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A B S T R A C T   

The systematic literature review (SLR) process includes several steps to collect secondary data and analyze it to 
answer research questions. In this context, the document retrieval and primary study selection steps are heavily 
intertwined and known for their repetitiveness, high human workload, and difficulty identifying all relevant 
literature. This study aims to reduce human workload and error of the document retrieval and primary study 
selection processes using a decision support system (DSS). An open-source DSS is proposed that supports the 
document retrieval step, dataset preprocessing, and citation classification. The DSS is domain-independent, as it 
has proven to carefully select an article’s relevance based solely on the title and abstract. These features can be 
consistently retrieved from scientific database APIs. Additionally, the DSS is designed to run in the cloud without 
any required programming knowledge for reviewers. A Multi-Channel CNN architecture is implemented to 
support the citation screening process. With the provided DSS, reviewers can fill in their search strategy and 
manually label only a subset of the citations. The remaining unlabeled citations are automatically classified and 
sorted based on probability. It was shown that for four out of five review datasets, the DSS’s use achieved sig
nificant workload savings of at least 10%. The cross-validation results show that the system provides consistent 
results up to 88.3% of work saved during citation screening. In two cases, our model yielded a better perfor
mance over the benchmark review datasets. As such, the proposed approach can assist the development of 
systematic literature reviews independent of the domain. The proposed DSS is effective and can substantially 
decrease the document retrieval and citation screening steps’ workload and error rate.   

1. Introduction 

A systematic literature review (SLR) is a means of identifying, eval
uating, and synthesizing all available research relevant to a particular 
research question, or topic area, or phenomenon of interest (Kitchenham 
& Charters, 2007). Kitchenham and Charters (2007) proposed a guide
line where the SLR process consists of twelve steps to increase rigor and 
reproducibility. However, as the literature published is proliferating, the 
manual production of systematic reviews requiring increased human 
workload. With a median of 8 months after the last search, a systematic 
review is often outdated before publication as they take so much time to 
produce (Beller, Chen, Wang, & Glasziou, 2013). Furthermore, Michel
son and Reuter (2019) calculated the financial cost of an SLR study. 
They also provided a total time estimate to complete a systematic re
view, which was found to take 1.72 years for a single scientific reviewer. 

A single review would cost $141,194.80. On average, the total cost of all 
SLRs per year to each of the ten major academic institution amounts to 
$18,660,304.77, and for each pharmaceutical company is 
$16,761,234.71. They also called for action to develop automation tools 
to speed up the SLR process since the high human workload and cost of a 
systematic review may pose a barrier to their consistent application to 
carefully assess the promise of studies. 

Research identification is an essential step in the SLR process, 
including two substeps: developing a search string and document 
retrieval. The development of a search string aims to gather all relevant 
literature (e.g., high recall) while excluding as much irrelevant literature 
(e.g., high precision) as possible. Subsequently, document retrieval aims 
to collect all literature that matches a search string. As every publication 
venue has developed its custom search engine, reviewers need to input 
customized search strings into every publication venue they want to 
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include in the review. Additionally, reviewers must manually collect 
incomplete data fields for data extraction, which is a tedious and time- 
consuming process. 

The primary study selection process attempts to identify the critical 
relevant literature fairly and with high rigor using study selection 
criteria. An experienced reviewer is estimated to screen up to two arti
cles per minute (Wallace, Trikalinos, Lau, Brodley, & Schmid, 2010). A 
survey by Marshall (2016) showed that reviewers experience the pri
mary study selection process as highly time-consuming and error-prone 
because the process is highly repetitive; a reviewer must read each title, 
abstract, and full-text of hundreds to thousands of citations. To this end, 
the reduction of the error rate of the document retrieval is aimed at in 
our research. 

Fig. 1 shows the workflow of these two steps, described by Kitch
enham and Charters (2007) and Tsafnat et al. (2014). To illustrate the 
workflow, we can call the following example. Reviewers often perform a 
database search, which is part of the document retrieval step. Afterward, 
they select relevant articles based on the title, which is part of the study 
selection process. When the relevant articles – selected based on the title 
– are identified, they are exported to a reference manager. Additional 
data is collected, which is part of the document retrieval step. At last, the 
definitive selection of included articles is selected based on abstract, 
which is part of the primary study selection step. We can see that 
identifying research and selecting primary studies is a nonchronological 
process, as the steps blend to achieve the highest efficiency. 

To cope with the challenges above, an open-source decision support 
system (DSS) is proposed that supports the document retrieval step, 
preprocessing of the dataset, and citation classification. 

Our research questions are formulated as follows:  

• RQ-1: What is the feasible approach to design a Decision Support 
System for the automation of SLRs independent of the application 
domain?  

• RQ-2: How applicable is Deep Learning to support the automation of 
the document retrieval and citation screening process for SLRs? 

With the provided DSS, reviewers can fill in their search strategy and 
manually label only a subset of the citations. In contrast, the remaining 
unlabeled citations are automatically classified and sorted based on 
probability. Our approach aims to be accessible to anyone that wants to 
review scientific literature. Our DSS uses data available in all research 
domains, and we designed the system to run in the cloud for free and 
without any required programming knowledge. 

Using the DSS, a generic search query and strategy can be used to 
retrieve documents that match the search query in selected scientific 
databases. We provided support for PubMed, ScienceDirect, and 
SpringerLink. We have chosen to automate document retrieval for these 
three databases, as they are widely used in Medicine and Software En
gineering (van Dinter, Tekinerdogan, & Catal, 2021) and include more 
high-quality articles compared to the other databases. Furthermore, all 
three databases have been used extensively in the Python community. 
The document retrieval of these three databases shows that the concept 
is viable and can be iteratively updated with additional support for other 

databases. 
As the selection of primary studies provides a binary output (i.e., 

included and excluded), we use natural language processing and machine 
learning algorithms to semi-automate the decision-making process. In 
this process, natural language processing is used to generate features 
from textual data, where machine learning uses these features to find 
patterns in the data. This often significantly reduces the time required on 
reading hundreds to thousands of titles and abstracts, which leaves more 
time for the synthesis of literature and timely publication. Even though 
the presented citation screening model uses classification techniques, we 
export the complete list of citations sorted based on their probability of 
inclusion. Through this method, reviewers can still view all literature, 
regardless of their inclusion, which provides them security on finding all 
relevant literature (Howard et al., 2016; Kontonatsios, Spencer, 
Matthew, & Korkontzelos, 2020). The sorting of citations reduces the 
screening workload, considering that reviewers need only to perform a 
study selection on top-ranked citations. In contrast, the bottom citations 
are automatically excluded from the review by the reviewer (Konto
natsios et al., 2020). 

A recent SLR study on the automation of SLR studies shows that most 
existing semi-automatic citation screening methods adopt document 
representation techniques, such as bag-of-words and TF-IDF, that rely on 
words’ frequency (van Dinter et al., 2021). Therefore, the feature rep
resentation of documents naturally ignores the readily available infor
mation on the context of those words. Furthermore, most studies use 
domain-dependent document metadata, such as Medical Subject Head
ings (MeSH), while (Howard et al., 2016) shows MeSH terms contribute 
to just 1% of the work saved. In contrast, this paper presents a domain- 
independent Multi-Channel CNN approach. This approach leverages the 
meaning of essential words and sentences from the title and abstract 
through word embeddings, which are used to generate informative 
document features (Colón-Ruiz & Segura-Bedmar, 2020). The proposed 
method uses parallel CNN architectures with varying kernel sizes fol
lowed by a feed-forward neural network to learn these essential words 
and phrases for the citation screening process. To the best of our 
knowledge, this paper presents the first decision support system 
leveraging deep learning techniques (van Dinter et al., 2021). Since the 
deep learning-based system can generate document features from the 
context of words instead of static features, our proposed system is more 
suitable for automation tasks. 

To assess the performance of our Multi-Channel CNN approach, we 
use a dataset containing five toxicology reviews with many citations by 
Howard et al. (2016). We compare our results against two benchmark 
studies (Howard et al., 2016; Kontonatsios et al., 2020). Kontonatsios 
et al. (2020) used Neural Networks for feature extraction and an SVM for 
classification, while Howard et al. (2016) rank citations based on term 
frequencies and latent Dirichlet allocation for topic modeling. 

Our contributions to reduce time consumption and human error of 
the document retrieval and primary study selection processes are as 
follows: 

• An improved process through our novel combination of the inter
twined document retrieval and primary study selection steps. 

Fig. 1. Gold standard for document retrieval and primary study selection as described by (Kitchenham & Charters, 2007; Tsafnat et al., 2014).  
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• Reviewers can use the tool in the cloud without preliminary pro
gramming knowledge, as we have made our decision support system 
easy-to-use by developing it as a Markdown Form in Google CoLab.  

• The DSS is domain-independent using title and abstract solely.  
• Retrieval of documents through three scientific database APIs with 

the possibility to expand.  
• General to specific search term conversion through an automated 

field and date tagging algorithm for developing database-specific 
search queries.  

• Implementation of a Multi-Channel CNN model into the system.  
• A quantitative analysis of the effect of the system.  
• Our decision support system is publicly available at https://github. 

com/rvdinter/decision-support-system 

The following sections are organized as follows: Section 2 presents 
the related work and background. Section 3 presents the adopted 
research methodology. Section 4 describes the results. Section 5 presents 
the discussion. Finally, Section 6 presents the conclusion and future 
work. 

2. Related work 

The Systematic Review Toolbox (Toolbox, 2014) is a renowned 
catalog of tools that support the systematic literature review process. 
The toolbox provides 235 tools that can be used in the SLR process, 
categorized based on approach, cost, discipline, and the step(s) of 
automation. However, searching for a free-to-use and multidisciplinary 
tool for document retrieval and primary study selection provides just 
one tool: Colandr (Colandr, n.d.). Colandr is a web-based application for 
conducting evidence reviews in collaboration. Even though it is open 
access, it is not open source. This way, it is not transparent which al
gorithms and techniques have been used, and researchers cannot build 
upon them. 

Besides, Beller et al. (2018) list automation tools that can be used to 
speed up the systematic literature review process and set 8 guidelines for 
creating a systematic review tool. Beller et al. (2018) mention the 
importance of the introduction of free decision support systems, as non- 
profit research groups often do not have funding to pay for ongoing 
licenses. They also notice that systems are often created in isolation, 
cannot be integrated into a more extensive system, and are left to 
deprecate. Therefore, the development of open-source software is crit
ical. It enables developers to incorporate it into another system easily. 
Similarly, O’Connor et al. (2019) state barriers to why researchers don’t 
use systematic review automation tools to speed up the process. The 
main causes are that reviewers are reluctant to use automation tools, as 
most tools are not transparent, and the set-up process is often too 
complicated. Therefore, our DSS needs to be fully open-source and easily 
usable by reviewers. 

Furthermore, Tsafnat et al. (2014) and Marshall and Wallace (2019) 
list tools useful for systematic reviews. However, none of the tools listed 
can perform both study search and selection. van Altena, Spijker, and 
Olabarriaga (2019) conducted a survey that concludes that not many 
researchers use a systematic review tool. When tools were used, par
ticipants often learn about them from their environments, such as col
leagues, peers, or organizations. Tools were often chosen based on user 
experience, either by experience or from colleagues or peers. To show 
the speed of automated SLR studies, Clark et al. (2020) performed an 
SLR study using a suite of tools. Four FTEs made use of a tool for each 
step in the SLR process. As a result, they completed the research in just 2 
weeks with a draft manuscript developed within 61 h. 

In (2006), (Cohen et al.) proposed an approach to support the pri
mary study selection process, which has been widely used since then, as 
it has been adopted by (Bui, Jonnalagadda, & Del Fiol, 2015; Cohen, 
Ambert, & McDonagh, 2009; Cohen et al., 2006; García Adeva, Pikatza 
Atxa, Ubeda Carrillo, & Ansuategi Zengotitabengoa, 2014; Kontonatsios 
et al., 2020; Ouhbi, Kamoune, Frikh, Zemmouri, & Behja, 2016; Rúbio & 

Gulo, 2016; Sellak, Ouhbi, & Frikh, 2015), regardless of machine 
learning task (i.e., classification or ranking) used. This gold standard for 
the automation of the study selection process has been illustrated in 
Fig. 2. Another methodology to support the primary study selection 
process is Visual Text Mining, proposed by (Felizardo, Nakagawa, 
MacDonell, & Maldonado, 2014; Malheiros, Hohn, Pinho, Mendonca, & 
Maldonado, 2007; Zdravevski et al., 2019). Finally (Hashimoto, Kon
tonatsios, Miwa, & Ananiadou, 2016; Kontonatsios et al., 2017; Miwa, 
Thomas, O’Mara-Eves, & Ananiadou, 2014; Wallace, Small, Brodley, & 
Trikalinos, 2010) provide workflows focusing on Active Learning tech
niques to support the primary study selection process. 

A study by Ros, Bjarnason, and Runeson (2017) argues that the ideal 
tool for study search and selection would provide paper recommenda
tions. Then, the only manual task required for the researcher is to 
perform the validations of papers suggested by the tool. This requires a 
fully automated research identification and a semi-automated selection. 
Ros et al. (2017) developed a system that automatically refines the 
search string, inserts them into the Scopus database, applies the snow
balling technique, and selects relevant studies using active learning. 
However, active learning has a major drawback. Cohen et al. (2009) 
mentions that researchers prefer ranking or classification instead of 
active learning, as it reverses control from researchers to software, 
which reduces the study’s transparency. 

3. Research methodology 

This section details the methodology that we follow to automate the 
document retrieval and primary study selection process of systematic 
reviews. First, we define the workflow of the automatic document 
retrieval and classification framework. We then provide more informa
tion on the system’s algorithm. At last, we show a detailed explanation 
of the quantitative analysis of our decision support system. 

3.1. Document retrieval and primary study selection framework 

We propose a framework for a decision support system that in
corporates the document retrieval and primary study selection steps 
because they are tightly connected. We aim to eliminate the repetitive 
tasks while maintaining the systematic steps as proposed by Kitchenham 
and Charters (2007). Fig. 3 demonstrates the overall workflow we pro
pose in our study. 

A reviewer inserts the search query, publication venues, and time
frame of the search into a Graphical User Interface (GUI). After inserting 
the required data into the GUI, the DSS collects all articles that match 
this query. When documents have been retrieved through database API 
searches, we merge each database’s returned documents by alternating 
rows, as the returned citations have been sorted on relevancy. The sys
tem splits the initial citation list into two equivalent-sized sets, namely 
train, and evaluation. The citations in the train set do not overlap with 
the citations in the evaluation set. The reviewer manually annotates the 
train set with include/exclude codes. When reviewers have labeled all 
articles in the train set and have reached a consensus amongst reviewers, 
the data is used by the model to learn to generalize which studies are 
relevant. Afterward, a list of all articles, sorted on probability, is 
returned as output. 

3.2. Data retrieval and citation screening system 

In this section, we discuss the development of the proposed DSS. 
First, we provide a detailed description of the graphical user interface, 
document retrieval step, preprocessing of the dataset, and citation 
classification. Subsequently, we show our evaluation approach for 
quantitative analysis of the method. 

3.2.1. The graphical user interface 
We have used Google CoLab Markdown Forms to make this DSS 
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visual and accessible to researchers without any programming back
ground while remaining a Notebook containing developers’ expansion 
options. Furthermore, Google CoLab allows researchers to use industry- 
grade hardware, such as GPUs and TPUs, in the cloud - for free. This 
eliminates the need for research groups to buy any hardware to run our 
method. 

3.2.2. Automated document retrieval 
The Markdown Form cell of the document retrieval step is shown in 

Fig. 4. To execute queries on multiple databases, we require users to 

write a generic search query. After writing the search query, the user can 
choose which fields the query should execute (e.g., title and abstract). 
Users can choose which databases to execute the queries on and the 
timeframe of the documents. We have developed code to execute queries 
on APIs from ScienceDirect, PubMed, and Springer. 

The PubMed API has built-in query field addition. However, Springer 
does not. Therefore, we have developed a query refinement algorithm 
that can add the field, such as title, to the query. For instance, if we want 
to search the following in the title: 

˝Automation˝AND˝SystematicLiteratureReview˝

Fig. 2. The gold standard for the automation of the primary study selection process.  
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We obtain the following refined search query: 

title : ˝Automation˝ANDtitle : ˝SystematicLiteratureReview˝

API keys can be obtained from each databases’ developer websites. 
We must note that you need to be accessing through an IP address from 
your academic institute to use ScienceDirect’s API. Each API returns its 
values, but the title, year of publication, article identifier, and abstract 
columns are always included. These are also the features that are used 

most often by reviewers during the study selection process. After the 
query execution in selected databases, users can find an MS Excel file 
containing the features in their working directory, which can be 
immediately used to select primary studies. 

3.2.3. Preprocessing 
Once all data is collected, the algorithm splits the dataset into two 

stratified sets; train and evaluate. The train set must be screened and 

Fig. 3. Workflow of the automatic document retrieval and classification.  
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classified by a reviewer. Fig. 5 shows the GUI of the study selection UI. 
After the reviewer has classified all articles from the train set, we 

preprocess the train and evaluation sets for the deep learning model. We 
first concatenate the title and abstract into one feature column to 
eliminate empty features, as many citations (e.g., interviews or book 
chapters). Then, we clean the text by splitting the text into tokens, 
removing its punctuation, converting to lower case, removing non- 
alphabetic and stop words, removing short tokens of just one char
acter, and applied a minimal token occurrence of 10 times in the entire 
dataset. We are using the title and abstract as the main sources of our 
features because they are independent of the database or research 
domain. These features are also most often used to automate the selec
tion of primary studies (van Dinter et al., 2021). This is partly because 
the title and abstract can usually be retrieved through database APIs 
(Langlois et al., 2018; Rúbio & Gulo, 2016), while full-text is often not 
included. Furthermore, Dieste and Padua (2007) also suggest the use of 
the title and abstract instead of full-text, as full-text has many challenges 
regarding cleaning and accessibility. Domain-specific features such as 
MeSH terms have been excluded, as the Decision Support System must 
be available to all reviewers. 

Once we have cleaned the sets, we split the labeled train into a 
stratified train and validation set to enable developers to monitor the 
model during training. The train, test, and validation sets have been split 
into a 45/50/5 distribution, respectively. Further, we used the Token
izer API to create numeric word vectors from the feature column. We zip 
the feature and target columns into a tf.data.Dataset object. Using this 
object, we can oversample the training set using tf.data.experimental. 
sample_from_datasets() to an even class distribution to avoid class 

imbalance issues. Once the datasets are complete, we pad the datasets. 
Feature columns are padded to a size of 600, as most citations have a 
lower token length. 

3.2.4. Deep learning-based citation screening 
We use a Multi-Channel CNN architecture to support the citation 

screening process, as they are faster and computationally less expensive 
than the alternative LSTM architectures that are used for different pur
poses (Altan et al., 2021)To this day, using large LSTM architectures is 
not available to all researchers without access to GPU hardware with 
high memory. However, CNN models allow for impressive results with 
fewer hardware requirements and lower training times. Furthermore, 
CNNs also focus on finding keywords and -phrases in text classification, 
which researchers often do in the SLR process while skim-reading many 
articles. 

The model uses the text feature column as input and provides a 
confidence score as output. An Embedding layer follows the input to 
create word embeddings in an end-to-end fashion. We have used 100- 
dimensional GloVe embeddings trained on the Wikipedia dataset to 
input our embedding layer (Pennington, Socher, & Manning, 2014). The 
embedding layer does not need to train its parameters, as we have 
inserted the embedding matrix, which significantly reduces the training 
time for the model. The features are fed to the dropout layer, which 
drops out 60% of the features. Dropout only applies to the model when 
training to generalize on new data so the full potential can be used. 
Then, the remaining data is fed to two parallel convolutional channels. 
For each of the CNN channels, we use a single CNN layer followed by 
global max pooling. We chose the global max-pooling layer over regular 

Fig. 4. Data retrieval Graphical User Interface.  
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max-pooling, as (Jacovi, Shalom, & Goldberg, 2018) describes: “Global 
max-pooling induces a functionality of separating important and not 
important activation signals using a latent (presumably soft) threshold” 
(Jacovi et al., 2018). After the global pooling layer, we concatenate the 
outputs and put them into a feed-forward network. We apply a 40% 
dropout to the concatenated vector and send it to the dense layer. The 
hidden dense and convolutional layers use the ReLu activation function 
to avoid the vanishing gradient problem, and the dens layers use bias 
and kernel weight constraints following the unit norm to prevent over
fitting. The last dense layer uses a Sigmoid activation function to ac
count for the confidence score, ranging from 0 for excluded to 1 for 

included. Table 2 provides the model parameter settings. To find the 
most compelling citations, the citations are exported and ranked based 
on the confidence score. As the citations are being ranked as an output, 
the reviewers remain in control of the screening process (Fig. 6). 

3.3. Quantitative analysis framework 

This subsection describes how we evaluated our decision support 
system in a quantitative matter. First, we explain how we obtained our 
datasets to evaluate our method against a benchmark. Then, we discuss 
the evaluation settings that we have used for the citation screening step. 

3.3.1. Datasets 
We have collected five publicly available datasets from (Howard 

et al., 2016) to evaluate our model. These datasets have been regularly 
used to evaluate models in the medical domain. We have also collected 
the WSS@95% results from (Howard et al., 2016; Kontonatsios et al., 
2020) as benchmarks for evaluating our results. The dataset by (Howard 
et al., 2016) contains a list of PMIDs and their corresponding binary 
label (i.e., 0 for excluded, 1 for included). We edited our document 
retrieval module to import the PMID list and search its title, abstract, 
and metadata through the PubMed API. Table 3 shows the metadata for 
each of the datasets. Each sample (i.e., citation) contains at least the 
title, abstract, and label. The 5 datasets from (Howard et al., 2016) are 
categorized as toxicology reviews. The toxicology reviews are rather 
extensive, as the researchers used broad search strategies. This is 
important, as neural networks tend to thrive on large datasets. 

From the datasets, an average of approximately 3.87% of abstracts is 
missing. However, this differs significantly between datasets. For 
instance, the Neuropathic Pain dataset has 0 abstracts missing, but the 
Fluoride dataset has 13.60% of its abstracts missing. 

3.3.2. Evaluation settings 
The primary metric in the automation of the SLR field is Work Saved 

over Sampling (WSS) (Cohen et al., 2006), which is defined as “ the 
percentage of papers that meet the original search criteria that the reviewers 
do not have to read (because they have been screened out by the classifier).” 
(Cohen et al., 2006). The formula for WSS is defined as follows: 

WSS =
(TN + FN)

N  

where TP is the number of true positives, TN is the number of true 

Fig. 5. Widget of the manual study selection UI.  

Table 1 
Major related studies on SLR tools.  

No. Title SLR steps Reference 

1 A full systematic review 
was completed in 2 weeks 
using automation tools: a 
case study 

Completed an SLR in 2 
weeks using multiple 
tools 

Clark et al. 
(2020) 

2 Making progress with the 
automation of systematic 
reviews: principles of the 
International Collaboration 
for the Automation of 
Systematic Reviews 
(ICASR) 

List tools that can be 
used, and set 8 
guidelines for 
automating SLRs 

Beller et al. 
(2018) 

3 Toward systematic review 
automation: a practical 
guide to using machine 
learning tools in research 
synthesis 

Lists tools that are useful 
for systematic reviews 

Marshall and 
Wallace (2019) 

4 A question of trust: can we 
build an evidence base to 
gain trust in systematic 
review automation 
technologies? 

States barriers why 
people don’t use 
systematic review 
automation tools 

O’Connor et al. 
(2019) 

5 Systematic review 
automation technologies 

Describe each step in the 
SLR process, its 
automation potential, 
and current tools 

Tsafnat et al. 
(2014) 

6 Usage of automation tools 
in systematic reviews 

Concludes that not many 
researchers are using an 
SLR tool 

van Altena et al. 
(2019) 

7 Software tools to support 
title and abstract screening 
for systematic reviews in 
healthcare: an evaluation 

An evaluation of tools 
that screen citations 
based on title and 
abstract 

Harrison, Griffin, 
Kuhn, and Usher- 
Smith (2020)  
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negatives, FN is the number of false negatives, N is the total number of 
abstracts in the set. Cohen et al. (2006) stated that one should interpo
late the WSS metric at a 95% recall, as work saved must be greater than 
work saved by plain random sampling (Cohen et al., 2006). When 
incorporating recall R in the formula, we get: 

WSS@R =
(TN + FN)

N
− (1 − R) =

(TN + FN)

N
−

(

1 −
TP

TP + FN

)

For the model evaluation, we show the WSS@95% results. In more 
specific, we show the mean WSS@95% after 10 × 2-fold cross- 
validation. 2-fold cross-validation splits the dataset into two equally 
sized subsets, with an even distribution of label classes, just as with our 
proposed framework. We performed this 2-fold cross-validation over 10 
fixed seeds to achieve a final estimated mean. 

As described by (Ng, 2017), adding more than one metric also makes 
it more complex to compare algorithms. As (Ng, 2017) explains: “Having 
a single-number evaluation metric such as accuracy allows you to sort all 
your models according to their performance on this metric, and quickly decide 

what is working best.” (Ng, 2017). Therefore, we keep WSS@95% as our 
single metric, as it measures the human workload saved in a real-world 
scenario. 

4. Results 

After retrieving the title and abstract features through the PubMed 
API, we preprocessed the features and performed 10x2-fold cross- 
validation for the Multi-Channel CNN. The 10 × 2-fold cross- 
validation returns 10 WSS@95% results, of which Table 4 shows the 
mean. 

According to (Cohen et al., 2006), a significant and meaningful 
workload saving should be at least 10% for the WSS@95% metric. This 
stems from the fact that the citation screening process of a systematic 
review, when conducted manually, requires on average ~8.7 FTE to be 
completed, based on a 38-hour workweek. Therefore, a WSS@95% score 
of 10%, i.e., 10% of correctly excluded citations +5% of incorrectly 
excluded citations, results in a workload reduction of ~1.3 FTE. Ac
cording to expert reviewers, this is a significant reduction of their 

Fig. 6. Decision support system visualized. Other models are similar, except for the number of channels and Conv1D output shape due to kernel size differences.  

Table 2 
Model parameter settings.  

Epochs Batch size Dropout input layer Dropout hidden layers Filters No. channels Kernel sizes Dense units Learning rate 

15 100  0.6  0.4 1024 2 2/4 128 1E− 4  
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citation screening labor. 
We take the DSS scores and compare them to the two benchmark 

studies by Howard et al. (2016) and Kontonatsios et al. (2020). The 
experiments that we conducted showed that our proposed DSS yields 
significant workload savings of at least 10% in 4 out of 5 review datasets. 
Additionally, we can see that our DSS outperforms the benchmark 
studies on two datasets, Bisphenol-A and Fluoride. We achieved a 3.6% 
and 1.3% improvement over the BPA and Fluoride datasets, respec
tively. The DSS performed poorly on the PFOA/PFOS dataset, as it 
seemed to overfit. 

Furthermore, in Fig. 7, we have also plotted the DSS results in box
plots against the benchmark’s means. We can see that the benchmarks’ 
results are often inside the interquartile range (IQR). Also, the five large 
toxicology review datasets have a narrow IQR and minimum–maximum 
range. This means that the model has low variance, as the Multi-Channel 

CNN provides consistent results across the whole dataset. 
We want to note that training a single model takes approximately 

1–3 min. After that, the model can be used to analyze the test set. In the 
DSS, we use the Multi-Channel CNN to sort the most relevant articles 
based on the confidence score. As the model trains rapidly, there is no 
drawback on time cost for the user-end. 

5. Discussion 

5.1. Discussion on the results 

Due to powerful NLP and deep learning techniques, we can outper
form some of the benchmarks in the citation screening process. The use 
of contextualized word embeddings for citation screening shifts the 
perspective from “do the most used words in a title and abstract corre
spond?” to “are there words or sentences with a similar meaning?”. 
Furthermore, Multi-Channel CNNs are fast and show a low variance for 
large datasets, such as the toxicology reviews. Deep learning in this field 
is shown to be essential to achieve even higher results than the 
benchmarks. 

We developed and evaluated a DSS to retrieve relevant and high- 
quality citations from PubMed, ScienceDirect, and Springer. The 
approach can be used to assist the development of systematic literature 
reviews independent of the domain. The results showed that our pro
posed DSS outperformed two benchmark datasets in terms of 
WSS@95%. The obtained results demonstrate that our Multi-Channel 
CNN-based DSS substantially reduced the screening workload of four 
systematic review studies by approximately 57%. The results reflect the 
goal of systematic search: to maximize recall to identify all relevant 
studies while controlling precision to keep the results manageable. The 
workload savings varied across the five reviews, from a low WSS@95% 
score of ~7% on the PFOS-PFOA review to a higher WSS @95% score of 
~88% on the Fluoride review. The DSS performed poorly on the PFOS- 
PFOA review dataset, as it seemed to overfit. We have checked the 
dataset input, but it has no differences from the other datasets. We can 
also conclude from looking at the IQR from the boxplots in Fig. 7; the 
WSS@95% scores remain remarkably consistent within each dataset. 

According to (Cohen et al., 2006), a significant and meaningful 
workload saving should be at least 10% for the WSS@95% metric. This 
stems from the fact that the citation screening process of a systematic 
review, when conducted manually, requires on average ~8.7 FTE to be 
completed, based on a 38-hour workweek. Therefore, a WSS@95% score 
of 10%, i.e., 10% of correctly excluded citations +5% of incorrectly 

Table 3 
Datasets adopted by (Howard et al., 2016).  

Author Dataset # 
Citations 

Eligible 
citations 
(%) 

Missing 
abstracts 
(%) 

Howard 
et al. 
(2016) 

Bisphenol-A (BPA) and 
obesity 

7700  1.44  7.88 

PFOA/PFOS and 
immunotoxicity 

6328  1.50  5.97 

Transgenerational 
inheritance of health 
effects 

48,638  1.57  4.38 

Fluoride and 
neurotoxicity in animal 
models 

4479  1.14  13.60 

Neuropathic pain 29,202  17.2  0.00  

Table 4 
WSS@95% results of 2 benchmark studies versus the Decision Support System. 
We have printed the highest results of each dataset in bold.  

Datasets Howard et al. 
(2016) 

Kontonatsios et al. 
(2020) 

Decision Support 
System 

BPA  0.752  0.758  0.792 
PFOA/PFOS  0.805  0.848  0.071 
Transgenerational  0.714  0.707  0.708 
Fluoride  0.870  0.799  0.883 
Neuropain  0.691  0.608  0.620  

Fig. 7. WSS@95% values of the decision support system and benchmark papers. Benchmark papers WSS@95% values are shown as markers, as they are means. 
Decision support system WSS@95% values are shown as boxplots. The dotted line in the box stands for the mean; the continuous line represents the median. 
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excluded citations, results in a workload reduction of ~1.3 FTE. Ac
cording to expert reviewers, this is a significant reduction of their cita
tion screening labor. The experiments that we conducted showed that 
our proposed DSS yields significant workload savings of at least 10% in 4 
out of 5 review datasets. Thus, it could be potentially used in practical 
application scenarios for accelerating the citation screening task of 
systematic reviews. 

In practice, our method’s workload reduction (i.e., WSS@95% score) 
achieved by our DSS is relative to the underlying review dataset’s size. 
For example, our Multi-Channel CNN obtained approximately the same 
WSS@95% performance of 0.7 on both the BPA and the Transgenera
tional dataset. However, the Transgenerational dataset’s validation 
sample consists of 24,319 citations, and it is substantially larger than the 
validation sample of the BPA dataset, which consists of 3,850 citations. 
In practice, this means that a WSS@95% score of 0.708 is equivalent to a 
workload reduction of 18,433 citations, which are automatically 
excluded from the Transgenerational review. In comparison, a 
WSS@95% score of 0.792 translates to a workload reduction of only 
3,241 automatically excluded citations for the BPA dataset. 

Last, as similarly mentioned by (Kontonatsios et al., 2020), our DSS’s 
limitation is that we need to train our neural network independently for 
each SLR dataset. This means that we have trained 5 Multi-Channel 
CNNs corresponding to each dataset. As (Kontonatsios et al., 2020) ex
plains: “Different systematic reviews may share one or more eligibility 
criteria (e.g., if included studies are randomized control trials) and thus 
learned document features could be applied to different reviews.” This could 
be included in future work. 

5.2. General discussion 

Our study’s main difference with the related work is that we have 
explicitly developed a DSS, which is domain-independent, open-source, 
and does not require programming knowledge. Furthermore, our study 
is the first paper that leverages deep learning to select primary stud
ies—opposed to the tools listed by Toolbox (2014), Tsafnat et al. (2014), 
and Marshall and Wallace (2019), our study supports the automation of 
two steps in the SLR process. 

Our study shows that shallow machine learning architectures for 
study selection used domain-dependent finetuning of hand-crafted fea
tures in the related work. The need for finetuning is overcome by using a 
practical and interchangeable NLP preprocessing pipeline using only the 
title and abstract. The use of just these two input features is in line with 
the evaluation of tools by Harrison et al. (2020). Furthermore, neural 
networks are used to find hidden features that eliminate the need for 
hand-crafted features and finetuning for each domain. 

Additionally, other primary studies have not developed a DSS that 
allows input from multiple databases. Moreover, we follow (Cohen 
et al., 2009) by classifying citations rather than the Active Learning 
approach. We did not develop a snowballing algorithm, nor did we build 
query refinement except for adding the search field. 

We found the key papers on the automation of the citation screening 
process by (Howard et al., 2016; Kontonatsios et al., 2020) and evalu
ated our results on their benchmark scores. Our study selection, pre
processing, and evaluation methodology steps were corresponding to 
their studies. Therefore, we have developed a DSS that is reliable and 
significantly different from shallow machine learning applications, with 
new and relevant insights. 

5.3. Threats to validity 

Construct Validity: Construct validity assesses whether the SLR rep
resents the degree to which it measures what it asserts. First, we tried to 
replicate the model by (Kontonatsios et al., 2020), as it has been recently 
published and open-source via GitHub. However, we could not achieve 
similar scores using our dataset. Unfortunately, the corresponding 
datasets seem not to be accessible anymore. Hence, we validated our 

code based on the code provided by (Colón-Ruiz & Segura-Bedmar, 
2020; Kontonatsios et al., 2020), and others on Kaggle. 

Criterion Validity: To assess model WSS@95% results during cross- 
validation, we have developed a TensorFlow custom metric class. As it 
needed to measure WSS at a specific recall rate, we used the Sensitivi
tyAtSpecificity base class. This base class allows us to calculate a metric 
at another metric. We have validated this metric using our hand-written 
calculations. Furthermore, when validating our scores against the 
benchmark papers, our models seem to score in line with the other 
papers. 

Internal Validity: Internal validity shows the incomplete relationship 
between results, which may lead to structural errors. We used cross- 
validation, set 10 seeds to have the same dataset splits consistently, 
and used fixed model hyperparameters. As these techniques were well- 
defined in other papers and their open-source code, the model evalua
tion against benchmark papers was described adequately. 

External Validity: This primary study only used published studies as 
benchmarks that applied machine learning techniques to automate the 
citation screening process. The scores were required to be mentioned 
using the WSS@95% score, retrieved by Nx2-fold cross-validation. Here 
N must be between 5 and 10 rounds. Furthermore, a new machine/deep 
learning or natural language processing algorithm has not been applied 
yet to automate systematic literature reviews, like novel transformer 
algorithms, such as BERT and GPT-3. As these studies have not been 
published, they have not been discussed regardless of their potential. 

Conclusion Validity: The conclusion validity measures the reproduc
ibility of this study. Our study used datasets provided by (Kontonatsios 
et al., 2020). Furthermore, we made our code open-source, available on 
this GitHub page (https://github.com/rvdinter/decision-support-syst 
em). Our DSS was also discussed among the authors to minimize indi
vidual errors. We derived all conclusions based on the tables and figures 
to avoid subjective interpretation of the researchers’ results. 

6. Conclusion 

This paper has presented a DSS to support the automation of the 
document retrieval and citation screening process for SLRs. The system 
aims to improve workflow during retrieving and screening documents 
and minimize the human workload and error involved in citation 
screening. Using the proposed DSS, reviewers can follow the procedure 
by (Kitchenham & Charters, 2007) where they need to fill in their search 
strategy and manually label only a subset of the citations, while the 
remaining unlabeled citations are automatically classified and sorted 
based on their probability. We have demonstrated that by developing a 
deep learning-based pipeline, we can use the power of deep learning 
promises to overcome domain-specific challenges in shallow machine 
learning. 

We have further experimented with assessing our Multi-Channel 
CNN architecture’s performance across five publicly available SLR 
datasets. It was shown that for four out of five review datasets, the 
proposed method achieved significant workload savings of at least 10%. 
At the same time, in several cases, our model yielded a better perfor
mance over two benchmark review datasets. The approach can be used 
to assist the development of SLRs independent of the domain. In our 
future work, we will apply the DSS for various SLRs and focus on the 
automation of the other steps of the SLR process. 
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