drawn
from the grid have lower distortions. Multilevel converters
can operate at lower switching frequencies, which results in
higher efficiency of the overall drive system. Applications of
multilevel inverters for MV drive systems (78)–(102) and to power
systems (105)–(107) are becoming widespread. A quiet large num-
ber of multilevel converter topologies have been proposed
since 1996. Most of these proposed multilevel converters are
based on the three following basic topologies:
1) Neutral Point Clamped (NPC) or diode clamped in-

verter (45)

2) Cascaded H-Bridges (CHB) inverter (49)–(54)

3) Flying Capacitors (FC) inverter (46)–(48)

4) Modular Multilevel Converters (MMC) (54)–(56)

5) Multilevel Matrix Converter (57)–(60).
For proper operation of these converters, several PWM

control techniques were developed. Four main cate-
gories of PWM exist: sinusoidal pulse width modula-
tion (SPWM), space vector modulation (SVM) (62) (63), selec-
tive harmonic elimination (SHE-PWM) (64) and discontinuous
PWM (DPWM) (65) (77). For more information on multilevel in-
verters, a survey of topologies, controls, and applications are
published in (78) (79).
4.2.1 NPC Inverter based MV Drives Many

drives based on NPC inverters have existed since early
1990s (3)–(10) (44). A high power 5-level motor drive topology
that can handle up to 30 MW capacity, was introduced us-
ing the NPC as a cell, as shown in Fig. 5(a) (2). Each phase of
the motor is powered by a single-phase inverter consisting of
two legs of a 3-level inverter.

A 7.2 kV, 30 MW, 5-level drive based on Fig. 5(a) topol-
ogy was implemented and constructed as shown in Fig. 5(b)
which is available in the market. Low number large-capacity
semiconductor switching devices, GCT, are used. The high
voltage, large capacity drive is using a simple circuit topology

(a)

(b)

Fig. 5. (a): Circuit configuration of star-connected 5-
level inverter (99), (b): 30 MW NPC cell-based 5-level in-
verter set

and a small number of devices, which improved the converter
reliability (47). The resulting line-to-line voltage has nine lev-
els. By paralleling four 30 MW inverters through the reactors,
120 MW drive system can be realized (2).
4.2.2 CHB Inverter based MV Drives CHB mul-

tilevel inverter topology is made of several series connected
cells. Each cell is composed of a diode rectifier, a DC link
capacitor, and a single phase H-Bridge inverter as shown in
Fig. 6(a). The series connection of the cells yields high out-
put voltage with staircase waveforms. Figure 6(b) shows the
output voltage waveform of the drive inverter with 6 cells
in series. By increasing the number of levels in the converter,
the output voltage has more steps generating a near sinusoidal
waveform. A multi-winding transformer is used to offer in-
sulation among cells and will not inject any lower order har-
monics into the grid due to the proper phase shifting between
phases of windings (10) (49)–(54).

When required, CHB drive inverters can use bypass
switches to improve the reliability of the system. However,
if this switch is not well designed it will lead to unreliable
system (81). The use of film capacitors in the DC-link by the
advanced paralleling design is expected to further improve
the reliability of the drive (81).
4.2.3 MMC based MV Drives Several researches

are focusing on MMC for high power motor drive applica-
tions (88). Due to the floating capacitor voltages, it is known
that, at low speed operation, MMC suffers from a power im-
balance between the upper and lower arms. This results in
a limited use (pumps, compressors and fans) of MMC for
drives (82). Several techniques were proposed to overcome
this imbalance problem (80) (84)–(88) (90) (91). These techniques are
based on redistributing power between the upper and lower
arms by injecting a common-mode voltage and circulating
current to the three phases of the converter (80)–(84). Authors
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(a)

(b)

Fig. 6. (a): Typical full bridge cell configuration used
in Fig. 3(d), (b): Line-to-line output voltage and current
waveforms of 6-cell configuration used in Fig. 3(d)

in (88) improved these techniques and were able to reduce the
peak value of circulating current by up to 50%. However,
the techniques proposed so far, improve the power imbal-
ance in detriment of larger common-mode voltage that may
harm the motor bearings (89). Other techniques, are based on
modified control strategy (90) to reduce the power imbalance
and to allow larger capacitor voltage ripples at low speed op-
eration without injecting common mode voltage (89) (90). This
technique is effective in the medium to high speed ranges.
At low operating speed, the common-mode voltage and cir-
culating current can hardly be avoided (91). Another topology
called active cross connected MMC (AC-MMC) is proposed
to mitigate the common-mode voltage for medium-voltage
motor drives in the full motor speed range. The imbalance
of power is reduced through a physical path formed by the
cross-connected branch. The proposed topology makes the
MMC more complex and expensive (92). In summary, more re-
search efforts are needed to make the MMC more suitable for
high power motor drives operating at low frequency range.

5. Multiphase Motor Drives

In the last three decades, multiphase motors were devel-
oped and are gaining popularity over the conventional three-
phase motors, due to their high-power density, fault-tolerant
capability, and high efficiency (25) (110) (111). Moreover, under
fault conditions multiphase motors are more reliable, main-
tain self-starting ability with minimum effect on the output
power level (25). Some of the recent research topics on mul-
tiphase motor drives are: torque enhancement by injecting
lower order harmonics into the stator currents (112) (113), open-
ended winding multiphase IM (41) and matrix converter for
five-phase IM (114). These research works showed the impor-
tance and necessity for high-power multiphase motor drive

applications. However, there are still no clear knowledge and
certainty of the optimum number of phases required for a
given application. It is obvious that increasing the number
of phases increases the reliability of the drive system, but at
the same time it also increases the complexity and cost of the
related converter and control systems.

A comprehensive review of multiphase motor drives is pre-
sented by authors in works (33) (34), where they presented the
recent advances in the design, modeling and control of multi-
phase machines and discussed the open challenges and future
research directions in this area. Even though the modeling
of multiphase machines was extensively studied in the past
century, some interesting and more accurate models are still
being developed. These new models take into account the
effect of the magnetic saturation in the machine that affects
the main airgap flux density and produces coupling between
different planes (33).

Since modeling of any electric machine requires the knowl-
edge of its electrical parameters, procedures for their identi-
fication are also becoming an interesting area of research (33).
In fact, motor parameters’ identification (resistances and in-
ductances) in conventional three-phase electrical machines is
well-established, but their extension to the multiphase ma-
chines is currently limited. Therefore, more work is expected
in the near future because only a few recent works have at-
tempted to tackle this issue (33).

6. Challenges for High Power Motor Drives

6.1 Long Cables Motors fed by PWM inverter with
high dv/dt pulses, via long cables, are subject to voltage
spikes, which in turn induce severe nonlinear inter-coil and
inter-turn voltage distributions in the motor windings. These
voltage spike phenomena are caused by a combination of
impedance mismatches, long motor cables, and inverter
switching transients. If the cable is long enough, the volt-
age spikes at the receiving end (motor terminal connections)
may reach twice the amplitude of the pulse voltage at the
sending end (inverter terminals) (119). This may damage motor
windings’ insulation and may lead to premature motor fail-
ures (115)–(118).

To reduce overvoltage and spikes at the motor terminals,
several solutions were analyzed and proposed. A compre-
hensive research has been conducted on the modeling and
analysis of these phenomena (120)–(126). Passive RLC filters have
been placed on the output terminal of the inverter to reduce
the inverter dv/dt (127)–(135). Alternatively, these passive filters
can be placed at the motor terminal side (136) (137). Other types
of passive filters and their placements are also possible (138) (139).
However, passive filters are bulky and increase power losses
and costs. On the other hand, active filtering combined with
new inverter topology (extra switches) has been proposed to
reduce the overvoltage (140). An active power filter with con-
ventional inverter has been proposed in (141). Also, a modi-
fied PWM switching pattern for a conventional three phase
inverter was introduced in (142) (143). An open-end winding elec-
trical motor fed by two inverters of the same type and size
has been also proposed (144). An additional RC filter and PWM
pulses dwell time control system are used to reduce the peak
of the overvoltage. The proposed approach is independent
of cable parameters and their variations. A good review of
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mitigation methods for overvoltage in long-cable-fed PWM
AC drives can be found in (145).
6.2 Common Mode Voltage An inherent drawback

of conventional two-level PWM inverter drive systems, is
the generation of significant common-mode voltages (CMVs)
with high frequency (146) (147). Ground leakage and bearing
currents along with conducted and radiated electromagnetic
interference (EMI), are direct causes of the CMVs (148)–(150).
These common mode related problems will intensify with
the availability of new fast switching devices that work at
high speed and high frequency (151)–(154). The CMV in PWM
inverter-based motor drives is not a new issue (149). Many
practical industrial solutions were developed to mitigate the
effects of CMVs in AC drive systems. Common-mode
(CM) chokes were used to suppress the ground leakage cur-
rent (155)–(157), grounding brush or insulated bearings are com-
monly used to eliminate the bearing current (148), CM filters
are used to suppress the conducted CM EMI (158) (159), while
the use of shield cables reduce the radiated EMI. As they are
dealing with CMVs effects and not the CMVs source, these
techniques can only mitigate one particular effect at a time.
More recently, some techniques were proposed to suppress
the CMV itself using active filters (160) (161). However, active
filters are somewhat difficult to implement due to their high-
bandwidth and the need of an external voltage source. Au-
thors in (162) (163) reduced the CMV using modulation strategies
that avoid zero switching states. Although, these PWM tech-
niques are effective in reducing CM currents, they make the
control more complex, increase the current harmonics, and
cannot reduce the high-frequency EMI.

On the other hand, an effective way to cancel CMV is to use
multilevel inverter topologies (164) (165). Authors in (166)–(169), pro-
posed some inverter topologies for CMV cancellation Dual
conventional two level inverters were used to cancel each
other CMVs and drive the motor (167) (168). However, this topol-
ogy uses twice the number of switching devices and re-
quires a good synchronization between the inverters. A cost-
effective and minimum-size topology using common-mode
voltage cancellation in PWM motor drives with balanced in-
verter topology was proposed in (170). The proposed balanced
voltage source inverter (VSI) topology uses 3 switching de-
vices in series per phase-leg. It eliminates the CMVs and
their related problems in electric drives.
6.3 Torsional Vibrations (Long Shaft) In many ap-

plications, the load is coupled to the driving motor with a
long shaft that is characterized by a small elasticity that may
get magnified and cause torsional vibration effect on the load
speed. This vibration is not only undesirable but can be of-
ten a source of system instability, and can result in coupling
failure, shaft and gears damage. This in turn may cause
undesired plant shutdowns (171)–(173). Interactions between the
electrical and mechanical sides of the drive system are the
main source of magnification of torsional vibration excita-
tions (174) (175). Due to the DC link voltage fluctuation in VSI,
the pulsating air-gap torque spectrum is composed of har-
monics and inter-harmonics. Critical operation points, where
the rotational speed of the motor causes harmonics and inter-
harmonics coincident with one of the shaft torsional natu-
ral frequencies, can cause resonance and lead to system fail-
ure (174) (175). Beside the conventional losses, a recent study

shows that additional losses are introduced in the electric mo-
tors under torsional vibration (184).

To mitigate the torsional vibrations, several control strate-
gies were proposed (176) (183). These are based on: torque rip-
ple suppression method with multilevel inverter and feedfor-
ward dead-time compensation (176) (177), the fast and slow distur-
bance observers (178), optimization techniques (179), state-space
controller (180) (181), Model Following Control (MFC) and Simu-
lator Following Control (SFC) (182), and Kalman filter (183). The
research on this issue will nurture as new drives are aiming
for better bandwidth and therefore torsional vibrations will
magnify.
6.4 Low-Voltage-Ride-Through (LVRT) to Grid-

Voltage Sags Electric drives often trip during voltage
sags, thus interrupting production and resulting in consid-
erable financial losses. There are various types of electric
drives, on the market, with different reactions to voltage sags.
Therefore, by designing drives capable of riding through grid
voltage sags with certain magnitude and duration, processes’
downtime can be significantly reduced (185). In order to pre-
vent tripping due to voltage sags, various techniques have
been proposed (186) (187). These are mainly aimed at maintain-
ing the DC-link voltage at a desirable level. This can be done
based on:
1) Using compensation at the distribution level based on

Dynamic Voltage Restorer (DVR) or STATCOM (188), and
2) Modifying of drive topology using an extra boost con-

verter between the rectifier and the DC-link capaci-
tor (189) (192).

As the above techniques tend to be bulky and costly, another
approach was proposed, which allows the DC-link voltage to
vary, but a better inverter control technique is used (192). How-
ever, if the process is sensitive to drops in torque and speed,
it is better to proceed to controlled shutdown in order to min-
imize the damages, and have the process ready for starting
when the voltage sag disappears (192). Recently developed sys-
tems are based on energy storage using supercapacitor sys-
tems which can maintain the DC-bus voltage at the required
level during the voltage sag (193). Ride through time, voltage
sags level, and load level are the main factors affecting the
selection of the ride-through technique to be used for a given
application.
6.5 Reliability and Availability Reliability and

availability are key factors for the industry choices of high
power motor drive, as it determines the lower downtime of
their plants. Therefore, users of drive systems place reliabil-
ity and availability on top of their wish list. The reliability
is a measure of how long the drive system performs its envi-
sioned function, while the availability is the time percentage
during which the equipment is in the state of normal oper-
ation. However, the definitions of reliability and availabil-
ity, or better the calculation of reliability and availability, are
difficult to be directly converted into exact technical require-
ments.

The Mean Time Between Failures (MTBF) is normally
used to calculate the reliability. (194) gives the parameters for
calculating MTBF, and clarification of these calculations is
given in (195). In this paper, we will highlight some technical
guidelines about reliability (196).

For inverter-driven motors, the use of simple topology with
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minimum number of switching devices is crucial for achiev-
ing high system reliability. The use of reliable switching de-
vices, such as IEGT and GCT, will further enhance the reli-
ability. Few proven inverter topologies such as 3-level NPC
are becoming a standard for the industry. Especially the sim-
ple star-connected 5-level NPC inverter is appropriate for use
with MV and HP motor drive (196). Selection of a suitable con-
trol technique that eliminates low order harmonics and real-
izes smooth operation, also contributes to the increase of the
overall drive system reliability. A proper testing at the man-
ufacturing stage at various operating conditions is crucial for
reliable operation in the real plant (196).

The simplicity of the used grid side converters, such as
diode rectifiers, will contribute to the overall reliability and
availability of the drive system. As a general concept, sim-
pler drives are normally more reliable and available than the
complex ones (196).

7. Conclusion

This paper surveyed and highlighted recent developments
in HP and MV drives. This area in particular has recently
experienced a considerable progress. A detailed overview of
the current state-of-the-art in MV drives and their challenges,
were described. Numerous interesting MV drives topologies,
realizing the power up to 120 MW, were proposed. A high-
light of the most prevalent topologies with a discussion of
their features was presented.

New progress in power semiconductor devices will be the
key element to achieving MV drives up to end-users’ expec-
tations such as simplicity, greater functionality, and better re-
liability. The number of researches published in this area is
tremendous. The authors tried to refer to all important pub-
lished works, and apologize to all authors whose important
work may have been overlooked.
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