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A B S T R A C T

Phantom limb pain after amputation is a debilitating condition that negatively affects activities of daily life and
the quality of life of amputees. Most amputees are able to control the movement of the missing limb, which
is called the phantom limb movement. Recognition of these movements is crucial for both technology-based
amputee rehabilitation and prosthetic control. The aim of the current study is to classify and recognize the
phantom movements in four different amputation levels of the upper and lower extremities. In the current
study, we utilized ensemble learning algorithms for the recognition and classification of phantom movements
of the different amputation levels of the upper and lower extremity. In this context, sEMG signals obtained
from 38 amputees and 25 healthy individuals were collected and the dataset was created. Studies of processing
sEMG signals in amputees are rather limited, and studies are generally on the classification of upper extremity
and hand movements. Our study demonstrated that the ensemble learning-based models resulted in higher
accuracy in the detection of phantom movements. The ensemble learning-based approaches outperformed the
SVM, Decision tree, and kNN methods. The accuracy of the movement pattern recognition in healthy people
was up to 96.33%, this was at most 79.16% in amputees.
1. Introduction

Phantom limb sensation is a sense that the amputated limb is
still present after amputation. Many individuals experience phantom
sensations, including pressure, itching, and temperature changes in the
missing limb [1]. The phantom sensation may be so realistic that they
sometimes get out of bed and try to walk with the phantom foot. The
majority of people with phantom limb sensation also have extremity
pain, which causes a very disturbing and debilitating effect. Phantom
limb pain (PLP) is a common symptom seen in individuals who undergo
this process [2]. Moreover, 80%–85% of these individuals experience
severe continuous or intermittent pain attacks lasting up to 1 min and
characterized by throbbing, burning, stabbing, electric shock, tingling,
and cramping along the amputated limb. PLP is usually early-onset but
may occur weeks or even years later [3]. Jensen et al. stated that the
incidence of PLP was 72% after one week of amputation and 59% after
2 years [4]. PLP is less frequent in young children and children with
congenital absence of limb [5].
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The incidence of PLP is more frequent in patients with chronic
vascular disease prior to amputation and chronic pain due to tumors.
It is also mentioned that the severity of pre-amputation pain and the
severity of PLP are directly proportional [6]. Other factors that affect
the occurrence or exacerbation of PLP include seasonal changes, stress,
sadness, coughing, micturition, defecation, anxiety, depression, sexual
activity, tight dressing, or prosthesis on the stump [5].

The underlying mechanism of the PLP has been extensively debated
but still not totally elucidated. Although it was widely believed that
psychogenic factors were the reason for PLP, it was focused on changes
that the amputation induces in the central nervous system (CNS) and
peripheral nervous system (PNS) over time [3].

Many theories about peripheral causes of PLP are focused on the
presence of neuroma, the inability of the interrupted nerves to repair
previous connections, ectopic firing in the residual limb or dorsal root
ganglion, and the role of pre-amputation pain [7].

Although more than 60 different therapies to alleviate PLP have
been described in the literature, none of them have proven their
vailable online 24 September 2022
010-4825/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.compbiomed.2022.106132
Received 10 April 2022; Received in revised form 27 August 2022; Accepted 18 Se
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ptember 2022

http://www.elsevier.com/locate/compbiomed
http://www.elsevier.com/locate/compbiomed
mailto:a.akbulut@iku.edu.tr
mailto:feraygungor@iuc.edu.tr
mailto:etarakci@iuc.edu.tr
mailto:aydinali@iuc.edu.tr
mailto:azaim@ticaret.edu.tr
mailto:ccatal@qu.edu.qa
https://doi.org/10.1016/j.compbiomed.2022.106132
https://doi.org/10.1016/j.compbiomed.2022.106132
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2022.106132&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Biology and Medicine 150 (2022) 106132A. Akbulut et al.
effectiveness yet [8]. As more information is obtained about the for-
mation mechanism of PLP and its predisposing factors, the number
of studies focusing on the prevention or reduction of pain has in-
creased. Research in literature has demonstrated that the primary
somatosensory cortex receives signals from missing limbs and the pri-
mary motor cortex sends motor commands despite cortical reorganiza-
tion [9]. Performing phantom motor execution (PME) may reduce PLP
as it will cause activation in the motor cortex and normalize cortical
representation of the amputated limb [10].

PME is the phantom movement of the amputated limb that patients
are able to voluntarily control. The muscle activation patterns of the
residual limb during PME are different from the intact limb due to
the lack of skeletal muscles and motor responses of the amputated
limb cannot be observed because of the absence of a limb. Recognition
and classification of the PME are significant for utilizing it in the
treatment of PLP. Surface electromyography (sEMG) can be used for
recording signals received from amputated limbs during PME. Elec-
trodes are connected to the stump of the patient to receive the electrical
signals generated during phantom movements. The electrical signals
from the amputated limb are recognized and classified by myoelectric
pattern recognition, are transformed into virtual limb movements in
real-time by artificial intelligence algorithms, and are used in virtual
and augmented reality-based rehabilitation systems to reduce PLP.

The aim of the current study is to classify and recognize the phan-
tom movements in four different amputation levels of the upper and
lower extremities by using ensemble approaches. Ensemble learning
approaches are capable of automatically distinguishing features from
large amounts of data. Ensemble learning can be used to achieve better
prediction performance for the recognition and classification of PME.

The main contributions of this research are two-fold, as follows:

– We created a genuine dataset of sEMG signals from 38 amputees
and 25 healthy individuals.

– We performed an empirical study on phantom movement recog-
nition using ensemble learning approaches compared with SVM,
Decision tree, and kNN algorithms.

The rest of the paper is structured as follows: A summary of the
literature review on phantom movement recognition is introduced in
Section 2. In Section 3 the dataset, research methodology, and all
methods employed are explained. Section 4 details the valuation of
results. Section 5 interpret the finding and finally, conclusions are
summarized in Section 6.

2. Related work

In order to improve the precision of the dynamic characteristics of
the sEMG signal, it is necessary to construct a mathematical model of
the signal. The deep learning approach consists of multiple abstrac-
tion structures and multiple processing layers combined to learn the
representations of data. Studies about phantom movement recognition
by using deep learning and other machine learning approaches have
aimed to reduce PLP and control the myoelectric prosthesis. The success
of myoelectric control depends to a large extent on the accuracy of
classification.

The summary of the sEMG studies that have motion classification
are shown in Table 1. Lucas et al. proposed a method for classifying
multi-channel sEMG signals to control myoelectric prostheses. The
classification was accomplished by a Support Vector Machine (SVM)
approach in a multi-channel representation area. In order to classify
six different hand movements, sEMG signals were recorded by means of
superficial electrodes placed at eight sites on the forearm. The method
was found to be suitable for real-time classification due to its low
rate of misclassification and its ability to be implemented with fast
algorithms [11]. Ahmad and Chappell classified the sEMG signal to de-
tect the regularity of the movements. Twenty subjects performed wrist
2

flexion/extension, isometric contraction, and co-contraction while EMG
signals were recorded with surface electrodes. The results demonstrated
that the sEMG signal had regularity at the beginning and end of the
muscle contraction, with a low regularity in the middle [12]. Khezri
et al. used superficial EMG signals to describe movement models of
the hand prosthesis. For the control of a prosthetic hand, a fuzzy logic
inference system has been proposed to determine motion commands.
The myoelectric signals used in the classification consist of six hand
movements. The fuzzy-logic systems designed and used in this study
have been tested independently in a mixed manner for both time and
time–frequency characteristics [13].

Jarrasse et al. classified the phantom movements of fingers, hands,
wrist, and elbow using sEMG signals measured by multiple electrodes
placed on the residual limb in five participants with transhumeral
amputations. LDA was used for classification [14]. Also, they used
myoelectric pattern recognition and classification of voluntarily phan-
tom movements to control prosthesis without surgical reinnervation
in patients with transhumeral amputation. Their aim was to evaluate
the possibility of using a PME based control approach to perform
more realistic functional grip tasks. Results indicated that transhumeral
amputees successfully achieved grasping activities with a prosthesis
by using PME [15]. Resnik et al. compared the usability and efficacy
of sEMG based pattern recognition and inertial measurement units on
DEKA arm prosthesis control. Transradial amputees reported usability
of pattern recognition less satisfactory than inertial measurement units
while transhumeral amputees rated both methods similarly [16]. They
also compared pattern recognition and direct myoelectric control in
terms of manual dexterity, function, satisfaction of prosthesis, and
a performance of activities [17]. Patients using pattern recognition
reported that manual dexterity and satisfaction decreased in a week.
Al-Timemy et al. aimed to develop a method for improving the per-
formance of multi-functional upper extremity prostheses controlled
with sEMG against force variation for individuals with trans-radial
amputation. Results demonstrated that the proposed features can lead
to significant reductions in classification error rates compared to other
known pattern recognition methods [18]. Akbulut et al. compared the
accuracy rate of different deep learning approaches in decoding PME
and found that Convolutional Neural Network-based had the highest
accuracy rate [19]. Powell et al. used Linear Discriminant Analysis
(LDA) to assess the ability of four participants with trans-radial am-
putation to control pattern recognition-based myoelectric prostheses
with nine motion classes [20]. Ghazaei et al. developed an artificial
vision system based on deep learning to enhance the grip functionality
of a commercial prosthesis and used the Convolutional Neural Network
(CNN) as a classifier [21].

Ortiz-Catalan et al. conducted a series of pattern recognition stud-
ies both for use in prosthetic control and technology-based rehabil-
itation systems developed to reduce PLP. First, they developed an
open-access research platform called BioPatRec for the development
and evaluation of myoelectric pattern recognition algorithms in pros-
thetic control [22]. Then, they used myoelectric pattern recognition
as input for augmented reality-based rehabilitation systems for the
prediction of simultaneous phantom movements and alleviating chronic
PLP [23]. They also compared the accuracy of offline and real-time
classification, and not all offline metrics studied could predict real-time
decoding. They then used machine learning to restore neuromuscular
activity in the remaining limb while performing the patient’s phantom
limb movements in a virtual environment. PME has been reported to
significantly reduce phantom pain [24]. To facilitate PME, Lendaro
et al. classified non-weight bearing lower extremity movements using
sEMG and used BioPatRec algorithms for myoelectric pattern recogni-
tion [25]. Izonin et al. aimed to develop a new ensemble-based pre-
diction method using stacking approach based on the several GRNN’s
and one SGTM neural-like structure and described a prediction method
using a new, stacking-based GRNN ensemble model. A comparison of
its efficient with a number of classical regression methods, as well

as neural network-based methods was done. The highest accuracy of
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Table 1
Summary of sEMG studies that have motion classification.

Study Aim MVMT PTP Method Acc Results Limitations

Lucas et
al. [11]

Classification of
multi-channel sEMG signals
to control myoelectric
prostheses

Hand H
n = 6

Support vector machines
(SVM)

NA Suitable for real-time
classification due to its low
rate of misclassification and
its ability to be implemented
with fast algorithms

Limited number of
participants, not compared
with other classification
methods, only one body
part and healthy subjects
but not amputees

Ahmad
and
Chappell
[12]

Classified the sEMG signal
to detect the regularity of
the movement

Wrist H
n = 20

Moving Approximate
Entropy

NA sEMG signal had regularity
at the beginning and end of
the muscle contraction, with
a low regularity in the
middle

Not compared with other
classification methods, only
one body part and healthy
participants

Khezri
and Jahed
[13]

Use an intelligent approach
integrated with a real-time
learning scheme to identify
hand motion commands

Hand H
n = 4

Adaptive neuro-fuzzy
inference system (ANFIS)

96.7% ANFIS coupled with mixed
time and time frequency
features can provide
acceptable results for
designing sEMG pattern
recognition suitable for hand
prosthesis control

Limited number of
participants, not compared
with other classification
methods, only one body
part and healthy
participants but not
amputees

Jarrasse
et al. [15]

To recognize the muscle
activity of the residual
limb associated with the
execution of phantom
movements

Hand
Wrist
Elbow

TA
n = 5

Linear discriminant
analysis (LDA)

>80% it seems possible in
transhumeral amputees to
recognize phantom hand,
wrist and elbow actions from
the sEMG signals measured
on the residual limb.

Limited number of
participants, not compared
with other classification
methods, only one body
part

Jarrasse
et al. [14]

To evaluate the possibility
for transhumeral amputees
to use a PLM-based control
approach to perform more
functional grasping tasks

Finger
Hand
Wrist
Elbow

TA
n = 2

Linear discriminant
analysis (LDA)

87.70% Transhumeral amputees
successfully achieved
grasping activities with a
prosthesis by using PME.

Limited number of
participants, not compared
with other classification
methods, only one body
part

Al-
Timemy
et al. [18]

To develop a method for
improving the performance
of multi-functional upper
extremity prostheses
controlled with sEMG
against force variation

Finger
Hand

TA
n = 9

Linear discriminant
analysis (LDA), Naive
Bayes (NB), Random Forest
(RF), k-Nearest Neighbor
(kNN)

73.93–
99.15%

The proposed features can
lead to significant reductions
in classification error rates
compared to other known
pattern recognition methods

Limited number of
participants and only one
body part, average
accuracy of other
classification systems is
unclear

Ghazaei
et al. [21]

To enable to use a simple,
yet efficient, computer
vision system to grasp and
move common household
objects with a two-channel
myoelectric prosthetic
hand

Finger
Hand
Wrist

TA
n = 2

Convolutional Neural
Network (CNN)

88% Deep-learning based
computer vision systems can
enhance the grip
functionality of myoelectric
hands considerably

Limited number of
participants, not compared
with other classification
methods, only one body
part

Ortiz-
Catalan
et al. [28]

To develop an open-access
research platform for the
development and
evaluation of myoelectric
pattern recognition
algorithms in prosthetic
control

Hand
Wrist

H
n = 17

Multi-layer Perceptron
(MLP),
Linear discriminant
analysis (LDA),
Regulatory Feedback
Networks (RFN)

91.2% (MLP)
92.1% (LDA)
83.8% (RFN)

BioPatRec provides a
publicly available repository
of myoelectric signals that
allow algorithms
benchmarking on common
datasets.

Limited number of
participants, only one body
part, healthy subjects but
not amputees

Lendaro
et al. [25]

To investigate the
performance of two
alternative electrode
configurations to
conventional bipolar
targeted recordings in
terms of real-time metrics.

Knee
Ankle

H
n = 6
LLA
n = 2

Linear discriminant
analysis (LDA)

81.7–86.9%
(Amputee)
81.4–84.7%
(Healthy)

Monopolar recordings using
a circumferential electrode
of conductive fabric,
performed similarly to
classical bipolar recordings,
but were easier to use in a
clinical setting

Limited number of
participants, limited body
part, not compared with
other classification
methods

Types of Participants: H: Healthy, TA: Transhumeral amputees, LLA: Lower Limb Amputees.
the developed method based on Root Mean Square Error (RMSE) in
comparison with existing methods is experimentally established [26].
Izonin et al. also proposed a prediction method for probable recovery
of partially missing or completely lost data based on the improvement
of an ensemble of two GRNNs by the additional use of extended-
input SGTM neural-like structure. They have improved the ensemble
of two GRNN networks, where the first predicts the value of the
desired quantity and the second the error of the first network of the
ensemble [27].
3

3. Materials and methods

Our study aims to recognize and classify phantom movements to
reduce PLP by performing phantom motor executions with a virtual
limb in virtual and augmented reality-based rehabilitation systems.
In these systems, patients receive visual inputs about their ability to
perform PME, and motor and sensory feedback obtained from PME
of the virtual limb induce activation of the somatosensory and motor

representation areas. Phantom movements must be decoded in order
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Fig. 1. Amputee sEMG setup.
for amputees to see their PME in a virtual environment simultaneously.
Therefore, by recognizing the activation of the muscles in the remaining
limb during the phantom movement of the amputee, we process the
sEMG signals to allow the same movement to occur in the virtual limb
(Fig. 1).

Our study does not include every movement the patient can try
to make for his/her phantom limb, instead, it considers some specific
movements. Therefore, the model makes decisions between a certain
number of movements and provides less complexity for the algorithm.
This study includes 4 different limbs (hand, forearm, foot, leg), and
movements for these limbs are listed below.

1. Transradial Amputation and Wrist Disarticulation (TAWD):

– Extension
– Flexion
– Grip
– Release

2. Transhumeral Amputation and Elbow Disarticulation
(TAED):

– Extension
– Flexion

3. Transtibial Amputation and Ankle Disarticulation (TAAD):

– Extension
– Flexion

4. Transfemoral Amputation and Knee Disarticulation (TAKD):

– Extension
– Flexion

The data taken from healthy people is used for testing. The data
showed that it is not appropriate to classify data points with rule-
based methods. Therefore, machine learning algorithms are used for
efficient classification. A data set obtained from sEMG is needed to
classify PME by using the ensemble learning technique. Therefore, 2-
channel sEMG was developed to obtain the dataset while training in
the classifier. 8 different amputation regions from 4 extremities were
determined to perform PME. The sEMG electrodes were placed in the
remaining muscles around the residual limb. Muscle activation signals
were collected from the muscles responsible for flexion and extension of
4

Table 2
Move counts per regions.

TAWD TAED TAAD TAKD

Healthy 1679 1000 1000 1000
Amputee – 80 1138 280

the wrist and fingers in the below-elbow amputations. This amputation
level was labeled as the first region (1). In order to recognize PME
in above-elbow amputations, electrodes were placed in the remaining
parts of the biceps and triceps muscles. This amputation level was
labeled as the second region (2). The sEMG signal was received from
the remaining parts of the tibialis anterior and gastrocnemius muscles
for phantom movement recognition and classification of the below-knee
amputations, while the electrodes were placed on the remaining parts
of the hamstring muscles and quadriceps to record muscle activation of
the above-knee amputations. These regions were numbered as third (3)
and fourth regions (4), respectively. Handgrip was numbered 1, finger
release 2, wrist flexion 3, and extension 4. In all other regions, flexion
was coded 1, and extension was coded 2.

sEMG Sensors are available to take 20 samples per second. In the
study, 3 s are considered enough to get the movement. Therefore, each
movement consists of 60 samples. Because we have 2 sEMG sensor
channels, we get 120 samples at the end. Data is collected from 25
healthy and 38 amputee people, and movement counts for each region
are shown in Table 2.

After data are collected, machine learning algorithms have been
implemented to recognize movement from sEMG signals. We randomly
ordered the dataset and split the first 80% of it into a training set and
the last 20% into a test set.

ML algorithms provide a set of hyperparameters to control the
gap between the training and test errors. We manually tuned the
hyperparameters to determine the optimum hyperparameters. Each
combination of parameters was then assessed using cross-validation, in
which the accuracy score was determined to decide the performance of
the models. We set the SVM by changing the parameters C = 1.1 and
the kernel function as the Radial basis function (RBF) with 3 degrees.
For DT, we control the size of the trees with 3 as max depth and 5 as
max-leaf nodes. In kNN, we choose the optimal number of neighbors
(k) as 8.
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Fig. 2. SVM ROC curves.
We used Python programming language v3.9.5 to develop ma-
chine learning models over the Tensorflow v2.9.1 framework. Shal-
low algorithms were implemented using scikit-learn library and data
visualization was performed using matplotlib library.

4. Results

We preferred the Support Vector Machine (SVM) approach as the
first method of experiments. SVM is a model that discriminates classes
with vectors (2 classes) or hyper-planes (multi-classes). This model
has higher accuracy compared to other machine learning methods for
above-knee amputee people. Table 3 shows these accuracy values. Also,
5

ROC curves show how SVM struggles to discriminate, especially, for
amputee patients (Fig. 2).

As the second approach that we employed, Decision Tree is a
model that aims to find the features that have the most effect on the
classification. It creates a tree based on the features. According to this
trained tree, new samples are being classified. Decision Tree did not
have great success, as shown in Table 3. Because the movement can
be done early or late within 3 s, samples may be different even if it
is the same movement. Therefore, it is also not efficient to classify the
movements (Fig. 3).

The most successful machine learning algorithm in this study is
kNN. This model determines the class for each movement, according
to the distance of other known movements. For our study, distance is
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Fig. 3. Decision tree ROC curves.
being found by subtracting each sample relatively. After finding the
distance with every known movement, class is defined by the closest
3 neighbors. Distance logic also removes the timing issue that the
Decision Tree has. As such, it can be above 90% for healthy people.
70% accuracy for amputee patients can be accepted as a success for the
lab conditions but it is not sufficient for real-life applications (Table 3).
ROC curves for kNN also show the success for healthy people, but
amputee accuracy is still not away from the baseline, especially for the
above-knee region (Fig. 4).

Despite the fact that machine learning models achieve satisfying
results for healthy people, they are not sufficient for recognizing the
movements of amputee patients. Therefore, we aimed to increase the
accuracy by using ensemble learning. Ensemble learning is a technique
6

that handles data not as a whole but part by part. For each part of data,
models are trained and at the end, these models are combined together.
It has different methods to implement, and we implemented bagging,
boosting, and voting methods in our models.

Bagging: This method divides the data into bags, and for each
bag, it trains the model. After training, for each test movement, this
trained model decides on a class. The class, which gets the most votes
is accepted as a result (Fig. 5).

The Bagging method increased the accuracy of the Decision Tree —
Healthy model at most. While the basic Decision Tree has 77% average
accuracy, with bagging it reaches 84%. For amputee classification, the
kNN algorithm has increased its accuracy by almost 3%(70.16–72.96)(
Table 4).
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Fig. 4. kNN ROC curves.
Table 3
Comparison of machine learning accuracies (H:Healthy, A:Amputee).

Below-Elbow Above-Elbow Below-Knee Above-Knee Average

H A H A H A H A H A
SVM 68.25% – 87.33% 58.33% 83.66% 63.15% 88.66% 63.09% 81.97% 61.52%
DT 57.93% – 86.33% 62.5% 82% 71.63% 82.66% 61.9% 77.23% 65.34%
kNN 74.40% – 96.33% 70.83% 87.66% 78.94% 91% 60.71% 87.34% 70.16%
Boosting: Boosting method trains the model with the whole data
first. Following that, the weights for incorrectly classified moves are in-
creased and model is trained once more. Ultimately, with each training
phase, incorrectly classified samples become more important in terms
of target recognition (Fig. 6).
7

As depicted in Table 5, boosting method could not improve the
overall accuracy for all of the regions. As the initial observation, the
average stayed behind the original models. The kNN model is not
included in boosting because it is not a base model and it does not
benefit from weights.
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Table 4
Comparison of accuracy values of machine learning algorithms with bagging (H:Healthy, A:Amputee).

TAWD TAED TAAD TAKD Average

H A H A H A H A H A
SVM 67.06% – 87% 41.66% 77.66% 61.40% 84.33% 61.90% 79.01% 54.98%
DT 68.84% – 90.33% 54.16% 86.66% 66.66% 90.33% 76.31% 84.04% 65.65%
kNN 71.82% – 92% 70.83% 85.66% 74.26% 94% 73.8% 85.87% 72.96%
Table 5
Comparison of accuracy values of machine learning algorithms with boosting (H:Healthy, A:Amputee).

TAWD TAED TAAD TAKD Average

H A H A H A H A H A
SVM 64.08% – 81.66% 45.83% 77.66% 66.37% 84.33% 63.09% 76.93% 58.43%
DT 54.16% – 85.66% 66.66% 78.33% 70.76% 81.66% 63.09% 74.95% 66.83%
Table 6
Comparison of accuracy values of machine learning algorithms with voting (H:Healthy, A:Amputee).

TAWD TAED TAAD TAKD Average

H A H A H A H A H A
Voting 64.28% – 92% 79.16% 85% 75.43% 93.33% 71.42% 83.65% 75.33%
Fig. 5. Bagging structure.

Voting: In this method, different classifiers are trained with same
data, then, the move class is predicted. The class that has most votes
from all classifiers is determined as the final result (Fig. 7).

Voting uses all of the 3 models and makes voting for classification.
With this technique, we have achieved the highest accuracy rate for
amputees. Even though it is 2% less than kNN for healthy people on
average, for amputee classification, above-elbow has increased from
70% to 79%(9% difference) and above-knee has increased from 60% to
71%(11% difference). In the end, we have a 5% increase for amputees
according to the kNN model (Table 6).

5. Discussion

Classification results show that the accuracy of healthy participants
is way higher than that of amputees. Because while data is being
collected, healthy people actually do the move which resulted in the
complete signal from the related body location. Contrarily, amputee
people only have to imagine that they are making the move that
mostly ends up with incomplete or corrupted sEMG signals. Thus, the
amputated limb’s nerve cells are dying over time and it makes the
data more complicated. That is why for healthy people, accuracy never
goes down below 80% (only for 2 class regions), while the amputee
classification has 40% accuracy for some classifiers. Also, other factors
like noise, depression of patients, age, the difference between sEMG
pads, etc. make the classification even harder with each patient’s data.
8

In this manner, we have reached 75% of average accuracy with 38
different amputees people data.

Even though SVM is a good classifier for most studies in literature,
in our case it was the weakest one among the 3 classifiers. The decision
tree was more successful than SVM, however, it could not provide effi-
cient results as well. This is because timing can be different for different
data. kNN has the ability to classify even the time of movements that
are different, therefore, it provides the best accuracy so far. Unlike
our study, most of the studies on the classification of movements with
sEMG were conducted only on healthy individuals and with a small
number of participants [11–13,22]. Studies of processing sEMG signals
in amputees are limited, and studies are generally on the classifica-
tion of the upper extremity and hand movements [14,15,18,21]. We
consider that the most important reason for this is to ensure more
functional use of the upper extremity myoelectric prosthesis. Although
LDA and SVM are frequently preferred methods for classification of
motion signals [14,15,18,22,25], new prediction approaches have also
been studied [26,27]. Our study suggests that the kNN method can also
make an important contribution to the classification of PME signals.

Table 7 shows all the accuracy values with different models and
methods.

Fig. 8 shows the confusion matrices for the voting ensemble, which
was the model that worked most accurate. Authors note that TAWD
works as a one-class classifier.

The data collection period is set to 3 s and each classifier takes 120
samples as inputs. That means 3 s are required to recognize a complete
movement. However, in real-world taking action after 3 s in a virtual
environment are not be satisfying for the patients. As such, sequential
algorithms like CGRNN, LSTM can be considered because they provide
fast results. On the other hand, new inputs can be used with old input
and each time, movements can be recalculated for future applications.
The developed machine learning model works person-dependent. The
training process and data labeling are required for each participant who
will use this system. In the future, if the dataset contains a large number
of observations, it may be possible to work independently.

In order to productionize the proposed ensemble model, it can
be deployed into a microservice ecosystem. In this way, a platform-
independent service that a wearable sensor system can invoke is cre-
ated. RESTful APIs (e.g., FastAPI) is the most preferred approach to
tackle this problem. Thus, a system that performs prosthetic control
can use the machine learning model.

There are several aspects that could affect the results exposed to
the real-world scenarios. First, the presented system considers specific
movements and does not include every possible movement of the
patient. This can be a limiting factor for some movements. Second,
our dataset consists of data points from 38 amputees and 25 healthy



Computers in Biology and Medicine 150 (2022) 106132A. Akbulut et al.
Fig. 6. Boosting structure.
Fig. 7. Voting structure.
Table 7
Overall comparison of machine learning models (H:Healthy, A:Amputee).
SVM TAWD TAED TAAD TAKD Average

H A H A H A H A H A
Basic 68.25% – 87.33% 58.33% 83.66% 63.15% 88.66% 63.09% 81.97% 61.52%
Bagging 67.06% – 87% 41.66% 77.66% 61.40% 84.33% 61.90% 79.01% 54.98%
Boosting 64.08% – 81.66% 45.83% 77.66% 66.37% 84.33% 63.09% 76.93% 58.43%
Voting 64.28% – 92% 79.16% 85% 75.43% 93.33% 71.42% 83.65% 75.33%
DT H A H A H A H A H A
Basic 57.93% – 86.33% 62.5% 82% 71.63% 82.66% 61.9% 77.23% 65.34%
Bagging 68.84% – 90.33% 54.16% 86.66% 66.66% 90.33% 76.31% 84.04% 65.65%
Boosting 54.16% – 85.66% 66.66% 78.33% 70.76% 81.66% 63.09% 74.95% 66.83%
Voting 64.28% – 92% 79.16% 85% 75.43% 93.33% 71.42% 83.65% 75.33%
kNN H A H A H A H A H A
Basic 74.40% – 96.33% 70.83% 87.66% 78.94% 91% 60.71% 87.34% 70.16%
Bagging 71.82% – 92% 70.83% 85.66% 74.26% 94% 73.8% 85.87% 72.96%
Voting 64.28% – 92% 79.16% 85% 75.43% 93.33% 71.42% 83.65% 75.33%
Fig. 8. Confusion matrices of (a) TAED, (b) TAAD, and (c) TAKD.
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individuals. However more data points would make our system more
generalizable. The system’s performance might be different in some
rare cases because the system did not encounter with all possible
patients. Third, the complexity of the presented model might be a
limiting factor. For a very large dataset, the training time and the
required computing power can be too much compared to the presented
system. Last but not the least is related to the data collection period,
which was set to 3 s during the experiments. This might not be feasible
in real-world scenarios. Therefore, faster algorithms might be required
in this case.

6. Conclusion

In this study, the ensemble learning-based approach outperformed
the SVM, Decision tree, and kNN methods. For amputated participants,
voting employed an ensemble learning approach received an accuracy
of 75% in phantom movement recognition. This result was considered
sufficient for the perception of basic phantom movements and their use
in cyber-therapy systems. While the accuracy of the movement pattern
recognition in healthy individuals was up to 96.33%, this rate was at
most 79.16% in amputees. The kNN was found to be the most successful
method in recognizing and classifying PME when compared to other
classification methods. In addition, the kNN method recognized the
phantom movements of the below-knee and above-elbow amputees
with higher accuracy compared to other regions (78.94% and 79.16%,
respectively). Classification for many different amputation sites, com-
parison of the accuracy rates of different classification methods, and
the number of samples being higher than the studies in the literature,
are the strengths of our study. The limitations of our study are that the
sEMG used is 2-channel and the signal regions taken from the stump
are limited, and there is no sample available for trans-radial amputees.
In the future, there is a need for studies with high sample size in
which multi-channel sEMG is used, real-time and offline classification
are evaluated and compared with different classification methods.
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